Índex General-Memòria-Annexos-Pressupost

TREBALL DE FI DE GRAU

ESTUDI DE LES CORRELAÇIONS ENTRE LES EMISSIONS DE CO$_2$ I ELS VECTORS ENERGÈTICS

TFG presentat per obtenir el títol de GRAU en ENGINYERIA DE L’ENERGIA
Per Àlex Aguilar Pérez

Barcelona, 09 de Juny de 2015

Director: Josep Xercavins i Valls
Departament de Mecànica de Fluids (MF)
Universitat Politècnica de Catalunya (UPC)
Índex General

ESTUDI DE LES CORRELACIONS ENTRE LES EMISSIONS DE CO₂ I ELS VECTORS ENERGETICS

TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Àlex Aguilar Pérez

Barcelona, 09 de Juny de 2015

Director: Josep Xercavins i Valls
Departament de Mecànica de Fluids (MF)
Universitat Politècnica de Catalunya (UPC)
Índex memòria... 1
Resum... 4
Resumen .. 4
Abstract ... 4

Capítol 1: Introducció.. 5
 1.1. Objectius del projecte... 6
 1.2. Metodologia aplicada ... 7

Capítol 2: Els vectors energètics.. 8
 2.1. Estat de l'art ... 8
 2.1.1. El paper dels vectors energètics ... 8
 2.1.2. El Grup sobre el Governament del Canvi Climàtic de la UPC ... 9
 2.1.3. Elecció dels estats estudiats .. 10
 2.1.4. El paper de l’Agència Internacional de l’Energia .. 10
 2.2. Anàlisi a l’Agència Internacional de l’Energia .. 11
 2.2.1. Indicadors ... 11
 2.2.2. Balanç energètic ... 12
 2.2.3. Definició d’energia primària, TPES i el cas del petroli .. 16
 2.3. El vector Total Primary Energy Supply ... 18
 2.3.1. Comparativa GGCC-IEA segons el TPES ... 18
 2.3.2. Els vectors energètics basats en el TPES ... 22
 2.3.3. Ús de combustibles fòssils i comparativa amb el GGCC .. 34
 2.4. El vector Energy Supply ... 41
 2.5. Conclusions ... 53

Capítol 3: Emissions de diòxid de carboni... 55
 3.1. Estat de l’art ... 55
 3.1.1. Objectiu del capítol ... 56
 3.1.2. El paper de l’Intergovernmental Panel on Climate Change .. 56
 3.1.3. El paper de la United Nations Framework Convention on Climate Change ... 57
 3.2. Mètodes de càlcul de l’IPCC .. 58
 3.2.1. Nivell 1 ... 58
 3.2.2. Nivell 2 ... 58
 3.2.3. Nivell 3 ... 59
Memòria

ESTUDI DE LES CORRELACIONS ENTRE LES EMISSIONS DE CO₂ I ELS VECTORS ENERGETICS

TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Àlex Aguilar Pérez

Barcelona, 09 de Juny de 2015

Director: Josep Xercavins i Valls
Departament de Mecànica de Fluids (MF)
Universitat Politècnica de Catalunya (UPC)
ÍNDICE MEMÒRIA

Índex memòria ... 1
Resum ... 4
Resumen .. 4
Abstract .. 4

Capítol 1: Introducció ... 5
 1.1. Objectius del projecte ... 6
 1.2. Metodologia aplicada ... 7

Capítol 2: Els vectors energètics ... 8
 2.1. Estat de l’art ... 8
 2.1.1. El paper dels vectors energètics ... 8
 2.1.2. El Grup sobre el Governament del Canvi Climàtic de la UPC .. 9
 2.1.3. Elecció dels estats estudiats .. 10
 2.1.4. El paper de l’Agència Internacional de l’Energia ... 10
 2.2. Anàlisi a l’Agència Internacional de l’Energia ... 11
 2.2.1. Indicadors .. 11
 2.2.2. Balanç energètic .. 12
 2.2.3. Definició d’energia primària, TPES i el cas del petroli ... 16
 2.3. El vector Total Primary Energy Supply ... 18
 2.3.1. Comparativa GGCC-IEA segons el TPES ... 18
 2.3.2. Els vectors energètics basats en el TPES ... 22
 2.3.3. Ús de combustibles fòssils i comparativa amb el GGCC ... 34
 2.4. El vector Energy Supply .. 41
 2.5. Conclusions .. 53

Capítol 3: Emissions de diòxid de carboni .. 55
 3.1. Estat de l’art .. 55
 3.1.1. Objectiu del capítol .. 56
 3.1.2. El paper de l’Intergovernmental Panel on Climate Change .. 56
 3.1.3. El paper de la United Nations Framework Convention on Climate Change 57
 3.2. Mètodes de càlcul de l’IPCC ... 58
 3.2.1. Nivell 1 .. 58
 3.2.2. Nivell 2 .. 58
 3.2.3. Nivell 3 .. 59
 3.3. Elecció del mètode de càlcul .. 59
3.3.1. Desenvolupament del nivell 1 de l’IPCC .. 59
3.3.2. Simplificació del mètode ... 62
3.4. Aplicació i validació del mètode de càlcul ... 63
 3.4.1. Aplicació del càlcul .. 63
 3.4.2. Validació del càlcul ... 64
3.5. Emissions relatives al ciment ... 72
3.6. Conclusions .. 75

Capítol 4: La identitat de Kaya i possibles desenvolupaments futurs d’aquest projecte .. 77
 4.1. Estat de l’art .. 77
 4.1.1. La identitat de Kaya ... 77
 4.1.2. Possibles desenvolupaments futurs d’aquest projecte 79
 4.2. Aplicació per al 2010 ... 79
 4.3. Aplicació en el període 2000-2010 ... 82
 4.4. Conclusions ... 85

Capítol 5: Conclusions .. 86
 5.1. Conclusions tècniques ... 86
 5.2. Conclusions personals ... 88

Capítol 6: Bibliografia .. 89
 6.1. Referències bibliogràfiques ... 89
 6.2. Bibliografia de Consulta ... 90
Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics
RESUM
En els últims anys el canvi climàtic ha deixat de ser una hipòtesi i ha passat a ser un fet. Les emissions de diòxid de carboni entre altres gases han provocat que la concentració atmosfèrica de gasos d’efecte hivernacle alteri el clima terrestre amb conseqüències que encara no podem imaginar. L’origen del problema és el descontrolat ús que la humanitat ha donat als combustibles fòssils, principals causants de la major part de les emissions de diòxid de carboni des de la revolució industrial.

En aquest marc, el projecte té com a objectiu bàsic establir una relació entre l’ús que la humanitat ha fet dels combustibles fòssils i les emissions de diòxid de carboni conseqüents. Durant el desenvolupament del projecte es recorrerà a diferents fonts de dades internacionals de l’àmbit energètic i ambiental, es definiran uns vectors energètics que permetin esbrinar l’ús de combustibles fòssils dels països més contaminants del planeta i es proposarà un mètode de càlcul que serveixi per a determinar les emissions de diòxid de carboni.

RESUMEN
En los últimos años el cambio climático ha dejado de ser una hipótesis y ha pasado a ser un hecho. Las emisiones de dióxido de carbono entre otros gases han provocado que la concentración atmosférica de gases de efecto invernadero alteren el clima terrestre con consecuencias que todavía no podemos imaginar. El origen del problema es el uso descontrolado que la humanidad ha dado a los combustibles fósiles, principales causantes de la mayor parte de las emisiones de dióxido de carbono desde la revolución industrial.

En este marco, el proyecto tiene como objetivo básico establecer una relación entre el uso que la humanidad ha hecho de los combustibles fósiles y las emisiones de dióxido de carbono consecuentes. Durante el desarrollo del proyecto se recurrirá a diferentes fuentes de datos internacionales del ámbito energético y ambiental, se definirán unos vectores energéticos que permitan averiguar el uso de combustibles fósiles de los países más contaminantes del planeta y se propondrá un método de cálculo que sirva para determinar las emisiones de dióxido de carbono.

ABSTRACT
In the last years climate change has become a fact. Emissions of carbon dioxide and other gases have made the atmospheric concentration of greenhouse gases alter the climate of the Earth with unimaginable consequences. The origin of the problem is the uncontrolled use that humanity has given to fossil fuels, the main cause of most of the carbon dioxide emissions since the industrial revolution.

In this context, this project has the main goal to establish a relation between the use that humanity has made of fossil fuels and the emissions of carbon dioxide. During the development of the project we will resort to different international data sources of energy and environment issues, and we will define some energy vector that will allow to find out the use of fossil fuels of the most polluting countries on the planet, and a calculation method will be proposed in order to determine the emissions of carbon dioxide.
En les últimes dècades, la temperatura mitja del planeta ha estat augmentant de manera lenta però ininterrompuda a causa de l’increment de la concentració de gasos d’efecte hivernacle a l’atmosfera. Des de l’època de la revolució industrial l’èsser humà ha augmentat de manera exponencial el seu ús de combustibles fòssils, fet que ha disparat les emissions de diòxid de carboni i ha provocat que l’efecte hivernacle natural que permet la vida a la Terra s’hagi vist alterat.

La modificació de l’efecte hivernacle natural per part de la humanitat implica una major retenció de radiació tèrmica que augmenta la temperatura mitjana del planeta. Ara bé, les conseqüències d’aquesta modificació poden ser moltes més que un simple augment en la temperatura. Algunes d’aquestes conseqüències ja s’estan començant a patir, i d’altres encara estan per venir. De fet, el propi IPCC (Intergovernmental Panel on Climate Change) esmenta en els seus Assessment Report que algunes de les conseqüències futures no es poden ni tan sols intuir a aquestes dècades.

L’augment de temperatures pot provocar canvis en la fauna i flora de tot el planeta, on els animals que hi queden poden perdre els seus hàbitats naturals a causa de les modificacions dels espais vegetals, el desgaç dels pòlis i l’augment del nivell del mar entre molts altres aspectes. A més, la concentració excessiva de carboni als altres embornals planetaris estaria modificant també el pH i la densitat dels mars i oceans, afectant els ecosistemes marins i modificant uns fenòmens naturals indispensables per a la vida tal com la coneixem com són les corrents oceàniques que defineixen, en una part molt important, les característiques del clima a la Terra.

Aquest fenomen està afectant tot el planeta i està modificant el clima global. És per això que aquest problema de la humanitat rep el nom de Canvi Climàtic.

Les emissions de CO$_2$ a l’atmosfera són la principal –tot i que no única- causa d’aquest efecte, i la gran part d’aquestes emissions són conseqüència de l’ús de combustibles fòssils per part de l’èsser humà. És evident, doncs, que el sector
energètic global és un aspecte a tenir en compte si es pretén resoldre el problema del canvi climàtic.

Però el que no ha canviat és el fet de que els combustibles fòssils continuen sent la font energètica principal arreu del món. S’estima que en les últimes dues dècades, el percentatge d’ús de combustibles fòssils sobre la demanda energètica total a nivell global mai ha estat inferior al 82%. Al consum habitual dels països que porten dècades cremant gas i petroli per a diverses finalitats (generació d’electricitat i/o calor, transports...) s’hi han d’afegir els nous països en creixement, principalment asiàtics, que miren cap a occident i tendeixen a consumir cada cop més per poder assolir els mateixos nivells de desenvolupament.

Per tot això, en aquest projecte es vol estudiar la relació existent entre els principals vectors energètics del planeta amb les emissions de CO₂ conseqüents, l’evolució en el consum de combustibles fòssils, i altres aspectes relacionats que es detallen a continuació.

1.1. Objectius del projecte

A nivell general, la finalitat principal del projecte és analitzar a fons quina relació hi ha entre l’ús massiu de combustibles fòssils que la humanitat ha estat duent a terme en les últimes dècades amb les emissions de diòxid de carboni que s’hi associen. Aquest objectiu és general i s’ha concretat en una sèrie de tres objectius específics amb els que es pretén arribar a la meta desitjada.

El primer d’aquests objectius és familiaritzar-se amb les principals fonts d’informació internacionals relacionades amb les temàtiques d’energia i medi ambient. És imprescindible conèixer aquestes fonts d’informació, saber què se’n pot esperar de cadascuna i obtenir un esperit crític respecte a les diferents dades que proporcionen.

El segon objectiu consisteix en tenir clar quin ús s’ha donat a les diferents fonts d’energia en els últims anys. Es pararà especial atenció als principals emissors del planeta, concretament els quinze estats o grups d’estats amb les emissions més elevades l’any 2010, que es definiran més endavant.

