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ABSTRACT

The architectural design of Application Specific Integrated
Circuits (ASIC) for Digital Communications demands effi-
cient algorithms for carrying out the signal processing in-
volved in the modulation and demodulation procedures.
The search for compact, well-performing architectures is
therefore crutial in the implementation of communication
systems on silicon.

In this paper we describe efficient Distributed Arith-
metics (DA) architectures for Digital Filtering in Commu-
nication Systems. In particular, the specific design of FIR
filters at bit-level is considered. We present a memory re-
coding method for DA look-up tables (LUT’s) that leads to
substancial improvement in quantization SNR without the
necessity to increase the LUT wordlength, ASIC synthesis
results will also be provided.

1. INTRODUCTION

1.1. DISTRIBUTED ARITHMETICS

In this section we will describe only its canoni-
cal form. Let hT= [ho,hi,. .., thl]T be the vec-
tor containing the filter coefficients and let x(n)T
[z(n),z(n —1),...,z(n — (L — 1))]" be the vector contain-
ing the input (not quantized samples). Let x,(n)T =
[a(z(n)),q(z(n —1)),...,q(z(n — (L —1)))]" be the vector
containing the input quantized samples. DA carries out the
following operation with minimum quantization noise,

y(n) =h"xy(n) = Y hiq(e(n 1)) (1)

Note that the coefficients in h are not quantized. Let us
consider an incoming stream of data quantized to b, bits,

by —1
a(z(n)) = v2b= ! Z TrmnWm2 (2)
m=0
11, 1<m<b,—1

Wy =

-1 m=20

where V is a constant defining the dynamic range of
quantization and xm,,, constitute the two’s complement en-
coding of the data stream z(n). Using the expression for
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q(z(n)) in (1) we get

L—1 be—1
y(n) = Y WV Y Tmap-iwm2 " (3)
ijl " L—1
= ZwmQ_mVZhimmyn,i
m=0 i=0
by—1

= Z wm27mym(n)
m=0

with V' = V2%»~1. Therefore, the output y(n) is con-
structed with the shift and addition of the b, auxiliary terms
ym(n). These are just filtering operations themselves, tak-
ing the streams m,n—; as inputs to filter h. These auxiliary
filtering operations are pre-calculated in floating point® pre-
cision and stored in a table M. This table is looked up at
the addresses x%(n) = [mm,n,mm,n_l,...,a:m)n,(L,l)] SO
that ym(n) = M [x;(n)]. Distributed Arithmetics builds
on this decomposition using the quantized version of the

table,
def

M [xm(n)] = q(ym(n))
The estimate of the quantized filter output, ypa(n), is
thus calculated as,

by—1

ypa(n) = Z wm2” " BM [xg(n)]

The 8 = % factor has been introduced in the definition
because the accumulations performed in (3) are subject to
overflowing: therefore, words from the look-up table must
be extended by one bit before accumulation.

Also, care must be taken at this stage with the dynamic
range associated with the previous quantization operation
in table M. If we want to minimize the quantization noise
introduced by the table we should make sure that the max-
imum absolute value of all possible memory positions coin-
cides with Vipax as defined in (12). Hence, the more advan-
tageous definition of DA must be adopted,

1(’s *double’ type or MATLAB’s 8-byte precision.



bo—1

ypa(n) <Y w2 MBM[xn )] (@)

L-1
M [xg(n)] def ql A Zhimm,n_i
i=0
with the re-scaling factor A suitably chosen to fulfil,

Vmax =

max h1$m n—i (5)

A
{Im,nf'i:Oyl} i—=0

1.2. ARCHITECTURES

The DA scheme represented in equation (4) is expressed in
terms of the summation of several values. Each of these val-
ues may be generated sequentially with the same hardware
or in parallel and added to a summation network [1]. In the
first case, the filter output will not be available until after
as many clock cycles as input quantization bits, while in
the second case, one output sample will be generated every
clock cycle. We will distinguish therefore between Sequen-
tial and Parallel Distributed Arithmetics: SDA (Figure 1)
and PDA (Figure 2).
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Figure 1: Description of Sequential Distributed Arith-
metics. Some overhead is necessary for the control state
machine and data routing.

