
GROM: a General Rewriter of Semantic Mappings

Giansalvatore Mecca1 Guillem Rull2 Donatello Santoro1 Ernest Teniente3

1 Università della Basilicata – Potenza, Italy
2 Universitat de Barcelona — Barcelona, Spain

3 Universitat Politècnica de Catalunya — Barcelona, Spain

ABSTRACT
We present GROM, a tool conceived to handle high-level
schema mappings between semantic descriptions of a source
and a target database. GROM rewrites mappings between
the virtual, view-based semantic schemas, in terms of map-
pings between the two physical databases, and then executes
them. The system serves the purpose of teaching two main
lessons. First, designing mappings among higher-level de-
scriptions is often simpler than working with the original
schemas. Second, as soon as the view-definition language
becomes more expressive, to handle, for example, negation,
the mapping problem becomes extremely challenging from
the technical viewpoint, so that one needs to find a proper
trade-off between expressiveness and scalability.

1. INTRODUCTION
Many applications benefit from the availability of a se-

mantic schema over a database, i.e., a set of views over the
base tables that provide a richer description of the semantic
relationships among the underlying data and a more accu-
rate definition of the constraints. The use of such semantic
views has been thoroughly studied for the purpose of query
languages [6], data integration [1], and data access [2], but
there are little studies of how the presence of these views
impacts data exchange [4] applications.

Data exchange consists of moving data from a source data-
base to a target database. This task is usually performed
by developing schema mappings, i.e. executable transforma-
tions that specify how an instance of the source repository
can be translated into an instance of the target.

In this paper, we present GROM [9, 8], a system con-
ceived to support the management of mappings among view
schemas. GROM was designed to handle mapping scenarios
in which a semantic description is available over the target
database, and possibly over the source database. It allows
data architects to develop mappings among the two seman-
tic schemas, rather than the underlying database schemas.
Studying this variant of the problem is important for several

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
EDBT 2016

reasons:

(i) The semantic web has increased the number of data
sources on top of which such descriptions are developed.

(ii) Views play a key role in information integration since
they are used to give clients a global conceptual view of the
underlying data, which may come from external, indepen-
dent and heterogeneous information systems [7].

(iii) Many of the base transactional repositories used in com-
plex organizations often undergo modifications during the
years, and may lose their original design. It is important
to be able to run the existing mappings against a view over
the new schema that does not change, thus keeping these
modifications of the sources transparent to the users.

More generally, semantic schemas help to improve the
overall design of the original schemas, and emphasize impor-
tant semantic relationships and constraints that would not
be apparent otherwise. Therefore, designing rich, high-level
mappings between these schemas has often significant ad-
vantages. However, semantic schemas are virtual and map-
pings between them are not directly executable.

GROM solves the important problem of making these high-
level mappings executable over the original database in-
stances. It rewrites mappings between the two virtual se-
mantic schemas under the form of standard mappings over
the underlying concrete databases, in order to execute them
and generate an instance of the target database from an in-
stance of the source database. Under appropriate hypothe-
sis, discussed in the next sections, the whole process happens
in a completely transparent way, thus greatly simplifying the
overall data-translation task.

Essential to this problem is the trade-off between expres-
siveness and complexity. In fact, the rewriting is fairly
straightforward if views are conjunctive queries – it reduces
to the standard view unfolding algorithm. However, con-
junctive queries have a limited expressive power, unable
to capture many semantic relationships between the data.
Negation, for instance, is crucial to capture disjointness con-
straints and many classification rules.

The main concern behind the design of GROM was to
provide an expressive view language that can truly benefit
data architects in defining rich semantic abstractions. To
this end, we adopt the language of non-recursive Datalog
with negation. This makes the rewriting significantly more
complex, as we discuss in Section 3.