El tercer objectiu és optar, d’entre els existents, per un model de càlcul que permeti obtenir un ordre de magnitud el més acurat possible de les emissions de diòxid de carboni partint de les dades energètiques obtingudes i assentades en l’objectiu anterior. A més, s’avaluarà la validesa d’aquest model de càlcul basant-se en la comparació dels resultats amb estadístiques internacionals sobre emissions.

Així queden definits els objectius específics que marquen l’objectiu general del projecte. De manera subjacent, es té intenció de treballar també els següents punts relacionats amb els objectius pretesos:

- Estudiar la informació disponible sobre les emissions de CO2 causades per l’ús i tractament de ciment.
- Comparar les dades i càlculs que es vagin obtenint al llarg del projecte amb la informació proporcionada pel document de referència elaborat pel GGCC de l’ISTH de la UPC en el treball que s’ha realitzat a la nostra escola dirigit pels professors Olga Alcaraz i Josep Xercavins.
• Analitzar les possibles aplicacions de la identitat de Kaya o IPAT en l’estudi dels diferents factors antropogènics sobre les emissions de diòxid de carboni, de cara a oferir una base a possibles TFGs futurs.

1.2. Metodología aplicada

La metodología aplicada ha tingut elements diferencials per a cadascun dels objectius específics proposats, amb la intenció d’adaptar-se el millor possible als requeriments de cada cas. Les estratègies bàsiques a seguir per a assolir cada objectiu són definides a continuació.

Per a assolir el primer objectiu específic es procedirà a analitzar de manera prèvia al desenvolupament del projecte les principals fonts d’informació internacionals disponibles relatives a la temàtica energètica i ambiental. En aquest cas, les fonts utilitzades són la International Energy Agency (IEA), la United Nations Framework Convention on Climate Change (UNFCCC) i el World Bank (WB). Posteriorment es comprovarà de quina informació útil es disposa en cadascun d’aquests recursos web i s’escol·lirà quina informació serà necessària per a desenvolupar la resta del projecte; després se’n farà esment particularitzat en les successives parts del projecte, quan sigui necessari.

De cara al segon objectiu s’utilitzaran les dades adquirides per a definir els vectors energètics necessaris per a l’estudi dels quinze estats o grups d’estats que s’analitzen en aquest projecte. Aquests vectors energètics han de permetre esbrinar quines fonts d’energia fa servir cada estat i en quina proporció sobre el total, i a la vegada han de servir de base per al càlcul de les emissions de diòxid de carboni associades al consum energètic de combustibles fòssils.

La metodología aplicada per a assolir el tercer objectiu específic consistirà en estudiar els diferents mètodes de càlcul d’emissions de CO2 relatives als combustibles fòssils que proposa l’Intergovernmental Panel on Climate Change (IPCC) i escollir-ne el més adient per a poder realitzar el càlcul com a part del projecte. El criteri per a escollir el mètode de càlcul serà intentar fer servir el mètode més similar al que utilitzen les organitzacions internacionals esmentades anteriorment, amb la finalitat de poder comparar els resultats i avaluar-ne la validesa i consistència.

En relació a l’estudi de les emissions de diòxid de carboni causades pel tractament del ciment, es procedirà a estudiar quina informació al respecte proporcionen les tres principals fonts de dades tractades en aquest projecte (IEA, UNFCCC I WB) i comparar-les entre elles amb l’objectiu de decidir quina de les fonts resulta més útil i/o fiable en aquest aspecte.

A mesura que s’avanci en el projecte es duran a terme comparacions entre les dades obtingudes o calculades amb aquelles que constin en el document de referència elaborat pel GGCC de l’STH de la UPC, que ha basat el seu treball principalment en les dades del World Bank, amb l’objectiu de contrastar-les i comprovar que els ordres de magnitud són coincidents.

Com a elements per a estudis futurs sobre les possibles aplicacions de la identitat de Kaya, es cercarà informació sobre els diferents factors que hi influeixen (Producte Interior Brut, Intensitat energètica, Intensitat d’emissions) i es comprovarà que la identitat es compleixi. A més, s’intentarà veure quina influència tenen aquests factors sobre les emissions de CO2 associades.
2.1. Estat de l’art

2.1.1. El paper dels vectors energètics

L’increment del consum energètic a partir de la revolució industrial i especialment en les últimes dècades ha originat un progrés innegable i sense precedents en la humanitat, millorant la qualitat de vida i propulsant el desenvolupament tecnològic fins a punts insospitats fa poques generacions.

A més, actualment l’energia no s’aplica només a aspectes purament tècnics o científics, sinó que una gran part del consum energètic prové d’altres aspectes socials, com la cultura o l’oci. Gairebé sense consciència, la humanitat està patint una tendència a l’ús constant d’aparells elèctrics i electrònics en aspectes que fins fa relativament poc eren purament mecànics (rentavaixelles i rentadores per a substituir rentar a mà, impressores per a substituir la impressió mecànica o manual, etcètera).

Molts d’aquests canvis, com els esmentats anteriorment, són útils i ajuden a dur a terme tasques domèstiques que poden prendre molt de temps, però n’hi ha altres que no són estrictament necessaris però la societat els accepta igualment com a normals.
Tenint tot això en compte no sembla que el consum energètic hagi d’estancar-se, més aviat al contrari. Tot i que el consum energètic no és negatiu per sí mateix, la generació d’aquesta energia pot tenir conseqüències diverses segons la seva font d’origen. És important, per exemple, tenir en compte la quantitat finita de combustibles fòssils i les emissions de gasos d’efecte hivernacle que impliquen, però també cal ser conscients del risc associat als residus de la generació nuclear o de l’impacte de les centrals hidràuliques i eòliques en els ecosistemes propers.

És en aquest aspecte on els vectors energètics dels principals estats prenen protagonisme. És important conèixer aquesta informació per a poder avaluar l’evolució del sector energètic, estudiar-ne la tendència, preveure’n possibles conseqüències negatives i corregir-les en cas necessari. Aquest és, doncs, el marc que engloba una de les parts principals d’aquest projecte.

2.1.2. El Grup sobre el Governament del Canvi Climàtic de la UPC

Aquest projecte manté relació amb la feina duta a terme pel Subgrup GGCC (Grup sobre el Governament del Canvi Climàtic) del Grup de Recerca Singular de la UPC en Sostenibilitat, Tecnologia i Humanisme (STH) amb seu a l’EUETIB de la UPC.

Com a eina per a la seva recerca, el GGCC està realitzant un treball de recerca que recopila informació diversa sobre aspectes energètics i de medi ambient. El present projecte interacciona amb l’esmentat treball del GGCC, ja sigui ampliant o contrastant la seva base de dades tot comparant-la amb les dades que es consideren o treballen en aquest projecte.
2.1.3. **Elecció dels estats estudiats**

Els estats que s’han estudiat en aquest projecte són els quinze que van registrar les majors emissions de diòxid de carboni l’any 2010. Segons el WB i ordenats de major a menors emissions, aquests països són els següents:

Taula 1. Els quinze estats amb majors emissions de CO₂ l’any 2010.

<table>
<thead>
<tr>
<th>Estat</th>
<th>Mt CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xina</td>
<td>8286,89</td>
</tr>
<tr>
<td>Estats Units</td>
<td>5433,06</td>
</tr>
<tr>
<td>Unió Europea</td>
<td>3709,76</td>
</tr>
<tr>
<td>Índia</td>
<td>2008,82</td>
</tr>
<tr>
<td>Rússia</td>
<td>1740,78</td>
</tr>
<tr>
<td>Japó</td>
<td>1170,72</td>
</tr>
<tr>
<td>Iran</td>
<td>571,61</td>
</tr>
<tr>
<td>República de Corea</td>
<td>567,57</td>
</tr>
<tr>
<td>Canadà</td>
<td>499,14</td>
</tr>
<tr>
<td>Aràbia Saudita</td>
<td>464,48</td>
</tr>
<tr>
<td>Sud-àfrica</td>
<td>460,12</td>
</tr>
<tr>
<td>Mèxic</td>
<td>443,67</td>
</tr>
<tr>
<td>Indonèsia</td>
<td>433,99</td>
</tr>
<tr>
<td>Brasil</td>
<td>419,75</td>
</tr>
<tr>
<td>Austràlia</td>
<td>373,08</td>
</tr>
</tbody>
</table>

S’ha pres aquesta decisió ja que era necessari limitar el nombre d’estats estudiats per a fer possible un anàlisi més detallat sense deixar de tenir en compte els principals emissors del planeta. L’any 2010, aquests estats van ser els responsables de gairebé el 80% de les emissions mundials de diòxid de carboni i, per tant, les dinàmiques d’aquests estats marquen la dinàmica global.

2.1.4. **El paper de l’Agència Internacional de l’Energia**

Els vectors energètics de cadascun d’aquests estats s’han construït en base a les dades que proporciona la IEA ja que és una de les fonts que detalla millor les adquisicions i consums d’energia segons la seva font d’origen. Per tant, abans de treballar amb els vectors energètics és necessari conèixer la manera de treballar d’aquesta organització. Seguidament es presenta un anàlisi que detalla quina informació proporciona la IEA i com està organitzada, de manera que resulti de fàcil accés més endavant. Aquest anàlisi forma una part imprescindible del
projecte, ja que les conclusions extretes seran necessàriament esmentades al llarg del seu desenvolupament.

2.2. Anàlisi a l’Agència Internacional de l’Energia

Ja que el volum d’informació que presenta la IEA és molt extens i que no és l’objectiu principal del projecte analitzar tota aquesta informació, aquest apartat es centrarà exclusivament en estudiar aquella part imprescindible per al desenvolupament del projecte, que és la seva secció d’estadístiques.

Per a poder dur a terme l’anàlisi s’ha escollit estudiar les estadístiques que la IEA proporciona per als Estats Units l’any 2010. Per a la resta d’estats i anys, la manera de distribuir les dades és exactament la mateixa.

A la secció d’estadístiques que ofereix la IEA s’hi troben dues categories fonamentals, definides amb els noms Indicators i Balances, que es detallen a continuació (IEA - Statistics 2015). Cal tenir en compte que les dades que ofereix la IEA comprenen un marc temporal entre els anys 1990 i 2012, ja que les estadístiques a nivell internacional acostumen a trigar uns anys a confirmar-se.

2.2.1. Indicators

A la categoria d’indicadors es presenten una sèrie de dades generals, que poden ser relatives a aspectes econòmics, energètics o del medi ambient, com es pot veure a la Figura 2.

Figura 2. Pàgina d’indicadors de la IEA, en aquest cas sobre Estats Units l’any 2010. (IEA - Indicators for 2010 - United States 2015)
Les dades clau per al desenvolupament del projecte que proporciona aquesta categoria són les següents:

- **TPES (Total Primary Energy Supply).** És el subministrament total d’energia de tot l’estat en aquell any en concret, expressat en megatones de petroli equivalent. Més endavant es donarà una definició més exhaustiva d’aquest concepte.
- **CO2 emissions.** La quantitat de diòxid de carboni que ha emès l’estat en tot l’any, expressada en megatones de CO₂. Aquest concepte tornarà a aparèixer en el tercer capítol del projecte.
- **GDP (Gross Domestic Product).** Es tracta del producte interior brut de cada estat, expressat en dòlars estatunidencs constants del 2005.
- **TPES/GDP (Intensitat energètica).** És un indicador de l’eficiència energètica de l’estat. Com menor sigui la intensitat energètica, menys energia requerirà produir una unitat monetària.
- **CO2/TPES (Intensitat d’emissions).** Mostra la relació entre les emissions de l’estat i el subministrament d’energia. Com menor sigui la intensitat d’emissions, més neta serà la tecnologia de l’estat (menys emissions per cada unitat d’energia).

2.2.2. Balanç energètic

La informació presentada en aquesta categoria és molt més detallada que en el cas anterior i permet estudiar la producció i el consum energètic de l’estat segons el tipus de font energètica.

