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Abstract

The following paper deals with active control implementation in cable-stayed
bridges. Recent developments in structural active control of cable-stayed
bridges are focused on the adaptability to dynamic effects produced by earth-
quakes or extreme winds (El Ouni et al., 2012; Pakos and Wéjcicki, 2014;
Domaneschi et al., 2015a,b). Nevertheless, no attention has been paid to
the static or quasi-static case. As stated by Housner et al. (1996), Song
et al. (2006) or Gilewski and Al Sabouni-Zawadzka (2015), active control
could also be useful to diminish fatigue in the day-to-day performance of this
type of bridges by decreasing stresses adaptively. Indeed, the following paper
shows that excitation periods produced by traffic loads and natural periods
of vibration of this type of bridges are sufficiently distant one another so as
to conclude that a quasi-static analysis can be performed. Filling this gap,
the following paper proposes a structural analysis procedure to include ac-
tive control systems in the design process of cable-stayed bridges, as well as
suggestions which ought to be considered in order to include these cases into
codes. The results of the paper, studying both non-cumulative and cumula-
tive load cases, show a reduction in unbalanced bending moment referred to
the Neutral Moment State of around 25 %, depending on the load case. As a
result, active control systems compensating quasi-static loading patterns can
certainly help engineers optimize the design of these emblematic structures.
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quasi-static analysis

1. Introduction

Cable-stayed bridges, used in long spans since the 1970s, have been gath-
ering significant interest in the recent years. Virlogeux (1999) shows the
rapid development of this type of bridges during the second half of the 20th
century.

Cable-stayed bridges are bridges supported by a set of straight cables con-
necting the deck to the pylons in a balanced multispan arrangement (Gim-
sing and Georgakis, 2012, Chap. 3). The sizing and geometry optimization
of these bridges was thoroughly analyzed by Simoes and Negrao (1994). Be-
sides these orthodox designs, some heterodox designs can also be found, such
as the Alamillo bridge (Aparicio and Casas, 1997). In these cases, the py-
lon is inclined so as to compensate dead loads with its own weight. Also,
more modern designs have been proposed in the early 2000s, like under-deck
single-span (Ruiz-Teran and Aparicio, 2008a) and multispan (Ruiz-Teran and
Aparicio, 2008b) cable-stayed bridges.

The idea of active control of a structural response was first introduced
by Kobori and Minai (1960), and was adopted in Bridge Engineering in the
1980s (Yang and Giannopoulos, 1979; Abdel-Rohman and Nayfeth, 1987).
In historic concordance, when cable-stayed bridges started to be used in very
long spans (Virlogeux, 1999), active control was considered to improve the
behaviour of these bridges against earthquakes and extreme winds. Several
theoretical (Ostenfeld and Larsen, 1992; Kawashima et al., 1993; Yang et al.,
1995; Magana et al., 1999; Rodellar et al., 2002) and experimental (Bossens
and Preumont, 2001; Fujino, 2002) studies for these cases were rapidly pro-
posed. The appearance of more modern devices (Song et al., 2006; Wang
et al., 2014) and algorithms (Korkmaz, 2011; Lardies and Ta, 2011) im-
proved significantly these active systems in the early 2000s. In recent years,
researchers have been using detailed bridge models to analyse active con-
trol in the same dynamic scenarios (Bleicher et al., 2011; El Ouni et al.,
2012; Pakos and Wéjcicki, 2014; Domaneschi et al., 2015a,b). Nonetheless,
no attention has been paid to the static or quasi-static analysis.

As a completely new approach to the topic, the authors propose to use
active control also with quasi-static loading patterns, merging the classi-
cal ideas by Housner et al. (1996) with the modern ideas by Gilewski and
Al Sabouni-Zawadzka (2015).
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According to the following study, one can show that, for traffic loads and
cable-stayed road bridges, the excitation periods and the natural periods of
vibration are significantly distant one another, and thus dynamic excitations
become irrelevant (Section 2). As a consequence, the present paper proposes
a structural active control system for cable-stayed road bridges so as to de-
crease stresses adaptively in a quasi-static manner. The detailed algorithm
based on bending moment compensation is presented with detail for the con-
trol system (Section 3). Finally, the paper tests the former developments in
a cable-stayed bridge designed by the authors (Section 4), including the anal-
ysis of two load cases (non-cumulative and cumulative) where the use and
absence of the control system are compared. The results of these load cases
show that the bending moment distribution of the bridge can be efficiently
modified, reaching a reduction in unbalanced bending moments of around 25
%, depending on the load case.

Therefore, a structural active control can be applied successfully to re-
act to quasi-static loading, with a significant unbalanced bending moment
reduction. Because the bending moment distribution is adaptively modified,
displacements decrease and fatigue can be reduced.

2. A quasi-static approach to traffic loads in cable-stayed bridges

To begin with, it is important to draw a conceptual line between static
or quasi-static, and dynamic loading of cable-stayed bridges. Theoretically
speaking, all real physical structures behave dynamically when subjected
to loads or displacements. It’s only when these loads or displacements are
applied very slowly, and do not produce significant oscillations, that the
inertia forces can be neglected. In this case, a quasi-static analysis can be
performed (Wilson, 2010, Chap. 12), as loads and displacements can be
related sufficiently accurately via a static analysis. The question that arises
is what slow means in this context.

Setting aside extreme winds and earthquake excitations, which clearly
provoke dynamic effects, the most relevant actions on bridges are traffic loads.
Traffic theory establishes that the more dense the traffic is, the slower the
velocity of the flow becomes (Homburger et al., 2007, Chap. 4). As a result,
one can use three representative velocities for a cable-stayed road bridge: in-
city bridges (assume 50 km /h), medium-speed bridges (assume 75 km/h) and
highways (assume 100 km/h). Table 1 shows the traffic excitation periods, 7T,



for these velocities, v, and for several cable-stayed bridge spans, L, according
to the simplest approximation 7' = L/v (Chopra, 2012, Example 3.4).

v|L 150m | 300m | 400m | 500 m
50km/h | 10.8s | 21.6s | 28.8s | 365
75km/h | 7.2s | 14.4s | 19.2s | 24s
10()krn/h 54s | 10.8s | 14.4s | 18s

Table 1: Excitation period T for traffic loads and a combination of speed v and
span L.

