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Abstract

The Sarmanov family of distributions can provide a good model for bivariate random variables

and it is used to model dependency in a multivariate setting with given marginals. In this

paper, we focus our attention on the bivariate Sarmanov distribution and copula with different

truncated extreme value marginal distributions. We compare a global estimation method based

on maximizing the full log-likelihood function with the estimation based on maximizing the pseudo-

log-likelihood function for copula (or partial estimation). Our aim is to estimate two statistics that

can be used to evaluate the risk of the sum exceeding a given value. Numerical results using a

real data set from the motor insurance sector are presented.
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1. Introduction

Modelling bivariate variables that represent economic losses is not a straightforward

task. To analyse such data, the usual approach involves fitting univariate distributions to

both marginals and then considering the corresponding theoretical bivariate distribution

for the entire data set. However, this procedure might not be successful if the marginals

present different distribution types or if the dependency structure of the theoretical

bivariate distribution is inappropriate for the real data. Furthermore, given the shape

of the likelihood function or moments, estimating the parameters can be challenging.
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On the other hand, when the marginals follow extreme value distributions, in some

cases we have infinite moments. In an economic context, this means that the loss amount

is unlimited. However, in practice, this is an unrealistic scenario.

In this paper, we limit ourselves to the Sarmanov family of distributions, originally

introduced in its bivariate form by Sarmanov (1966) to join given marginals. This dis-

tribution has also been proposed in a more general form in the field of physics by cohen

(1984), its multivariate version was suggested by Lee (1996) and generalised further by

Bairamov et al. (2001) and Bairamov et al. (2011). Recently, the Sarmanov distribution

has attracted interest in other fields (see, for example, Danaher, 2007; Gómez-Déniz

and Pérez-Rodrı́guez, 2015), including finance and insurance. Thus, Hernández-Bastida

et al. (2009) and Hernández-Bastida and Fernández-Sánchez (2013) used the bivariate

Sarmanov distribution for evaluating premiums in insurance compound models, while

further applications related to the theory of ruin were presented by Yang and Hashorva

(2013). Furthermore, Hashorva and Ratovomirija (2015) have analysed the Sarmanov

distribution with mixed Erlang marginal distributions and have used it for capital allo-

cation. In general, this family of distributions is useful for analysing multivariate loss

data, whose marginal distributions may be of the extreme value type or may present very

different behaviours. We propose a global estimation (GE) method for the parameters of

the Sarmanov distribution with right truncated extreme value marginal distributions.

The bivariate Sarmanov copula is derived from the bivariate Sarmanov distribution

and can be a good, quite simple alternative for representing dependency. A copula

is a function that relates a bivariate distribution function to its univariate marginal

distribution functions, thus allowing the structure of dependence between variables to

be fitted separately from the marginal distributions. Specifically, we focus our attention

on the bivariate Sarmanov distribution and copula with different log-types of truncated

marginal distributions: truncated log-normal, mixture of truncated log-normals and

truncated log-logistic. The proposed models may be useful for measuring the risk of

loss.

When analising data that represent univariate losses, the univariate distribution that

generates the observations is often an extreme value distribution and, therefore, the

mean or variance (first or second moment) of the corresponding random variable can

be infinite. In finance and insurance, for quantifying the risk it is useful to assume a

finite value for the first two moments of the distribution, leading to the right truncation

of the distribution of the random variable analised, which was the procedure adopted in

this paper. Furthermore, we use a bivariate Sarmanov distribution that requires marginal

distributions with finite first moment.

Using a real data set from the motor insurance sector, we compare the estimated risk

of loss evaluated for the bivariate Sarmanov distribution with truncated extreme value

marginal distributions whose parameters result by the GE method, with the estimation

of the same risk obtained after Monte Carlo simulation from the corresponding copula

(as examples of fitting alternative copulas and marginals on this data set see, Bolancé et

al., 2014; Bahraoui et al., 2014).



Zuhair Bahraoui, Catalina Bolancé, Elena Pelican and Raluca Vernic 211

The paper is structured as follows: in Section 2 we present two truncated log-normal-

type univariate distributions, plus the heavier-tailed truncated log-logistic (Champer-

nowne) distribution, for which we also obtained the first and second moments. In Sec-

tion 3 we introduce the bivariate Sarmanov distribution and its copula representation,

and discuss the parameters estimation. Some comments on the evaluation of two statis-

tics that are used to quantify the risk of loss (Value at Risk - VaR and Tail Value at Risk

- TVaR) are presented in Section 4. Finally, in Section 5 we present the results of the

proposed fits and risk estimations. Section 6 concludes.

2. Some univariate truncated distributions

We begin by introducing some notations and some univariate truncated distributions to

be used as marginals for the bivariate Sarmanov distribution and copula in Section 3.

Let X = (X1,X2) be a bivariate random vector that represents two dependent losses.

The random variable (r.v.) S=X1+X2 is the total loss and we are interested in measuring

the risk associated with the distribution of S; for this, we need to consider both the joint

distribution of X and the marginal distributions of X1,X2.

In this section, we analise the probability distribution function (pdf), the cumulative

distribution function (cdf) and the first two moments of three distributions that can be

useful to model losses: the truncated log-normal, the mixture of two truncated log-

normals and the truncated log-logistic, also known as the Champernowne distribution;

we let m and M be the truncation points1 on the left and right side, respectively.