La següent imatge mostra la presentació de la informació que en fa la IEA en forma de taula. Les quantitats d’energia s’expressen en kilotones de petroli equivalent.
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Les fonts d’energia que considera la IEA ocupen cadascuna de les columnes de la taula del balanç, i són les següents:

- Carbó
- Petroli cru
- Productes del petroli
- Gas natural
- Nuclear
- Hidroelèctrica
- Geotèrmica, solar, eòlica, marina, etcètera
- Biocombustibles i residus
- Electricitat
- Calor

<table>
<thead>
<tr>
<th>Indicadors</th>
<th>Balances</th>
<th>Carbó</th>
<th>Crude Oil</th>
<th>Oil Products</th>
<th>Natural Gas</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Geothermal, Solar, etc.</th>
<th>Biodiesels and Waste</th>
<th>Electricity</th>
<th>Heat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>531684</td>
<td>346902</td>
<td>0</td>
<td>49467</td>
<td>218631</td>
<td>22555</td>
<td>48345</td>
<td>18435</td>
<td>90662</td>
<td>0</td>
<td>172349</td>
<td></td>
</tr>
<tr>
<td>Imports</td>
<td>11440</td>
<td>597979</td>
<td>83347</td>
<td>86893</td>
<td>0</td>
<td>0</td>
<td>164</td>
<td>3877</td>
<td>725411</td>
<td>0</td>
<td>-192060</td>
<td></td>
</tr>
<tr>
<td>Exports</td>
<td>-48241</td>
<td>-9302</td>
<td>-10652</td>
<td>-26145</td>
<td>0</td>
<td>0</td>
<td>-1106</td>
<td>-1643</td>
<td>-526315</td>
<td>0</td>
<td>6430</td>
<td></td>
</tr>
<tr>
<td>Stock changes</td>
<td>7563</td>
<td>-1510</td>
<td>156</td>
<td>524</td>
<td>0</td>
<td>0</td>
<td>-194</td>
<td>6430</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPES</td>
<td>502600</td>
<td>875559</td>
<td>-6946</td>
<td>555918</td>
<td>218631</td>
<td>22555</td>
<td>18435</td>
<td>95407</td>
<td>2224</td>
<td>0</td>
<td>2215359</td>
<td></td>
</tr>
<tr>
<td>Transfers</td>
<td>0</td>
<td>-42967</td>
<td>44827</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1860</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical differences</td>
<td>-2774</td>
<td>-10305</td>
<td>-362</td>
<td>2440</td>
<td>0</td>
<td>-163</td>
<td>0</td>
<td>-11123</td>
<td>0</td>
<td>11123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity plants</td>
<td>-49346</td>
<td>0</td>
<td>-8576</td>
<td>-144992</td>
<td>-218631</td>
<td>-22555</td>
<td>-16825</td>
<td>-12572</td>
<td>346918</td>
<td>0</td>
<td>-526315</td>
<td></td>
</tr>
<tr>
<td>CHP plants</td>
<td>-13429</td>
<td>0</td>
<td>-2268</td>
<td>-40941</td>
<td>0</td>
<td>0</td>
<td>-7673</td>
<td>27493</td>
<td>12138</td>
<td>-23779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat plants</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas works</td>
<td>-1919</td>
<td>0</td>
<td>1206</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil refineries</td>
<td>0</td>
<td>-81683</td>
<td>839065</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal transformation</td>
<td>-676</td>
<td>0</td>
<td>-4577</td>
<td>-40949</td>
<td>0</td>
<td>0</td>
<td>-7673</td>
<td>27493</td>
<td>12138</td>
<td>-23779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquefaction plants</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other transformation</td>
<td>-1574</td>
<td>0</td>
<td>-45999</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-28613</td>
<td>-4045</td>
<td>-141125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy industry own use</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losses</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total final consumption</td>
<td>26853</td>
<td>3604</td>
<td>75926</td>
<td>310431</td>
<td>0</td>
<td>0</td>
<td>1610</td>
<td>69059</td>
<td>325649</td>
<td>6636</td>
<td>159029</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>25345</td>
<td>60</td>
<td>30208</td>
<td>98746</td>
<td>0</td>
<td>0</td>
<td>106</td>
<td>32170</td>
<td>71873</td>
<td>5243</td>
<td>262552</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>0</td>
<td>32</td>
<td>55409</td>
<td>16382</td>
<td>0</td>
<td>0</td>
<td>24270</td>
<td>552</td>
<td>0</td>
<td>59524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1509</td>
<td>735</td>
<td>51664</td>
<td>183596</td>
<td>0</td>
<td>0</td>
<td>1505</td>
<td>12620</td>
<td>254624</td>
<td>1393</td>
<td>507245</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>0</td>
<td>555</td>
<td>20999</td>
<td>110931</td>
<td>0</td>
<td>0</td>
<td>1421</td>
<td>10053</td>
<td>123311</td>
<td>0</td>
<td>295202</td>
<td></td>
</tr>
<tr>
<td>Commercial and public services</td>
<td>1509</td>
<td>98</td>
<td>15292</td>
<td>71173</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>2194</td>
<td>114397</td>
<td>1393</td>
<td>295138</td>
<td></td>
</tr>
<tr>
<td>Agriculture / forestry</td>
<td>0</td>
<td>0</td>
<td>152</td>
<td>1492</td>
<td>0</td>
<td>0</td>
<td>373</td>
<td>3302</td>
<td>0</td>
<td>2063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-specified</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-energy use</td>
<td>0</td>
<td>2777</td>
<td>120785</td>
<td>11787</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>135349</td>
<td></td>
</tr>
<tr>
<td>Total, which chemical/petroleum</td>
<td>0</td>
<td>42710</td>
<td></td>
</tr>
</tbody>
</table>
Seguint les files que mostra la taula, es veu que aquesta es divideix en tres parts principals que es definiran a continuació. Cal esmentar per a la correcta comprensió de la taula que, en les dues primeres parts, els nombres poden ser positius o negatius en funció de si hi ha una aportació d’energia (valors positius) o un consum o venta d’energia (valors negatius). En canvi, en la tercera part de la taula tots els nombres tenen signe positiu però sempre indiquen consums d’energia (IEA - Balance definitions 2015).

La primera part rep el nom de *Supply*, inclou les set primeres files de la taula i té en compte els següents aspectes:

- **Production.** La IEA ho defineix com a producció d’energia primària, motiu pel qual aquelles fonts energètiques que no es consideren primàries (productes de petroli, electricitat i calor) comptabilitzen amb un cero.

- **Imports i Exports.** Importacions i exportacions de les diferents formes d’energia de les que disposa l’estat. Els valors negatius impliquen una exportació mentre que els positius indiquen importació.

- **International marine and aviation bunkers.** Consum en transports marítimes i d’aviació que duen a terme la seva activitat en rutes internacionals.

- **Stock changes.** Diferència dels nivells d’estoc nacional entre el primer i l’últim dia de l’any.

- **TPES (Total Primary Energy Supply).** Es defineix com el sumatori dels punts anteriors mantenint sempre els signes que indica la taula.

La segona part de la taula s’anomena *Transfers, Transformation Processes and Energy Industry Own Use*. Indica els moviments i transformacions d’energia que es duen a terme en la indústria energètica amb la finalitat de preparar-la per al consum. Inclou les següents dotze files de la taula, que poden agrupar-se de la següent manera:

- **Transfers.** Fa referència als moviments de productes entre diferents sectors i al reciclatge de productes, com per exemple el re-processament de lubricants usats per a produir combustibles.

- **Transformation Processes.** Inclou els principals tipus de transformacions, entre les quals es podrien distingir:
 - Plantes de generació elèctrica o tèrmica. Consumeixen diferents tipus d’energia primària (química, mecànica, entre altres) per a produir electricitat o calor. S’inclouren en aquesta categoria les plantes elèctriques, les tèrmiques i les de cicle combinat.
 - Plantes de transformacions físiques. Modifiquen les propietats físiques dels combustibles i els transformen en altres substàncies, ja sigui per a finalitats energètiques o de producció de materials. En aquesta categoria es troben les refineries de petroli i les plantes de liquèfacció, entre altres.
Com ja s'ha dit, els valors negatius indiquen un consum d’energia i els positius una aportació. Per tant, seguint l’exemple de la Figura 3, a les refineries de petroli d’Estats Units l’any 2010 es van consumir 818.683 ktoe de petroli cru per a generar 839.065 ktoe de productes derivats del petroli.

Cal notar que en aquest exemple concret l’energia obtinguda en forma de derivats del petroli és superior a la consumida en forma de petroli cru, i això no hauria de ser possible ja que implicaria un rendiment superior al 100%. La IEA justifica aquest fet argumentant possibles errors o problemes amb els inventaris i amb els valors calorífics aplicats a cada tipus de combustible.

- **Energy Industry Own Use.** Inclou l’energia primària i secundària consumida per les plantes de transformació, ja sigui per a producció de calor, bombeig, tracció o il·luminació.

- **Statistical differences i Losses.** La IEA utilitza aquestes dues categories per indicar les pèrdues d’energia que tenen lloc durant els diferents processos, i per quadrar els nombres que no acabin de ser del tot exactes com a conseqüència de l’aplicació de factors de conversió en alguns càlculs.

La tercera i última part de la taula rep el nom de **Total Final Consumption** i mostra el consum energètic per sectors tenint en compte la forma final de l’energia. D’aquesta manera, l’energia generada en una central nuclear apareixerà comptabilitzada en aquest tram de la taula formant part del consum d’energia elèctrica en lloc del consum d’energia nuclear, i el mateix passarà amb la resta de fonts d’energia.

Per exemple, a la Figura 3 es pot veure que el consum final (TFC) de carbó és de 26.853 ktoe, però s’ha de tenir en compte que això només és la part que arriba en forma de carbó al consum domèstic (indústria, residències, etcètera) ja que la major part del carbó total que ha obtingut l’estat s’ha consumit en les centrals energètiques per a produir electricitat i calor, tal i com esquematitza la figura següent.
Figura 4. Esquema bàsic de les tres parts de la taula de balanç que mostra l’exemple del carbó.

Els sectors que mostra aquest tercer tram de la taula són els següents:
- Sector industrial.
- Transport (a nivell nacional).
- Altres. Inclou el sector residencial, el comercial i de serveis públics, els d’agricultura i pesca, i altres no especificats.
- Ús no energètic. Indica les fraccions de combustibles que s’han utilitzat en la producció d’altres productes no energètics, generalment plàstics i lubricants.

La resta de pestanyes de la secció d’estadístiques de la IEA ofereixen informació àmpliament desglossada per a cada font energètica. Les categories que té en compte la secció són:
- Carbó
- Electricitat i calor
- Gas natural
- Petroli
- Renovables i residus (biomassa)

De tota manera, tota aquesta informació no serà necessària per al desenvolupament del projecte, i per tant l’anàlisi realitzat no anirà més enllà.

2.2.3. Definició d’energia primària, TPES i el cas del petroli

La finalitat d’aquest subapartat és aclarir un aspecte que ha dut a confusions en els primers intents d’anàlitzar els balanços de la IEA. A continuació s’exposa l’error comès inicialment i les confusions que aquest provoca, així com l’esclareixament de l’error.

La Figura 5, que és un detall de la Figura 3, mostra el valor de TPES per als productes derivats del petroli. La possible confusió es basa en que el terme TPES (Total Primary Energy Supply) inclou el concepte d’energia primària, però els productes del petroli no entren en aquesta categoria ja que formen part del grup
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics
d’energies secundàries. Tenint això en compte, el més raonable era que el valor
de TPES en el cas dels derivats de petroli fos nul, però això no era així i aquest
fet no feia possible la comprensió de la taula. La solució a aquest problema passa
per una correcta definició dels conceptes “energia primària” i “TPES”.

Figura 5. Detall del TPES dels productes derivats del petroli (IEA -
Balances for 2010 - United States 2015).

Una bona definició d’energia primària és la que proporciona la CEPAL (Comisión
Económica para América Latina y el Caribe) en el seu document “Sostenibilidad
Energética en América Latina y el Caribe: El aporte de las fuentes renovables”
que diu que l’energia primària és aquell recurs energètic natural disponible en
forma directa o indirecta que no ha patit ninguna modificació química o física
(CEPAL 2003).

Les principals fonts d’energia primària són, segons la CEPAL:
- Petroli (cru)
- Gas natural
- Carbó mineral
- Hidroelectricitat
- Llenya i subproductes (biomassa)
- Biogàs
- Geotèrmica
- Eòlica
- Nuclear
- Solar

Es pot veure que, efectivament, els productes derivats del petroli no entren en
aquesta categoria.
En canvi, segons la IEA, la definició del concepte TPES s’expressa segons la igualtat següent (IEA - Balance definitions 2015).

\[
TPES = \text{Production} + \text{Imports} - \text{Exports} - \text{International marine and aviation bunkers} \pm \text{Stock changes}
\] (1)

Així doncs, el TPES no és més que un factor estadístic que fan servir en els seus inventaris algunes fonts com la IEA o el WB per a reflectir els diferents moviments energètics internacionals, però no fa distincions entre energia primària i secundària.