Therefore, one wants to judge whether these excitation periods are capa-
ble of generating significant oscillations. Two types of analysis procedures are
typically adopted to verify vibration behaviour due to traffic loads (Camara
et al., 2014): deflection-based and acceleration-based methods. The most
common one (deflection-based) follows the ideas by Smith (1988), which as-
sume that the response is governed by the first period of vibration. Therefore,
one has to establish how distant the excitation periods are to the first natural
period of vibration.

Camara (2011), Chapter 4, studies the first two natural periods of vibra-
tion for two different cable assemblies. This analysis compares the exper-
imental data obtained by Kawashima et al. (1993) with two finite-element
models. Camara (2011) concludes that, if 7" is the period in seconds and L,
the span in meters, an accurate approximation for the first mode of vibration
for a Lateral Cable Arrangement (LCP) is:

Trep = 0.088 L2592 3] (1)

And that an accurate approximation for the first mode of vibration for a
Central Cable Arrangement (CCP) is:

Tocp = 0.08 LP5% [ (2)

Table 2 shows the approximated natural periods of these two cable ar-
rangements and the spans considered in Table 1.

From these figures, it is readily seen that natural periods of vibration are
significantly smaller than their correspondent excitations, thus if one defines
the frequency ratio f, = ==, and recalling that w = 2?”, one can use the

approximation f, ~ 0. As studied by Chopra (2012), Figures 3.2.6 and 3.5.1,

4
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L |150m |[300m | 400m | 500 m
LCP| 1.7s | 26s | 3.1s | 3.5s
CCP| 15s | 22s | 2.6s | 3.0s

Table 2: Approximated natural periods of vibration for LCP and CCP arrange-
ments, and span L.

for harmonic excitations it is concluded that the transmissibility TR — 1
and the deformation response factor e 1 when f, — 0. Therefore, the
response of the structure can be statlcal%y approximated.

In conclusion, traffic loads do not produce significant oscillations, and can
thus be considered with a quasi-static approach. However, it is important to
note that this fact need not mean that there are no variables that depend
on time (Gosz, 2005), as there will exist registers of data that will have
to be processed by the system. Instead, a quasi-static structural analysis
guarantees that this time dependency can be decoupled from the structural
response.

It is also relevant to note that Camara (2011)’s expressions are for vertical
modes of vibration. Often, transversal modes have longer periods for long
spans and shorter periods for short spans (Camara, 2011). Nevertheless,
these modes are typically not excited in straight cable-stayed bridges.

As a matter of fact, a new way of taking advantage of structural active
control in cable-stayed bridges arises from the precedent discussion. Indeed,
an appropriate active control system can be introduced to reduce bridge
stresses and displacements for traffic loads, which represent the main source
of fatigue.

3. Proposal of an active control system in quasi-static analysis

To begin with, one has to clearly identify the control objective of the
system. In the proposed case, the main goal of the active control system
is to monitor the deformation of the bridge and react adaptively. As a re-
sult, stresses and displacements will also be decreased adaptively, and hence
fatigue will be reduced.

Consequently, the system will need to obtain data from the structure,
process it logically and actuate a mechanical system to reduce some targeted
stresses. The most natural way to induce a change in the stresses in a cable-
stayed bridge is by means of the cables (Magana et al., 1999; Rodellar et al.,
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2002; Pakos and Woéjcicki, 2014; Camara et al., 2014; Domaneschi et al.,
2015a). This procedure was experimentally verified for the dynamic case by
Bossens and Preumont (2001). In this study, Bossens and Preumont (2001)
use a large-scale mock-up bridge model equipped with hydraulic actuators
in order to demonstrate the control of the parametric vibration due to deck
vibration. To this end, the paper is focused on the root locations of the
transfer function, and constitutes an experimental framework for the present
analysis.

The idealized system consists of a closed-loop active control system as
shown in Figure 1, where ¢ is a point in the bridge deck where a cable is
anchored, M; represents the reference bending moment that is to be achieved
by the system at point 7, M" is the bending moment measured at point 7,
q; is the axial force of the cable anchored at point ¢ and e; is the error
between the reference bending moment and the real bending moment in the
structure. It is important to note that this set-up only allows measuring
points to be located where cables anchor to the deck. This hypothesis will
provide simplifications in the gain calculations, as will be illustrated in further
sections.

System

Sensor¢———

Figure 1: Closed-loop system considered for the active control.

3.1. Measurements and obtention of bending moment values

While it is especially difficult to measure bending moments directly from
a structure, there is a well-known set of devices that can measure displace-
ments. Because of this fact, it is chosen to measure the displacements at
m points. Owing to the latest developments in measuring devices, optical
fiber devices are to be used. Significant work has been done in the area of
structural monitoring for the latter. Particularly, the chosen devices are the
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SOFO optical fiber sensors, according to the French acronym Surveillance
d’Ouvrages par Fibres Optiques, which were analysed in depth by Vurpil-
lot et al. (1996) and Inaudi et al. (1997). In these papers, the authors
establish the mathematical foundations of the measurements, and make a
comparison between embedded and surface mounted arrangements. For the
proposed case, surface mounted SOFO devices are preferred for practical rea-
sons. Embedded arrangements would be very difficult, namely impossible by
non-destructive methods, to access in case of malfunctioning or calibration.

Anchorage point Anchorage point
= T

Figure 2: SOFO sensor considered in the proposed active control system, extracted
from Inaudi et al. (1997).

