
Universitat Politècnica de Catalunya

Bachelors in Computer Science and
Engineering

Graph algorithms for
visualizing high dimensional

data

Director:
Dr. Ricard Gavalda
Mestre

Co-Director:
Dr. Marta Arias Vicente

Bachelors Thesis of :
Abhinav
Shankaranarayanan
Venkataraman

June 20,2016

2

To my Mother, Father, Professors and Friends. With a heart filled with Joy
and Dedication, I attribute all my effort, work and knowledge to my

professors Ricard Gavalda and Marta Arias and to Babaji at Gurudwara

Abstract

Motivated by the problem of understanding data from the medical domain,
we consider algorithms for visually representing highly dimensional data so
that ”similar” entities appear close together. We will study, implement and
compare several algorithms based on graph and on matrix representation of
the data. The first kind are known as ”community detection” algorithms,
the second kind as ”clustering” algorithms. The implementations should be
robust, scalable, and provide a visually appealing representation of the main
structures in the data.

Acknowledgement

First of all I would like to thank my university, SASTRA University, Than-
javur, TamilNadu, India for allowing me to work on the project at UPC
Barcelona. I thank UPC Barcelona for accepting me as an intern and pro-
viding me the necessary infrastructures and administrative support.

I am grateful to Prof.Ricard and Prof.Marta, both of them believed in
me that I was doing something interesting and gave me full freedom to try
out several new methods, although it took away some time but they still
encouraged me. We used to have quite long discussions which always cleared
my doubts about the subject and enriched my thoughts. I also thank them
for allowing me to participate and also giving me a chance and opportunity
to take part in Hackathons, Conferences and Seminars. I thank them for
providing me sufficient materials and excellent reference papers. I also thank
them for the speedy mail replies too. I will always cherish every moment I
spent with both my professors.

Special thanks to Alejandro Fonteboa for extending his help when I was
trying to figure out on web framework.

I extend my gratitude to Prof.Dr.P.Swaminathan, Dean, School of Com-
puting,SASTRA University for granting me this opportunity to work in this
wonderful environment.

I have deep gratitude for Prof.Dr.A.Umamakeswari, Associate Dean, School
of Computing, SASTRA University for supporting me in every effort I take
to enrich myself.

I thank Prof.Dr.Sridharan M, Professor,School of Electrical and Electron-
ics Engineering ,SASTRA University for his efforts in connecting to UPC
Barcelona and motivating us in every manner possible.

I thank the management Prof.Dr.S.Vaidhyasubramanium,Dean Planning
and development,SASTRA University for giving this opportunity to do the
project aborad and Prof.Raja S.(Raja Sir), administrative office, Training
and Placement, SASTRA University for helping me out in the process for
semester abroad program.

I thank the Gurudwara Nanaksar Sahib,Barcelona for supporting us with
a happy mind in times of needs, especially I would like to thank Babaji.

I thank my friends, class mates and lab mates along with lots of fun and
happinees they gave me some great knowledge too.

Last but never the least , I thank my parents, V Shankaranarayanan and
S Gomathi and family members for supporting me all the way.

1

Contents

1 Introduction 1
1.1 Context Of the Project . 1
1.2 Goal of the Project . 2
1.3 Planning . 3

1.3.1 Task Description . 3
1.4 Economic Budget . 4

1.4.1 An Introduction to Economic Budget 4
1.4.2 Estimation of Economic Budget 5

1.5 Sustainability . 7
1.5.1 Economic Sustainability 8
1.5.2 Social Sustainability 8
1.5.3 Environmental Sustainability 8

2 Background Knowledge 9
2.1 Graph Notion . 9
2.2 Graph Definition . 9
2.3 Graph Matrix Notation . 10
2.4 Approaches . 11

2.4.1 For Community Identification 11
2.4.2 For Visualization . 14

2.5 Computational Complexity . 15
2.6 State-of-the-art in Community Detection 15
2.7 Degree Distribution . 17

2.7.1 Scale-Free Graph . 17
2.8 State-of-the-art in Graph Visualization 18

2.8.1 Protovis . 19
2.8.2 D3.js . 19
2.8.3 Gephi . 20

2

2.8.4 Alchemy.js . 20

3 Louvain Community Detection Algorithm 21
3.1 Modularity . 21

3.1.1 Definition . 21
3.1.2 Properties of Modularity 22

3.2 Implementation of the Louvain Community detection Algorithm 23
3.2.1 First Phase : Optimizing Modularity 24
3.2.2 Second Phase : Agglomerating the communities found

in first phase into new nodes 25
3.3 Observations of Louvain . 26
3.4 Mode of implementation of the Louvain Algorithm 26
3.5 Experiments . 27

3.5.1 Synthetic Benchmarks 28
3.5.2 Task Oriented Benchmark: Stanford Network Analysis

Project(SNAP) data 31
3.5.3 Some Real-world Benchmarks : igraph tests 32

3.6 Result . 33

4 Visualization Module 34
4.1 Exploring the state-of-the-art 34
4.2 Dependencies for Alchemy.js 35
4.3 Steps to use Alchemy.js . 35
4.4 Getting the data from the Louvain Python code to Alchemy. 36
4.5 Tests . 36

4.5.1 Alchemy.js Tests . 36
4.5.2 Bug Report . 42

4.6 Result and Output . 43

5 Overall System Description 45
5.1 Choice of Web.py . 45
5.2 Frontend Framework . 46
5.3 Using the application . 46
5.4 Implementation Benefits and Drawbacks 50

5.4.1 Benefits . 50
5.4.2 Drawbacks . 51

3

6 Conclusion and Future Works 52
6.1 Goals Achieved . 52
6.2 Benefits to the community . 53
6.3 Future Works . 53
6.4 Availability and requirements 54
6.5 Conclusion . 55
6.6 Personal Conclusion . 55

4

Chapter 1

Introduction

In this section an entire overview of the full project is provided. We mention
the context of the project we have studied and the goal of the project. We
also provide the intended planning, economic estimate and sustainability of
the work that has been done.

1.1 Context Of the Project

In the present day scenario, the modern science of algorithms and graph the-
ory has brought significant advances to our understanding of complex data.
Many complex systems are representable in the form of graphs. Graphs have
time and again been used to represent real world networks. One of the most
pertinent feature of graphs representing real system is community structures
or otherwise known as clusters. Community can be defined as the organiza-
tion of vertices in groups or clusters, with many edges joining the vertices
of the same cluster and comparatively fewer vertices joining the vertices in
another neighbouring cluster. Such communities form an independent com-
partment of a graph exhibiting similar role. Thus, community detection is
the key for understanding the structure of complex graphs, and ultimately
deduce information from them.

The networks and highly dimensional data that motivate this problem
emerge from the healthcare domain, and particularly from the analysis of
complex, chronic disease, which is the major cost factor in modern societies.
In the current scenario, a patient does not have one disease but a set of
diseases. For example a person with diabetes has a heart disease, kidney

1

disease, high blood pressure etc. This may vary between sexes, ages etc and
thus is a very complex landscape to explore. Visualizing this landscape of
diseases would help to analyse the source, the treatment and even the path
way of research to be done. Thus, such a visualization would be helpful
for the medical experts and health planner to understand the landscape of
diseases much better.

This project is carried out within the LARCA research group at UPC 1.
More precisely, researchers within LARCA have in the last two years began
collaborations with hospital and health agencies for the analysis of electronic
healthcare records [EHR].In previous work within the group [21], they pro-
posed to organize the information in EHR in the form of graphs and hyper-
graphs, which can then be navigated by experts and mined with graph and
network theoretic tools.

Within the perspective of the LARCA project, two kinds of networks
could be useful to study in this scenario: one in which nodes are patients and
edges indicate their similarity, and another one in which nodes are diagnos-
tics/diseases, and edges indicate their association in a population. Hence, we
address this visualization of such high dimensional data using the algorithms
and visualization technologies. An auxiliary goal of this project is to help
the main LARCA project by investigating a few solutions that could later be
incorporated to the main project. A few solutions that are possible to resolve
the problem will be analysed and tests will be conducted. The project will
also involve study of various algorithms and their respective analysis based
on the quality and quantity of data using multiple appropriate experiments.
Although, the project is motivated by the real high dimensional data it is
not easy to get such data and hence would use simpler ones for testing the
project.