En aquest sentit, la única diferència entre una energia primària i una secundària és que, en el cas de les secundàries, el terme *Production* serà cero ja que només s’aplica a les energies primàries. La producció d’energies secundàries serà reflectida en les següents files de la taula:

- Productes derivats del petroli: *Oil refineries* (refineries de petroli).
- Electricitat: *Electricity plants* i *CHP plants* (plantes elèctriques i de cicle combinat).
- Calor: *Heat plants* i *CHP plants* (plantes tèrmiques i de cicle combinat).

El Total Primary Energy Supply és, doncs, un factor que permet visualitzar l’adquisició total d’energia d’un estat durant un període de temps, habitualment aplicat de manera anual, sense tenir en compte les transformacions que s’hi apliquin posteriorment (i per això no contempla la producció de derivats del petroli).

Això explica que a la fila TPES hi apareguin valors diferents de cero per a les energies secundàries i soluciona l’error d’interpretació inicial.

2.3. El vector Total Primary Energy Supply

En aquest apartat es mostren els vectors energètics dels quinze estats estudiats basant-se en el factor TPES i es duen a terme dues comparatives entre les dades obtingudes i la base de dades del GGCC.

2.3.1. Comparativa GGCC-IEA segons el TPES

Un dels aspectes més característics del vector energètic d’un estat que s’han tractat en el projecte és el factor TPES. Per tal de contrastar informació, i amb la intenció de col·laborar amb el GGCC de la UPC, en aquest apartat es procedirà a comparar els valors de TPES que presenten la IEA i el document de referència del GGCC per a cadascun dels quinze estats estudiats en el projecte, durant els anys 1990-2011.

Com ja s’ha comentat amb anterioritat, el GGCC ha basat el seu treball principalment en les estadístiques ofertes pel *World Bank*. Per tant, dur a terme aquesta comparativa permetrà alhora comparar les estadístiques de la IEA amb les del WB i veure si totes dues treballen en els mateixos ordres de magnitud, augmentant així l’interès de dur a terme la comparació.
El GGCC recopila els valors de TPES esmentats en exajoules (EJ) mentre que la IEA ho fa en megatones de petroli equivalent (Mtoe). Per a poder dur a terme la comparació s’ha aplicat el següent factor de conversió:

\[1 \text{EJ} = 23,883,45 \text{ Mtoe} \] \((2) \)

A continuació es presenta el procediment aplicat per a dur a terme la comparació, exemplificat en el cas de Brasil durant els anys 1990-2011.

El primer pas és recopilar els valors de TPES que ofereix cada font. Posteriorment, s’utilitza el factor de conversió (2) per a convertir els nombres a les mateixes unitats (en el cas concret del projecte s’ha decidit convertir tot a Mtoe). Finalment, per a cada any, s’avalua en tant per cent la diferència dels valors del GGCC respecte els de la IEA, per acabar calculant el promig de tots aquests percentatges.

La següent taula mostra el recull de dades i càlculs realitzats per al cas que ens serveix d’exemple:

Taula 2. Desenvolupament del càlcul per a Brasil 1990-2011.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>5,9</td>
<td>6,0</td>
<td>6,0</td>
<td>6,2</td>
<td>6,5</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>140,0</td>
<td>142,6</td>
<td>144,1</td>
<td>147,7</td>
<td>155,5</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>140,2</td>
<td>142,8</td>
<td>144,3</td>
<td>148,0</td>
<td>155,8</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,10%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>6,7</td>
<td>7,1</td>
<td>7,5</td>
<td>7,6</td>
<td>7,8</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>160,8</td>
<td>169,4</td>
<td>178,0</td>
<td>182,2</td>
<td>186,4</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>161,1</td>
<td>169,7</td>
<td>178,3</td>
<td>182,6</td>
<td>186,7</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
</tr>
<tr>
<td>Any</td>
<td>2000</td>
<td>2001</td>
<td>2002</td>
<td>2003</td>
<td>2004</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>TPES GGCC (EJ)</td>
<td>7,8</td>
<td>8,0</td>
<td>8,2</td>
<td>8,3</td>
<td>8,8</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>187,1</td>
<td>190,4</td>
<td>195,4</td>
<td>198,6</td>
<td>209,7</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>187,4</td>
<td>190,7</td>
<td>195,8</td>
<td>199,0</td>
<td>210,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>9,0</td>
<td>9,3</td>
<td>9,8</td>
<td>10,4</td>
<td>10,1</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>215,0</td>
<td>222,4</td>
<td>235,1</td>
<td>248,2</td>
<td>240,1</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>215,3</td>
<td>222,8</td>
<td>235,5</td>
<td>248,6</td>
<td>240,5</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,16%</td>
<td>0,16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>11,1</td>
<td>11,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>265,4</td>
<td>269,6</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>265,9</td>
<td>270,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,16%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

Es pot veure que les discrepàncies entre GGCC (WB) i IEA en aquest aspecte són mínimes. De fet, aquestes petites diferències podrien ser causa del factor de conversió aplicat, de manera que es consideren negligibles. Els càlculs de la resta d'estats apareixen en els annexos del projecte.

Seguint el mateix procediment i calculant el promig de les diferències anuals entre el TPES de GGCC i IEA s’obté la següent taula:
Taula 3. Discrepàncies entre els TPES del GGCC i la IEA.

<table>
<thead>
<tr>
<th>Estat</th>
<th>Diferència promig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aràbia Saudita</td>
<td>5,56%</td>
</tr>
<tr>
<td>Austràlia</td>
<td>0,16%</td>
</tr>
<tr>
<td>Brasil</td>
<td>0,16%</td>
</tr>
<tr>
<td>Canadà</td>
<td>0,38%</td>
</tr>
<tr>
<td>Estats Units</td>
<td>0,17%</td>
</tr>
<tr>
<td>Índia</td>
<td>0,13%</td>
</tr>
<tr>
<td>Indonèsia</td>
<td>0,35%</td>
</tr>
<tr>
<td>Iran</td>
<td>0,37%</td>
</tr>
<tr>
<td>Japó</td>
<td>0,20%</td>
</tr>
<tr>
<td>Mèxic</td>
<td>0,57%</td>
</tr>
<tr>
<td>República de Corea</td>
<td>0,17%</td>
</tr>
<tr>
<td>Rússia</td>
<td>0,26%</td>
</tr>
<tr>
<td>Sud-àfrica</td>
<td>0,25%</td>
</tr>
<tr>
<td>Unió Europea</td>
<td>0,15%</td>
</tr>
<tr>
<td>Xina</td>
<td>0,22%</td>
</tr>
</tbody>
</table>

Es pot veure que tots els estats presenten una diferència inferior a l’1% excepte en el cas d’Aràbia Saudita. Tot i que el seu promig és aproximadament del 5,5%, la Figura 6 mostra l’evolució de la diferència al llarg del període 1990-2011.

Discrepàncies entre GGCC i IEA per Aràbia Saudita

![Discrepancies between GGCC and IEA for Saudi Arabia between 1990 and 2011](image)

Figura 6. Evolució de les discrepàncies entre GGCC i IEA per Aràbia Saudita en el període 1990-2011.
Tenint en compte que es tracta d’un estat que habitualment no es mostra gens disposat a proporcionar informació interna, especialment en l’àmbit energètic, no és d’estranyar que apareguin aquestes discrepàncies entre diverses fonts.

Així doncs, amb l’excepció d’Aràbia Saudita, es considera que els valors del TPES que proporcionen la IEA i el GGCC, i per tant el WB, són del mateix ordre de magnitud.

2.3.2. *Els vectors energètics basats en el TPES*

Com ja ha quedat clar en apartats anteriors, el factor TPES és un aspecte clau en la definició de la situació energètica d’un estat. Tant és així que la IEA el presenta en la seva pàgina d’indicadors principals. Cal però, fer una sèrie de reflexions sobre aquest factor.

La primera és que es tracta d’un nombre que permet visualitzar l’adquisició total d’energia d’un estat, ja que té en compte la producció interna d’energies primàries i la diferència entre importacions i exportacions de totes les formes d’energia, ja siguin primàries o secundàries. És lògic que aquest factor no tingui en compte la producció interna d’energies secundàries ja que s’estaria comptabilitzant dues vegades la mateixa energia. Per exemple, si el factor TPES inclou la producció estatal de petroli cru, no s’hi podria sumar la producció estatal de derivats del petroli ja que aquests deriven del primer.

Però això implica una conseqüència, i és que no reflexa la forma final de l’energia ja que no té en compte les transformacions que aquesta pateix posteriorment. Tornant a l’exemple del petroli, el factor TPES reflexa la producció de petroli cru, però no indica pas de quins derivats del petroli disposa l’estat. A la pràctica, la dada interessant no és quanta energia es té en forma de petroli cru, sinó quanta energia es pot produir amb els productes del petroli que en deriven.

De tota manera, el factor TPES sí que indica la quantitat total d’energia que assoleix l’estat en un any, i a més, la IEA ofereix suficient informació per a fer un desglossament segons la font energètica. Així doncs, aquest factor no només indica l’energia adquirida per l’estat, sinó que permet saber quina part prové del carbó, quina part de l’energia nuclear, o quina part prové de la importació d’electricitat, per exemple.

Per tot això, es considera de suficient interès construir els vectors energètics de cadascun dels quinze estats que s’estudien en aquest projecte basant-se en el TPES. Seguidament es detalla el procediment aplicat i es presenten els resultats obtinguts.

Per a construir els vectors energètics basats en el TPES d’un estat cal tenir informació desglossada en fonts energètiques sobre l’esmentat factor. Aquesta informació la proporciona la IEA en la seva pàgina *Balances* de la secció d’estadístiques, concretament a la setena filera de la taula, com es pot veure a la Figura 3.

Aquesta informació ha estat recopilada en taules, una per a cada estat, tal i com s’exempleifica en la Taula 4 per al cas de Canadà.