Figure 2 shows a typical SOFO device to be used in the proposed active
control system. These optical fiber sensors consist of an active zone, i.e. a
measuring zone, that can go from 20 cm to 15 m, depending on the use; two
anchorage points that fix the device to the structure, and a passive region,
whose objective is to trasmit the signals. The measuring zone is protected by
a PVC cladding and contains two fibers, one that is intimatelly joined to the
cladding, and therefore to the structure, and another that is free. The first
fiber is used to measure the deformation of the sensor, while the second one is
used for temperature adjustments. As a consequence, the easiest manner to
set up the zero-displacement state is to install the devices once the structural
components have been built, as zero displacements are expected for dead
loads in the design of cable-stayed bridges (Gimsing and Georgakis, 2012).
Therefore, the system will be allowed to take measurements for live loads
without interference. The sensors proposed can also be adjusted for dynamic
measures, if necessary.

Certainly, what the system is interested in are the bending moments to
which the bridge is subjected. From Euler-Bernoulli beam theory, it is well-
known that the moment and the displacement in a beam can be related via
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the elastic equation. If M(z) is the moment and y(z), the vertical displace-
ment of the beam, the elastic equation applies pointwise:
2
M(z) = BI() T2 (2) 3

It is important to make sure that Equation 3 holds true in the quasi-
static case. Indeed, bridge design assures that a bridge has to work within
the elastic range for the most probable load combinations, where traffic loads
are included. Equation 3 would definitely not hold in the case of extreme
loads such as earthquakes, as some plastic deformations would certainly be
allowed. Also, it is interesting to note that the elastic stiffness of the girder
EI(x) is considered as a function of x, hence allowing a general cross section
development for the bridge, as may be the case in variable-inertia designs.

From a numerical standpoint, the best linear approximation for the second
derivative is obtained by considering three consecutive measure points ¢ — 1,
i and 7 + 1, with spacing h (LeVeque, 2007), as:

.. d*y Yie1 — 2Ui + Vi1
Yi ( 7,) ~ 2 (4)

dx? h?

As a result, if n moment values are needed, the number of measuring
points can be n, n + 1 or n + 2, depending on the restrictions for the dis-
placements y. For instance, if there is one restriction in the displacement
at node ¢ + 1, for which y;;; = 0, then the former equation will be a func-
tion of only two displacements, y; and y;_1, and so one fewer measurement
will be needed. In general, if there are r restrictions in the displacements
and n bending moment values are needed, it can be shown that one needs
m =n -+ 2 — r measuring points.

Once the derivatives 4j; are numerically approximated, the bending mo-
ment values M/™ are obtained by applying:

M" = (ED)i §i ()

where FI(x) has to be approximated in the strip for which the measurement
i is representative, (ET);.

Consequently, measurements y; will conduct to values j;, which, in turn,
will translate into moment values M. The system will therefore collect a
register of points {¢;, M"}. Numerous studies have been focused on practical
aspects of how to deal with such registers for the dynamic case, such as
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Carotti and Chiappulini (1999) and Bleicher et al. (2011). Typical sampling
frequencies for the displacements are within the range 80-120 Hz; note, for
instance, the frequency of 100 Hz used by Bleicher et al. (2011) for the case of
a footbridge. This set of values is next filtered to eliminate any noise present.
Because an accurate model of the actuator’s behaviour is through a constant-
time delay transfer function (Carotti and Chiappulini (1999), Bleicher et al.
(2011)), it is accepted that average values ought to be used every At, a time
increment similar to the time delay of the control system, T}, (Section 3.3),
1-2 seconds typically.

Displacement values are therefore continuously used by the control sys-
tem, every At, to adaptively change the axial force of the cables. Note that,
because this is a continuously adaptable system, which, at the end of the day,
relies on the pressure inside the actuators, there is no need for a threshold.
This fact is justified by the results obtained in the theoretical - experimen-
tal comparisons by Carotti and Chiappulini (1999), Bossens and Preumont
(2001) and Bleicher et al. (2011).

3.2. Structural characterization: the Neutral Moment State (NMS)

Once the bending moments M" are obtained, the system has to determine
the axial force at which the active cables have to work in order to achieve
the reference values M;. Hence, the system needs to determine the following
criteria:

1. The increase or decrease in each cable axial force.
2. The most efficient active cables to activate for each measuring section.

As a result, a procedure has to be designed in order for the system to
respond to the latter two decisions. This decision-making process is based on
what the authors call the Neutral Moment State (NMS), which defines the
reference values for the bending moments. Several options can be proposed
for these reference values. According to common practice in the design of
cable-stayed bridges (Gimsing and Georgakis, 2012), it is assumed that the
deformed configuration of the bridge has zero displacements for permanent
loads. Therefore, the Neutral Moment State of the bridge can be defined
by the bending moment distribution, for permanent loads, that conducts to
zero displacements in the girder. Note that, for this calculation, load factors
have to be taken as 1.0.

The measured moments, M", will thus be compared to the Neutral Mo-
ment State, and the errors will conduct to an actuation of the mechanical
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subsystem. This subsystem will transfer the proper tension to the cables in
order to achieve the reference values.

Choosing the most effective cables to activate will imply constructing
bending moment - axial force functions, which will give the bending moment
at a point P for a particular axial force in an active cable C'. Within this
framework, the effectiveness of the cable is to be measured by a gain function
g. If ¢ is the axial force in the active cable C' and M is the bending moment
function of the deck, g is defined as the slope!:

dM
g (6)

The system will therefore select an active cable for each section where
the bending moment is measured by maximising the gain. It is important to
note that, because elastic behaviour is assumed, the addition of the loading
responses is valid. A manner to verify this fact is by means of the bending
moment - axial force function. This procedure will be exemplified in the
following section for a particular cable-stayed bridge.

Also, it is relevant to mention that a change in axial force in one cable
and for one section also induces changes in bending moments in other sec-
tions. Therefore, after choosing what cable to actuate and how much, some
postprocessing has to be performed. There are two main sources of bending
moments interference between sections:

g:

e Non-zero gains are different for all sections, even if the selected cable
is the same.

e The unbalanced bending moment is different between sections, even if
the selected cable is the same.