2.1. Truncated log-normal distributions

Let ϕ (·) and Φ(·) denote the pdf and the cdf, respectively, of the standard normal

N (0,1) distribution. To denote the pdf of the general normal N
(

µ,σ2
)

,µ ∈ R,σ > 0

distribution, we use the same symbol ϕ emphasizing the parameters, i.e. ϕ
(

x;µ,σ2
)

=

1

σ
√

2π
e
− (x−µ)2

2σ2 ,x ∈R. The truncated normal distribution TN
(

µ,σ2;m,M
)

,µ ∈R,σ> 0,

with truncation points m < M, has the pdf

fT N (x) =
ϕ
(

x;µ,σ2
)

Φ(A)−Φ(a)
=

1

(Φ(A)−Φ(a))σ
√

2π
e
− (x−µ)2

2σ2 ,m ≤ x ≤ M,

where A = M−µ
σ

,a = m−µ
σ

. Its expected value and variance are given respectively, by

(see, for example, Kotz et al.,2000)

1. In our numerical application we assume m = 0.
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ξ= µ+
ϕ (a)−ϕ (A)
Φ(A)−Φ(a)

σ, δ2 =

(

1+
aϕ (a)−Aϕ (A)

Φ(A)−Φ(a)
−
(

ϕ (a)−ϕ (A)
Φ(A)−Φ(a)

)2
)

σ2.

We recall that a random variable (r.v.) X follows a log-normal distribution LN
(

µ,σ2
)

if lnX ∼ N
(

µ,σ2
)

, having hence the pdf fX (x) =
1
x
ϕ
(

lnx;µ,σ2
)

and cdf fX (x) =

Φ

(

lnx−µ
σ

)

,x > 0. Moreover, we say that X follows a truncated log-normal distribution

TLN
(

µ,σ2;m,M
)

with truncation points 0 < m < M, if lnX ∼ TN
(

µ,σ2; lnm, lnM
)

;

hence, its pdf is fX (x) =
1
x

ϕ(lnx;µ,σ2)
Φ(B)−Φ(b) , where B = lnM−µ

σ
,b = lnm−µ

σ
.

Proposition 1 If X ∼ TLN
(

µ,σ2;m,M
)

,0 < m < M, its first two moments are given

by

E [X ] = eµ+
σ2

2
Φ(C)−Φ(c)

Φ(B)−Φ(b)
, E
[

X2
]

= e2(µ+σ2)Φ(D)−Φ(d)

Φ(B)−Φ(b)
,

where C = B−σ,c = b−σ,D = B−2σ,d = b−2σ.

Proof Changing variable y = lnx, we obtain

E [X ] =
∫ M

m

x

x

ϕ
(

lnx;µ,σ2
)

Φ(B)−Φ(b)
dx =

∫ lnM

lnm

ϕ
(

y;µ,σ2
)

ey

Φ(B)−Φ(b)
dy

=
eµ+

σ2

2

Φ(B)−Φ(b)

∫ lnM

lnm
ϕ
(

y;µ+σ2,σ2
)

dy,

which immediately yields the stated formula of E [X ]. The formula of E
[

X2
]

results in

a similar way.

2.2. Mixtures of two truncated log-normal distributions

Consider two truncated normal distributions T N(µi,σ
2
i ;m,M),µi ∈ R,σi > 0, i = 1,2,

having the same truncation points m < M. Then, denoting their mixture by

TNmixt

(

µ1,µ2,σ
2
1,σ

2
2,r;m,M

)

,r ∈ (0,1), its pdf has the form

fT Nmixt
(x) = r

ϕ
(

x;µ1,σ
2
1

)

Φ(A1)−Φ(a1)
+(1− r)

ϕ
(

x;µ2,σ
2
2

)

Φ(A2)−Φ(a2)
,m ≤ x ≤ M,

where Ai =
M−µi
σi

,ai =
m−µi
σi

, i = 1,2, and r is the mixing parameter.
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Similarly, we say that the r.v. X follows a mixture of two truncated log-normal

distributions T LNmixt

(

µ1,µ2,σ
2
1,σ

2
2,r;m,M

)

,m > 0, if its pdf is

fTLNmixt
(x) = r

ϕ
(

lnx;µ1,σ
2
1

)

x(Φ(B1)−Φ(b1))
+(1− r)

ϕ
(

lnx;µ2,σ
2
2

)

x(Φ(B2)−Φ(b2))
,m ≤ x ≤ M,

with Bi =
lnM−µi
σi

,bi =
lnm−µi
σi

, i= 1,2. In this case, lnX ∼T Nmixt

(

µ1,µ2,σ
2
1,σ

2
2,r;m′,M′),

where m′ = lnm,M′ = lnM.

To obtain the moments of the above mixtures of truncated distributions, we note that

the pdf of such a mixture of distributions is of the form f (x) = r f1 (x)+ (1− r) f2 (x),
where f1 and f2 are themselves pdf’s. If we denote by Xi a r.v. having pdf fi and by X a

r.v. with pdf f , then the first two moments of the mixed distribution results as

E [X ] = rE [X1]+ (1− r)E [X2] , E
[

X2
]

= rE
[

X2
1

]

+(1− r)E
[

X2
2

]

,

from where a straightforward calculation yields the variance

Var[X ] = rVar [X1]+ (1− r)Var [X1]+ r (1− r)(E [X1]−E [X2])
2 .