1.2 Goal of the Project

The project is built with due recommendations from the directors of the
project - Prof.Ricard Gavalda and Prof.Marta Arias. The project is inspired
by medical domain and thus slides to the side of implementation which in-
volves faster computation for better visualization. Hence, there are four
facets or goals for the project which are enumerated as below:

1LARCA - Laboratory for Relational Algorithmics, Complexity and Learning.
http://recerca.upc.edu/larca

2

1. The first objective of the project is to survey a few algorithms that
aim in community finding keeping in mind that the input is from the
medical domain

2. Next, to choose two algorithms that benefit the purpose of organizing
graphs from medical domain and for the purpose of visualization.

3. Implement the algorithms and test the efficiency of the algorithm using
variety of graphs.

4. Lastly but more importantly to build a Graphic User Interface (GUI)
which enables visualization of the raw input on a web browser by draw-
ing graphs.

1.3 Planning

Planning is essential component of any project. It helps to keep pace with
the time. The total duration of the project is five months starting from early
February 2016 to the end of June 2016. The following describes the tasks
that were planned to be performed in the project.

1.3.1 Task Description

The tasks for the project have been subdivided into various task phases which
are enumerated below :

• Required knowledge acquisition
Necessary knowledge to understand the problem needs to be gained in
order to deal with the original topic.In this phase we familiarize with
the term of community detection, graph theory and understand some
of the possible methods that are in practice to deal with the prob-
lem. Knowledge about a few visualization methods is also necessary to
implement the visualization of the project.

• Paper Analysis
Analysis of paper related to community detection and clustering algo-
rithms over high dimensional graph data is done in this phase of the
project. This phase is necessary to understand various functionalities

3

that the project deals with and to assist in the subsequent phases of
the project.

• Design and Implementation
The required functionalities are listed and implemented using a pro-
gramming language. In this phase the methods of the project are
designed and programmed using the chosen language for implemen-
tation. The implementation is done for both the community detection
algorithm and for the visualization aspect of the project.

• Testing I
In this phase the program is tested using generated test cases and errors
are identified and corrected. Multiple recoding is done in this phase of
the project In this phase we test the program in order to identify errors
in the implementation. It includes the successive recoding.

• Testing II
In this phase, tests are performed on the GUI to ensure the limits of
GUI.

• Report Writing
In this phase the report of the project is written.

1.4 Economic Budget

1.4.1 An Introduction to Economic Budget

Economic management is primarily based on an estimate of income and ex-
penditure called as budget. Development of a sustainable budget leads to
proper economic management of the project and thus is one of the most im-
portant phase of the project management. In this phase we aim at providing
an estimate of the project budget and optimize the same. We look at the ex-
penditure from various aspects such as software costs, hardware costs, license
costs and human resource costs. Additionally we also account the software
for its sustainability. One important factor to note is that the budget that we
describe in this section is subject to change and it may increase depending on
the unexpected obstacles that we may face. For an instance when we do not
get the expected results with a particular software we may have to go in for
another software that may incur extra installation and operational charges.

4

1.4.2 Estimation of Economic Budget

We divide the overall expenditure into three categories namely hardware,
software and human resources. One very important factor that we need to
consider is that we only get an estimate of the total cost. This may vary
depending on the systems in use. To calculate the amortization we consider
two factors namely, the overall life of the hardware or software in use and
the duration of the project, which is 5 months. Hence the amortization cost
turns out to be one eighth of the actual life of each component.

1.4.2.1 Hardware Budget

Hardware budget accounts for the actual and the amortized costs of the hard-
ware elements used by the project. The cost is fictitious as it has not been
developed commercially. Table 1. intents to estimate the economic cost of
each of the hardware component of the project.

Table 1 - Hardware Budget
Sno: Hardware Com-

ponent
Useful
Life(in
years)

Total Cost(in e) Amortized
Cost(in e)

1 PC System 4 1000e 125 e

Total 1000e 125 e

1.4.2.2 Software Budget

The software budget shows an estimate for the various software used in the
project along with the estimate of the software costs. Similar to hardware
the softwares also gets wornout in time. Maximum performance time is fixed
for every software. In addition freeware software and open source software
incur no cost. The cost is fictitious as it has not been developed commer-
cially. Table 2 intents to estimate the economic cost of each of the software
component of the project.

5

Table 2 - Software Budget
Sno: Software Com-

ponent
Useful
Life(in
years)

Total Cost(in e) Amortized
Cost(in e)

1 Linux OS 5 0e 0 e
2 JavaScript

Engine
1 0e 0 e

3 Python Compo-
nents

1 0e 0 e

4 Web.py 1 0e 0 e
5 TexMaker 1 0e 0 e

Total 0e 0 e

1.4.2.3 Human Resource Budget

The human resource budget deals with the overall expenditure spent on hu-
man resources. Every phase of the project has a cost associated with it
in per hour calculation. The cost is fictitious as it has not been developed
commercially. Table 3 intents to estimate the economic cost of each of the
phases of the project. The cost per hour is intended as an approximation
of the current cost per work hour of young analysts and developers in our
environment.The cost is fictitious as it has not been developed commercially.
Table 3 intents to estimate the economic cost of each of task that involves a
human component for the project.

6

Table 3 - Human Resource Budget
Sno: Phase Deadline Hours Cost(per

hour in
e)

Total(in
e)

1 Required Knowledge
Acquisition

1 Mar 2016 70 15e/h 1050 e

2 Paper Analysis 1 Apr 2016 150 15e/h 2250 e
3 Design and Implemen-

tation
30 Apr 2016 230 20e/h 4600 e

4 Testing I 15 May 2016 75 15e/h 1125e
5 Testing II 31 May 2016 75 15e/h 1125e
6 Report Writing 15 Jun 2016 100 15e/h 1500e

Total 600 10525 e

1.4.2.4 Total Budget

The following table, Table 4, summarizes the total budget for the project.
This encompasses the hardware, software and human resources budget.

Table 4 - Total Budget
Sno: Resource Total Cost(in e)
1 Hardware Budget 1000 e
2 Software Budget 0 e
3 Human Resource

Budget
10525 e

Total 11525 e

1.5 Sustainability

Sustainability is a key factor in any project design. We evaluate the project
based on three factors of sustainability namely economic sustainability, social
sustainability and environmental sustainability.

7

1.5.1 Economic Sustainability

From our estimation it can be said that the current budget estimation will
be the maximum bound on the budget for the project. This takes into
account all the factors namely the hardware costs, software costs and human
resource costs. The cost estimated in the project is the least possible cost and
hence is a nonpareil project estimate for any indistinguishable project. The
budget may exceed our calculations only during unexpected times. When the
proposed plan is precisely followed the estimated lower costs gets achieved.
Most of the software used in the project is open source which adds no value
to product cost. The hardware requires only a computer which is a necessary
tool in any project.

1.5.2 Social Sustainability

The project involves making a web application that helps in visualizing raw
input data. This will help to analyse the learning characteristics of the
patients and provide a feedback both to the medical analyser and health
planner. This is going to improve the quality of health analysis in the state.
All this requires is a simple computer connected to the internet. Thus adding
to the view point of having a great social responsibility.

1.5.3 Environmental Sustainability

The project involves usage of a computer. We can assume that the amount of
energy used by a single computer comes to around 250 watts. And given that
we spend 500 hours on the project then the energy expended is 125KW. On
average, electricity sources emit 1.22lbs CO2 per kWh (0.0006 metric tons
= 0.53 Kg of CO2 per kWh). (Source: EPA eGRID Summary Tables and
Data Files). This amounts to a upper bound of 67.2 kg of CO2 considering
that the energy was produced by using coal lignite. This can be reduced
by reducing the development effort which is possible by reusing the already
existing code. The project is environmentally sustainable as it meets with
the limits of misusing the environment.