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli cru</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geòtèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>24277</td>
<td>82797</td>
<td>-6283</td>
<td>54728</td>
<td>19398</td>
<td>25519</td>
<td>2</td>
<td>8158</td>
<td>-30</td>
<td>0</td>
<td>208566</td>
</tr>
<tr>
<td>1991</td>
<td>25309</td>
<td>78852</td>
<td>-7186</td>
<td>55389</td>
<td>22625</td>
<td>26511</td>
<td>3</td>
<td>8226</td>
<td>-1585</td>
<td>0</td>
<td>208144</td>
</tr>
<tr>
<td>1992</td>
<td>26252</td>
<td>78360</td>
<td>-4563</td>
<td>58366</td>
<td>21300</td>
<td>27209</td>
<td>8</td>
<td>8534</td>
<td>-2154</td>
<td>0</td>
<td>213112</td>
</tr>
<tr>
<td>1993</td>
<td>24106</td>
<td>82638</td>
<td>-6890</td>
<td>61944</td>
<td>24644</td>
<td>27826</td>
<td>8</td>
<td>8413</td>
<td>-2358</td>
<td>0</td>
<td>220331</td>
</tr>
<tr>
<td>1994</td>
<td>24797</td>
<td>83573</td>
<td>-7880</td>
<td>64990</td>
<td>28197</td>
<td>28366</td>
<td>8</td>
<td>9813</td>
<td>-3777</td>
<td>0</td>
<td>228087</td>
</tr>
<tr>
<td>1995</td>
<td>25317</td>
<td>84199</td>
<td>-7020</td>
<td>67092</td>
<td>25561</td>
<td>28889</td>
<td>8</td>
<td>9821</td>
<td>-3098</td>
<td>0</td>
<td>230769</td>
</tr>
<tr>
<td>1996</td>
<td>25881</td>
<td>87401</td>
<td>-9056</td>
<td>70418</td>
<td>24236</td>
<td>30586</td>
<td>9</td>
<td>9854</td>
<td>-3238</td>
<td>0</td>
<td>236091</td>
</tr>
<tr>
<td>1997</td>
<td>27531</td>
<td>91159</td>
<td>-9573</td>
<td>70945</td>
<td>21536</td>
<td>30160</td>
<td>9</td>
<td>10171</td>
<td>-3073</td>
<td>0</td>
<td>238865</td>
</tr>
<tr>
<td>1998</td>
<td>29305</td>
<td>93073</td>
<td>-8611</td>
<td>68098</td>
<td>18636</td>
<td>28543</td>
<td>9</td>
<td>10368</td>
<td>-2351</td>
<td>0</td>
<td>237070</td>
</tr>
<tr>
<td>1999</td>
<td>29457</td>
<td>93956</td>
<td>-8081</td>
<td>71125</td>
<td>19152</td>
<td>29736</td>
<td>18</td>
<td>11470</td>
<td>-2484</td>
<td>0</td>
<td>244349</td>
</tr>
<tr>
<td>2000</td>
<td>31713</td>
<td>96682</td>
<td>-9584</td>
<td>74237</td>
<td>18972</td>
<td>30832</td>
<td>27</td>
<td>11688</td>
<td>-3065</td>
<td>0</td>
<td>251502</td>
</tr>
<tr>
<td>2001</td>
<td>31127</td>
<td>99333</td>
<td>-11994</td>
<td>71859</td>
<td>19987</td>
<td>28665</td>
<td>33</td>
<td>10831</td>
<td>-1989</td>
<td>0</td>
<td>247852</td>
</tr>
<tr>
<td>2002</td>
<td>29966</td>
<td>98732</td>
<td>-13596</td>
<td>73328</td>
<td>19683</td>
<td>30148</td>
<td>40</td>
<td>11814</td>
<td>-1722</td>
<td>0</td>
<td>248393</td>
</tr>
<tr>
<td>2003</td>
<td>29703</td>
<td>103571</td>
<td>-10903</td>
<td>79706</td>
<td>19517</td>
<td>29020</td>
<td>76</td>
<td>11924</td>
<td>-584</td>
<td>0</td>
<td>262030</td>
</tr>
<tr>
<td>2004</td>
<td>28557</td>
<td>108062</td>
<td>-11481</td>
<td>78003</td>
<td>23555</td>
<td>29312</td>
<td>86</td>
<td>12468</td>
<td>-930</td>
<td>0</td>
<td>267632</td>
</tr>
<tr>
<td>2005</td>
<td>27223</td>
<td>105734</td>
<td>-9494</td>
<td>80666</td>
<td>23986</td>
<td>31125</td>
<td>139</td>
<td>13408</td>
<td>-2051</td>
<td>0</td>
<td>270736</td>
</tr>
<tr>
<td>2006</td>
<td>27289</td>
<td>106512</td>
<td>-8618</td>
<td>79709</td>
<td>25530</td>
<td>30345</td>
<td>216</td>
<td>12792</td>
<td>-1644</td>
<td>0</td>
<td>272131</td>
</tr>
<tr>
<td>2007</td>
<td>27013</td>
<td>103884</td>
<td>-10406</td>
<td>78429</td>
<td>24362</td>
<td>31612</td>
<td>263</td>
<td>13122</td>
<td>-2662</td>
<td>0</td>
<td>265617</td>
</tr>
<tr>
<td>2008</td>
<td>28308</td>
<td>97896</td>
<td>-7619</td>
<td>78553</td>
<td>25023</td>
<td>32461</td>
<td>330</td>
<td>12191</td>
<td>-2766</td>
<td>0</td>
<td>264377</td>
</tr>
<tr>
<td>2009</td>
<td>21904</td>
<td>94865</td>
<td>-9802</td>
<td>77519</td>
<td>23479</td>
<td>31704</td>
<td>583</td>
<td>11875</td>
<td>-2891</td>
<td>0</td>
<td>249236</td>
</tr>
<tr>
<td>2010</td>
<td>22229</td>
<td>95737</td>
<td>-9697</td>
<td>78678</td>
<td>23626</td>
<td>30216</td>
<td>763</td>
<td>11970</td>
<td>-2210</td>
<td>0</td>
<td>251312</td>
</tr>
<tr>
<td>2011</td>
<td>20205</td>
<td>87848</td>
<td>-5599</td>
<td>83574</td>
<td>24390</td>
<td>32309</td>
<td>901</td>
<td>12508</td>
<td>-3144</td>
<td>0</td>
<td>252992</td>
</tr>
<tr>
<td>2012</td>
<td>18364</td>
<td>94584</td>
<td>-12118</td>
<td>83483</td>
<td>24722</td>
<td>32724</td>
<td>1004</td>
<td>12401</td>
<td>-4040</td>
<td>0</td>
<td>251124</td>
</tr>
</tbody>
</table>
Disposant d’aquesta informació es pot construir el vector energètic per a cada any. En aquest projecte s’han escollit els anys 2010 i 2012, el primer perquè és l’any de què més informació hi ha i per tant facilita la comparació amb altres estudis, i el segon perquè és l’últim any del que hi ha informació i permet tenir una visió més actualitzada.

Seguit l’exemple de Canadà i partint de la Taula 4, els resultats són els següents:

![Vector TPES Canadà 2010](figura7.png)

Figura 7. Vector TPES de Canadà l’any 2010.

![Vector TPES Canadà 2012](figura8.png)

Figura 8. Vector TPES de Canadà l’any 2012.

En aquest cas concret es pot veure que les principals fonts d’energia de Canadà en 2010 i 2012 van ser el petroli cru i el gas natural, ambdós combustibles fòssils que generen emissions de diòxid de carboni.

Cal esmentar que en determinats casos el valor de TPES de les energies secundàries pot aparèixer amb valor negatiu. En aquestes situacions, com a conseqüència de la definició de *Total Primary Energy Supply* de la IEA, el valor negatiu indica que les exportacions i l’ús en transport internacional són superiors a les importacions.

Seguint el mateix procediment es poden determinar els vectors energètics basats en el TPES de la resta d’estats tinguts en compte en aquest projecte.
A continuació es mostren els resultats, mentre que les taules amb els reculls de dades que s’han fet servir s’adjuntaran al en forma d’annex.

Figura 9. Vector TPES d’Aràbia Saudita l’any 2010.

Figura 10. Vector TPES d’Aràbia Saudita l’any 2012.

Figura 11. Vector TPES d’Austràlia l’any 2010.
Àlex Aguilar Pérez

Figura 12. Vector TPES d'Austràlia l'any 2012.

Figura 13. Vector TPES de Brasil l'any 2010.

Figura 14. Vector TPES de Brasil l'any 2012.
Estudi de les correlacions entre les emissions de CO\textsubscript{2} i els vectors energètics

Àlex Aguilar Pérez

Figura 18. Vector TPES de la Índia l’any 2012.

Figura 19. Vector TPES d’Indonèsia l’any 2010.

Figura 20. Vector TPES d’Indonèsia l’any 2012.
Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics

Figura 21. Vector TPES d’Iran l’any 2010.

Figura 22. Vector TPES d’Iran l’any 2012.

Figura 23. Vector TPES de Japó l’any 2010.
Àlex Aguilar Pérez

Figura 24. Vector TPES de Japó l’any 2012.

Figura 25. Vector TPES de Mèxic l’any 2010.

Figura 26. Vector TPES de Mèxic l’any 2012.
Estudi de les correlacions entre les emissions de CO\textsubscript{2} i els vectors energètics

Figura 27. Vector TPES de la República de Corea l’any 2010.

Figura 28. Vector TPES de la República de Corea l’any 2012.

Figura 29. Vector TPES de Rússia l’any 2010.
Àlex Aguilar Pérez

Figura 32. Vector TPES de Sud-àfrica l’any 2012.
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Figura 33. Vector TPES de la Unió Europea l’any 2010.

Figura 34. Vector TPES de la Unió Europea l’any 2012.

Figura 35. Vector TPES de la Xina l’any 2010.
S’ha pogut veure, doncs, que la majoria de països basen un gran percentatge del seu TPES en els combustibles fòssils. És per això que s’ha decidit analitzar aquest aspecte amb més detall en l’apartat següent.

2.3.3. Ús de combustibles fòssils i comparativa amb el GGCC

Una vegada calculats els vectors energètics del TPES per als quinze estats, una de les aplicacions que s’hi poden trobar és, per exemple, estudiar quin percentatge del Total Primary Energy Supply de cada estat està format per combustibles fòssils, i com evoluciona aquest percentatge al llarg del període 1990-2012.

A més, es dona la circumstància de que aquesta és una de les dades que observa el GGCC en el seu treball de recerca, i per tant, és factible dur a terme una comparativa entre els valors calculats en aquest projecte i els establerts en la base de dades del GGCC.

El càlcul es realitzarà sumant els valors de TPES dels quatre combustibles fòssils que contempla la IEA (carbó, petroli cru, productes derivats del petroli, gas natural) i dividint el resultat pel TPES total, repetint el procediment per a cada estat i per a cada any. Aquests valors són els que consten en els reculls del TPES desglossat de cada estat, com la Taula 4 i les taules similars que apareixen als annexos.

A continuació es mostra, en forma gràfica, l’evolució que ha patit el percentatge d’ús de combustibles fòssils en els quinze estats durant els 23 anys estudiats. Les figures s’han construït en base als valors calculats en aquest projecte i que es poden veure en els annexos.
Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics

Figura 37. Ús de combustibles fòssils a Aràbia Saudita.

Figura 38. Ús de combustibles fòssils a Austràlia.

Figura 39. Ús de combustibles fòssils a Brasil.
Figura 40. Ús de combustibles fòssils a Canadà.

Figura 41. Ús de combustibles fòssils a Estats Units.

Figura 42. Ús de combustibles fòssils a la Índia.
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Figura 43. Ús de combustibles fòssils a Indonèsia.

Figura 44. Ús de combustibles fòssils a Iran.

Figura 45. Ús de combustibles fòssils al Japó.
Àlex Aguilar Pérez

Figura 46. Ús de combustibles fòssils a Mèxic.

Figura 47. Ús de combustibles fòssils a la República de Corea.

Figura 48. Ús de combustibles fòssils a Rússia.
Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics

Figura 49. Ús de combustibles fòssils a Sud-Àfrica.

Figura 50. Ús de combustibles fòssils a la Unió Europea.

Figura 51. Ús de combustibles fòssils a la Xina.
A grans trets, es pot dir que l’únic estat que ha reduït significativament l’ús de combustibles fòssils ha estat la Unió Europea, que mostra una disminució de gairebé un 9% en les últimes dues dècades. En el cas d’Estats Units i Rússia la disminució és mínima, aproximadament del 2%, mentre que la resta d’estats mostren una dinàmica ascendent, en major o menor mesura.

Els percentatges d’ús de combustibles fòssils calculats s’han comparat amb els que recopila el GGCC per a contrastar el resultat del càlcul. La següent taula compara les dades per al cas concret de Mèxic:

Taula 5. Comparativa entre els percentatges d’ús de combustibles fòssils calculats i les dades del GGCC a Mèxic.

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>87,2%</td>
<td>87,2%</td>
</tr>
<tr>
<td>1991</td>
<td>87,2%</td>
<td>87,2%</td>
</tr>
<tr>
<td>1992</td>
<td>86,8%</td>
<td>86,8%</td>
</tr>
<tr>
<td>1993</td>
<td>86,7%</td>
<td>86,7%</td>
</tr>
<tr>
<td>1994</td>
<td>88,0%</td>
<td>88,0%</td>
</tr>
<tr>
<td>1995</td>
<td>86,0%</td>
<td>86,0%</td>
</tr>
<tr>
<td>1996</td>
<td>86,1%</td>
<td>86,1%</td>
</tr>
<tr>
<td>1997</td>
<td>86,2%</td>
<td>86,2%</td>
</tr>
<tr>
<td>1998</td>
<td>86,8%</td>
<td>86,8%</td>
</tr>
<tr>
<td>1999</td>
<td>86,8%</td>
<td>86,8%</td>
</tr>
<tr>
<td>2000</td>
<td>86,8%</td>
<td>86,8%</td>
</tr>
<tr>
<td>2001</td>
<td>87,7%</td>
<td>87,6%</td>
</tr>
<tr>
<td>2002</td>
<td>88,0%</td>
<td>88,1%</td>
</tr>
<tr>
<td>2003</td>
<td>88,3%</td>
<td>88,0%</td>
</tr>
<tr>
<td>2004</td>
<td>88,3%</td>
<td>88,2%</td>
</tr>
<tr>
<td>2005</td>
<td>87,9%</td>
<td>88,1%</td>
</tr>
<tr>
<td>2006</td>
<td>88,4%</td>
<td>88,5%</td>
</tr>
<tr>
<td>2007</td>
<td>88,5%</td>
<td>88,6%</td>
</tr>
<tr>
<td>2008</td>
<td>88,5%</td>
<td>88,6%</td>
</tr>
<tr>
<td>2009</td>
<td>89,0%</td>
<td>89,0%</td>
</tr>
<tr>
<td>2010</td>
<td>89,3%</td>
<td>89,4%</td>
</tr>
<tr>
<td>2011</td>
<td>89,2%</td>
<td>89,3%</td>
</tr>
<tr>
<td>2012</td>
<td>90,2%</td>
<td>90,1%</td>
</tr>
</tbody>
</table>

Es pot veure que en la majoria de casos, els valors calculats i els que presenta el GGCC són idèntics o difereixen en una o dues dècimes, i per tant es considera que el càlculs realitzats són correctes i que les dades del GGCC queden contrastades. La resta d’estats presenten la mateixa proximitat entre els valors calculats i els que recull el GGCC, i les seves taules comparatives es poden trobar als annexos del projecte.
2.4. El vector Energy Supply

En apartats anteriors s’ha fet esment al fet que el Total Primary Energy Supply detalla l’adquisició d’energia per part d’un estat, però no reflexa les transformacions que pateix aquesta energia posteriorment. En el cas concret del petroli, això provoca que no es pot saber de manera directa de quina quantitat d’energia disposa l’estat en forma de productes derivats de petroli.