Using these formulas, the first moments of the T Nmixt and TLNmixt distributions are

immediate.

Moreover, we also note that fitting a truncated log-normal distribution or a mixture

of two truncated log-normal distributions to a data set, is the same as fitting a truncated

normal distribution or, correspondingly, a mixture of two truncated normal distributions

to the log-data set.

2.3. Champernowne (log-logistic) distribution

Introduced by Champernowne in 1952 (see, Champernowne, 1952), the log-logistic

distribution is the distribution of a r.v. whose logarithm follows a logistic distribution.

In economics, where it is also known as the Fisk distribution (see, Fisk, 1961), it is used

to model the distribution of wealth or income. Its shape is similar to the log-normal

distribution, but it has heavier tails; moreover, as an asymptotic behaviour, it converges

towards a Pareto distribution in the tail (see, Buch-Larsen et al., 2005). Denoted by

Ch(α,H) ,α,H > 0, its pdf is defined by

fCh (x) =
αHαxα−1

(xα+Hα)2
,x ≥ 0,
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having cdf FCh (x) =
xα

xα+Hα
,x ≥ 0, expected value πH

α

(

sin π
α

)−1
, for α> 1, and variance

πH2

α2

(

sin π
α

)−1
(

(

cos π
α

)−1 −π
(

sin π
α

)−1
)

, for α > 2. Note that H is a scale parameter

and the median of the distribution, while α is a shape parameter.

We also consider the truncated form TCh(α,H;M) ,α,H,M > 0, having pdf2

fTCh (x) = α(M
α+Hα)

(

H

M

)α
xα−1

(xα+Hα)2
,0 ≤ x ≤ M. (1)

Its moments do not have a closed form, but they can be expressed in terms of the

hypergeometric function 2F1 defined for |z|< 1 by the following integral or power series

2F1 (a,b;c;z) =
1

B(b,c−b)

∫ 1

0
tb−1 (1− t)c−b−1 (1− tz)−a

dt =
∞

∑
k=0

(a)k (b)k

(c)k

zk

k!
,

where

(q)k =

{

1, k = 0

q(q+1) · · · (q+ k−1),k > 0
,c /∈ {0,−1,−2, ...} ,

and B(a,b) =
∫ 1

0 ta−1 (1− t)b−1
dt is the Beta function.

Proposition 2 Letting X ∼ TCh(α,H;M) , its first two moments are given by

E [X ] =
αM

α+1

(

1+

(

M

H

)α)

2F1

(

2,1+
1

α
;2+

1

α
;−
(

M

H

)α)

, (2)

E
[

X2
]

=
αM2

α+2

(

1+

(

M

H

)α)

2F1

(

2,1+
2

α
;2+

2

α
;−
(

M

H

)α)

. (3)

Proof We evaluate the expected value of X by changing variable x = My1/α in

E [X ] = α(Mα+Hα)

(

H

M

)α ∫ M

0

xα

(xα+Hα)2
dx

= α(Mα+Hα)

(

H

M

)α ∫ 1

0

(

My1/α
)α

((

My1/α
)α

+Hα
)2

My1/α−1

α
dy

2. Since in our application we assume m = 0, for the sake of simplicity, we only present the properties for M > 0.
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= M (Mα+Hα)

(

H

M

)α(
M

H2

)α ∫ 1

0

y1/α+1−1

(

1+
(

M
H

)α
y
)2

dy

= M

(

1+

(

M

H

)α)

B

(

1+
1

α
,1

)

2F1

(

2,1+
1

α
;2+

1

α
;−
(

M

H

)α)

,

with the last relation resulting from the definition of the function 2F1. Note that

B

(

1+
1

α
,1

)

=
Γ
(

1+ 1
α

)

Γ(1)

Γ
(

2+ 1
α

) =
1

1+ 1
α

=
α

1+α
,

where Γ(a) =
∫ ∞

0 xa−1e−xdx denotes the Gamma function. Inserting this result into the

last expression of E [X ] immediately yields formula (2). Formula (3) results in a similar

way.

3. Bivariate Sarmanov distribution

3.1. The general distribution

We say that the random vector X = (X1,X2) follows a bivariate Sarmanov’s distribution

if its joint pdf is given by (see, Kotz et al., 2000).

fX (x1,x2) = f1 (x1) f2 (x2)(1+ωφ1 (x1)φ2 (x2)) , (4)

where ( fi)i=1,2 are the corresponding marginal pdf’s, (φi)i=1,2 are bounded non-constant

kernel functions andω is a real number such that

∫ ∞

−∞

φi (xi) fi (xi)dxi = 0, i = 1,2, and (5)

1+ωφ1 (x1)φ2 (x2)≥ 0, for all (x1,x2) ∈ R2. (6)

If we denote νi =
∫ ∞
−∞ xφi (x) fi (x)dx, i = 1,2, then the covariance and correlation

coefficient are given, respectively, by

cov(X1,X2) =ων1ν2,

corr(X1,X2) =
ων1ν2

√

Var [X1]Var [X2]
. (7)
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Note that whenω=0, X1 and X2 are independent. As to the choice of the kernel functions

φi, some particular cases satisfying (5) have already been discussed in the literature (see,

Lee, 1996), from which we recall:

• φi = 1− 2Fi, where Fi is the cdf of Xi. In this case, the Sarmanov distribution is

known as the Farlie-Gumbel-Morgenstern distribution (see Farlie, 1960), verifying

the restrictive condition that the correlation coefficient corr(X1,X2) cannot exceed

1/3 in absolute value. However, in general, the Sarmanov distribution is not

restricted by such a condition (see, for example, Shubina and Lee, 2004).