For these reasons, the system needs to use a correction for the gains.
Indeed, should no correction be used, the control system would clearly over-
compensate the bending moments. The methodology proposed for this cor-
rection is based on each of the former two sources of interference. In order
to correct for the dispersion in the gains, an average gain for all sections
is obtained for each selected cable ¢, g., and the ratio between min, g. over

!'Note that the minus sign makes the gain positive when the moment distribution is
raised.
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max, g. is computed:
min. g.

(7)

The parameter r, gives an idea of how different the selected cables behave in
terms of bending moment compensation. Note that r, does not depend on
time, as the gain function is independent of time.

In order to correct for the dispersion in the unbalanced bending moments,
the same ratio in absolute value is obtained:

rg = —
maxe Je

min; e;
Tum = s (8)
max; €;

where e; = M; — M!™ is the unbalanced (or error) bending moment for section
i (Section 3). Note that the parameter 7, gives an idea of how different the
unbalanced moments are for some time ¢.

It is proposed, then, to use a composed value for the axial force in each
selected cable, of the form

AN, = rgry,m min AN, ; (9)

where AN, represents the change in axial force to be applied at the selected
cable ¢, r, and r,,, are the ratios defined before, and AN, ; is the computed
increment in axial force for the selected cable ¢ and section 1.

Because of the fact that gains are calculated via a quasi-static analysis,
there is no guarantee that they would actually be beneficial in a dynamic
setting. For this reason, a permissive signal is introduced. The objective
of this signal is to disconnect the active control system in case of excessive
inertia forces, i.e. accelerations, as the structural algorithm would not be
valid. The threshold for this permissive signal is taken from the Spanish
code EHE-08 as a. = 0.04¢g, as it represents, according to the code, the
threshold from which dynamic effects need to be considered.

3.3. Mechanical system

As far as the mechanical system is concerned, the authors propose the use
of a conventional mechanical circuit. This circuit will consist of pumps that
will inject a fluid into some cylinders on demand, via control servovalves.
Certainly, the design characteristics of this system will be highly dependent
on the geometry and code loads for the bridge. The forthcoming section
computes the typical design parameters for a particular mechanical system.
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Nevertheless, it is relevant to admit that the actuation of these cylinders
will not be instantaneous. Thus the time taken by the system to implement
the output needs to be studied. An accurate characterization of this phe-
nomenon was proposed by Bleicher et al. (2011). In this study, the authors
conclude that a first-order delay transfer function, G,(s), of the form, in

Laplace space
1

T T-s +1
is accurate to model the pressure response in the actuators. Then, considering
a general transfer function for a dynamic system, G,(s), in Laplace space

G(s) = (11)

Go(s) (10)

s
s2 4+ 2Cwy s + wi

where w; and (; are the angular frequency and damping ratio of the first
mode of vibration, and a delay in Laplace space, G4(s) = e*74, the equation

1+ Go(s)G(5)Gals) = 0 (12)

can be used to solve for the poles, which relate T; and w;. Bleicher et al.
(2011) use this approach to dampen vibrations in a footbridge, hence they
add an extra condition which consists of optimizing the damping ratio of the
entire system, structure plus actuators. Within this framework, the authors
conclude that the optimum delay time, Ty, can be obtained by

T, = 0,867, (13)

where T is the first natural period of vibration. It is relevant, at this point, to
note that, even though the structural response is considered as quasi-static,
the first mode of vibration is relevant for the time delay in the actuation of the
system. As a result, the present paper proposes to use the same methodology,
as an optimized vibration damping goes in favour of the quasi-static analysis
considered herein.

A flowchart of how all the variables relate to each other for a particular
time ¢; in the structural control algorithm is shown in Figure 3.

4. Case Study: Implementation of the active control system in a
cable-stayed bridge

Following the ideas developed in the former sections, an active control sys-
tem is incorporated into a cable-stayed road bridge. The bridge considered,
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Figure 3: Flowchart of the i-th iteration of the structural control algorithm in terms
of the variables used.
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Figure 4: Designed cable-stayed bridge considered in the analysis.

Crusells-Girona (2012), was designed by the authors for academic purposes,
and represents an alternative solution to the cable-stayed Alamillo bridge.
Figure 4 shows a 3D reconstruction of the bridge considered, where the
left-hand side is considered as the West end, and the right-hand side is con-
sidered as the East end. This bridge consists of two spans, a lateral one of
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27.4 m and a main one of 207.5 m. The bridge is built with high-performance
prestressed concrete, as it significantly decreases the susceptibility to aeroe-
lastic effects. The detailed characteristics of the materials used are shown in
Table 3.

Material Ultimate strength | Nomenclature
Prestressed concrete 75 MPa HP — 75/B/20/11a
Passive steel 500 MPa B500S
Active steel 1860 MPa Y 186057

Table 3: Material properties and nomenclature according to the Spanish code EHE-
08.

The bridge deck is solved with a prestressed symmetric tri-cellular box
that accommodates 6 traffic lanes into two roads. The three cells have a
width of 6.5, 4.5 and 6.5 m, respectively, and the total width of the section is
32 m. The two roads are separated by an elevated pedestrian zone for safety
reasons. The upper concrete slab of the cross section is designed with a depth
of 40 cm, whereas the lower slab, with a depth of 35 cm. The total depth of
the section is 1.84 m. Figure 5 shows a typical cross section of the deck, and
Figure 6 illustrates the passive and active reinforcement of the cross section.

Figure 5: Typical cross section of the deck.

The pylon, clamped to the deck to minimise bending moments, describes
a circumferential arch of radius 289.5 m. Its total height from the deck
reaches 150 m. The section of the pylon is rectangular, with slab depths of
50 cm, and varies from 14.5x5.5 m at the bottom to 4.1x4.1 m at the top.