Tenint això en consideració, en el projecte s’ha intentat definir un vector energètic que no pateixi aquesta restricció, per dos motius:

- El primer és que, ja que no tot el petroli cru que adquireix un estat acaba tenint un ús energètic, es vol conèixer quina part de petroli cru es transforma en combustibles derivats del petroli amb l’objectiu de poder observar l’ús energètic real del petroli. Es considera que disposar d’aquesta informació pot ser d’elevat interès acadèmic.

- El segon motiu té a veure amb el desenvolupament del projecte, ja que conèixer el consum energètic real de petroli és imprescindible per a calcular les emissions de diòxid de carboni que s’hi associen, i aquest n’és l’objectiu general.

Per tot això, en aquest projecte es proposa un nou vector energètic que s’ha batejat amb el nom d’Energy Supply. Aquest vector ha de reflectir de manera fidel el subministrament final de cada tipus d’energia, i es construeix de la següent manera:

- En el cas de les fonts energètiques diferents del petroli no cal modificar res respecte del vector TPES, ja que en la majoria de casos el 100% del TPES està destinat al consum energètic.

- En canvi, en el cas del petroli s’ha de substituir el valor de TPES del petroli cru i els seus derivats per la quantitat final de combustibles derivats del petroli de que es disposa després d’haver-lo transformat.

Per a conèixer la quantitat de derivats del petroli que s’ha adquirit cal tenir en compte tots els aspectes de la taula Balances de la IEA que puguin implicar una producció o adquisició de productes del petroli. Aquests tres factors són, segons les definicions de la IEA:

- Total Primary Energy Supply
- Transfers
- Oil refineries

Així doncs, es presenta la definició d’Energy Supply per als productes derivats del petroli:

\[\text{Energy Supply} = \text{TPES} + \text{Transfers} + \text{Oil refineries} \]

(3)

Seguint aquestes indicacions, la següent taula mostra a mode d’exemple els valors del vector energètic Energy Supply de Rússia.
Àlex Aguilar Pérez

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geòtèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>191071</td>
<td>211559</td>
<td>367287</td>
<td>31299</td>
<td>14269</td>
<td>24</td>
<td>12180</td>
<td>-715</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>180832</td>
<td>223711</td>
<td>373586</td>
<td>31709</td>
<td>14411</td>
<td>25</td>
<td>11492</td>
<td>-1037</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>159029</td>
<td>199908</td>
<td>364192</td>
<td>31560</td>
<td>14778</td>
<td>25</td>
<td>12449</td>
<td>-1397</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>142572</td>
<td>178170</td>
<td>355915</td>
<td>31418</td>
<td>14912</td>
<td>24</td>
<td>11835</td>
<td>-1611</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>133683</td>
<td>137360</td>
<td>327583</td>
<td>25859</td>
<td>15048</td>
<td>27</td>
<td>8660</td>
<td>-1763</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>129174</td>
<td>132360</td>
<td>316545</td>
<td>26249</td>
<td>15085</td>
<td>26</td>
<td>8535</td>
<td>-1686</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>130630</td>
<td>119973</td>
<td>318228</td>
<td>18768</td>
<td>16186</td>
<td>24</td>
<td>6934</td>
<td>-1676</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>117348</td>
<td>117088</td>
<td>311476</td>
<td>28613</td>
<td>13466</td>
<td>25</td>
<td>6530</td>
<td>-1693</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>110835</td>
<td>114083</td>
<td>310874</td>
<td>27784</td>
<td>13631</td>
<td>26</td>
<td>5806</td>
<td>-1549</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>118758</td>
<td>118147</td>
<td>314473</td>
<td>32119</td>
<td>13802</td>
<td>24</td>
<td>7519</td>
<td>-1218</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>119969</td>
<td>122212</td>
<td>318916</td>
<td>34419</td>
<td>14111</td>
<td>50</td>
<td>6897</td>
<td>-1209</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>115276</td>
<td>124958</td>
<td>325215</td>
<td>36050</td>
<td>14955</td>
<td>78</td>
<td>6853</td>
<td>-1364</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>116072</td>
<td>121183</td>
<td>325564</td>
<td>37274</td>
<td>13951</td>
<td>135</td>
<td>6906</td>
<td>-1113</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>117164</td>
<td>122470</td>
<td>342503</td>
<td>39546</td>
<td>13396</td>
<td>279</td>
<td>6153</td>
<td>-1151</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>114043</td>
<td>121385</td>
<td>346562</td>
<td>38075</td>
<td>15121</td>
<td>347</td>
<td>7043</td>
<td>-655</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>112637</td>
<td>121213</td>
<td>349570</td>
<td>39255</td>
<td>14850</td>
<td>353</td>
<td>6914</td>
<td>-1065</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>115726</td>
<td>125012</td>
<td>358605</td>
<td>41116</td>
<td>14908</td>
<td>398</td>
<td>7482</td>
<td>-1360</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>110959</td>
<td>127439</td>
<td>365960</td>
<td>42059</td>
<td>15226</td>
<td>418</td>
<td>6678</td>
<td>-1101</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>117069</td>
<td>132006</td>
<td>366172</td>
<td>42829</td>
<td>14170</td>
<td>400</td>
<td>6232</td>
<td>-1516</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>95271</td>
<td>125876</td>
<td>350295</td>
<td>42959</td>
<td>14980</td>
<td>399</td>
<td>6367</td>
<td>-1278</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>114827</td>
<td>131920</td>
<td>383435</td>
<td>44761</td>
<td>14318</td>
<td>430</td>
<td>6943</td>
<td>-1500</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>118806</td>
<td>143975</td>
<td>395877</td>
<td>45439</td>
<td>14263</td>
<td>449</td>
<td>7088</td>
<td>-1940</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>133422</td>
<td>145434</td>
<td>387008</td>
<td>46627</td>
<td>14267</td>
<td>411</td>
<td>7432</td>
<td>-1417</td>
<td>0</td>
</tr>
</tbody>
</table>
Amb aquesta informació es pot visualitzar el vector *Energy Supply* de manera gràfica, com es pot veure en les Figures 37 i 38.

Figura 52. Vector *Energy Supply* de Rússia l’any 2010.

Figura 53. Vector *Energy Supply* de Rússia l’any 2012.

Seguint el mateix procediment es poden determinar els vectors *Energy Supply* de la resta d’estats tinguts en compte en aquest projecte. A continuació es mostren els resultats, mentre que les taules amb els reculls de dades que s’han fet servir s’adjuntaran al projecte en forma d’annex.

Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics

Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Figura 63. Vector Energy Supply d’Estats Units l’any 2012.

Figura 64. Vector Energy Supply de la Índia l’any 2010.

Figura 65. Vector Energy Supply de la Índia l’any 2012.
Àlex Aguilar Pérez

Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Àlex Aguilar Pérez

Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Figura 75. Vector Energy Supply de la República de Corea l’any 2012.

Figura 76. Vector Energy Supply de Sud-àfrica l’any 2010.

Figura 77. Vector Energy Supply de Sud-àfrica l’any 2012.
Àlex Aguilar Pérez

Com s’ha pogut veure, a diferència dels vectors TPES aquests vectors energètics representen l’adquisició final d’energia i permeten veure quina part prové realment del petroli. Amb aquest nou concepte energètic que en aquest projecte s’ha anomenat *Energy Supply* ja no apareixen valors negatius en el cas del petroli, com sí que passa en determinats casos del *Total Primary Energy Supply*.

A més, els vectors *Energy Supply* serviran de base per al càlcul de les emissions de diòxid de carboni de cada estat, de manera que se’ls considera especialment interessants a nivell acadèmic.

2.5. Conclusions

Havent finalitzat el capítol, les conclusions que se’n poden extreure són les següents:

- L’Agència Internacional de l’Energia proporciona informació suficientment detallada per a estudiar els vectors energètics de cada estat. De les seves dades se’n pot extreure el *Total Primary Energy Supply*, però a més és possible conèixer altres informacions associades com el consum d’energia primària en les centrals elèctriques i l’electricitat generada, entre altres aspectes clau del sector energètic d’un estat. L’anàlisi realitzat en aquest projecte s’ha centrat únicament en aquells aspectes més importants per al seu desenvolupament, però tot i així el volum d’informació obtingut és considerable i suficient per sí sol per a dur l’anàlisi molt més enllà del que s’ha fet en aquest projecte.

- Els vectors *Total Primary Energy Supply* són un reflex fidel de l’energia total adquirida per un estat, a l’hora que permeten definir el seu origen i el percentatge de combustibles fòssils sobre el total. Ara bé, el TPES no contempla les transformacions que pateix el petroli cru per a convertir-se en productes derivats del petroli, i per tant no és un factor apte per a servir com a base en el càlcul de les emissions...
de diòxid de carboni com a conseqüència de l’ús de combustibles fòssils, que és l’objectiu general del projecte.

- Els vectors *Energy Supply* incorporen informació addicional al TPES i mostren la quantitat final de combustibles del petroli posteriors a la transformació del petroli cru, i per tant mostren el petroli que es consumeix amb finalitats energètiques. D’aquesta manera, els vectors *Energy Supply* sí que serveixen com a base per al càlcul d’emissions de diòxid de carboni causats per l’ús dels combustibles fòssils.

- Les comparatives que s’han dut a terme entre la base de dades del GGCC i les dades que han aparegut en el projecte (ja siguin calculades o extretes directament de la IEA) han mostrat que es treballa sempre amb el mateix ordre de magnitud. De fet, en la majoria de casos la similitud entre dades és gairebé idèntica, exceptuant el TPES d’Aràbia Saudita que mostra unes diferències variables al llarg del temps que no es poden menysprear, tot i que es desconeix la causa d’aquestes discrepàncies entre diferents fonts.
CAPÍTOL 3:
EMISSIONS DE DIÒXID DE CARBONI

3.1. Estat de l’art

De la mateixa manera que la Figura 1 mostra l’increment en el consum d’energia a partir de la revolució industrial, la Figura 82 permet observar que les emissions de diòxid de carboni han seguit una dinàmica similar.

Figura 82. Emissions antropogèniques globals de CO₂ en gigatones anuals (Fifth Assessment Report 2014).
A mesura que passen els anys, les emissions de CO\textsubscript{2} a l’atmosfera continuen creixent d’una manera desproporcionada que està inevitablement lligada al consum energètic mundial. En les últimes dècades, el progrés de la humanitat ha vingut de la mà dels nous mètodes d’obtenció i aprofitament d’energia, però les conseqüències ambientals que pot tenir aquest progrés encara no són del tot clares ja que ara per ara no es tenen previsions de com evolucionaran les emissions de diòxid de carboni en les properes dècades.

Això és degut a que, tal i com mostra el capítol anterior, un gran percentatge (habitualment superior al 75%) de l’energia que consumeixen els principals consumidors del planeta prové de recursos fòssils, i no sembla que ningú estigui disposat a reduir la seva dependència d’aquestes fonts energètiques, com a mínim a curt termini.