• φi (x) = e−αx −E
[

e−αXi
]

(we say no more about this form as it did not provide a

good fit to our data).

• φi (x) = xα− E [Xαi ] , assuming that E [Xαi ] < ∞. In this case, νi = E
[

Xα+1
i

]

−
E [Xαi ]E [Xi] , if it is finite.

Given its simplicity and better fit for our data, in our study we consider φi (x) =
xα−E [Xαi ] with α= 1, yielding from (7) the correlation

corr(X1,X2) =ω
√

Var [X1]Var [X2]. (8)

Therefore, assuming that E [Xi] < ∞, in the following we limit ourselves to the pdf

form

fX (x1,x2) = f1 (x1) f2 (x2)(1+ω (x1 −E [X1])(x2 −E [X2])) (9)

that requires the existence of a finite first moment for both marginals. In this case,

condition (6) obviously restricts the domain of fX. For simplicity, we preferred to work

with truncated marginals, which meant imposing restrictions on the coefficientω. More

precisely, if the support of Xi is [mi,Mi] , i = 1,2, then condition (6) yields l ≤ ω ≤ u,

where

l = max

{ −1

(M1 −E [X1])(M2 −E [X2])
,

−1

(m1 −E [X1])(m2 −E [X2])

}

, (10)

u = min

{ −1

(M1 −E [X1]) (m2 −E [X2])
,

−1

(m1 −E [X1])(M2 −E [X2])

}

. (11)

Because of the restriction imposed by condition (6), we used marginal distributions

with bounded support. Therefore, we considered the truncated distributions presented in

Section 2, their choice being driven by the real data to be studied in Section 5.
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3.2. Copula representation and simulation

A copula can be defined as a multivariate cdf with standard uniform [0,1] marginals.

Then the cdf of a random vector X = (X1, . . . ,Xm) can be written in terms of its marginal

cdf’s using a copula function C : [0,1]m → [0,1] , as follows FX (x) = C (F1 (x1) , . . . ,
Fm (xm)); for details on copulas see Nelsen (2006).

Since the Sarmanov bivariate distribution is defined directly from its marginal

distributions, its cdf can be immediately expressed as FX (x) =C (F1 (x1) ,F2 (x2)) using

the following copula function

C(u1,u2) = u1u2 +ω
∫ u1

0
φ1(F

−1
1 (t))dt

∫ u2

0
φ2(F

−1
2 (s))ds,0 ≤ u1,u2 ≤ 1, (12)

assuming that F−1
1 ,F−1

2 exist; the corresponding density is

c(u1,u2) = 1+ωφ1(F
−1
1 (u1))φ2(F

−1
2 (u2)). (13)

Working with the copula representation of the Sarmanov family of distributions has

some advantages. The copula representation is straightforward and its estimation proce-

dure is simple. Furthermore, this representation enables us to generate pseudo-random

samples from the Sarmanov bivariate distribution. To do this, we first generate values

from the Sarmanov copula (12) using the procedure described in Nelsen (2006), which

is based on the conditional distribution of a random vector (U1,U2) having uniform [0,1]

marginals and cdf C, i.e., on Cu1
(u2) = Pr(U2 ≤ u2|U1 = u1). Note that

Cu1
(u2) = lim

∆u1→0+

C(u1 +∆u1,u2)−C(u1,u2)

∆u1

=
∂C(u1,u2)

∂u1

.

The corresponding algorithm is implemented as follows:

1. Generate two independent random values u1 and z from the uniform U(0,1)

distribution.

2. Set u2 = C
(−1)
u1

(z), where C
(−1)
u1

denotes a quasi-inverse of Cu1
. The desired pair

from the Sarmanov copula is (u1,u2).

3. Solving now F1 (x1) = u1 for x1 and F2 (x2) = u2 for x2 yields the pseudo-random

pair (x1,x2) simulated from the corresponding bivariate Sarmanov’s distribution.

In our case, assuming that the inverses F−1
1 ,F−1

2 exist, the partial derivative of (12) is

Cu1
(u2) = u2 +ωφ1(F

−1
1 (u1))

∫ u2

0
φ2(F

−1
2 (s))ds.
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If, in particular, we take the kernel functions φi (z) = z−E [Xi] , i = 1,2, this gives

Cu1
(u2) = u2 +ω(F

−1
1 (u1)−E [X1])

∫ u2

0
(F−1

2 (s)−E [X2])ds.

3.3. Estimation of parameters

Let Θ denote the parameters set of the Sarmanov distribution. First, we estimate

the parameters using the maximum likelihood (ML) method, that we named global

estimation (GE), based on the random data sample {(x1 j,x2 j)}n

j=1
consisting of n

couples of observations. For estimating the Sarmanov copula, we use the maximum

pseudo-likelihood method that we named partial estimation (PE).