The cable system consists of 16 pairs of cables in the main span, with
a central cable arrangement, and 12 pairs of back stays that anchor to the
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Figure 6: Active and passive reinforcement of the cross section. Diameters in mm,
and spacings in cm.

ground. The nomenclature used for the cables establishes R for back stays
and T for stays in the main span. The numeration of the cables starts from
the lowest cable, and increases to the highest one. The anchorage of the
back stays to the ground is accomodated by a massive underground concrete
chamber, which balances the axial forces with its own weight and permits
accessibility for maintenance. A technical drawing of the structure including
the nomenclature of the cables is shown in Figure 7.

7

Figure 7: Technical drawing (West-East) of the designed cable-stayed bridge.

The structural design of the bridge is done according to the Spanish code
EHE-08. For the structural analysis, a SAP2000 model is constructed, as
shown in Figure 8. This numerical model uses linear frame elements for the
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deck and the pylon, and zero-inertia linear frame elements for the cables.

Figure 8: SAP2000 model of the designed cable-stayed bridge considered in the
analysis.

The combinations of loads considered in the analysis are also in accor-
dance with the Spanish code EHE-08. According to this code, 14 combina-
tions of loads are analysed. These load combinations include dead loads, a
code vehicle, a distributed load, wind and thermal actions. The maximum
displacement obtained due to these characteristic combinations of loads is 46
cm, which represents a deformation of L/451. Aeroelastic effects and earth-
quakes are also considered in the analysis, but are not relevant to the active
control system exposed herein.

4.1. Obtention of the measuring points

As the results of the load combinations show (Crusells-Girona, 2012, Ap-
pendix 11), the main span approximately behaves as a clamped-simply sup-
ported beam, and the maximum displacements are achieved between nodes
N13 and N16 (where cables T13 and T16 anchor). Therefore, the most ef-
fective area to control is precisely the area closer to the East end, where
the displacements are the largest. It is decided then to use bending moment
values in these precise locations of maximum deformation, four in total (N13-
N16). As a result, knowing that the spacing between cables is 12 meters, the
control system will use h = 12 (Section 3.1).

The required number of measuring points (Section 3.1) ism =n+2—r =
442 —1 =5, as there is one restriction y = 0 in the East end. Consequently,
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five SOFO sensors are mounted on the surface of the lower part of the deck,
where T12 to T16 are anchored.

Also, one has to determine the time delay of the system. According to
Equation 13 (Section 3.3), and knowing that the first mode of vibration for
the proposed bridge is excited at T} = 2.6 seconds, the delay can be computed
as Ty = 0.867) = 2.2 seconds. The sampling frequency is chosen to be 100
Hz, and the values sent to the control system are defined to be the average
values of every 2 seconds.

4.2. Neutral Moment State (NMS) and active back stays

The second step is to define the Neutral Moment State (NMS) in terms
of the joint bending moments (BM). According to the former considerations,
this state is the one that produces no displacements for permanent loads.
The NMS is computed using the SAP2000 model, and is shown in Table 4.
Sign convention considers a positive moment when it compresses the upper
fibers, as usual.

Section | Joint BM (kNm)
T9 —7822
T10 —7885
T11 —9715
T12 —6124
T13 —2790
T14 —1836
T15 —6318
T16 —22019

Table 4: Neutral Moment State (NMS) for the proposed bridge.

The control system has to respond to two questions (Section 3.2): which
cables to actuate and how much. Knowing that the zone that has to be
controlled is where T13 to T16 anchor, the actuators need to be placed
either controlling the T13 to T'16 cables or controlling their back counterparts
R9 to R12. However, a solution in which the tension in the T-cables were
modified is by no means optimum in this case. Indeed, the significantly longer
length of the T13-T16 cables (Figure 7) would produce significantly higher
structural losses due to elastic deformation, cable bending and anchorage
losses (Gimsing and Georgakis, 2012, Chapters 2,6). Moreover, there are
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practical reasons to place the actuators in the back stays, as the anchoring
concrete chamber can easily accommodate maintenance duties. For these
two reasons, the actuators are placed in the back stays R9 to R12, under the
anchoring concrete slab. The axial forces in these cables for the NMS are
shown in Table 5. It is worth pointing out that this is an initial decision,
as the gain function will actually determine if some of these cables are not
worth controlling.

Active cable | Axial force at NMS (kIN)
R9 12620
R10 12947
R11 13004
R12 13009

Table 5: Axial forces in the active cables for the Neutral Moment State.

As far as the change in magnitude is concerned, the gain per unit axial
force is studied for each of the active cables. To this purpose, variations of the
axial force are analysed. It can be inferred from the analysis that, because
a quasi-static approach is adopted and plastic deformations are not allowed,
the behaviour is linear. This fact will indeed be corroborated in next steps.
As a result, two increments of axial force are used for simplicity. In order
to establish these increments, one focuses on the bending moment variations
produced by traffic loads, and chooses the increments in a representative
range. In our case, it is chosen to use AN! = 10 kN and AN? = 30kN. The
application of these variations into the SAP2000 model is based on the cable-
freezing procedure, which consists of an equivalent temperature field. The
thermal coefficient is assumed to be 1.16E-5 for the cables (Crusells-Girona,
2012, Appendix 12). For AN! = 10 kN, an increment of AT' = —0.27°C' is
assumed. For AN? = 30 kN, an increment of AT? = —0.80°C is assumed.

Figure 9 illustrates the change in the NMS produced by the two incre-
ments considered for each active back stay. From these figures, the following
comments must be noted:

1. The area where the bending moment distribution is raised the most
is indeed the one targeted by the selection of the back stays. Indeed,
moving from R9 to R12 shifts the maximum rightwards, as desired.

2. The considered response of the bridge is indeed linear in the controlled
area for the proposed range of increments, as discussed. This fact can
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Figure 9: Change in the NMS for cables R9-R12.

be easily checked by the ratios AM /AN at each cable node?. Note that
this is, in fact, not true for the rest of the bridge deck, as the influence
of the clamped tower becomes important.

3. The rise in the bending moment distribution is higher for larger R, i.e.
larger T'. This fact is also caused by the influence of the clamped tower.

