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ABSTRACT

The performance of existing speech recognition

systems degrades rapidly in the presence of background
noise when training and testing cannot be done under the
same ambient conditions. The aim of this paper is to
propose the application of a simple multilabeling method,
instead of the standard vector quantization -so called
labeling-, as the front end for a speech recognizer based on
the Vector Quantization (VQ) and Hidden Markov Models
(HMM) approaches.in order to increase its robustness to
noise. Furthermore, not only cepstrum but also other
features such as energy and dynamic parameters are
evaluated and quantized independently in the multilabeling
stage to represent more accurately characteristics of speech.
The result of this process is a multiple multilabeling.
Experimental results in the presence of additive white noise

clearly demonstrate its good performance in isolated word

recognition in noisy environments. .

LINTRODUCTION

- Speech recognition in'noisy environments remains an
unsolved problem even in the case of isolated word
recognition with small vocabularies. In order to develop a

system that operates robustly and reliably in the presence of .

" noise, many techniques-have béen proposed in the literature
[1] for reducing noise in each stage of the recognition
process, particularly, in feature extraction and similarity
measuring:

A spectral estimation technique widely used in speech .

processing and, particularly, in speech recognition is linear
" predictive coding (LPC) [2], equivalent to an AR modeling
of the signal. Concretely, it has been shown that the use of
the liftered LPC-cepstral coefficients in the standard
Euclidean distance measure lead to the best results of those

obtained with this model in both noise free [3] and noisy -

[4] conditions. Moreover, it is well known that the use of a
relatively high prediction order can provide more robust
estimations in the presence of noise. :

However, due to the sensitivity to the presence of
additive noise of the standard LPC technique and the other
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parameterization techniques used in speech recognition, the

performance of existing speech recognition systems
degrades ‘noticeably in the. presence of background noise
when training and testing cannot be done under the same
ambient conditions. : :

On the other hand, Hidden Markov-Models (HMM)
have become the most popular automatic speech recognition
tool ‘because .of its capability of representing speech-
variability as statistical parameters. These models can use
discrete output probability distributions (DHMM) or
continuous output pdf's (CHMM) [5]. . :

The CHMM approach model the acoustic observation
directly using estimated continuous pdf's. However, a

. mixture of large number of them are generally. required, that

increase not only the computational load, but also the
number of free parameters that must be reliably estimated.

For the DHMM case, vector quantization (VQ) makes
it possible to use a histogram oriented nonparametric
characterization of the observed speech signals.and solves
those problems. Nevertheless, the standard VQ stage makes
a hard decision as to which of its codewords is the best
match for each acoustic observation, and so the information
about the degree to which the input vector matches other-
codewords is discarded for the subsequent hidden Markov
modeling. This information would be especially important
in the case of noisy speech recognition, because that hard -
decision can be easily modified by the noise added to the
speech. ) . . :

To accommodate this information lost, several
techniques have been proposed that use information.
provided in" the neighbouring codewords, such as .
multilabeling [6], fuzzy VQ |7}, semicontinuous HMM
(SCHMM) (8], smoothing |9], etc.

The aim of this paper is to propose the application of a
simple multilabeling method, instead of the standard vector
quantization, as the front end for a speech recognizer based
on the Vector Quantization (VQ) and Hidden Markov Mogiel
(HMM) approaches speech in order to increase Its
robustness to noise. This modeling approach will be named
in this paper MLHMM (MultiLabeling HMM). -

Furthermore, not only cepstrum but also other features
such as energy and dynamic parameters are evaluated.
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applying regression analysis [10], and quantized

.independently in the multilabeling stage 10 represent

accurately characteristics of speech. The result of this
process is a multiple multilabeling. Experimental results in
the presence of additive white noise clearly demonstrate its
good performance in isolated word recognition in noisy
environments.

This paper is organized in the following way. In
section 2 the multiple multilabeling method is briefly
revised and its relationship with the other. techniques
mentioned above is discused. Section 3 reports the
application of these techniques to recognize isolated words
in a multispeaker task in order to compare their performance
and gain some perspective of the merit of the multiple
multilabeling method in noisy environments. Finally, in
section 4 some conclusions are summarized.

2. MULTIPLE MULTILAB-ELING

~ For improving the VQ accuracy in a simple manner,

firstly a multilabeling method is introduced in this section..

Unlike the standard VQ, this multilabeling method makes a
soft decision about which codeword is closest to the input

vector, generating an output vector whose components

indicate the relative closeness of each.codeword to the
input.