3.1.1. Objectiu del capítol

Tenint això present, l’objectiu d’aquest capítol és veure quina relació hi ha entre els vectors energètics treballats en el segon capítol d’aquest projecte i les emissions de diòxid de carboni que en deriven.

Aquesta relació es buscarà intentant definir un mètode per a calcular les emissions de CO\textsubscript{2} a partir del consum energètic d’un estat, demostrant que aquestes en són una conseqüència directa. L’establiment d’un mètode de càlcul vàlid per a determinar les emissions de diòxid de carboni és en sí un altre dels objectius del capítol.

Els vectors 	extit{Energy Supply} del capítol anterior han estat definits de manera que permetin esbrinar quina part del total d’energia obtinguda per un estat prové de recursos fòssils, i per tant, formen la base per al càlcul esmentat. S’ha de trobar, doncs, un mètode de càlcul que parteixi dels vectors 	extit{Energy Supply} i proporcioni informació sobre les emissions de diòxid de carboni relacionades.

### 3.1.2. 	extit{El paper de l’Intergovernmental Panel on Climate Change}

L’Agència Internacional de l’Energia indica a la seva pàgina 	extit{Indicators} que les emissions de CO\textsubscript{2} que hi apareixen han estat calculades seguint el document 	extit{Revised 1996 IPCC Guidelines} de l’	extit{Intergovernmental Panel on Climate Change} o IPCC. Per aquest motiu, en el projecte s’ha decidit revisar aquestes 	extit{Guidelines} amb la intenció d’analitzar els mètodes de càlcul que proposen.

L’IPCC té com a objectiu principal proporcionar informació científica, tècnica i socioeconòmica rellevant per a l’enteniment del canvi climàtic induït per la humanitat, els impactes potencials del canvi climàtic i les opcions de mitigació i adaptació a aquests canvis.

Entre altres documents tècnics rellevants en l’àmbit del medi ambient com els 	extit{Assessment Report}, en la producció de documents de l’IPCC destaca el 	extit{Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories}, que presenta diferents models de càlcul segons la complexitat i el grau de coneixement que es té sobre els recursos energètics de l’estat.

Com a part del desenvolupament del projecte, s’ha realitzat un anàlisi d’aquest document per a detallar quin o quins mètodes de càlcul s’hi proposen. Aquests mètodes es presenten més endavant.

3.1.3. El paper de la United Nations Framework Convention on Climate Change

En el capítol que ens ocupa és important tenir en compte diferents fonts internacionals que permetin obtenir dades i informació sobre les emissions de diòxid de carboni. En aquest àmbit destaca la United Nations Framework Convention on Climate Change o UNFCCC, un tractat de les Nacions Unides que va entrar en vigor l’any 1994 i que té com a objectiu principal l’estabilització de les concentracions de gasos d’efecte hivernacle a l’atmosfera a un nivell que impedeixi interferències antropògenes perillesos en el sistema climàtic.

La UNFCCC presenta una base de dades molt detallada en relació a les emissions de gasos d’efecte hivernacle, anomenada Greenhouse Gas Inventory Data. A continuació es presenta un breu anàlisi d’aquest inventari, ja que es considera un aspecte d’interès per al projecte i el seu àmbit de treball (UNFCCC Greenhouse Gas Inventory Data 2015).

L’inventari proporciona informació per a tots els països existents i també per a les tres agrupacions següents:

- Països membres de l’Annex 1 de la convenció.
- Economies en transició que formen part de l’Annex 1 de la convenció.
- Economies en no transició que formen part de l’Annex 1 de la convenció.

Aquest inventari té en compte un període de temps comprès entre el 1990 i el 2012, i permet escollir diferents àmbits de l’activitat humana que poden causar gasos d’efecte hivernacle. Així, entre altres, es poden conèixer les emissions relatives als següents aspectes:

- Emissions totals incloent l’ús de la terra.
- Emissions totals exclouent l’ús de la terra.
- Àmbit energètic.
- Àmbit industrial.
- Àmbit de l’agricultura.
- Àmbit de l’ús de la terra.
Totes aquestes categories tenen nombroses subcategories que permeten centrar l’inventari en aspectes molt concrets, com per exemple la generació de gasos en el procés de producció de ferro i acer o en la crema de de residus d’agricultura.

A més, es pot centrar la cerca de dades en un gas d’efecte hivernacle concret, com el diòxid de carboni, el metà, l’òxid nitrós o diferents derivats del fluor, o en canvi es pot optar per conèixer les dades d’emissions del total de gasos d’efecte hivernacle. És evident, doncs, que aquesta ha de ser una de les principals fonts a les que recórrer en l’àmbit de les emissions.

3.2. Mètodes de càlcul de l’IPCC

3.2.1. Nivell 1

El nivell 1 es basa en l’ús de combustibles, ja que les emissions es poden calcular en base a les quantitats de combustibles cremats i els seus factors d’emissió estandarditzats. Els factors d’emissió són coeficients empírics que relacionen l’energia generada en la combustió amb les emissions produïdes.

En alguns casos, la informació relativa a les quantitats de combustibles es pot obtenir a través d’estadístiques nacionals d’àmbit energètic, mentre que els factors d’emissió acceptats com a estàndard els proporciona el propi document.

Aquest nivell del mètode de càlcul es pot aplicar a diversos gasos d’efecte hivernacle, com el metà o l’òxid nitrós, però els factors d’emissió en aquests casos depenen de la tecnologia de combustió i les condicions en que aquesta es produeix, i poden variar significativament segons la situació.

En canvi, en el cas del diòxid de carboni aquests factors d’emissió depenen principalment del contingut de carboni de cada combustible. En aquest nivell de càlcul, les condicions en que té lloc la combustió (eficiència, carboni retingut en forma de cendra, etcètera) són considerades de poca importància.

3.2.2. Nivell 2

En aquest nivell, les estadístiques de combustibles consumits poden ser obtingudes de les mateixes fonts que en el nivell 1; no hi ha cap diferència en aquest sentit.

Per contra, els factors d’emissió de cada combustible ja no prenen valors estandarditzats com en el nivell anterior, sinó que en aquest cas s’utilitzen factors específics de cada país. En funció de la complexitat de les dades a disposició de cada estat, aquests factors d’emissió poden variar segons el
tipus de combustible específic utilitzat, la tecnologia de combustió o fins i tot entre plantes individuals. En aquests casos, es recomana desglossar el càlcul amb l’objectiu de que el procediment sigui el més acurat possible.

3.2.3. Nivell 3

El nivell 3 és el més exigent. En aquest cas s’utilitzen models detallats especialment per a cada país i, sempre que es pugui, es prendran dades individuals de cada planta mitjançant la monitorització detallada dels processos que impliquin emissions de gasos d’efecte hivernacle.

Aplicats correctament, aquests models i mesures haurien de proporcionar la millor estimació possible de les emissions de diòxid de carboni a l’atmosfera a costa d’un major esforç en el procés d’adquisició de dades.

El document *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* recomana, en aquest nivell, monitoritzar els fluxos de combustible quan aquests siguin fluids (principalment, petroli i gas natural) mentre que, en el cas del carbó sòlid, recomana mesurar directament el flux de les emissions ja que considera més difíciló mesurar la quantitat de combustibles cremats quan aquests són sòlids.

3.3. Elecció del mètode de càlcul

D’entre els tres nivells proposats anteriorment, el segon i el tercer requereixen una informació de la qual no es pot disposar fàcilment. Tot i que el nivell 1 és el menys acurat de tots tres, s’escull desenvolupar el primer nivell per a la seva aplicació al projecte.

3.3.1. Desenvolupament del nivell 1 de l’IPCC

El nivell 1 de l’IPCC és el més simple de tots tres, però no per això resulta senzill d’aplicar. A continuació es mostra el desenvolupament del mètode pas a pas, seguint el model que presenta l’IPCC en el seu document *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories*.

1. Estimació del consum aparent de combustible.

Segons l’IPCC, aquesta estimació es calcula de la següent manera:

\[
\text{Consum aparent} = \text{Producció} + \text{Importacions} - \text{Exportacions} - \text{Bunkers internacionals} - \text{Canvis en les existències}
\]

Aquesta descripció coincideix amb la definició de TPES que proporciona la IEA. Es pot comprovar la similitud amb la igualtat (1). Per acabar de confirmar la coincidència, el document específica que el terme *Producció* és nul per a les energies secundàries, com passa també en el factor TPES que defineix la IEA. Per tant, es considera que el terme *Consum aparent* de l’IPCC coincideix amb el TPES de la IEA.

Els combustibles a tenir en compte en el càlcul són els que indica la Taula 7.
Taula 7. *Combustibles indicats per al càlcul segons l’IPCC.*

<table>
<thead>
<tr>
<th>Fòssil líquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustibles primaris</td>
</tr>
<tr>
<td>Petroli cru</td>
</tr>
<tr>
<td>Orimulsion</td>
</tr>
<tr>
<td>Gas Natural líquid</td>
</tr>
<tr>
<td>Productes</td>
</tr>
<tr>
<td>Gasolina</td>
</tr>
<tr>
<td>Querosè de jet</td>
</tr>
<tr>
<td>Altre querosè</td>
</tr>
<tr>
<td>Oli d’esquist bituminós</td>
</tr>
<tr>
<td>Gasoil/fueloil (dièsel)</td>
</tr>
<tr>
<td>Fuel oil residual</td>
</tr>
<tr>
<td>LPG (Liquified Petroleum Gases)</td>
</tr>
<tr>
<td>Età</td>
</tr>
<tr>
<td>Nafta</td>
</tr>
<tr>
<td>Betum</td>
</tr>
<tr>
<td>Lubricants</td>
</tr>
<tr>
<td>Coc de petroli</td>
</tr>
<tr>
<td>Feedstocks de refineria</td>
</tr>
<tr>
<td>Altres petrolis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fòssil sòlid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustibles primaris</td>
</tr>
<tr>
<td>Antracita</td>
</tr>
<tr>
<td>Carbó de coc</td>
</tr>
<tr>
<td>Altre carbó bituminós</td>
</tr>
<tr>
<td>Carbó sub-bituminós</td>
</tr>
<tr>
<td>Lignit</td>
</tr>
<tr>
<td>Esquist bituminós</td>
</tr>
<tr>
<td>Torba</td>
</tr>
<tr>
<td>Productes</td>
</tr>
<tr>
<td>Briquetes de carbó i aglomerat</td>
</tr>
<tr>
<td>Forn de coc/Gas de coc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fòssil gasós</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Natural (sec)</td>
</tr>
</tbody>
</table>
2. Conversió a una unitat comú d’energia.
En funció de les fonts d’informació escollides, les dades obtingudes poden trobar-se en diferents unitats. En un intent d’homogeneïtzar el càlcul, es converteixen totes les unitats a terajoules (TJ). El document aporta la següent taula per a facilitar la conversió:

Taula 8. Factors de conversió proposats per l’IPCC.

<table>
<thead>
<tr>
<th>Unitat original</th>
<th>Factor de conversió</th>
</tr>
</thead>
<tbody>
<tr>
<td>J, MJ o GJ</td>
<td>Dividir per 10^{12}, 10^6 o 10^3 respectivament</td>
</tr>
<tr>
<td>10^6 toe</td>
<td>Multiplicar per $41868 \cdot 10^{-6}$ TJ/toe</td>
</tr>
<tr>
<td>Tcal</td>
<td>Multiplicar per $4,1868$ TJ/Tcal</td>
</tr>
<tr>
<td>10^3 t</td>
<td>Utilitzar el PCI de cada combustible</td>
</tr>
</tbody>
</table>

El document de l’IPCC proposa uns valors típics del PCI de cada combustible que es poden utilitzar en cas de no tenir valors estatals.

3. Multiplicació pels factors d’emissió de carboni.
Una vegada que es tenen tots els consums energètics en unitats de terajoules, es multipliquen pels factors d’emissió de carboni de cada combustible. El document presenta una llista de combustibles amb els valors corresponents dels factors d’emissió, per utilitzar-los sempre que no es disposi de dades més acurades.

Les unitats d’aquests factors d’emissió de carboni són tC/TJ. Per tant, el resultat de la multiplicació serà en tones de carboni, és a dir, en unitats de massa en lloc d’unitats d’energia.