4.8. Bending moment - azial force gain

In order for the system to choose the most effective cables to actuate, it is
required to know how the bending moments and the axial forces are related.
These relationships are constructed from Figure 9, by knowing the NMS
(Table 4). Indeed, one knows the axial forces (Table 5) and bending moments
for the NMS (Table 4), and how these change with the two increments for
each measuring point and active back stay. Therefore, one obtains three
points of the bending moment - axial force function for each measuring point
and active back stay.

2See also Table 7 for further proof.
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As a result, the gain function (Section 3.2) for each measuring point and
active back stay can be approximated by a linear interpolation of these three
points. The results of these operations are shown in Table 6. Figure 10
represents the contour plot of the former values. Moreover, the regression
coefficients R? of these linear interpolations, shown in Table 7, numerically
corroborate the linear structural behaviour of the bridge.

N[R| RO | R10 | RI1 | RI2
N9 [0.557 | 0.429 | 0.293 | 0.164
N10 | 0.893 | 0.793 | 0.693 | 0.629
N11 | 1.221 | 1.221 | 1.221 | 1.857
N12 | 1.450 | 1.586 | 1.679 | 1.786
N13 | 1.586 | 1.850 | 2.043 | 2.243
N14 | 1.486 | 1.850 | 2.143 | 2.443
N15 | 1.129 | 1.457 | 1.821 | 2.150
N16 | 0.464 | 0.664 | 0.864 | 1.057

Table 6: Gain produced at node N due to a unit increment of the axial force at
retention cable R in meters.

NJR| RO | RI10 | RII | RI2
N9 [0.9922 | 0.9967 | 0.9842 | 0.9944
N10 | 0.9983 | 0.9978 | 0.9971 | 0.9985
N11 [ 0.9974 [ 0.9974 | 0.9974 | 0.9961
N12 | 0.9964 | 0.9978 | 0.9956 | 0.9983
N13 [ 0.9978 [ 0.9978 | 0.9963 | 0.9970
N14 | 0.9975 | 0.9978 | 0.9967 | 0.9974
N15 | 0.9995 | 0.9988 | 0.9988 | 0.9984
N16 | 0.9993 [ 0.9997 | 0.9998 | 0.9978

Table 7: Regression coefficients (R?) of the gains shown in Table 6.

Consequently, the control system can easily determine which active back
stays to actuate according to the influence of these on the structural be-
haviour of the bridge. Indeed, according to Figure 1, the system will deter-
mine, for a particular section, the bending moment error. Next, the system
will determine, for each section, which is the most effective active cable to
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Figure 10: Contour plot for the gain produced at node N due to a unit increment
of the axial force at retention cable R in meters.

actuate according to the gain. For example, the system is able to evaluate
that, if there is a bending moment error of -20 kNm at node 12, the most
effective active cable to actuate is R12 (g = 1.786, the biggest), with an axial
force correction of ANyy19 = —AM/g = 11.20kN. Thus, the system has a
clear ability to answer the two stated questions (Section 3.2).

The latter little example shows the procedure for deciding, for each sec-
tion, what cable to actuate and how much. The system will then decide
the change in axial force for each selected cable by using Equation 9, as a
change in axial force in one cable and for one section also induces changes in
bending moments in other sections. Indeed, the system will receive a set of
average bending moment errors at time ¢, for the average time decided of 2
seconds. Then, it will decide what cables to actuate according to the former
procedure. These actuations will induce changes along the bridge with a time
delay Ty, which will be captured by the average bending moment errors at
time ¢t + At. At time t + At, the system will once again select, according to
the procedure, what cables to actuate and how much. The same procedure
will be performed at time ¢ + 2At, t 4+ 3At, etc. The flowchart in Figure 3
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shows all the steps for each time increment.
This procedure is exemplified in Section 4.5 by considering two represen-
tative load cases: a non-cumulative load case and a cumulative load case.

4.4. Engineering design of the actuactors

The practical engineering aspects of the design need to be addressed as
well. For the proposed cable-stayed bridge, actuators are to be located in
the concrete chamber of the West end. Figure 11 shows the proposed design
of the actuating system.

4,9
Hydraulic connections - -— Cable
Concrete slab // / | @ {EL R
iyl —
. & @ @/ o
\ /$ * A
Hydraulic cylinder

Hydraulic 3
Anchoring slab cylinder

Figure 11: Engineering design of the actuating system, dimensions are in meters.

As shown in this figure, the active back stays are anchored to a small
slab, which rests on the main slab thanks to five hydraulic cylinders. As a
result, the change in the cable axial forces is easily performed by actuating
these cylinders. Indeed, this actuation will separate the two slabs, and hence
increase the axial force in the cables.

As commonly assumed in the design process of cables, the maximum
allowed axial force in the cables is 0.45f,x, being f,; the ultimate strength,
corresponding to ., = 837 MPa (Table 3). The design characteristics of
the hydraulic system are summarized in Table 8, where g represents the axial
forces (nominal and required), A the area (cable and cylinder), p the pressure
and C the cylinder effective stroke.

4.5. Load case analysis

In order to demonstrate the advantages of the described control system
for quasi-static loads, two load cases are analysed in detail for the proposed
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Parameter R9 R10 | R11 R12

Qnom (KN) 12620 | 12947 | 13004 | 13009

Acaple (mm?) | 16500 | 16500 | 16500 | 16500
Omax (MPa) 837 837 837 837
Qreq (tones) 277 277 277 277
A (cm?) 695 695 695 695
Pnom (kg/cm?) | 405 405 405 405
C (mm) 210 210 210 210

Table 8: Design characteristics of the hydraulic circuit.

bridge. Because it is interesting to observe the difference between a cumula-
tive and a non-cumulative load patterns, the analysed load cases are:

e A movable load along the bridge deck, representing traffic loads passing
along. This load case corresponds to a non-cumulative load pattern.

e A progressive concentration of loads on the main span of the bridge
deck, representing a traffic jam. This load case corresponds to a cumu-
lative load pattern.