8

Chapter 2

Background Knowledge

In this section we present the background knowledge required to understand
and solve the problem

2.1 Graph Notion

Many real-world problems can be solved by describing them by means of a
diagram that consists of a set of points in which a few or all the pairs of
points are joined together by lines. It is interesting to find whether any two
given points are joined by lines or not. A mathematical abstraction of this
situation is termed as graphs [4]. In the project of concern where we deal
with representing the medical data in this manner it becomes necessary to
talk about graphs.

2.2 Graph Definition

A Graph G is formed by two finite sets, the set V = { v1, v2, . . . , vn } of
vertices(also called nodes) and the set E = { e1, e2, . . . , en } of edges where
each edge is a pair of vertices from V, for instance,

ei = (vj, vk)

is an edge from vj to vk represented as G=(V,E). In other words E ⊂ V 2,
which is the set of all unordered edges. The vertices (vj and vk) that represent
an edge are called endpoints and the edge is said to be adjacent to each of
its end points.

9

Figure 2.1: Example graph created using the project. This is called the ”Bull
Graph”.

The neighbourhood of a node or vertex vi is the set of nodes vi is connected
to, N(vi) = {vj|(vi, vj) ∈ E, vi 6= vj, 1 ≤ j ≤ n}. The degree of a node vi, or
the size of the neighbourhood connected to vi, is denoted as d(vi) = |N(vi)|.

A degree sequence, D, specifies the set of all node degrees as tuples, such
that D = (vi, d(vi)) and follows a probability distribution called the degree
distribution with mean dm [19].

2.3 Graph Matrix Notation

The matrix is commonly used to represent graphs for computer processing.
The advantage of using matrix is usually that matrix algebra can be readily
applied to study the structural properties of graphs. There are number of
ways in which one can represent the graph in its matrix form for example,
adjacency matrix and Laplacian matrix.
Let G=(V,E) be a simple graph with vertex set V and edge set E, then the
adjacency matrix is square |V |2 matrix M such that its element Mi,j is 1
when there is an edge from vi to vj,where vi ∈ V , vj ∈ V and 0 when there
is no edge. The number of rows and columns that a matrix has is called its
order. The adjacency matrix of a graph of order n entitles the entire the
topology of a graph. The diagonal elements of the adjacency matrix are all
0 for undirected graphs M .

10

The sum of the elements of i -th row or column yields the degree of node
i. If the edges are weighted, one defines the weight matrix W , whose element
W ij expresses the weight of the edges between vertices i and j.

The spectrum of a graph G is the set of eigenvalues of it’s adjacency
matrix M . If D is the diagonal matrix whose element D i,i equals its degree
of vertex i (vi ∈ V) [10].

2.4 Approaches

In this section we discuss the various approaches that are involved in dealing
with the input to the project for community identification, for clustering and
for visualization purposes.

2.4.1 For Community Identification

Virtually in every scientific field dealing with empirical data, primary ap-
proach to get a first impression on the data is by trying to identify groups
having ”similar” behaviour in data. There are numerous methods to achieve
this objective of which two of them are of great concern namely,

• Community Detection

• Clustering

The following explains the both in detail.

2.4.1.1 Community Detection

Communities are a part of the graph that have fewer ties with the rest of
the system. Community detection traditionally focuses on the graph struc-
tures while clustering algorithms focuses on node attributes. This definition
is admittedly somewhat informal. Different applications may require slightly
different definitions, and certainly different algorithms formalize them in dif-
ferent ways. So there is not a unique, universally accepted, decomposition of
a graph in communities.

Several types of community detection algorithms can be distinguished:

• Divisive algorithms – which detect inter-community links and remove
them from the network

11

• Agglomerative algorithms – which merges similar nodes or communities
in a recursive manner

• Optimization Methods – Optimization methods are mainly based on
maximization of an objective function, informally the “goodness” of a
community decomposition.

2.4.1.2 Clustering

According to the paper “Community detection in graph” [11] there are four
major traditional clustering methods namely :

• Graph Partitioning

• Hierarchical Clustering

• Partitional Clustering

• Spectral Clustering

2.4.1.2.1 Graph Partitioning This problem deals with dividing graph
into groups of predefined size such that the number of edges between the
groups is minimized. The paper [11] also defines cut size as the number
of edges lying between the clusters. Figure 2.2 shows a problem with 14
vertices and presents a solution for splitting into 2 groups.

Figure 2.2: Graph Paritioning [11]

12

Minimum Bisection Problem, is a special problem case that considers
partitioning the network into 2 groups of equal size. This problem is an NP-
Hard problem. Intuitively, to obtain full partitioning we need to iteratively
find all the minimum partition. This is not of significant use in the current
problem of finding communities.

2.4.1.2.2 Hierarchical Clustering Hierarchical clustering aims to iden-
tify groups of vertices with high similarities. It can be classified into two
categories:

1. Agglomerative algorithm : in one in which Agglomerative algorithms,
in which clusters are iteratively merged if their similarity is sufficiently
high

2. Divisive algorithms, in which clusters are iteratively split by removing
edges connecting vertices with low similarity. The figure 2.3 demon-
strates the hierarchical clustering in a diagrammatic manner.

Figure 2.3: From a thickly knit graph to a dendogram [This intuitive diagram
was taken from a powerpoint presentation for a data mining class]

2.4.1.2.3 Partitional Clustering Partitional clustering is method to
find the clusters as a set of data points. The number of clusters is preassigned.
let us call this number as k. The vertex is a point on the metric space with
a defined distance measure between the pair of points in the space. The

13

distance represents the difference in dissimilarity between the vertices. The
main objective in this method is to separate the points into k clusters so as to
maximize ((or) minimize) a given cost function based on distances between
points and from points to centroids that are suitably defined positions in
space. Some of the most used functions are : Minimum k-clustering , k-
clustering sum, k-center and k-median. One of the most popular partitional
technique in literature is k-means clustering where the cost function is total
intra-cluster distance [11]. This method of clustering is out of scope for the
project in concern.

2.4.1.2.4 Spectral Clustering According to the paper [11], let us sup-
pose to have a set of n objects x1, x2, . . . , xn with a pairwise similarity func-
tion S defined between them, which is symmetric and non-negative (i. e.,
S(xi, xj) = S(xj, xi) ≥ 0, ∀i,j = 1, ..n). Spectral clustering includes all
methods and techniques that partition the set into clusters by using the
eigenvectors of matrices, like S itself or other matrices derived from it. In
particular, the objects could be points in some metric space, or the vertices
of a graph. Spectral clustering consists of a transformation of the initial set
of objects into a set of points in space, whose coordinates are elements of
eigenvectors: the set of points is then clustered via standard techniques, like
k-means clustering.

2.4.2 For Visualization

Graph visualization is a important task in various scientific application. Vi-
sualizing these data as graphs provides the non-experts with an intuitive
means to explore the content of the data, identify interesting patterns, etc.
Such operations require interactive visualizations (as opposed to a static im-
age) in which graph elements are rendered as distinct visual objects; e.g.,
DOM objects in a web browser. This way, the user can manipulate the
graph directly from the UI, e.g., click on a node or an edge to get additional
information (metadata), highlight parts of the graph, etc. Given that graphs
in many real-world scenarios are huge, the aforementioned visualizations pose
significant technical challenges from a data management perspective [2].

14

2.5 Computational Complexity

The estimate of the amount of resources required by the algorithm to perform
a task is defined as computational complexity. The large amount of data on
the real graphs or real networks that are available in the current scenario
causes the efficiency of the clustering algorithm to be crucial.

In a brief, algorithms that have polynomial complexity describe the Class
P. Problems whose solutions can be verified in a polynomial time span the
class NP of non–deterministic polynomial time problems, which includes P.
problem is NP-hard if a solution for it can be translated into a solution
for any NP-problem. However, a NP-hard problem needs not be in the
class NP. If it does belong to NP it is called NP-complete. The class of
NP-complete problems has drawn a special attention in computer science,
as it includes many famous problems like the Travelling Salesman, Boolean
Satisfiability (SAT), Integer Programming, etc. The fact that NP problems
have a solution which is verifiable in polynomial time does not mean that NP
problems have polynomial complexity, i. e., that they are in P. In fact, the
question of whether NP=P is the most important open problem in theoret-
ical computer science. NP-hard problems need not be in NP (in which case
they would be NP-complete), but they are at least as hard as NP-complete
problems, so they are unlikely to have polynomial complexity, although a
proof of that is still missing. Reference to this has been imbibed from the
paper ”Community detection in graphs” [11].