In the following we describe how we plan to organize the
demonstration of GROM. We outline the kind of mapping
scenarios that will be considered with the help of a running
example introducing the main features of the system. Given

Demonstration

 

 

Series ISSN: 2367-2005 592 10.5441/002/edbt.2016.56

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.56


the focus of this proposal, we have chosen to omit many of
the technical details that are in published papers [9]. We
concentrate on a description of the system from the user
perspective and illustrate the main technical challenges and
what an attendee may learn by playing with it.

The system is available under an open-source license at
the following URL: http://db.unibas.it/projects/grom/.

2. MAPPING REWRITING
Assume we have the two relational schemas below and we

need to translate data from the source to the target.

Source schema: S-Product(id,name, store, rating)
S-Store(name, location)

Target schema: T-Product(id,name, store)
T-Store(id,name, address, phone)
T-Rating(id, product, thumbsUp)

Both schemas refer to the same domain, which includes
data about products, stores, and ratings. Due to the differ-
ent organization of the two databases, it is not evident how
to define the source-to-target mapping. In particular, it is
difficult to relate tuples in the T-Rating target table to those
in the source. Suppose now that a richer semantic schema
has been defined over the target, as shown in Figure 1. To
simplify things, in this example we consider that only the
target database comes with an associated semantic schema;
we discuss the more general case in the next section.

Product

id:  integer
name:  string

PopularProduct UnpopularProduct

{disjoint,  complete}

Store

id:  integer
name:  string
address:  string

SoldAt* 1

AverageProduct

Figure 1: A Simple Target Semantic Schema.

The semantic schema distinguishes among popular, un-
popular, and average products. Each concept and associa-
tion is defined in terms of the database tables by means of
a set of views, as follows (we use different fonts for seman-
tic concepts and relational tables; in addition, source tables
have a S-prefix in their name, and target tables a T-prefix;
we use values 0 and 1 for the thumbsUp attribute):

v1 : Product(id, name)⇐ T-Product(id,name, store)
v2 : PopularProduct(pid, name)⇐

T-Product(pid,name, store),¬T-Rating(rid, pid, 0)
v3 : AvgProduct(pid, name)⇐

T-Product(pid,name, store),T-Rating(rid, pid, 1),
¬PopularProduct(pid, name)

v4 : UnpopularProduct(pid, name)⇐
T-Product(pid,name, store),
¬AvgProduct(pid, name),¬PopularProduct(pid, name)

v5 : SoldAt(pid, stid)⇐ T-Product(pid, pname, stid)
v6 : Store(id, name, addr)⇐ T-Store(id,name, addr, phone)

We adopt the expressive language of non-recursive Data-
log with negation. Notice how negation is crucial to capture
the semantics of this example and it may either correspond
to negated base tables (view v2, table T-Rating) or even
to negated views (v3, PopularProduct). Views can also be
defined as unions of queries (not shown in the example).

The important observation here is that in many cases
semantic concepts are closer to source data than physical
target tables, and therefore the task of defining mappings
is considerably simplified. In our example, notice how the
views hide table T-Rating . As a consequence, the classifi-
cation of a product in the target semantic schema is easily
derived from ratings in the source database as follows: prod-
ucts with ratings consistently above 4 stars (out of 5) are the
popular ones, those always graded less than 2 are considered
to be unpopular, and the rest are average.

As is common [4], we use tuple generating dependencies
(tgds) and equality-generating dependencies (egds) to ex-
press the mapping. In our case, the source-to-semantic trans-
lation can be expressed by using the following tgds with
comparison atoms:

m0 : ∀pid,name, store, rating :
S-Product(pid,name, store, rating), rating < 2

→ UnpopularProduct(pid, name)
m1 : ∀pid,name, store, rating :

S-Product(pid,name, store, rating),
rating >= 2, rating < 4→ AvgProduct(pid, name)

m2 : ∀pid,name, store, rating :
S-Product(pid,name, store, rating),
rating >= 4→ PopularProduct(pid, name)

m3 : ∀pid,name, store, rating, location :
S-Product(pid,name, store, rating),
S-Store(store, location)

→ SoldAt(pid, sid),Store(sid, store, location)

Intuitively, tgd m0 specifies that, for each tuple in S-
Product such that the value of rating is lower than 2, there
should be an UnpopularProduct in the semantic schema. Sim-
ilarly for m1 and m2. Mapping m3 relates products and
stores in the source to instances of SoldAt association in the
semantic schema.