4.5.1. Movable load

First, one considers a movable load of 100 kN moving along the bridge
deck. The velocity of this load is taken as 43.2 km/h, equivalent to one
spacing between cables per second, hence producing maximum deformations
on the cable sections. Time ¢t = 0 is assumed to be when the load is at section
T1. The delay time of the control system is assumed to be T; = 2 seconds,
as derived. As a result, the correction in bending moments is applied after
T,. Because of the considerations in Section 2, all calculations are performed
via a static analysis and using the SAP2000 model shown in Figure 8.

Table 9 shows the joint bending moments without the use of the control
system, whereas Table 10 shows the same values when the control system is
used.

In order to compare Tables 9 and 10, the average error of all sections,
with control, e, is presented in relation to the average error of all sections,
without control, €¥¢, in percentage and preserving the signs as:

-C swce

€ —€
jeve]

p= %100 (14)
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Section| t=0 t=2 t=4 t=26 t=8 |[t=10 | t=12 | t=14
T9 =7764 | —=7795 | =7731 | =7753 | =V737 | =T023 | =077 | =7792
T10 —T7819 | —7823 | —7704 | —7789 | —7826 | —7780 | —7832 | —T7832
T11 —9602 | —9686 | —9604 | —9648 | —9640 | —9651 | —9617 | —9675
T12 —6005 | —6062 | —5989 | —6051 | —6091 | —6075 | —6071 | —6099
T13 —2717 | —2721 | —2644 | —2743 | —2752 | —2761 | —2729 | —2753
T14 —1761 | —1791 | —1756 | —1783 | —1798 | —1777 | —1801 | —1798
T15 —6177 | —6241 | —6201 | —6169 | —6249 | —6193 | —6255 | —6120
T16 —21887 | —21892 | —21859 | —21845 | —21907 | —21919 | —21869 | —21910

Table 9: Joint bending moments (kNm) obtained without the use of the control
system for the movable load.

Section| t=0 t=2 t=4 t=26 t=8 [ t=10 | t=12 | t=14
T9 =7764 | —7809 | —=7732 | =TI83 | —=7749 | =T726 | —7784 | —=T7794
T10 —T7819 | —7848 | —7705 | —7840 | —7841 | —T786 | —7843 | —7836
T11 —9602 | —9729 | —9605 | —9728 | —9648 | —9660 | —9632 | —9681
T12 —6005 | —6109 | —5991 | —6142 | —6106 | —6085 | —6088 | —6106
T13 —2717 | 2776 | —2646 | —2845 | —2764 | —2773 | —2748 | —2761
T14 —1761 | —1845 | —1758 | —1882 | —1805 | —1788 | —1819 | —1805
T15 —6177 | —6285 | —6202 | —6247 | —6251 | —6202 | —6269 | —6126
T16 —21887 | —21912 | —21859 | —21879 | —21906 | —21923 | —21875 | —21912

Table 10: Joint bending moments (kNm) obtained with the use of the control
system for the movable load.

The results for p are shown in Table 11. Note that p at time ¢ = 0 is zero
because of the time delay T;. These results represent an average reduction
in unbalanced bending moment along time of 27.1 %. Also, for this case,
representative of a non-cumulative load pattern, one sees that the dispersion
in p is relevant.

Finally, the time evolution of the axial forces in the controlled cables is
shown in Figure 12. This figure shows that, according to the gain values in
Table 6, cables R10 and R11 are never selected to be controlled as their gain
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Time [t=0t=2t=4]t=6|t=8|t=10]t=12]t=14
p(%) | 0 [605] 1.0 | 776 | 13.7 | 103 | 188 | 81

Table 11: Average error with control in relation to average error without control,
in percentage, for the movable load.

is never optimum. As a consequence, it is possible at this point to justify
that control cylinders need not be installed in these cables, according to this
load case.
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Figure 12: Evolution of axial force in controlled cables for the movable load.

Also, one sees from Figure 12 that cable R9, which has the smallest
beginning axial force, is the one that suffers the most significant change,
which is a desirable output according to cable design criteria.

4.5.2. Concentration of loads

Secondly, let us consider the use of the control system on a potential
cumulative load pattern on the bridge. This situation is modelled by a pro-
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gressive accumulation of loads on the right-hand side of the bridge, where
the bending moments are the largest: the first load (100 kN) stops at sec-
tion T16, the next one (100 kN) stops at section T15, etc. The time delay
between the appearance of the loads is taken equal to the time delay T, of
the actuation system. This process is considered during 16 seconds. Time
t = 0 is assumed when the first load arrives at section T16. As a result, the
correction in bending moments is applied after T, seconds, as before. Also,
all calculations are performed via a static analysis and using the SAP2000
model shown in Figure 8.

Table 12 shows the joint bending moments without the use of the control
system, whereas Table 13 shows the same values when the control system is
used.

Section| t=0 t=2 t=4 t=26 t=8 | t=10 | t=12 | t=14
T9 7720 | —7694 | —7656 | —7711 | —7687 | —7691 | —7761 | —7775
T10 —7799 | —7694 | —7698 | —7816 | —7744 | —T7665 | —7786 | —7852
T11 —9640 | —9632 | —9551 | —9582 | —9541 | —9540 | —9608 | —9641
T12 —6058 | —6035 | —5931 | —6075 | —6058 | —5996 | —6100 | —6103
T13 —2758 | —2675 | —2671 | —2724 | —2598 | —2669 | —2699 | —2763
T14 —1783 | —1763 | —1695 | —1781 | —1713 | —1681 | —1749 | —1803
T15 —6244 | —6097 | —6042 | —6149 | —6135 | —6216 | —6239 | —6255
T16 —21853 | —21876 | —21606 | —21871 | —21862 | —21869 | —21871 | —21936

Table 12: Joint bending moments (kNm) obtained without the use of the control
system for the traffic jam.