Let the codewords of the mul_tilabeling codebook be
{vk}k=1..M, where M is the codebook size, and let the

' cepstral vector in the instant t be x;. The multilabeling

codebook maps the input vector x¢ into dn output vector

" O={w(x,vi) Jk=1.M estimated as

wlxyvid) = el o

3 1/d(x,Vm)

m=1

where d(x,vi) is the Euclidean distance between vg and
x;. The expression (1) is the same that the fuzzy VQ rule
with degree of fuzziness equals to 2 [7]. ‘

These components are positive, sum to 1 and are
decreasing with d(x,vk). Thus Oy can be interpreted as a
probability mass vector describing the probability that input
vector x; was drawn from the class represented by the
codeword vg. ’

The _DHMM algorithms must be generalized to

- accommodate this multilabeling output. For a given state j

of the HMM, the probability that a vector x is observed can
be written as

E M oo
. bj(xy) = k):i w(x(,vk) bj(k), _ 2)

where bj(k) denotes the discrete output probability
associated with the codeword v and the state j.

Forward-backward and Viterbi algorithms are simply
generalized using (2) instead of bj(k). With respect to the
training problem, Baum-Welch reéestimation formulas for

the transition probabilities a;; and initial state probabilities r;

are generalized in the same manner. However, in the case
of the reestimation of bj(k), the maximum likelihood
estimation yields this new formula for the case of a training
sequence of length T, for k=1,....M and j=1,..,N (number
of states)

;;am B(j) xuvk) biCk)

o2 bjx)
bitk) = F—— , 3)

Z‘ o (j) Bu(d)
1=

where o,(j) and B(j) are the well known forward and
backward probabilities, respectively.

Nevertheless, in the experiments reported in this paper
an alternative reestimation formula has been used that only
depends on the the term w(x,,vk) and does not depend on
the probability bj(k) in the iteration before:

T v
o ;lat(j) Bu(j) w(xy,vk)
bi(k) = = —, @

21 o(j) Bu(i)
1=

This formula does not guarantee the convergence of the
training process but, if only two or three iterations are
performed, it yields better recognition rates than those
obtained using maximum likelihood formula: It is due to
formula (4) benefits the probability of the closest
codewords to the input vector. The use of this reestimation
formula reduces the amount of computational load in the
training phase. ‘

On the other hand, in practice, (2) can be simplified
with K most significant values of w(xy,vk) for each x,
without affecting the performance. Since K is of lower
order than the codebook size M, this simplification also
reduces the computational load in training and testing
phases. .

Because of those both factors, use of reestimation
formula (4) and simplification of (2) with only K
codewords, the MultiLabeling Hidden Markov Models
(MLHMM) approach becomes extraordinary efficient.

‘The multilabcling method revised here is essentially the
same described in [7], substituting the lakura distortion

measure between vectors of predictor coefficients by the -

Euclidean distance between cepsiral vectors, fixing the
degree of fuzziness to 2 and simplifying (2) with only K
codewords. With respect to the multilabeling method
described in [6), the main discrepancies are the the different
generalization of HMM algorithms and that the number K
of codewords considered in [8] is different for each input
vector. -

Compared with the closely related semicontinuous
HMM approach (SCHMM) [8], the main difference is that
the components of the output vector of the codebook,
estimated from the deterministic viewpoint in the
multilabeling method, are estimated from the stochastic
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viewpoint in the semicontinuous approach. Concretely, in
the semicontinuous approach the codebook is modeled as a
parametric family of mixture Gaussian densities.
Furthermore, parameters of the codebook and models can
be mutually optimized to achieve an optimal
model/codebook combination. This mutual optimization of
models and codebook can be made also in the case of the
multilabeling method, but in this paper this option has not
been considered because of its computational complexity.

As it will be seen in section 3 the recognition accuracy
obtained with both MLHMM and SCHMM approaches is
similar. However, the multilabeling method proposed in
this paper is more computationally efficient than the
semicontinuous approach. ’

Also there is a relationship between these techniques
and the smoothing techniques revised in [9] in the sense
that all of them use information provided in the
neighbouring codewords. Nevertheless, the way of this
information 1s obtained and used is different.

The performance in noisy speech recognition of
MLHMM, SCHMM and smoothing techniques will be
compared in section 3 when only the static cepstrum of the
speech signal is used.

Finally, in this work, in order to represent accurately
characteristics of speech not only the static spectrum but
also other features such as energy and dynamic parameters
are cvaluated, applying regression analysis [10], and
quantized separately in the multilabeling stage. The result of
this process is a multiple multilabeling and then each feature
is considered statistically independent in the HMM
framework. Experimental results shown in section 3
demonstrate that this process yields excellent results in
noisy speech recognition.

This multiple multilabeling method is essentially
different to the multidimensional multilabeling approach
proposed in [8], in which each feature is also quantized
separately in the multilabeling stage but their multilabels are

~ combined at each frame.