Many clustering Algorithms or problems related to clustering are NP-
hard. This makes it hopeless to look for an exact algorithm, in which case
we may look for an approximation algorithm. Approximation algorithm are
methods that do not deliver the exact solution but an approximate solution
but with an advantage of lower complexity. [11]

2.6 State-of-the-art in Community Detection

Modularity is the objective function that is widely used both as a measure
and as a optimizing method for partitioning community. As said before there
are various algorithms that can be used for community detection . Paper [20]
discusses six different community detection algorithms namely:

• Louvain Method

15

• Le Martelot

• Newman’s greedy algorithm (NGA)

• Newman’s spectral algorithm with refinement

• simulated annealing

• extremal optimization

The following figure 2.4 from paper [20] the average normalized performance
rank of each algorithm in terms of partitioning quality and speed.

Figure 2.4: Average normalized performance rank of each algorithm in terms
of partitioning quality and speed(Taken from the website of the paper that
proposed Combo algorithm [20].

The main objective of the project is to visualize the data on screen thus
needs an algorithm that is fast and should be effective. Hence Louvain algo-
rithm was chosen for the implementation. The implementation can be found
in the Chapter 3 of the report.

Louvain algorithm algorithm is considered as state-of-the art algorithm
for community detection [3]. The algorithm is fast and more effective than the
other algorithms in real-world graphs. Due to our goal of projecting medical
domain we require an algorithm that gives a better trade off between being
effective and being fast.

16

2.7 Degree Distribution

Degree of a node(vi) in the graph G = (V,E) where V is the set of vertices
and E is the set of edges is the number of edges that a node has to other
nodes. Usually denoted as deg(vi). Degree distribution can be thus described
as the probability distribution of there degrees over the entire graph. Degree
distribution is significant in the study of community networks and hence
bringing it into consideration. It is usually denoted as P (k) of a graph which
is the fraction of nodes in the network with degree k.

P (k) =
Nk

N
(2.1)

where Nk is the number of nodes with degree k and N is the total number
of nodes in the graph.

2.7.1 Scale-Free Graph

The graphs whose degree distribution follows power law are called as Scale-
Free graphs or scale free networks, fo examples of Scale-Free graphs include
Social network graph,protein-protein interaction network etc.
Scale graphs have a number of interesting properties, both theoretical and
practical. For example, according to the paper ”Resilience of the Internet
to Random Breakdowns” [8], removing randomly any fraction of nodes from
scale free network will not destroy the network which is in contract to Erdos-
Renyi graphs which make them interesting for building networks of several
types resilient to failures or attacks. The figure 2.5 demonstrates how the
random graph is different from a scale free graph. The highlighted spots are
known as the hubs. For example: In a large community the celebrities or
politicians serve as the hub. In scale free graphs another interesting feature is
that as the clustering coefficient decreases with increase in the node degree.
This type of distribution will be used in the experimental phase of the project
for generating test cases.

17

Figure 2.5: Random network (a) and scale-free network (b). In the scale-free
network, the larger hubs are highlighted.(Image Source: Wikipedia)

2.8 State-of-the-art in Graph Visualization

Researchers have designed various tool-kits for the purpose of information
visualization. Newer visualization techniques are introduced by creating new
components or sub-classing the existing ones. The main aim of the project
will be analyse the way in which the visual frameworks can be used and
what kind of intermediate transitions that are possible between the Python
program and the visualization framework. The project directors suggested
to use a JavaScript library.

Advantage of JavaScript Libraries [18]

1. Easy to use : JavaScript is very easy to use, write and learn. It also
saves time for the developer to write the code.

2. Reliable and standardized : JavaScript libraries are more reliable and
standardized and remains widely supported by several major web browsers.

3. JSON is Standard : JSON or JavaScript Object Notation is a standard
input/output format for data sharing.

4. Simple and light-weight animation possible in JavaScript JavaScript li-
braries need knowledge of CSS, HTML and editor to write the program.
Contacting with Java or Adobe Flash , JavaScript animation require
less learning and less time to make a cheap and effective animation

18

Due to these advantages JavaScript was suggested as the visualization as
it is light, fast and data is easier to represent in JavaScript which satisfies the
goal of the project. Next task is to find a JavaScript visualization framework.

In the paper “Effectiveness of JavaScript Graph Visualization Libraries
in Visualizing Gene Regulatory Networks (GRN)” [18] “TABLE I” gives an
summary of a few different JavaScript graph visualization libraries. Consid-
ering all the factor four of the visual techniques were chosen for the purpose
of study and analysis of which one will be chosen for implementation.

2.8.1 Protovis

Protovis is a domain-specific language for constructing visualizations by com-
posing simple graphical marks such as bars, lines and labels. In Protovis,
designers specify visualizations as a hierarchy of marks with visual proper-
ties defined as functions of data. Inheritance of properties across composed
marks similar to cascading of style sheets used in web design enables con-
cise visualization definitions with a large expressive range and a minimum of
intervening abstractions. Protovis is implemented in JavaScript, with ren-
dering support for HTML5 canvas, SVG, and Flash. The above extract is as
given in the main paper about Protovis [5].

2.8.2 D3.js

D3.js or simply D3 is a JavaScript library for manipulating documents based
on data. D3 takes full advantage of cascading Style Sheets(CSS), HTML5
and Scalable vector graphics (SVG). D3 is viewed as the successor of Protovis.
D3 targets at animation,interaction and complex and dynamic visualization
in web. It uses pre-built JavaScript functions in its kernel in order to select
elements, create SVG objects, style them or add transitions and dynamic
effects to them. [18]. Paper “D3: Data-Driven Documents” [6] describes D3
in its rightful way. D3 provides a wide set of example of which these were
of great interest to the project: Force-Directed Graph, Labelled Force Lay-
out,Forced Graph Editor , Directed Graph Editor, CodeFlower, University
Program Transfers - Interactive, Better force layout node selection.

19

2.8.3 Gephi

Gephi is an open source software which uses 3D render engine for visualiza-
tion of graphs. A flexible and multi-task architecture brings new possibilities
to work with complex data sets and produce valuable visual results. Gephi
involves many key features in the context of interactive exploration and inter-
pretation of networks. spatializing, filtering, navigating, manipulating and
clustering are allowed in Gephi.Dynamic network visualization is also possi-
ble in Gephi [1]. Although gephi is not JavaScript it is cited and considered
for its extensive use in graph visualization. It is interesting to note that
Gephi has JavaScript viewer such as JavaScript GEXF available on github.

2.8.4 Alchemy.js

Alchemy.js is a JavaScript framework built entirely on D3. The goal of
Alchemy.js is to help the developer build and run graph visualizations with
minimal overhead. A developer using Alchemy.js does not have to write much
code to visualize the data. Configuring the “config” in Alchemy.js to visual-
ize the data will be the only task to be done, along with whatever features
that are wanted to be include in the application.

20

Chapter 3

Louvain Community Detection
Algorithm

In this section we describe the community detection algorithms such as Lou-
vain and various tests that were performed to choose the algorithm.

3.1 Modularity

The quality of partitioning that results from application of method is often
measured using modularity. The modularity of a partition is hence a scalar
value between -1 and 1 that is used to measure the density of the links
inside the communities as compared to the density of the links between the
communities. This concept was first put forward by Newman [15].

Modularity not only serves as a quality measure for detecting the quality
of split or partition, but also acts as an objective function to optimize. Exact
modularity optimization is NP-Complete in the strong sense [7].