1.3. HISTOGRAMS

A useful tool in the evaluation of complex fixed point arith-
metic structures is the histogram. The distribution pro-
file of data input values can be used to improve perfor-
mance in DA implementations [3].In this paper we will use
the histogram of LUT’s (ROM’s) as a tool to character-
ize some details in Distributed Arithmetics implementation
of digital filters. It serves the purpose of monitoring the
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Figure 2: Description of Parallel Distributed Arithmetics.
The overhead in SDA is not necessary but ROM look-ups
and additions are replicated, not shared.

word-length occupancy in concatenated arithmetic opera-
tions when large signal records are used to probe fixed-point
implementations of signal processing algorithms.
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Figure 3: Profiles of a look-up table: before (upper) and
after recoding (lower).

2. MEMORY RECODING (I)

In a previous section we defined the way in which the DA
look-up tables are generated in the classical scheme. In this
chapter we will show that recoding the look-up table leads
to substantial improvements in quantization SNR without
the necessity to increase the look-up table wordlength. Let
us now examine the profile of several typical DA look-up



tables (see Figure 3(a)). We can appreciate that their his-
togram is biased towards the positive range. In terms of
quantization this is suboptimum as the available memory
wordlength is not fully used. We will seek to improve quan-
tization SN R by several dB by removing any offset present
in the look-up table and re-scaling to use up the full dy-
namic range. We will show that this offset can be added
back outside the look-up table.
Let us define the mean of the look-up table,

2l
L
n= 2 Z [Mk}not quantized (6)
k=0
We will generate a new look-up table as the quantization
of,

Ym(n) = A (ym(n) — p) (7)
M. = q(ym(n))

with A" a new scaling factor to use up the whole dy-
namic range of the b,,-bit memory wordlength. Let us now
proceed with M}, as,

M, =

+q(-A'p)+
(Aym(n)) + (=A'p) = ((A'ym(n)) + (- A'n))
= q(Aym(n) +q(-A'n) +em(n)

with ., (n) including all the residue terms. Note that in
the third equality of the previous equation, the argument
of q(A'ym(n)) is exceeding the dynamic range associated
with quantization. Nevertheless, this does not constitute
a problem for two reasons: (a) the function q(z) , by de-
finition, does not clip values with |z| > Vimax and (b) the
variable A’ym(n) is only an intermediate arithmetic value,
inexistent in the hardware implementation of this scheme.
In fact, we are only virtually exceeding the dynamic range.
Therefore, if we define the new DA output as,

by—1

=4 > w2 AM [x5 ()]

m=0

Ypa (n
we get,

be—1

- S
be—1

+Zwm A,u)

bo—1

+ Z Wy 2
m=0

The second term in 8 can be expressed as,

y’DA(n

" 8q (A'ym(n)) (8)

~"Bem (n)

be—1
ypa(n)e = Ba(—A'p) > w2
m=0 -
= Ba(-A'n) (1 +> 2’")
m=1

= —fq(-Ap)2 "

Hence, we have that we can define the output zpa(n)
of a new DA architecture as the accumulation of values of
look-up table M’, yp 4(n), plus a constant term,

zpa(n) = ypa(n)+pBq(—A'p)27*  (9)
by—1
= Zwm " Bq (A'ym(n)) +
be—1
+Zwm2 Bem (n)
m=0

A new noise term, Z::_ol 27" Bem (n), appears, but

it is far exceeded by the amplification A’. This new am-
plification factor was not possible in last chapter’s scheme
because it would have saturated the memory wordlength.