The mapping designer can also express a number of con-
straints about the target semantic schema under the form
of egds.1 The egd below corresponds to a key constraint on
PopularProducts: it states that whenever two popular prod-
ucts have the same name, their id must also be the same:

e0 : ∀id1, id2,n : PopularProduct(id1, n),
PopularProduct(id2, n)→ id1 = id2

In addition to being more natural, designing mappings
over semantic schemas has another important benefit to the
data architect. By taking advantage of the semantics of the
views, the mapping designer does not need to care about
the physical structure of the data in the target schema. As
an example, s/he does not need to explicitly state in m0,
m1, m2 that popular, average, and unpopular products are
also products. The class-subclass relationships are encoded
within the view definitions, and we expect their semantics
to carry on into the mappings.

This, however, is true provided that we are able to trans-
late such a source-to-semantic virtual mapping into a clas-
sical, executable source-to-target mapping among the two
physical databases. This is the main task performed by
GROM, as discussed in the following section.

3. OVERVIEW OF THE SYSTEM
The main technical problem addressed by GROM, depicted

in Figure 2, can be stated as follows. Assume we are given:

1Previous papers [9] discuss how to handle foreign-key con-
straints as well.

593



VT
semantic	  
schema

T
target

source-‐to-‐target	  
mapping

semantic	  
schema

VS

JT target
instance

ISsource
instance

ϒS

ΣVS,VT	  ∪ΣVT

ϒT

ΣS,T∪ΣTS
source

view	  
definitions

view	  
definitions

semantic-‐to-‐
semantic	  mapping

Rewriter

Chase	  Engine

Mapping	  Designer

Figure 2: Architecture of the System.

(i) a source relational schema, S, and a target relational
schema T;

(ii) a source semantic schema, VS , and a target semantic
schema, VT , defined by means of sets of view definitions,
ΥS and ΥT , over S, T respectively. View definitions may
involve negations over base and derived atoms, as discussed
in Section 2;

(iii) a set of target constraints, ΣVT , i.e. target egds to
encode key constraints and functional dependencies over the
semantic schema;

(iv) finally, a semantic-to-semantic mapping, ΣVS ,VT , de-
fined as a set of s-t tgds over VS and VT .

As it can be seen from Figures 2 and 3, the system is com-
posed of various modules. Users develop the semantic map-
pings using a graphical mapping-designer and view browser.
The GROM rewriter takes as input S,T,VS ,VT ,ΥS , ΥT ,
and the semantic-based mappings, ΣVS ,VT ∪ΣVT . It rewrites
these as a new set of source-to-target dependencies ΣST∪ΣT ,
from the source to the target database. These, in turn, are
fed to the chase-engine module, along with an instance IS of
the source database, to be executed and generate an instance
JT of the target. A few observations are in place.

Variants of the Problem. First, this general version of
the rewriting problem easily reduces to a simplified variant
in which only a target semantic schema is available, and no
source one, as in our running example in Section 2. In fact,
assume we know how to rewrite source-to-semantic map-
pings ΣSVT , i.e., mappings designed from the source schema
S to the target semantic schema VT . Assume now we are
given view definitions for the source schema, ΥVS , in addi-
tion to the target ones, and a mapping ΣVSVT between the
two semantic schemas. It can be seen that this case can be
reduced to the simpler case by using the composition of two
steps [9]: (i) first, we apply the source view definitions in
ΥVS to the source instance, IS , to materialize the extent of
the source views, ΥVS (IS); (b) then, we consider this ma-
terialized instance as a new source database, and solve the
source-to-semantic mapping problem.