3. RECOGNITION EXPERIMENTS
3.1. Speech databases and recognition system

. The database consists of ten repetitions of the Catalan
digits uttered by seven male and three female speakers
(1000 words) and recorded in a quiet room. Clean speech
was used for training in all the experiments. Noisy speech
for testing was simulated by adding zero mean white

Gaussian noise to the clean signal so that the SNR of the .

resulting signal becomes « (clean), 20, 10 and 0 dB.
Firstly, the system was trained with half of the database and
tested with the other half. Then the roles of both halves
were changed and the reported results were obtained by
averaging those results.

In the parameterization stage, the speech signal,
sampled at 8 kHz, quantized using 12 bits per sample and
manually endpointed, was divided into frames of 30 ms at a
rate of 15 ms and each frame was characterized by its
liftered LPC-cepstral parameters. In some tests the log-
energy and the dynamic parameters of the frame were also

obtained. Each information was vector-quantized separately
by means of a codebook of 64 codewords, using the
standard.VQ, the semicontinuous VQ or the multilabeling
approaches. Each digit was characterized by a first order,

left-to-right, Markov model of 10 states without skips. The

parameters of the model were smoothed only in one of the
experiments reported in this paper. Training and testing
were performed using Baum-Welch and Viterbi algorithms,
respectively.

3.2. Recognition results

The first experiments carried out with the above
described speech recognition system consisted of
empirically optimizing the prediction order and the type of
cepstral lifter using only static cepstrum and standard VQ.
The best results were obtained using prediction order equals
to 12 and slope lifter. These optimum orders and cepstral
lifters were used in the experiments described bellow.

Using the multilabeling method to quantize the static
cepstrum; the best results were obtained when the five
closest codewords to the incoming vector were considered
(K=5). In table 1, multilabeling recognition rates
(MLHMM) are compared with those obtained using
standard VQ (DHMM) and semicontinuous VQ with K=5
(SCHMM) and also with those obtained applying the
Parzen method on the discrete models (DHMM-Parzen), the
best results provided by the smoothing techniques in our
experiments.

~

Models / SNR (dB) oo 20 10 1]
DHMM 99.8 | 989 7895 | 54.2
DHMM-Parzen 99.3 1 98.6 [ 96.0 { 69.8
SCHMM 99.8 | 989 [ 964 | 72.8
MLHMM 99.7 1 988 17965 [ 74.1

Table 1

It is clear from table 1 that the results of all the
techniques that use information provided in the
neighbouring codewords outperform noticeably DHMM
results in noisy conditions. However, in noise free
conditions only SCHMM and MLHMM results are
comparable with DHMM results due to the increase of
confusion associated with the smoothing techniques.

On the other hand, it also can be seen that SCHMM
and MLHMM recognition rates are very similar in all the
conditions considered in this study. Taking into account
that the computational load in the multilabeling method is
lower than in the semicontinuous approach, it is clearly
preferable the multilabeling method in this application.

In Fig. 1, the results obtained adding energy and
dynamic features to the DHMM and MLHMM approaches
are shown: only static cepstrum and standard VQ (a),
cepstrum with energy and dynamic features and standard
VQ (b), only static cepstrum and multilabeling (c),
cepstrum with energy and dynamic features and
multilabeling -i.e. multiple multilabeling- (d). Dynamic
information consisted of delta-cepstrum and delta-energy,
estimated using a window length of 90 ms, and delta-delta-
cepstrum and delta-delta-energy, estimated using a window
length of 120 ms.
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Fig. 1

‘It is clear from Fig 1 that the use of the multiple
" multilabeling, i.c. separate multilabeling of each feature of
speech, yields excellent results in the presence of additive
white noise. For more details about experimental results
and conditions, see [11].

4. CONCLUSIONS

In this paper a multiple multilabeling method has been
proposed to improve HMM-based noisy speech
recognition. A multilabeling stage is used, instead of the
st VQ, as the front end for a speech recognizer based
on the VQ and HMM approaches in order to increase its
robustness to noise. This method is computationally very
efficient, unlike the continuous HMM approach, and
experimental results in the presence of additive white noise
clearly demonstrate that its use in noisy speech recognition
outperforms considerably the standard VQ. On the other
hand, compared with the closely related semicontinuous
HMM approach, the multilabeling recognition rates are
slightly better than the semicontinuous results and the
computational load is lower in our technique. Furthermore,
not only the spectrum but also other features such as energy
and dynamic parameters are evaluated and quantized
independently in the multilabeling stage. Using this multiple
multilabeling stage, excellent results have been obtained in
isolated word recognition in noisy conditions.
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