As before, in order to compare Tables 12 and 13, the average error of all
sections, with control, €, is presented in relation to the average error of all
sections, without control, €¥¢, in percentage (Section 4.5.1). The results are
shown in Table 14. In this case, these results represent an average reduction
in unbalanced bending moment along time of 22.8 %. In this case, represen-
tative of a cumulative load pattern, one sees that the dispersion in p is less
relevant than in the former case.

Finally, the time evolution of the axial forces in the controlled cables
is shown in Figure 13. Once again, one realizes that cables R10 and R11
are never selected to be controlled as their gain is never optimum. As a
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Section| t=0 t=2 t=4 t=26 t=8 | t=10 | t=12 | t=14
T9 7720 | —=7701 | —=7670 | —7725 | —7688 | —=7713 | =779 | —7780
T10 —7799 | —=7759 | —T722 | —7840 | —7746 | —7703 | —7816 | —7860
T11 —9640 | —9652 | —9587 | —9619 | —9544 | —9600 | —9649 | —9650
T12 —6058 | —6058 | —5972 | —6117 | —6062 | —6064 | —6148 | —6114
T13 —2758 | —2700 | —2717 | —=2771 | —2602 | —2745 | —2752 | —2775
T14 —1783 | —1787 | —1739 | —1827 | —1717 | —1755 | —1798 | —1813
T15 —6244 | —6116 | —6077 | —6185 | —6138 | —6275 | —6277 | —6262
T16 —21853 | —21884 | —21621 | —21887 | —21863 | —21895 | —21887 | —21939

Table 13: Joint bending moments (kNm) obtained with the use of the control
system for the traffic jam.

t=4
15.3

Time |t =0
p(%) | 0O

t=2
14.2

t=26
32.8

t =10
35.8

t =12
42.0

t=14
17.2

Table 14: Average error with control in relation to average error without control,
in percentage, for the traffic jam.

consequence, it is possible at this point to justify that control cylinders need
not be installed in these cables, according to this load case.

From Figure 13, and in line with the results from the movable load case
(Section 4.5.1), one also observes that cable R9, which has the smallest be-
ginning axial force, is the one that suffers the most significant change, as
desired.

5. Code considerations and risk-informed decision-making

The most important disadvantage of structural active control is how to
design against the malfunctioning of the system. A conservative position
towards this situation would require to satisfy the same standards as if there
were no active system, as this would be the worst-case scenario. In this case,
the design of the bridge with active control would hardly differ to the one
without it. The authors think this would not be a reasonable approach.

It is undeniable that serviceability cannot be put at stake by a control
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Figure 13: Evolution of axial force in controlled cables for the traffic jam.

system. Nonetheless, ultraconservatism makes the active control not bene-
ficial. In order to overcome this duality, and according to the singularity of
these systems in Bridge Engineering, the proposed method to analyse the
scenario of system malfunctioning is via a risk-informed procedure.

Risk analysis and risk-informed decisions, yet not very common in Civil
Engineering practice, are widely used in industrial facilities such as nuclear
power plants. The idea of these procedures is to come up with a probabil-
ity of malfunctioning of the system based on the failure probabilities of its
components. To this end, a fault tree of the system is constructed, following
the techniques described in Bedford and Cooke (2001), a reference book in
probabilistic analysis.

Once the probability of failure of the system is known, it ought to be
compared to a reference probability established by the code. The code should
assist in a relationship between the load factors and the failure probability,
so that the more probable the malfunctioning is, the closer the design should
be to the non-controlled solution.
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6. Conclusions and future developments

In conclusion, this study provides a detailed procedure to incorporate
structural active control in the design of cable-stayed bridges for quasi-static
loading patterns, which had not been considered before.

First, the study concludes that natural periods of vibration for vertical
modes and excitation periods of traffic loads are uncoupled in cable-stayed
bridges (Section 2). This fact allows the analysis to neglect inertia forces,
and permits a quasi-static analysis. As a result, a quasi-static analysis is
used in the structural calculations that the control system requires.

The active control system proposed is based on the active control of the
cables. Therefore, the system needs to clearly identify which cables to actu-
ate and how much. These decisions are proposed to be based on two facts
(Section 3): the Neutral Moment State (NMS), which identifies the neces-
sary bending moments that produce zero displacements on the bridge deck
for permanent loads, and the gain extracted from the bending moment - axial
force functions. The former is used as a reference value, whereas the latter is
used to select the most efficient cable to actuate and to decide the change in
the cable axial force. The flowchart in Figure 3 provides the relationship of
all the parameters used for this decision-making process at a particular time
t;.

A particular cable-stayed bridge designed by the authors (Section 4) is
used to exemplify and quantify the benefit of the control system. The results
of this analysis show that a cable-by-cable approach is valid due to linearity
(Table 7), and so that the proposed bending moment compensation process
is a useful technique to set up the structural control algorithm. It is impor-
tant to note that, because a quasi-static analysis is performed, the proposed
algorithm is not valid when inertia forces are significant. A permissive signal,
which disconnects the control system in case of significant accelerations, is
used to acknowledge this limitation.

In order to quantify the benefits of the control system, two representative
load cases are analysed for the former bridge: a movable load along the
deck (non-cumulative load pattern) and a progressive accumulation of loads
on the right side of the main span (cumulative load pattern). For the first
case, one observes an average reduction in unbalanced bending moments of
27.1 %. This first case also presents a wider variability in the reduction.
As far as the second case is concerned, one computes an average reduction
in unbalanced bending moments of 22.8 %. Even though the reduction is
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smaller, the variability is reduced for the cumulative load case. Also, one
observes in both cases that the back stay with smallest beginning axial force
(R9 in this case) is the one suffering the most significant change in axial force,
which is a desirable output according to cable design criteria. In conclusion,
the results for these load cases show that there is an actual substantial benefit
when using the proposed control system.

Also, probabilistic risk analysis is suggested to be included in codes in
order to consider the malfunctioning of the system without overdesigning
the bridge.

Regarding future developments, an interesting analysis to be performed
is to study the frontier between the dynamic and the quasi-static analysis.
This study would be able to merge the capabilities of the active control in
both the dynamic and the quasi-static cases.
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