The Mapping Language. A second, important observa-
tion is concerned with the output of the rewriting engine.
It is known [1] that the language of embedded dependencies
(tgds and egds) is closed wrt unfolding conjunctive views,
i.e. the result of unfolding a set of conjunctive view defini-

tions within a set of tgds and egds is still a set of tgds and
egds. Unfortunately, as we have shown in [9], this is not true
when views allow for negated atoms, as in our setting. This
justifies two important choices wrt the algorithm:

To start, the rewriting algorithm is sound but not com-
plete. Informally speaking, given mappings ΣSVT ∪ ΣVT ,
GROM generates a rewritten set of source-to-target map-
pings ΣST ∪ ΣT such that, whenever these admit a univer-
sal solution [4] JT over IS , then also the original source-to-
semantic mappings admit solutions on IS , and it is the case
that ΥT (JT ) is a solution for ΣSVT ∪ΣVT and IS . However,
we say nothing about the cases in which ΣST ∪ ΣT fail.

Then, as we mentioned, to better handle the effects of
negation in view definitions, we choose as a mapping-definition
language for ΣST ∪ ΣT the one of disjunctive embedded de-
pendencies (deds). Deds generalize tgds and egds since they
may have disjunctions in the conclusion. Following is a ded
generated by GROM for the running example in Section 2:

d0 : TProduct(pid1,name, store1),
TProduct(pid2,name, store2)→ (pid1 = pid2) |

TRating(rid, pid1, ‘0’) | TRating(rid, pid2, ‘0’)
Intuitively, this ded translates the key constraint for name

on concept PopularProduct in terms of the following con-
straints over the target database: for each pair of tuples in
TProduct with equal values of name, one of the following
must be true: either the two product ids are equal; or one
of the products is not a popular product.

Handling deds is considerably more challenging than or-
dinary tgds and egds. To provide an example, universal
solutions [4] are considered the standard notion of what
a “good” solution means for standard mappings composed
of tgds and egds; in addition, the chase is a well-known,
polynomial-time procedure to generate universal solutions.
On the contrary, it has been shown [3] that universal solu-
tions are no longer sufficient for ded-based scenarios, and
that the more appropriate notion of universal model set is
needed. In addition, universal model sets may have expo-
nential size wrt to the size of the source instance. In fact,
to the best of our knowledge, GROM is the first system to
tackle the problem of chasing deds.

Handling Complexity. The strategy to avoid such a com-
plexity blow-up is twofold. On the one side, sufficient condi-
tions to avoid the use of deds in the output mappings have
been identified under the form of restrictions on the use of
negations in view definitions [9]. As a consequence, the sys-
tem is able to look at the view definitions and tell whether
the rewritten mappings may contain deds or not.

On the other side, when deds are unavoidable, GROM
takes special care in order to tame the complexity of the
chase. To start, it relies on a fast and scalable chase en-
gine from the Llunatic project [5]. This guarantees good
scalability in executing mappings, even on large databases.
In addition, the chase engine has been extended in order to
properly handle deds by implementing a greedy chase strat-
egy for deds [9], based on the ideas of searching for solutions
to a set of deds by running multiple standard scenarios made
of tgds and egds derived from the given deds. Experiments
confirm the effectiveness of this approach.

4. EXPERIENCES WITH THE SYSTEM
The demonstration will illustrate what are the main chal-

lenges in handling semantic mappings and how the system

594



Mapping  Designer

Mapping  Rewriter

View  Browser

Chase  Engine

Figure 3: GROM in Action.

solves them. Attendees will be able to interact directly with
the system, in such a way that the process will resemble a
hands-on tutorial. Following are the main lessons that can
be learned from these experiences.

Semantic Mappings Work! Our experiences tell us that
in many cases the availability of a view over the data may
greatly simplify the mapping process. In these cases, data
architects may greatly benefit from a tool like GROM.