3.1.1 Definition

Let G=(V,E) be a simple graph,where V is the set of vertices and E is the
set of undirected edges. Let n = |V | and m = |E|. Let degree of a vertex
v be, deg(v) where v ∈ V. Let C be the community, C ⊆ V , be the subset
of vertices. A clustering Cs = {C1, C2, . . . , Ck} of G is a partition of V such
each vertex is present exactly in one cluster. We thus define modularity as
follows: [7]

21

Q(Cs) =
∑
C∈Cs

[
|E(C)|
m

−
(|E(C) +

∑
k∈Cs
|E(C, k)|

2m

)2
]

(3.1)

where E(I,J) is set of all edges between vertices in cluster I and J. E(C) =
E(C,C). The above equation can be continently rewritten as follows:

Q(Cs) =
∑
C∈Cs

[
|E(C)|
m

−
(∑

v∈C deg(v)

2m

)2
]

(3.2)

In simpler terms the value is of Q can be expressed as

Q = (Number of Intra-Cluster Communities)− (Expected number of Edges)
(3.3)

As given in [3]

Q =
1

2m

∑
ij

(Aij − Pij) δ(Ci, Cj) (3.4)

δ(Ci, Cj) =

{
1, ifCi = Cj

0, otherwise
(3.5)

where, Pij is the expected number of edges between nodes vi and vj. Pij

is
kikj
2m

where kx is sum of the weights of the edges attached to the vertex vx
for a given random graph G (This is otherwise called as a null model).

3.1.2 Properties of Modularity

1. Q depends on nodes in the same clusters only.

2. Larger modularity implies better Communities.

3.

Q(Cs) ≤
1

2m

∑
ij

Aijδ(Ci, Cj) ≤
1

2m

∑
ij

Aij ≤ 1 (3.6)

4. Value taken by Q can be negative

22

3.2 Implementation of the Louvain Commu-

nity detection Algorithm

Louvain algorithm is considered as the state-of-the art algorithm for com-
munity detection for identifying community structures [3]. Louvain method
developed by Blondel et al [3] finds high modularity partitions of large net-
works in short time. It unfolds a complete hierarchy community.

The Algorithm has two phases that are repeated iteratively to bring the
final solution to the problem. The following figure 3.1 visualizes the steps in
the algorithm and Algorithm 1 defines a pseudocode for the Louvain method.

Algorithm 1 Louvain Algorithm Pseudocode

Require: A graph G = (V,E)
Ensure: Local optimum community split has happened

while LocalOptimumReached do
Phase1 : Split or partition the graph by optimizing modularity greedily
Phase2 : Agglomerate the found clusters into new nodes

end while

23

Figure 3.1: Visualization of the steps of our algorithm. Each pass is made
of two phases: one where modularity is optimized by allowing only local
changes of communities; one where the found communities are aggregated
in order to build a new network of communities. The passes are repeated
iteratively until no increase of modularity is possible. This was taken from
the paper ”Fast unfolding of communities in large networks” [3]

3.2.1 First Phase : Optimizing Modularity

In the first phase the algorithm assigns a different community to each node in
the network. The number of nodes is equal to the number of communities in
the graph. Let vi be be a node such that vj ∈ N(vi). The gain of modularity
is then calculated by removing vi and placing it in community of vj. If the
gain is positive the vi is moved to the community of vj else vi stays in its
original community. This procedure is iterated and the phase one stops when
a local maxima of the modularity is achieved, that is when no more move
of nodes from one community to another is possible. The ordering of the
nodes can affect or effect the computation time which can be a part of future
works.

24

Algorithm 2 Phase 1 in Louvain Algorithm Pseudocode

Require: A graph G = (V,E)
Ensure: Partition network greedily using modularity

Assign a different community to each node
while LocalOptimumReached do

for all Each node vi do
For each node vj ∈ N(vi), consider removing vi from community of vi
and place it in the community of vj
Calculate the modularity gain
if ModularityGain is Positive then

remove vi from community of vi and place it in the community of
vj

else
No Change

end if
end for

end while

The main algorithm relies on the calculation of modularity. In the paper
it is stated that the gain in modularity as 4Q

4Q =

[∑
in +ki,in
2m

−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−
(∑

tot

2m

)2

−
(
ki

2m

)2
]
(3.7)

where
∑

in is the sum of the weights of the links inside C and
∑

tot is the sum
of the weights of the links incident to nodes in C, ki is the sum of weights of
the links incident to node i, ki,in is the sum of the weights of all the links in
the network.

3.2.2 Second Phase : Agglomerating the communities
found in first phase into new nodes

In the second phase the algorithm builds the new network. The communities
that are found during the first phase are now the nodes here. According to
the paper [3], the weights of the links between the new nodes are given by
the sum of the weight of the links between nodes in the corresponding two

25

communities. The edges between nodes of the same community lead to self-
loops for this community in the new network. The resulting new weighted
network is then subjected to first phase and this process is iteratively done.

Algorithm 3 Phase 2 in Louvain Algorithm Pseudocode

Require: A graph G = (V,E)
Ensure: Agglomeration of nodes

Every community Ci forms a new node vi
Wij =

∑
{All edges between Ci and Cj} where Wij is the edge between

newly formed nodes vi and vj

3.3 Observations of Louvain

1. The final output of the Louvain algorithm forms a complete hierachical
structure.

2. Resolution limit problem [12] has been resolved in the algorithm stated
in the current paper under discussion [3] due to the multi-level nature
of Louvain algorithm.

3. Modularity can be redefined for weighted graphs and Louvain works
well with weighted graphs.

3.4 Mode of implementation of the Louvain

Algorithm

Using Python was a requirement of the project directors, in case the code has
to be reused in a larger ongoing project which is programmed in Python and
JavaScript. Hence in the project the above algorithm has been implemented
in Python utilizing some part of the pyLouvain program for implementation
[16].

The pyLouvain code cannot be directly used in the project as the input
and output methods cannot fit into our problem of getting the raw data
and giving out a JSON object to the web application. But pyLouvain uses
Louvain algorithm and tries to find communities which is of interest in this
project.

26

The code in the project is structured in the same way as pyLouvain is
structured. Instead of storing the read input is separately read we store it in
the matrix format. Getting the start node, weight or end nodes was simply
the rows in the transpose of this matrix avoiding any function calls , which
pyLouvain uses. To get an edge pyLouvain takes the help of function for a
single edge, where as in this project we use zip method to simply zip the rows
of transposed matrix. Labelling was introduced which enables the nodes to
relabel with their corresponding names.

The first phase in the pyLouvain removes the nodes of degree one and
adds a self loop to its neighbour. This node gets reinserted at the end of the
neighbours community.This aspect of the pyLouvain code was interesting and
needed to be retained in the project. Hence the first phase of the pyLouvain
was modified and added into the project. This makes the code to run faster.
The second phase is written as a part of the project. Since it is inspired
from the pyLouvain and is the second phase considering the first phase was
adopted it looks very similar to the pyLouvain program. Modification made
is in the way the relabelling is done.

3.5 Experiments

In performing experiments we analyse the speed and capability of the Python
program to handle more input and also to see pattern of behaviour of the
data. For this purpose test case inputs have to be generated or test cases that
are available online must be used. In this project we utilize both method to
see the performance of the program. All the tests were run on 2.50GHz Intel
Core i5-3210M with 8 GB RAM (Sony Vaio) running gnome-ubuntu 14.04
operating system.
In the paper [13] the author suggest a few benchmarks for evaluvating the
performance of community detection algorithms:

1. real-world benchmarks, such as Zachary’s Karate Club, where a dataset
based on a social system includes a natural set of ground-truth com-
munities;

2. synthetic benchmarks, where data is artificially created according to
some model which includes

3. a pre-defined set of ground-truth communities ; and task-oriented bench-
marks, in which communities are used to help complete some task on

27

real-world data.

Following the above bench marks three kinds of experiments were performed:

3.5.1 Synthetic Benchmarks

3.5.1.1 Nodes vs Time keeping modularity constant

In the paper “Exploring community structure in biological networks with ran-
dom graphs” [19] 1, authors have developed a generative model to produce
undirected connected graphs with a degree and a pattern of communities
while maintaining a graph strucuture that is as random as possible. They
have given two programs one which contains the degree distribution funtions
such as scale-free degree distribution, poisson degree distribution, regular
distribution and geometric and the other one that contains the graph gen-
erators that return a generated graph in networkX package. In this project
we are interested in scale-free distribution as most real-world networks are
scale free in nature [8]. To run this test NetworkX package is a necessary
component.