3.3.1. Global estimation (GE) method

From density (4), the log-likelihood function to be maximized is

lnL

(

{(x1 j,x2 j)}n

j=1
;Θ

)

=
n

∑
j=1

(ln f1 (x1 j)+ ln f2 (x2 j)+ ln(1+ωφ1 (x1 j)φ2 (x2 j))) .

(14)

The parameters to be estimated are ω, the parameters of fi, and, eventually, the

parameters ofφi. Let θ denote a generic parameter of fi. The corresponding ML system

is











































0 =
∂ lnL

∂θ
=

n

∑
j=1

(

∂ ln f1 (x1 j)

∂θ
+

∂ ln f2 (x2 j)

∂θ

)

+ω
n

∑
j=1

1

1+ωφ1 (x1 j)φ2 (x2 j)

×
(

φ1 (x1 j)
∂φ2 (x2 j)

∂θ
+φ2 (x2 j)

∂φ1 (x1 j)

∂θ

)

, θ ∈ Θ

0 =
∂ lnL

∂ω
=

n

∑
j=1

φ1 (x1 j)φ2 (x2 j)

1+ωφ1 (x1 j)φ2 (x2 j)
.

(15)

This system can become quite complex and, therefore, it must be solved using numerical

methods that require starting values for the unknown parameters. Such starting values

readily result from the method of moments (MM); for example, a value for ω can be

obtained from the empirical correlation coefficient,ρ. For more details on this procedure

see Pelican and Vernic (2013).

Alternatively, instead of solving the ML system, numerical methods can be used to

find the maximum of the log-likelihood function directly. Such an optimization problem
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can be solved using, for example, a variable neighborhood search (VNS) algorithm (see,

Mladenovic and Hansen, 1997).

3.3.2. Partial estimation (PE) method

As discussed above, the GE method can result in cumbersome calculations. For this

reason, we suggest comparing it with the alternative method based on maximizing

the pseudo-log-likelihood corresponding to the copula representation of the Sarmanov

distribution (see, for example, Joe, 1997):

– Using the ML method, we estimate the parameters of the univariate marginal

distributions of X1 and X2, starting from the corresponding data samples (x1 j)
n

j=1

and (x2 j)
n

j=1
, respectively.

– To obtain the parameter ω of the copula, we use again the ML method on (14),

after setting the marginal parameters at the values obtained in the previous step.

Note, that it is enough to maximize only the last part of (14), i.e.,

∑
n
j=1 ln(1+ωφ1 (x1 j)φ2 (x2 j)) , since the rest does not depend on ω; in fact, this

is reduced to applying the ML method to the copula density (13).

4. Evaluating the total risk of loss

Evaluating risk measures for aggregate losses is a challenging task. Let S denote an

insurance risk, that is, a non-negative random variable whose cdf is denoted by FS. A

risk measure is generally formulated as a functional from the space of insurance risks to

[0,∞], and its purpose is to provide a single value for the degree of risk associated with

the corresponding risk. Among the common risk measures, the Value-at-Risk (VaR) is

probably the most frequently adopted. To define it, let q ∈ (0,1) denote the confidence

level required by regulations; then

VaRq[S] := inf{x : FS(x)≥ q}.

The Solvency II Accord drawn up by the EU Commission sets q = 0.995 over a one

year time horizon.

When heavy tails occur in risk management (see recent episodes of financial insta-

bility), a risk measure providing information above a given threshold is recommended.

In this respect, the Tail Value-at-Risk (TVaR, also known as the expected shortfall or

conditional tail expectation) measure is defined, for q ∈ (0,1), as

TVaRq[S] := E[S|S >VaRq[S]].
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TVaR is considered a coherent risk measure, see Artzner et al. (1999). In some countries,

TVaR has already replaced VaR in the regulatory requirements; the current practice is

q = 0.99 over a one year time horizon.

Let now S = X1+X2 be the sum of two possibly dependent insurance risks X1 and X2.

In this section, our goal is to show how to calculate VaR and TVaR for the risk S when

X = (X1,X2) follows the bivariate Sarmanov distribution. Vernic (2014) has analised a

closed form for the TVaR of the sum of random variables Sarmanov distributed with

exponential marginals. We approach this task in two ways: by direct evaluation and by

simulation based on the Sarmanov copula.

4.1. Direct evaluation

To obtain VaR, we must evaluate the cdf of S and then invert it. Letting fS denote the

pdf of S, its cdf results from

FS (s) =
∫ s

0
fS (x)dx =

∫ s

0

∫ x

0
fX (x− y,y)dydx

=
∫ s

0

∫ 1

0
x fX (x(1− t) ,xt)dtdx.

Similarly, for TVaR we need

E [S |S > sq ] =
1

1−FS (sq)

∫ ∞

sq

x fS (x)dx

=
1

1−FS (sq)

∫ ∞

sq

∫ 1

0
x2 fX (x(1− t) ,xt)dtdx,

where sq =VaRq[S]. As there are no closed formulas for these integrals, they have to be

calculated using mathematical software. To do this, we wrote Matlab procedures based

on Simpson’s composite rule for double integrals (see, for example, Bourden and Faires,

2001), paying special attention to the integrals limits since the marginals are truncated.