One of the typical patterns is the one discussed in our run-
ning example: one of the data sources somehow rates source
objects, and the mapping application requires to classify ob-
jects in the target based on these ratings, for example for
the purpose of showing them to users under the form of web
pages. Often, target relational schemas are not designed to
properly address this kind of need. Being able to design a
view over the target database that more closely reflects such
an application requirement is a great asset in these scenarios.

Another, typical case, is the one of databases that come
with poor designs, or lack integrity constraints. It is very
difficult in these cases to design proper mappings. On the
contrary, a clean-up view over the underlying databases may
simplify things.

We intend to challenge the audience with different schemas
and mapping scenarios. We will ask attendees to design
mappings first using the original, relational schemas, and
then over properly designed views, to let them grasp the
real advantage of this approach.

Semantic Mappings are Expensive! At the same time,
it is important to let users understand the concrete trade-
off between having a flexible and expressive view-definition
language, and the cost of executing the mappings.

As we mentioned, rewriting and executing the mappings is
quite straightforward as soon as conjunctive queries are used
as a view definition language. This, however, is not sufficient
to capture the actual modeling requirements in many cases.

Negation is a powerful addition, but it comes at a cost.
The full power of negation generates output mappings that
include deds, so that chasing them is not feasible, even on
small instances. Attendees will learn what features GROM
offers to solve this problem. As a first solution, the system
will run its greedy chase algorithm to search for solutions to
the original deds. This amounts to generating several sce-
narios made of tgds and egds, that capture specific branches
in the deds. This strategy is sound, but not complete. How-

ever, it is often surprisingly quick in returning some solution.
In other cases, when the constraints are more intricate, the

greedy chase will take considerably more time, due to the
fact that many of the generated scenarios fail to generate a
solution, and new ones need to be executed. In these cases, a
possible alternative is to leverage the syntactic restrictions
over the use of negation [9] that guarantee that no deds
are generated. In essence, the user needs to inspect the
views and change them in such a way to remove perverse
negation patterns that will generate deds. GROM supports
this process by highlighting problematic views, so that the
user may consider alternative formulations.

5. REFERENCES
[1] A. Cal̀ı, D. Calvanese, G. De Giacomo, and

M. Lenzerini. Data integration under integrity
constraints. Inf. Syst, 29(2):147–163, 2004.

[2] C. Civili, M. Console, G. De Giacomo, D. Lembo,
M. Lenzerini, L. Lepore, R. Mancini, A. Poggi,
R. Rosati, M. Ruzzi, V. Santarelli, and D. Savo.
MASTRO STUDIO: managing ontology-based data
access applications. Proc. of the VLDB Endowment,
6(12):1314–1317, 2013.

[3] A. Deutsch, A. Nash, and J. Remmel. The chase
revisited. In PODS ’08, pages 149–158, 2008.

[4] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering.
Theoretical Computer Science, 336(1):89–124, 2005.

[5] F. Geerts, G. Mecca, P. Papotti, and D. Santoro.
That’s All Folks! LLUNATIC Goes Open Source.
PVLDB, 7(13):1565–1568, 2014.
http://db.unibas.it/projects/llunatic.

[6] A. Y. Halevy. Answering Queries Using Views: A
Survey. VLDB Journal, 10(4):270–294, 2001.

[7] M. Lenzerini. Data integration: a Theoretical
Perspective. In PODS, 2002.

[8] G. Mecca, G. Rull, D. Santoro, and E. Teniente.
Semantic-Based Mappings. In Proc. of the Int. Conf.
on Conceptual Modeling (ER), pages 255–269, 2013.

[9] G. Mecca, G. Rull, D. Santoro, and E. Teniente.
Ontology-based mappings. Data and Knowledge
Engineering, 98:8–29, July 2015.
http://dx.doi.org/10.1016/j.datak.2015.07.003.

595


	GROM: a General Rewriter of Semantic MappingsGiansalvatore Mecca, Guillem Rull, Donatello Santoro, Ernest Teniente