2.1. OFFSET POST-CORRECTION

The correction term —yp 4(n)2 provides an additional ad-
vantage: in the last accumulation performed by DA, the
weight wo = —1 is enforced. In two’s complement, this is
equivalent to inverting all bits and adding 1. The addition
of the correction term is roughly equivalent to substract-
ing 1. Hence, during the final clock cycle in distributed
arithmetics, it is only necessary to invert all bits of the bit-
extended looked-up word, add it up to the shift-accumulator
register and correct the overall result with the addition of
the constant correction term,

K

VﬁQ_b""H +ﬁq (—A/H) 2—bm+1
9(V+a(-aw) 27"
= fq (AIN) 9—batl

where the first term is accounting for the addition of
a digital one after bit-extension by one bit and the second

term is the correction by —yp4(n)2. Using the convention
V =1/2, we have,

K= (% +q (fA’,L)) 2 e

An alternative procedure is to initialize the accumulator
in distributed arithmetics to the value,

y k>0

Yace,0 = ﬂ (V +q (—A’H)) (10)



so that after the b, iterations (equivalent to
by — 1 shifts) of the shift-accumulator it will become
ﬂ(V+q(—A'u)) 27%+1  (intermediate rounding opera-
tions are not taken into account!) which is precisely the
term that must be added.

3. MEMORY RECODING (II)

We will show here that the memory recoding procedure
previously presented can be posed in terms of a recoding
of the zp,,»’s. We will consider the following mapping?,

T, = 2zman—1

{Zmn : 0,1} +— {9_3m,n:fl,+1}

Also, we will find a new expression for the mean p in-
troduced in 6. Let by = [mm,n7mm,n717---7$m,n7L+1}T
denote the k-th binary address(in the {0,1} encod-
ing) among all 2¥ possible addresses and let c; =
[Em,n, Trn—1y---, £m7n7L+1j|T denote the k-th binary ad-
dress (in the {—1,4+1} encoding). Let 1 be the all-ones
vector, then, the mean p can be expressed as,

2l 1
p = 27k ZAthk
k=0

ol _1

_ 1
274 ; hTi(ck+1)

27 -1 27 -1
DL Tl
k=0 k=0

L
but Zizgl cr = 0 as each possible ¢,/ has its —cys
counterpart. Therefore,

L-1
= Lapry 21 _
p=54h 1_22Ah1
i=0
using this equality in 7 we get,
Ym(n) = A (ym(n) —p) (11)

L—1 L—1
= A (Azhixm,ni - % ZAm)
i=0 i=0

L—1
p— 1 !
i=0

It is shown that the memory recoding procedure out-
lined in the previous section is equivalent to evaluating the

2In [1], Withe use the same mapping to explain a method to
reduce the memory size by half to a 2% word ROM

filter ID | roll-off | n° coef. | ASNR (dB) | & ratio
f1 0.75 14 5.29 0.91
£2 0.6 14 5.12 0.89
£3 0.5 16 4.99 0.87
f4 0.35 16 4.78 0.84
£5 0.25 24 4.40 0.79
6 0.2 32 4.17 0.76

Table 1: Simulation results.

outputs of the filter when the input data is {—1,+1} en-
coded.

In summary, the histogram of the look-up table will
now be symmetric. The profile of this table will display
reflection symmetry. Hence, it will be necessary to store
only one half of the memory.

4. SNR IMPROVEMENT

The theoretical evaluation of the expected improvement in
quantization SN R associated with recoding is formulated
in terms of the amplification factor A’. This factor can be

obtained as,
L—1
A <Z hiwm,n—i - H)

Vinax =

max

A (12)
{2m,n—i=0,1}

=0

Hence, as the relationship between the median of the
look-up table and the filter coefficients is

1L—1
n=g Zhi
=0

and take into account the definition of the amplification
factor A from (12), we have that the amplification factor A’
will be,

max (Zh,¢>0 hi, — Zhi<0 hi)
F—) <2 (13)
>ico IRl

which shows that, at most, we can get a one bit im-
provement (approximately 6 dB) in the quantization SN R,

A=2.

ASNR = 20log,, A’ < 20log,,2 ~ 6dB (14)

The resulting histogram for the recoded version of the
LUT’s corresponding to Figure 3a, is showed in Figure 3b.