4.2. Simulation of the Sarmanov copula

Using the Monte Carlo method, the procedure is as follows:

1. We apply the PE method to the data sample {(x1 j,x2 j)}n

j=1
from which we obtain

the estimations of the marginals cdf’s, denoted F̂i, i = 1,2, and the estimated

parameter of the Sarmanov copula, ω̂.
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2. Using the algorithm described in Section 3.2, we generate the pseudo-random

sample {(x̂1 j, x̂2 j)}r

j=1
from the bivariate Sarmanov distribution with marginals

F̂1 and F̂2, where the sample volume r is large (we used r = 10000).

3. We calculate ŝ j = x̂1 j + x̂2 j, j = 1, . . . ,r, and we estimate VaRq[S] and TVaRq[S]

empirically from the generated pseudo-sample (ŝ j)
r

j=1
.

5. Numerical study

We used the bivariate Sarmanov distribution and copula to model a random sample

of motor insurance claims consisting of the costs of property damage and medical

expenses, kindly provided by a major insurer in Spain for the year 2000. Since the data

were collected two years later, in 2002, all the claims included in our sample had been

settled. The sample size is n = 518 and for each claim, X1 represents the cost of property

damage (including third-part liability), while X2 represents the cost of medical expenses

(i.e., treatments and hospitalization as a result of the accident).

Previously, several bivariate distributions were fitted to these data, the best global

fit being provided by the bivariate log-skew-normal distribution with a log-likelihood

value of −7323.50 and AIC = 14663.00 (see, Bolancé et al., 2008). In an attempt to

find a better model, in the numerical part of this paper we fitted the bivariate Sarmanov

distribution with different normal-type marginals to the bivariate log-data set. Note

that if we fit a bivariate Sarmanov distribution with pdf fY to the log-data, then the

distribution corresponding to the original data is the bivariate log-Sarmanov with pdf

fX (x1,x2) =
1

x1x2

fY (lnx1, lnx2) ,x1,x2 > 0.

This implies that the marginal distributions of the original data are the log-distributions

of the corresponding marginals of Y (in our case, they become of log-normal and log-

logistic types).

In the first attempt, we assumed that lnX1 follows a truncated normal (TN) distri-

bution and we varied the distribution of lnX2, but since the best fit was provided by the

mixture of two truncated normal distributions TNmixt for lnX2, we decided not to provide

details of the other distributions and we concentrated only on the best fit. This choice

was also motivated by the fact that when studying separately the marginal distributions

of our data set, we noticed that the normal distribution provided a good fit for lnX1, but

unfortunately, this was not the case with lnX2, which has a less regular histogram; hence,

we made use of the property of the Sarmanov distribution of joining different marginals.

Alternatively, we also fitted the bivariate Sarmanov distribution with the heavier-tailed

Champernowne marginal distributions to the original data.

In Table 1 we show the descriptive statistics for the original data and for the log-data.
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Table 1: Descriptive statistics.

Mean Std.Dev. Kurtosis Skewness Min Max Median

Original data

X1 1827.60 6867.81 297.10 15.65 13.00 137936.00 677.00

X2 283.92 863.17 82.02 8.04 1.00 11855.00 88.00

Correlation between X1 and X2 is 0.73

Log-data

ln X1 6.44 1.33 0.57 0.21 2.56 11.83 6.52

ln X2 4.38 1.52 0.45 0.12 0.00 9.38 4.48

Correlation between ln X1 and ln X2 is 0.59

Table 2: AIC obtained for different estimated models and methods.

Method Marginals max max×10 max×100

GE X1 ∼ T LN, X2 ∼ T LNmixt 14839.58 14863.04 14869.42

X1 ∼ TCh, X2 ∼ TCh 14849.26 14878.42 14883.74

PE X1 ∼ T LN, X2 ∼ T LNmixt 14854.79 14868.25 14873.40

X1 ∼ TCh, X2 ∼ TCh 14880.99 14884.31 14884.52

Since we decided to work with truncated distributions (as discussed in Section 3.1),

a key issue was the choice of the upper truncation limits, the lower ones being fixed at

m1 = m2 = 0. We started by taking the upper limits as being equal to the maximum

observed values, i.e., Mi = max
j=1,...,n

xi j, i = 1,2. However, this choice most probably

underestimates the real risk since it implies the assumption that the probability of a loss

greater than the maximum observed is zero, which is not true in practice. Hence, we

assumed that the upper truncation limits increase progressively, being equal to 10, 100

and 1000 times the maximum observed values (denoted in the following by max×10,

max×100 and max×1000, respectively). We found the results for the truncation limits

of max×100 and max×1000 to be similar, hence, we present here only the former, i.e.,

max×100, which is equivalent to almost eliminating the effect of truncation.