For the purpose of testing two programs in Python were written. First
program is a generator program that sets the degree distribution to scale-
free, Q=0.4 [Average Q value] and N=150 to N=2300. This program
generate a set of files contains graphs with nodes in the range of N. Second
program is the plotting program in which the files that were generated in
the first program was supplied as input to the second program and Louvain
algorithm was applied. Time of run for Louvain was calculated for each
input and recorded. This was then plotted into graphs using the matplotlib
function. The graph for 2000 nodes is displayed in figure 3.2.

1Random Modular Network Generator https://github.com/bansallab/modular_

graph_generator/

28

Figure 3.2: Experiment showing the plot of time vs number of nodes for 2000
nodes

It is interesting to note that for steady raise in the number of inputs there
was a steady raise in the time.

3.5.1.1.1 Minor bugs In the results obtained it is interesting to note
that there is a set of slow runs that occur at regular intervals. These are
due to the effect of garbage collection done by Python automatic garbage
collector after a number of runs of Louvain algorithm had exhausted available
memory This issue was found by manually turning of the garbage collection
and explicitly calling it every time after each run. Therefore, the ”bottom”
line of the plot should be taken as the true running time of the Louvain
algorithm. Figure 3.3 shows the result of the experiment when manual
garbage collection was performed.

29

Figure 3.3: Experiment showing the plot of time vs number of nodes for 2000
nodes (With manual garbage collection)

3.5.1.2 Modularity vs Time keeping Number of nodes constant

Using the same code we retain the distribution and make the number of
nodes as a constant and vary the Q value. This experiment helps to find
out the change in run time of the algorithm varying Q. Figure 3.4 show a
sample of the test conducted for 2000 nodes. We can infer from the graphs
that there is no significant change in the run time when we modify the Q
value for same number of nodes.

Figure 3.4: Experiment showing the plot of time vs number of nodes for 2000
nodes but Q is varying

30

3.5.2 Task Oriented Benchmark: Stanford Network
Analysis Project(SNAP) data

SNAP2 collection of more than 50 large network datasets from tens of thou-
sands of nodes and edges to tens of millions of nodes and edges. In includes
social networks, web graphs, road networks, internet networks, citation net-
works, collaboration networks, and communication networks [14]. An in-
stance of the facebook data having 4039 nodes and 88234 edges was tested
and the resulting output on screen. Time taken was 0.38 seconds.Figure
3.5 shows the community graph of the facebook graph taken. Arxiv data
of physics consiting of 18772 nodes and 396160 edges took 1.78s. Amazon
ungraph with 334863 nodes and 925872 edges took 5.13s.

Table 5 - Run Time Table using data taken from SNAP
Sno: Name of the

graph
No: of
nodes

No: of edges Time taken (in
seconds)

1 Social circles
from Facebook
(anonymized)

4,039 88,234 0.38

2 Collaboration
network of Arxiv
Astro Physics

18,772 3,96,160 1.78

3 Amazon product
network

3,34,863 9,25,872 5.13

2Stanford Network Analysis Project http://snap.stanford.edu/

31

Figure 3.5: Community graph of facebook data taken from SNAP

3.5.3 Some Real-world Benchmarks : igraph tests

Python provides an exciting package called igraph. igraph provides a func-
tionality where famous graphs such as Zachary karate graph, bull graph etc.,
can be obtained. A program was written to generate 28 famous graphs and
time for running Louvain algorithm on the 28 graphs was calculated and
recorded [9].

The names of the 28 graphs are :
“Zachary”,“Chvatal”,“Coxeter”,“Cubical”,“Diamond”,
“Dodecahedral”,“Folkman”,“Franklin”,“Frucht”,“Grotzsch”,
“Heawood”,“Herschel”,“House”,“HouseX”,“Levi”,“McGee”,“Meredith”,
“Noperfectmatching”,“Nonline”,“Octahedral”,“Petersen”,“Tutte”,“Robertson”,
“Smallestcyclicgroup”,“Tetrahedral”,“Thomassen”,“Uniquely3colorable”,“Walther”

32

Figure 3.6: Famous graphs and their timing

3.6 Result

The algorithm was found to be fast in terms of computation and effective
in terms of splitting into communities. In medical domain the graph size
is expected to be around 105 to 106 nodes with nearly 1 million edges. In
the tests performed with Amazon data from SNAP this range was achieved.
Hence the experiments and the analysis of the algorithm prove that Louvain
algorithm implemented in the project is effective in its execution.

33

Chapter 4

Visualization Module

The visualization module was developed keeping mind that it should be
JavaScript based and that it must interface with Python. As already said
these were the requirements that were set by the project directors. In this
section an analysis of the selected software and method of choice by exploring
all the possible ways will be explained.

4.1 Exploring the state-of-the-art

In Chapter 2, section 2.8 , a few options on graph visualization were discussed
which includes Protovis, D3.js, Gephi and Alchemy.js. Amongst these state-
of-the art graph visualization algorithms we need to choose the one that suits
the projects needs.

Gephi is a tool used for data analysis for understanding and exploring
graph based data, however it has some drawbacks in the logistics of the
project such as Gephi is not JavaScript based although it has a JavaScript
viewer. Gephi has more overhead being a software than a simple framework.
For a similar reason we refrain from using softwares such as HyperTree, Hy-
perGraphs as they did not have a Python API or are not based on JavaScript
but instead has a Java Code based APIs. D3.js provided the necessary tools,
was written in JavaScript and could be linked with Python.Hence D3.js was
considered the best option for the project’s logistics.

Alchemy.js was built using D3.js. Alchemy.js required minimal code to
generate the graphs as most of the customization could be done by just
overriding or altering the “config” [Configuration part of the Alchemy.js]

34

instead of implementing it entirely using JavaScript. Alchemy.js also provides
a feature in which the core application can be further extended with any other
feature of D3. Having D3 to be the base, with minimal code and maximum
customization Alchemy.js was chosen for visual representation of the graph
in this project.

Thus the project directors considered Alchemy.js as a visualization soft-
ware as it fits the bigger project for graph visualization.

4.2 Dependencies for Alchemy.js

Alchemy needs three main units to form as an application namely: alchemy.css,
alchemy.js and data. CSS and JavaScript are major dependencies in Alchemy.js.
Installation of jQuery and D3 is also useful. alchemy.min.js, alchemy.css and
alchemy.min.css will be updated in the CDN (Content Delivery netwrok)
as and when anew feature is added.

4.3 Steps to use Alchemy.js

In this project we have uploaded the alchemy.min.js, alchemy.css and alchemy.min.css
into the project’s file repository http://abhinavsv3.github.io/javascriptsal

and hence will be using the link in the following explanation. The following
describes the steps that are followed in use of Alchemy.js :

1. Include the files in this format
<link rel=“stylesheet” href=“http://abhinavsv3.github.io/javascriptsal/
alchemy.min.css”/>
. . .
<script src=“http://abhinavsv3.github.io/javascriptsal/alchemy.
min1.js”>< /script >

2. Include an element with “alchemy” ID as the id and class
The alchemy class is used to apply styles while the alchemy id is used
programatically. By default Alchemy.js looks for the alchemy div but
this can be overridden. <div class=“alchemy” id=“alchemy”></div>

3. Provide Alchemy.js with a JSON dataSource

35

4. Begin Alchemy.js
<script>
alchemy.begin({“dataSource” : someData})
</script>

4.4 Getting the data from the Louvain Python

code to Alchemy.

Alchemy.js takes a simple data format called GraphJSON. GraphJSON serves
as a light weight and flexible representation of graph data, easily used locally
or over the web.

GraphJSON is a JSON Object which has two kinds of objects namely:
nodes and edges . These are individual arrays that represent the nodes and
edges that will be represented in the graph visualization.

Nodes : id key is the only unique value that should be present in the
nodes

Edges : source and target key are the only unique value that should be
present in the edges.