4.1. SIMULATION RESULTS

We have applied the explained recoding to some bench-
mark filters to be used in matched filtering in a IF sampling
scheme. The modulation is uncoded QPSK on a square
root raised cosine pulse (SQRRC). Some parameters of the
benchmark filters and the associated SN R improvement are
show in Table 1.



bn MSB ... LSB | Ey/N, dB | (Ev/Na), | SNRq
88888888 43.03 15.94 11.93
88888883 42 89 15.94 4177
888388843 4270 15.91 11.61
88888543 12,62 15.91 1155
88886543 12 42 15.91 11.30
88876543 4192 15.91 10.77
88765432 4144 15.91 39.60
88654321 37.95 15.94 35.99
88765431 4114 15.91 39.07
88765422 4139 15.91 39.34
88765322 4132 15.91 38.94

Table 2: Filter £3. Results for PDA architecture with vari-
able quantization.

b MSB ... LSB | E,/N, dB | (Ev/N.), | SNRq
999999999 | 40.97 1510 1222
999999994 | 40.95 45.10 12.20
999999993 | 40.90 45.10 12.10
999999992 40.80 45.10 41.96
999999991 40.29 45.10 41.09
999999943 40.89 45.10 41.99
999999543 | 40.76 45.10 41.93
999996543 | 40.69 45.10 .71
999976543 | 40.63 45.10 41.60
999876543 | 40.14 45.10 41.20
999977443 | 40.28 45.10 1141

Table 3: Filter f4. Results for PDA architecture with vari-
able quantization.

Notice that the improvement ASNR is directly related
to the roll-off as equation (13) is a measure of the time
oscillations of the impulse response h(n) and hence, of the
filter selectivity.

If we look at the mean p, we obtain also the relationship,

Viax tho hi +- Zh,i<0 hi ~ Vinax—

= = o (15)
2 max{ Z hi,— Z hl} 2

hi>0 h;i<0

and hence,

1 1
N max< < a Vmax 1
S Ve S 1 < 43V, (16)

The ratio m is also tabulated for the benchmark filters
in 1,which also displays dependence on the associated roll-
off. Of course, w and A’ are not independent as the larger
7Z, the larger A’ (a better improvement of ASNR).

5. PDA ARCHITECTURE WITH VARIABLE
QUANTIZATION

The PDA architecture, constituting an unfolding in the
space domain of the iterations carried out by SDA in the
time domain, has the inconvenient that the area cost of
the original SDA scheme is multiplied approximately by the

number of input quantization bits. Nonetheless, PDA is ad-
vantageous in the sense that as one memory is instantiated
for each input bit of weight 27%, quantization of that mem-
ory can be made variable depending on the importance the
corresponding weight. Hence, memory look-ups associated
with the least significant input bit vectors can be quantized
in a rougher way. Simulations have been run to test PDA
with variable quantization.

5.1. SIMULATION RESULTS

Simulation has proceeded for the six benchmark filters used
in section 4. The equivalent Ep/N, measuring the contri-
bution of IST and quantization noise at the output of the
digital filter provides only information on performance at
the strobe. Alternative measures of signal to quantization
noise ratio are also necessary for comparison. Therefore,
the following parameters are defined,

1. by, number of memory quantization bits.

2. Ey /N, evaluated at the output of distributed arith-
metics due to the ISI plus quantization noise. The
centroid with respect to which the equivalent ISI is
computed is calculated for the ideal not-quantized
filter when the input signal is one single pulse, not
quantized.

3. (Eb/NO)Q., Ey/N, defined as bit-energy with respect
to output quantization noise associated with output
rounding: 05 = 1—12A2 = %2*2%. For the previ-
ous Ey/N, measure to be reliable it must hold that
(Ev/No)g >> Ep/No. Otherwise, the mean absolute
value of the ISI is comparable to or lower than the
output quantization step.

4. SNRg, measured signal to quantization noise ratio
at the output of the DA filter. The reference sig-
nal for determining the noise power term is the not-
quantized input filtered by the not-quantized, full
precision ideal filter. It includes the contribution
of input quantization, filter quantization and output
rounding.

The obtained results corresponding to filters with ID
f3 and f4 in Table 1, are shown in Table 2 and Table 3,
respectively. The used number of input quantization bits
and number of quantization bits at the output of distributed
arithmetics (rounding) are 8 in all the cases.

The results shown that the application of variable quan-
tization to the PDA architecture could decrease further the
associated complexity at a small loss in performance.
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