To estimate the parameters using the methods described in Section 3.3, we took the

main empirical characteristics as starting values. Then, to compare the different fits,

we calculated the corresponding log-likelihood and the Akaike information criterion

(AIC) values. AIC is defined by AIC = 2(s− lnL), where s is the number of estimated

parameters and L is the likelihood function. This criterion penalizes an increased number

of parameters, so that the preferred model is the one with the lowest AIC value. In Table

2 we show the AIC obtained for each estimation, while the estimated parameters and

their standard errors are shown in Tables 3-6 in the Appendix. It seems that GE yields a

slightly better fit than PE, although we observe that the difference between the AICs for

GE and PE is small. This is expected since the GE method maximizes the full likelihood,
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while the PE method maximizes separately the partial likelihoods corresponding to the

copula and the marginal distributions. Considering both methods (GE and PE) for all

upper truncation limits, it results that the best model is the Sarmanov distribution with

a truncated log-normal distribution for X1 and a mixture of two truncated log-normal

distributions for X2.

In Figures 1 and 2 we plot the VaR and TVaR curves as functions of the confidence

level q for q ≥ 0.98, for all the distributions estimated. In Tables 7-10 in Appendix

we also displayed the VaR and TVaR values obtained for the same distributions and

for some confidence levels q, compared with the empirical values resulting from data.

These values and plots clearly show that for q ≥ 0.95, the Sarmanov distributions with

log-normal-type marginals underestimate the empirical values. Although closer to the

empirical curve, this is also the case of the Sarmanov distribution with TCh marginals

and an upper truncation limit equal to max, while the other two distributions (i.e.,

max×10 and max×100) overestimate the empirical values. Therefore, from the point

of view of the insurer, only these two last distributions would be of interest.
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Figure 1: Estimated VaR and TVaR with GE.

Note that, the curves resulting from GE and PE methods look similar, although, from

Tables 7-10 in Appendix it seems that, in general, PE leads to higher values of VaR and

TVaR than those provided by GE.
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Figure 2: Estimated VaR and TVaR with PE.

On the other hand, note that the best globally fitted distribution (in our case,

according to AIC, the Sarmanov distributions with LTN and LTNmixt marginals) does

not necessarily provide the best model for the risk measures VaR and TVaR, which are

defined on the distribution tail – this is also the case with the previously fitted bivariate

log-skew-normal distribution, which strongly overestimates the empirical TVaR curve

(see Bolancé et al., 2008). For our data set the heavier-tailed Champernowne distribution

provides a better model for Sarmanov’s marginals when evaluating VaR and TVaR.

6. Conclusions

In this paper, we have proposed the Sarmanov bivariate distribution as a model for

bivariate insurance losses and we have illustrated its applicability using a real data set

from the motor insurance sector. The choice of this distribution was motivated by its

flexible structure that allowed us to join given marginals. From the numerical study, we

conclude that the distribution could be a good model for such bivariate insurance data,

but special attention should be paid to the choice of the marginal distributions. More

specifically, these distributions must fulfill the condition of a real pdf, see (5)-(6), so
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that truncated marginal distributions can be selected. Moreover, the upper truncation

limits have to be carefully fixed so that the real risk values (like VaR or TVaR) should

not be underestimated, but also not overestimated to an exaggerated degree.

It should also be noted that a better global fit does not necessarily mean a better fit

regarding the evaluation of some tail related risk measures.

As for the choice between GE and PE methods, it seems that GE yields a somewhat

better fit than PE, although the differences are very small. However, the application

of the GE method might be more time-consuming given the random search involved

in the ML solution. Clearly, the complexity of the calculation should be taken into

consideration when selecting the most suitable estimation method.

Appendix

Table 3: GE for lnX1 ∼ T N and lnX2 ∼ T Nmixt and different upper

truncation limits (standard errors between parentheses).

max max×10 max×100

µ1 6.4237 (0.0585) 6.4163 (0.0596) 6.4089 (0.0594)

µ21 4.3661 (0.0836) 4.3758 (0.0713) 4.2860 (0.1199)

µ22 4.3771 (0.5458) 4.0157 (0.4906) 4.4288 (0.2702)

σ1 1.3310 (0.0412) 1.3560 (0.0431) 1.3517 (0.0428)

σ21 1.2420 (0.0833) 1.2938 (0.0569) 1.1653 (0.1140)

σ22 2.9064 (0.8128) 3.0008 (0.3984) 2.0079 (0.2070)

r 0.8079 (0.0889) 0.8456 (0.0383) 0.6733 (0.1348)

ω 0.0404 (0.0210) 0.0214 (0.0188) 0.0162 (0.0180)

lnL −7411.79 −7423.52 −7426.71

AIC 14839.58 14863.04 14869.42

Table 4: PE for lnX1 ∼ T N and lnX2 ∼ T Nmixt and different upper

truncation limits (standard errors between parentheses).

max max×10 max×100

µ1 6.4439 (0.0587) 6.4437 (0.0553) 6.4437 (0.0587)

µ21 4.3115 (0.1274) 4.1975 (0.0801) 4.2743 (0.1560)

µ22 4.4105 (0.2229) 5.0547 (0.2746) 4.4769 (0.2594)

σ1 1.3351 (0.0416) 1.3350 (0.0415) 1.3350 (0.0415)

σ21 1.1476 (0.1184) 1.3346 (0.0671) 1.2315 (0.1508)

σ22 1.9488 (0.2144) 1.9550 (0.1994) 2.0372 (0.5330)

r 0.5899 (0.1580) 0.7770 (0.0587) 0.6396 (0.3122)