A Python program was implemented to convert the output of the Louvain
program into JSON object using the Python JSON package. This converts
the output of the Louvain program into two JSON object. One JSON object
for community graph and another one for the original graph. This can be
seen as the advantage of system. We compute once and reuse the computed
result for various visualizations.

4.5 Tests

For the purpose of visualization various test were performed for analysing the
compatibility of Alchemy.js and to explore and exploit all the functionalities
of alchemy.js and choose the best ones for the project and implement them.

4.5.1 Alchemy.js Tests

The following will enumerate the tests that were performed one after another.
Github pages were used to test host the web visualization.

36

1. Test1 and Test2

Test1 consists of providing the JSON object as input to the Alchemy.js
to build a normal graph. Test 1 is performed to see if the nodes can be
selected, viewed and separated.

Test 2 Test2 uses the same JSON object as input.In Test2, the Test1
graph is presented with custom graph weight, graph width and link
distances. This makes it easier to integrate it with larger application.
Figure 4.1 shows the graph that was used to perform test1 and test2.

Figure 4.1: Test 1 and Test 2 look the same. The JSON object has been
taken from Alchemy.js Examples. One named node “Trial and Error” has
been selected and viewed.

2. Test3: Cluster Assignment Test

In this test cluster assignment is tested.Clusters are assigned in the
JSON object by setting values for the cluster in the form of cluster
number and assign separate colors for these clusters. Thus, this test is
focussed on node clustering or node colouring to assign each node into
its cluster. Figure 4.2 show the result of the test.

37

Figure 4.2: Clustering based Alchemy.js. The JSON object has been taken
from Alchemy.js Examples.

3. Test4: Directed and weighted edges

In this test we explore the special JSON object with directed and
weighted edges. The test also shows an instance of controlling edge
thickness, node diameter and node thickness. Figure 4.3 shows an
example of this test.

38

Figure 4.3: Example Directed and weighted edges. The JSON object has
been taken from Alchemy.js Examples.

4. Test5: Network

A test in which a hairball network is generated having roots and nodes.
Figure 4.4 shows an example of seven minutes of communication be-
tween members of the AngularJS, EmberJS, and KnockoutJS IRC
channels(Test5).

39

Figure 4.4: Seven minutes of communication between members of the An-
gularJS, EmberJS, and KnockoutJS IRC channels. JSON object taken from
the Alchemy.js examples.

5. Test6: Graph with relatedness

A test in which a graph with relatedness was generated. Figure 4.5
shows a sample having relatedness between philosophers.

40

Figure 4.5: A graph in which the relatedness of scientists to the philosopher
is shown. This example JSON was take from Alchemy.js example graphs

6. Test7: Node Area and Color

In this test the difference in node area and assignment of colors to
nodes was tested. Figure 4.6 presents can example in which the test
is performed.

41

Figure 4.6: Node area and node color.JSON object created manually.

After performing all the test few of the desired features were incorporated
for displaying the graph in the project. The project uses Test7 for showing
the size or the bulkiness of the node in comparison with other node. Test6
property of relatedness has also been added to the project to mark the edge
values between the nodes. Test3, clustering has also been added to the
project.

4.5.2 Bug Report

In the project there were minor issues that were to be addressed:

1. Alchemy.js does not render a few edges on screen when using web
browsers that such as Google chrome. Mozilla Firefox use Gecko which
helps to read web contents like JavaScript, html, css etc better than in
Google chrome. Thus, it is recommended to run the project on mozilla
firefox or sea monkey than on Google Chrome.

2. Bug Number 472: It was found when rendering of edges is an bug that
was reported in Alchemy.js issues as Bug number : 472 (https://

github.com/GraphAlchemist/Alchemy/issues/472). We have also

42

reiterated the issue. The issue is that in the graph where the commu-
nities are rendered separately with colors, the edges that run between
two communities are named and weights are assigned but the edge color
is not rendered.

4.6 Result and Output

Finally the project adopted alchemy.js for the graph representation. The
errors were verified and necessary tests were performed to ensure that the
visualization process runs smoothly. Sample outputs that were obtained by
using the application are shown in the figure 4.7, 4.8, 4.9.

Figure 4.7: Community graph for Karate graph input.

43

Figure 4.8: Community graph showing all nodes in the community for the
Karate graph input

Figure 4.9: Original Karate graph

44

Chapter 5

Overall System Description

The project uses two complementary technologies of a raw Python code and
a JavaScript program that can represent or draw the output of the Python
code on screen. This lead to a need to include a new element of a web
framework for implementing the Louvain algorithm and creating a JSON
object, and JavaScript to represent the graph on a web browser. A web
framework is one that aims to remove the overhead associated with common
activities performed in the web development.

5.1 Choice of Web.py

An exploration on a few Python web frameworks such as Django, Grok and
web.py was conducted. A sample application in Django was built to see
if Django suits the need of the project. Django was eliminated due to the
fact that it was heavier for a simple task that we wish to perform in the
project. Web.py was chosen as the web framework for the project as it allowed
successful integration of the existing Python code with the web framework
better over grok.We must note that the larger project at the LARCA group
does not use web.py instead another framework called Angular.js. However,
Angular.js is designed to be used for large, complex projects, and after some
evaluation it was clear that the overhead for this small project did not pay
off. Thus, Web.py suffices and was easy to be used for the current need of
the project, that is to perform the integration task.

45

5.2 Frontend Framework

Bootstrap is an intuitive web front-end frame work that has been imple-
mented in the project. Bootstrap allows to divide the screen into various
matrix cubes enabling us to place buttons to run the application. Bootstrap,
originally named Twitter Blueprint, was developed by Mark Otto and Jacob
Thornton at Twitter as a framework to encourage consistency across internal
tools. It is the second most starred project in github and has more than forty
thousand forks [17].

5.3 Using the application

The web application thus developed is intuitive enough such that even though
it performs tasks of computation and integration into the web it looks sim-
ple, minimal and most necessary elements have been implemented. In the
following we describe the entire working flow of the Web Application:

1. ”Login Page” In this part a simple login password is described.

46

Figure 5.1: Landing page containing login

2. File Loader Page After logging in the user lands in a file loader
page where provision has been provided to upload a text file containing
the adjacency matrix of the graphs .”Start” ”Destination” or ”Start”
”Weight” ”Destination” is the fixed format for input. In this space
only numerical values can be accepted for supporting the simplicity of
the background process. Another space to provide a key that maps
the names of the node to node numbers. This helps to present another
dimension of seeing the data in the form of named nodes. Viewing the
names of the node over nodes helps the user to deepen his vision of
analysis.

47

Figure 5.2: After login, the application asks for the data and/or key

3. Dash Board In this part of the web application the user lands in a page
that presents to the user four different variety of visual representation
of the input data : Community graphs (Displaying the links between
various communities), Full graph split into communities represented
with different colors, Original graph input(Helps to see if the input was
proper).

4. On Click Viz. On clicking on the visualization the user wants to view,
the web application switches to the graph that the user has clicked.

48

Figure 5.3: This Dash board is displayed after the computation process has
been completed.

5. Error Page In case of mismatch in the format or the password was
wrong or the visualization is not possible due the screen size or the
browser is not able to handle the large JSON object Errors pages have
been generated to counter act on exceptions.

49

Figure 5.4: Error page showing the appropriate error message

5.4 Implementation Benefits and Drawbacks

5.4.1 Benefits

1. The input given can be a weighted or an unweighted graph. The web
input is still accepted and the output is generated.

2. Key labels can be assigned to node numbers. This file if not given the
program uses the node number given as id in the input file to label the
nodes.

3. Whether the input is a large graph such as Facebook graph or is a small
one such as karate graph the community screen displays the community
graph in a size that is proportional with the entire size of the graph on
one screen.

50

4. Error management involves a separate class. Hence exact errors can be
mentioned and presented to the user in an elegant web interface.

5.4.2 Drawbacks

1. Very large graph needs a bigger screen for the entire graph to be dis-
played.

2. To display such large graphs a browser that could handle large JSON
objects is needed along with bigger screen size

51

Chapter 6

Conclusion and Future Works

In this section the final conclusion of the project, goals achieved, benefits the
project presents to the community and future works are presented.

6.1 Goals Achieved

In the beginning of the project four major goals were set to be achieved. The
following would enlist in the same order on it s achievement.

1. In the project we have surveyed a few algorithms that aim in community
finding for instance Combo and Louvain keeping in mind that the input
is taken from health care domain.

2. Louvain Community detection algorithm was chosen for community de-
tection and for visualization. Alchemy.js were selected after considering
the input and a few state of the art algorithms.

3. The algorithms and frameworks thus found were implemented and tests
were conducted for finding the efficiency of the algorithms.

4. A GUI implementing Web.py and Bootstrap was created combining the
visualization and the computation.

Thus, the project successfully achieved the tasks that were set in the early
stages of the project.

52

6.2 Benefits to the community

The system can be used in places where there is difficulty in visualization of
a very complex landscape of data such as medical domain. In the medical
domain a patient can be a vector of diseases and visualization of such patients
(patients graph–which shows relations of how two patients are similar, a
graph in which patient–patient edge weight is the similarity value) would be
useful for analysing and predicting the disease landscape of a region and in
turn multiple regions. In place of patients if disease/diagnosis graphs can be
loaded.Thus, patterns of occurrence of disease or method of diagnosis can be
intuitive from the community that are thus formed.

6.3 Future Works

In the span of five months we were able to build a basics project by comparing,
contrasting, including the one that the directors suggested and choosing the
one that is simple and works well. In this project I would like to suggest a
few improvements that we would have done given more time. We would like
to enumerate on that:

1. In the Algorihthm part :

(a) The order in which the information is presented can affect the com-
putation of the Louvain community detection algorithm. Hence
the problem of finding specific heuristics to solve this ordering can
improve the Louvain algorithm computation time.

(b) The project relies fully on Louvain. One can speculate on whether
modularity is the only measure that exists. Thinking about a
completely new measure would be interesting.

2. In the visualization Module:

(a) In the current project the community graph is presented sepa-
rately from the main graph. A zoom effect can be introduced to
zoom into to community graph to reach different levels of hierar-
chy.

(b) A feature in which double-clicking on a node to fade out all but
the node and its immediate neighbours.

53

(c) We deal with large graphs thus it would be nice to have some
search functionalities. jQuery can be used to create an autocom-
pleting search box that can be featured on the graph display page
which can search the name of the patient or the treatment that is
needed.

(d) Fish eye can be introduced. Since alchemy.js is a framework that
runs on D3 it can easily be extended o D3. Hence the fish-eye
module can help to view every node along with it’s neighbours in
a more expanded format.

(e) Developing an editor which is a tool to dynamically add nodes
and edges after the graph visualization has taken place. D3 has a
“forced editor” layout and “Directed forced editor” layout sample
which could be useful for further study.

3. In the Overall structure:

(a) The current dash board is before the graph board. The Dash
board can be included in the graph board itself to avoid switching
back and front in the web application.

(b) A simple Database can be set-up for storing passwords and im-
provisation on sign-ins can deliver a better personalised user expe-
rience. The project provides provision for password input which
could be used as a starting point to build on further.

6.4 Availability and requirements

1. Project Name: Graph algorithms for visualizing high dimensional

2. Project Homepage: https://github.com/abhinavsv3/webproject

3. Operating System: Platform Independent. Preferably Unix–like op-
erating system

4. Programming Language: Python 2.7

5. Other Requirements : Alchemy.js, Python Packages, Web.py

54

6.5 Conclusion

In this project we have developed an application that visualizes data that
are in the form of graphs (having nodes, vertices and weights).

In the process of development a study on community detection algorithm
was conducted and Louvain algorithm was chosen and implemented. The im-
plementation of the algorithm is in Python. A study on a few visualization
libraries were conducted and Alchemy.js was chosen for graph implementa-
tion. Web.py was chosen for implementation as the web framework and the
implementation was successful.

Analysis, experiments and tests were conducted in proper manner using
reliable and stable data. Few data test cases were generated and a few which
existed from stable and reliable source were used. The application is robust
and can handle large inputs.

The project is motivated by the presence of high dimension of data in
medical domain. Hence the application was developed with this objective to
visualize high dimensional data and has used algorithms for the benefit of
speed. Finally, to think out of the box the project also suggests few future
works that can enhance the current state of the project.

6.6 Personal Conclusion

The project has taught me to think about all the solutions that are possible
for any problem. Given a task I will now start looking for all the solution,
evaluate it and choose the best one that fits. Thus, I can proudly call myself
an engineer. My directors, Prof.Ricard and Prof. Marta gave me a freedom
to think freely and understand the project and made me do the project the
way I have analysed it. This made me develop an new characteristics of
learning things in the fly and made me feel enthusiastic about working on
projects that I have some knowledge on. By doing this the project has made
my mind more innovative. I am sure given any project I can now make
innovation and work hard to bring the project to a better light.

55

Bibliography

[1] Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. Gephi: an
open source software for exploring and manipulating networks. ICWSM,
8:361–362, 2009.

[2] Nikos Bikakis, John Liagouris, Maria Krommyda, George Papaste-
fanatos, and Timos Sellis. graphvizdb: A scalable platform for inter-
active large graph visualization.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Fast unfolding of communities in large networks. Journal
of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[4] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph
theory with applications, volume 290. Macmillan London, 1976.

[5] Michael Bostock and Jeffrey Heer. Protovis: A graphical toolkit for
visualization. IEEE Trans. Visualization & Comp. Graphics (Proc. In-
foVis), 2009.

[6] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven
documents. IEEE Trans. Visualization & Comp. Graphics (Proc. Info-
Vis), 2011.

[7] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin
Hoefer, Zoran Nikoloski, and Dorothea Wagner. Maximizing modularity
is hard. arXiv preprint physics/0608255, 2006.

[8] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin.
Resilience of the internet to random breakdowns. Phys. Rev. Lett.,
85:4626–4628, Nov 2000.

56

[9] Gabor Csardi and Tamas Nepusz. The igraph software package for com-
plex network research. InterJournal, Complex Systems, 1695(5):1–9,
2006.

[10] David Emms, Edwin R Hancock, Simone Severini, and Richard C Wil-
son. A matrix representation of graphs and its spectrum as a graph
invariant. Electr. J. Comb, 13(1), 2006.

[11] Santo Fortunato. Community detection in graphs. Physics reports,
486(3):75–174, 2010.

[12] Santo Fortunato and Marc Barthelemy. Resolution limit in community
detection. Proceedings of the National Academy of Sciences, 104(1):36–
41, 2007.

[13] Conrad Lee and Pádraig Cunningham. Benchmarking community de-
tection methods on social media data. arXiv preprint arXiv:1302.0739,
2013.

[14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large net-
work dataset collection. http://snap.stanford.edu/data, June 2014.

[15] Mark EJ Newman. Modularity and community structure in networks.
Proceedings of the national academy of sciences, 103(23):8577–8582,
2006.

[16] Julien Odent and Michael Saint-Guillain. Automatic detection of com-
munity strucures in networks, November 26,2012.

[17] Mark Otto and Jacob Thornton. Bootstrap.

[18] Graciously Kharumnuid Swarup Roy. Effectiveness of javascript graph
visualization libraries in visualizing gene regulatory networks (grn).

[19] Pratha Sah, Lisa O. Singh, Aaron Clauset, and Shweta Bansal. Explor-
ing community structure in biological networks with random graphs.
BMC Bioinformatics, 15(1):1–14, 2014.

[20] Stanislav Sobolevsky, Riccardo Campari, Alexander Belyi, and Carlo
Ratti. General optimization technique for high-quality community de-
tection in complex networks. Physical Review E, 90(1):012811, 2014.

57

[21] M. Zamora, M. Baradad, E. Amado, S. Cordomı́, E. Limón, J. Ribera,
M. Arias, and R. Gavaldà. Characterizing chronic disease and polymed-
ication prescription patterns from electronic health records. In Data
Science and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE In-
ternational Conference on, pages 1–9, Oct 2015.

58