ω 0.0309 (0.0095) 0.0212 (0.0086) 0.0161 (0.0082)

lnL −7419.39 −7426.13 −7428.70

AIC 14854.79 14868.25 14873.40
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Table 5: GE for X1 ∼ TCh and X2 ∼ TCh and different upper

truncation limits (standard errors between parentheses).

max max×10 max×100

α1 1.3344 (0.0950) 1.3420 (0.0489) 1.3423 (0.0492)

α2 1.1767 (0.0444) 1.1771 (0.0431) 1.1706 (0.0427)

H1 631.1100 (36.2700) 623.2490 (35.6333) 619.3690 (35.1012)

H2 76.8340 (4.9617) 77.7100 (5.0423) 78.2220 (5.1128)

ω 3.0290×10−8 (1.4497×10−8) 2.3070×10−9 (2.6310×10−9) 1.9540×10−10 (8.773163×10−10)

lnL −7419.63 −7434.21 −7436.87

AIC 14849.26 14878.42 14883.74

Table 6: PE for X1 ∼ TCh and X2 ∼ TCh and different upper

truncation limits (standard errors between parentheses).

max max×10 max×100

α1 1.3362 (0.0497) 1.3409 (0.0492) 1.3407 (0.0492)

α2 1.1564 (0.0755) 1.1693 (0.0768) 1.1706 (0.0769)

H1 624.1119 (35.6350) 623.3819 (35.4695) 623.5835 (35.4896)

H2 78.9157 (6.2698) 78.3094 (6.2351) 78.2899 (6.2332)

ω 9.4918×10−9 (9.6420×10−9) 9.7283×10−10 (3.2613×10−9) 9.7508×10−11 (2.4705×10−9)

lnL −7435.49 −7437.15 −7437.26

AIC 14880.99 14884.31 14884.52

Table 7: VaR values for several truncated Sarmanov distributions

and different confidence levels using GE.

Distribution Confidence level q

φi = x−E [Xi] 0.95 0.99 0.995 0.999

Log−Sarmanov

T N +T Nmixt(max)
3484.592 11221.492 16469.954 34770.477

Log−Sarmanov

T N +T Nmixt(max×10)
6703.136 18043.612 26888.181 62829.676

Log−Sarmanov
T N +T Nmixt(max×100) 6363.582 15658.461 21929.474 44858.422

Sarmanov

TCh+TCh(max)
3307.784 16192.401 27588.607 71445.821

Sarmanov

TCh+TCh(max×10)
6399.348 20755.411 34073.251 113319.114

Sarmanov

TCh+TCh(max×100)
6405.983 20868.242 34416.052 106865.442

Empirical values 7905.600 24821.140 28420.870 92112.930
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Table 8: TVaR values for several truncated Sarmanov distributions

and different confidence levels using GE.

Distribution Confidence level q

φi = x−E [Xi] 0.95 0.99 0.995 0.999

Log−Sarmanov

T N +T Nmixt(max)
10722.435 23966.182 31500.887 55354.994

Log−Sarmanov

T N +T Nmixt(max×10)
15198.865 35093.589 48500.570 88741.558

Log−Sarmanov

T N +T Nmixt(max×100)
13184.039 28457.449 38574.933 75462.460

Sarmanov

TCh+TCh(max)
14236.400 40314.549 56765.029 103080.945

Sarmanov

TCh+TCh(max×10)
20317.585 59231.604 92295.169 244553.953

Sarmanov

TCh+TCh(max×100)
21255.717 63750.746 101169.957 284614.349

Empirical values 20836.960 49453.170 73078.330 149791.000

Table 9: VaR values for several truncated Sarmanov distributions

and different confidence levels using PE.

Distribution Confidence level q

φi = x−E [Xi] 0.95 0.99 0.995 0.999

Log−Sarmanov

T N +T Nmixt(max)
6146.651 15182.363 20345.663 36692.056

Log−Sarmanov

T N +T Nmixt(max×10)
6499.495 16546.371 22518.986 46979.657

Log−Sarmanov

T N +T Nmixt(max×100)
6485.068 16408.995 22269.078 36658.346

Sarmanov

TCh+TCh(max)
5943.208 19699.385 29599.685 77228.707

Sarmanov

TCh+TCh(max×10)
6229.109 23097.386 38009.139 116412.203

Sarmanov

TCh+TCh(max×100)
6237.787 23074.898 38462.701 141907.139

Empirical values 7905.600 24821.140 28420.870 92112.930
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Table 10: TVaR values for several truncated Sarmanov distributions

and different confidence levels using PE.

Distribution Confidence level q

φi = x−E [Xi] 0.95 0.99 0.995 0.999

Log−Sarmanov

T N +T Nmixt(max)
12100.52 24887.46 32197.80 57251.34

Log−Sarmanov

T N +T Nmixt(max×10)
14002.47 31249.10 42864.60 91912.35

Log−Sarmanov

T N +T Nmixt(max×100)
15727.76 39941.33 60676.94 190957.41

Sarmanov

TCh+TCh(max)
16015.06 40962.05 57834.45 95298.44

Sarmanov

TCh+TCh(max×10)
20355.52 58995.50 89891.05 191242.66

Sarmanov

TCh+TCh(max×100)
21601.87 64854.65 101058.90 222460.19

Empirical values 20836.960 49453.170 73078.330 149791.000
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