En ocasions, els combustibles fòssils tenen usos no energètics, i la part que s’utilitza en aquests usos no generen emissions. Per tant, es pot determinar quina quantitat de combustibles han tingut usos no energètics i aplicar a aquestes quantitats els passos 1, 2 i 3 per a restar el seu contingut de carboni al resultat del pas 3.

De tota manera, no sempre es disposa d’aquesta informació, i per tant l’IPCC considera el pas 4 com a opcional.

5. Correcció del carboni no oxidat.
En el cas dels combustibles fòssils, no tot el contingut de carboni del combustible genera emissions. Per exemple, una part del carboni que forma part del carbó queda en forma de cendra i no causa emissions.
Àquesta part de carboni que no es crema (no s’oxida) dona forma al següent factor del càlcul, que rep el nom de fracció de carboni oxidat i que es recull en la següent taula extreta del *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories*:

Taula 9. Fracció de carboni oxidat segons l’IPCC.

<table>
<thead>
<tr>
<th>Combustible</th>
<th>Fracció de carboni oxidat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbó</td>
<td>98%</td>
</tr>
<tr>
<td>Derivats del petroli</td>
<td>99%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>99,5%</td>
</tr>
</tbody>
</table>

Aquests factors s’han de multiplicar pel resultat del pas 5 per obtenir les emissions reals de carboni.

6. Conversió a emissions de diòxid de carboni.

Les unitats del resultat del pas 5 són tones de carboni. Per tant, cal aplicar el següent factor de conversió per a obtenir les emissions reals de diòxid de carboni, en tones de diòxid de carboni:

\[44 \, g \, CO_2 = 12 \, g \, C \]

(5)

Tot i que aquest mètode és el més senzill dels que proposa l’IPCC, requereix tenir accés a més informació de la que disposen fonts com la IEA o el WB. Per aquest motiu es presenta una simplificació del mètode que, tot i ser extremadament reduïda en comparació al nivell 1, en apartats posteriors es demostrarà que continua donant resultats fiables.

3.3.2. **Simplificació del mètode**

A grans trets, es pot dir que el nivell 1 de l’IPCC consisteix en detallar el TPES de cadascun dels combustibles que indica la Taula 7 i aplicar-hi diferents factors de conversió fins arribar a determinar les emissions de diòxid de carboni. La simplificació que es proposa en aquest projecte té en compte els següents canvis:

- A nivell internacional és difícil disposar de totes les dades que demana el nivell 1 de l’IPCC, ja que es requereix una informació molt precisa i detallada que habitualment només es troba disponible en l’àmbit nacional. Per tant, en aquesta simplificació es proposa partir directament dels vectors *Energy Supply* dels apartats anteriors.
- Els combustibles que figuren en la Taula 7 s’agruparan en categories genèriques, que són:
 - Carbó
 - Productes derivats del petroli
 - Gas natural
- Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics -

- En lloc de tenir en compte tants factors de conversió, s’intentaran reduir al mínim per disminuir el nombre de passos a realitzar.

Tenint això en compte, el mètode de càlcul proposat és el següent:

1. Detallar els valors d’*Energy Supply* dels tres combustibles fòsils (carbó, derivats del petroli, gas natural). Partint de les dades que apareixen en els annexos del projecte, les seves unitats seran kilotones de petroli equivalent (*ktoe*).
2. Convertir les kilotones de petroli equivalent a megajoules. Es poden emprar els factors de conversió de la Taula 8.
3. Calcular la massa de diòxid de carboni emesa aplicant els factors que indica la Taula 10.
4. Modificar les unitats a aquelles més convenients per al seu estudi. En aquest cas, les unitats escollides són les megatones de diòxid de carboni (Mt CO$_2$).

Taula 10. Factors d’emissió dels combustibles fòsils (Carbon Dioxide Information Analysis Center 2015).

<table>
<thead>
<tr>
<th>Combustible</th>
<th>Factor d’emissió (kg CO$_2$ / MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbó</td>
<td>0,09</td>
</tr>
<tr>
<td>Derivats del petroli</td>
<td>0,07</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0,05</td>
</tr>
</tbody>
</table>

En l’apartat següent es posarà en pràctica aquest mètode i s’avaluarà la seva validesa.

3.4. Aplicació i validació del mètode de càlcul

3.4.1. Aplicació del càlcul

En aquest apartat es presenten els resultats del mètode per al cas de la Unió Europea. Els resultats de la resta d’estats són presents en els annexos.

Seguint el procediment descrit en el subapartat 3.3.2 s’obtenen els resultats que indica la Taula 11. Aquesta taula també mostra la taxa anual d’emissions.

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó (ktoe)</th>
<th>Petrolí (ktoe)</th>
<th>Gas Natural (ktoe)</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>455558</td>
<td>620129</td>
<td>286942</td>
<td>4134,730862</td>
<td>-</td>
</tr>
<tr>
<td>1991</td>
<td>434152</td>
<td>625452</td>
<td>306665</td>
<td>4110,959049</td>
<td>-0,57%</td>
</tr>
<tr>
<td>1992</td>
<td>405090</td>
<td>621461</td>
<td>297912</td>
<td>3971,429752</td>
<td>-3,39%</td>
</tr>
<tr>
<td>1993</td>
<td>379907</td>
<td>618924</td>
<td>309334</td>
<td>3893,012663</td>
<td>-1,97%</td>
</tr>
<tr>
<td>1994</td>
<td>370464</td>
<td>619022</td>
<td>309104</td>
<td>3857,236038</td>
<td>-0,92%</td>
</tr>
<tr>
<td>1995</td>
<td>365044</td>
<td>627808</td>
<td>335520</td>
<td>3917,861739</td>
<td>1,57%</td>
</tr>
<tr>
<td>1996</td>
<td>365125</td>
<td>641051</td>
<td>369329</td>
<td>4027,754772</td>
<td>2,80%</td>
</tr>
<tr>
<td>1997</td>
<td>349287</td>
<td>641317</td>
<td>361784</td>
<td>3953,060167</td>
<td>-1,85%</td>
</tr>
<tr>
<td>1998</td>
<td>333033</td>
<td>655805</td>
<td>373242</td>
<td>3958,260173</td>
<td>0,13%</td>
</tr>
<tr>
<td>1999</td>
<td>313376</td>
<td>643045</td>
<td>384668</td>
<td>3870,712929</td>
<td>-2,21%</td>
</tr>
<tr>
<td>2000</td>
<td>321270</td>
<td>630974</td>
<td>395797</td>
<td>3888,378712</td>
<td>0,46%</td>
</tr>
<tr>
<td>2001</td>
<td>323281</td>
<td>649882</td>
<td>406112</td>
<td>3972,964633</td>
<td>2,18%</td>
</tr>
<tr>
<td>2002</td>
<td>320276</td>
<td>639056</td>
<td>407630</td>
<td>3933,090806</td>
<td>-1,00%</td>
</tr>
<tr>
<td>2003</td>
<td>330370</td>
<td>643531</td>
<td>424446</td>
<td>4019,443974</td>
<td>2,20%</td>
</tr>
<tr>
<td>2004</td>
<td>327329</td>
<td>644848</td>
<td>435130</td>
<td>4034,210818</td>
<td>0,37%</td>
</tr>
<tr>
<td>2005</td>
<td>318142</td>
<td>641730</td>
<td>445025</td>
<td>4011,169183</td>
<td>-0,57%</td>
</tr>
<tr>
<td>2006</td>
<td>329504</td>
<td>637341</td>
<td>440078</td>
<td>4030,763407</td>
<td>0,49%</td>
</tr>
<tr>
<td>2007</td>
<td>329072</td>
<td>619555</td>
<td>434822</td>
<td>3966,006171</td>
<td>-1,61%</td>
</tr>
<tr>
<td>2008</td>
<td>305510</td>
<td>615739</td>
<td>443609</td>
<td>3884,432653</td>
<td>-2,06%</td>
</tr>
<tr>
<td>2009</td>
<td>268707</td>
<td>582872</td>
<td>415244</td>
<td>3590,049953</td>
<td>-7,58%</td>
</tr>
<tr>
<td>2010</td>
<td>282984</td>
<td>580997</td>
<td>446860</td>
<td>3704,537162</td>
<td>3,19%</td>
</tr>
<tr>
<td>2011</td>
<td>287579</td>
<td>558880</td>
<td>403594</td>
<td>3566,45901</td>
<td>-3,73%</td>
</tr>
<tr>
<td>2012</td>
<td>294017</td>
<td>538346</td>
<td>392478</td>
<td>3507,267706</td>
<td>-1,66%</td>
</tr>
</tbody>
</table>

3.4.2. Validació del càlcul

Per a poder comprovar si els resultats d’aquest métode de càlcul són fiables s’ha decidit comparar-los amb les dades que proporcionen la International Energy Agency, la United Nations Framework Convention on Climate Change i el World Bank.

La Taula 12 mostra la comparativa de les emissions de la Unió Europea. Les taules de la resta d’estats es poden trobar als annexos del projecte. Les caselles sense valor numèric indiquen que aquella font en concret no disposa de la informació requerida.
Taula 12. Comparativa de les emissions de la Unió Europea segons diverses fonts.

<table>
<thead>
<tr>
<th>Any</th>
<th>Emissions (Mt CO₂)</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>4134,730862</td>
<td>4067,76</td>
<td>4110,16</td>
<td>4113,09</td>
</tr>
<tr>
<td>1991</td>
<td>4110,959049</td>
<td>4045,02</td>
<td>4081,6</td>
<td>4167,78</td>
</tr>
<tr>
<td>1992</td>
<td>3971,429752</td>
<td>3918,27</td>
<td>3933,53</td>
<td>4052,92</td>
</tr>
<tr>
<td>1993</td>
<td>3893,012663</td>
<td>3840,09</td>
<td>3864,38</td>
<td>3974,40</td>
</tr>
<tr>
<td>1994</td>
<td>3857,236038</td>
<td>3822,24</td>
<td>3829,18</td>
<td>3927,41</td>
</tr>
<tr>
<td>1995</td>
<td>3917,861739</td>
<td>3864,38</td>
<td>3867,07</td>
<td>3997,73</td>
</tr>
<tr>
<td>1996</td>
<td>4027,754772</td>
<td>3981,89</td>
<td>3975,43</td>
<td>4117,96</td>
</tr>
<tr>
<td>1997</td>
<td>3953,060167</td>
<td>3896,46</td>
<td>3879,29</td>
<td>4012,48</td>
</tr>
<tr>
<td>1998</td>
<td>3958,260173</td>
<td>3899,22</td>
<td>3881,51</td>
<td>4015,52</td>
</tr>
<tr>
<td>1999</td>
<td>3870,712929</td>
<td>3835,03</td>
<td>3824,45</td>
<td>3895,75</td>
</tr>
<tr>
<td>2000</td>
<td>3888,378712</td>
<td>3852,05</td>
<td>3838,4</td>
<td>3914,06</td>
</tr>
<tr>
<td>2001</td>
<td>3972,964633</td>
<td>3927,88</td>
<td>3919,6</td>
<td>3998,48</td>
</tr>
<tr>
<td>2002</td>
<td>3933,090806</td>
<td>3900,85</td>
<td>3892,79</td>
<td>3967,91</td>
</tr>
<tr>
<td>2003</td>
<td>4019,443974</td>
<td>4008,58</td>
<td>3979,82</td>
<td>4058,41</td>
</tr>
<tr>
<td>2004</td>
<td>4034,210818</td>
<td>4007,61</td>
<td>3979,61</td>
<td>4068,78</td>
</tr>
<tr>
<td>2005</td>
<td>4011,169183</td>
<td>3988,26</td>
<td>3955,27</td>
<td>4047,10</td>
</tr>
<tr>
<td>2006</td>
<td>4030,763407</td>
<td>3997,85</td>
<td>3962,02</td>
<td>4058,77</td>
</tr>
<tr>
<td>2007</td>
<td>3966,006171</td>
<td>3945,82</td>
<td>3904,29</td>
<td>4009,95</td>
</tr>
<tr>
<td>2008</td>
<td>3884,432653</td>
<td>3862,03</td>
<td>3822,85</td>
<td>3926,14</td>
</tr>
<tr>
<td>2009</td>
<td>3590,049953</td>
<td>3565,16</td>
<td>3546,44</td>
<td>3629,05</td>
</tr>
<tr>
<td>2010</td>
<td>3704,537162</td>
<td>3678,88</td>
<td>3649,87</td>
<td>3709,76</td>
</tr>
<tr>
<td>2011</td>
<td>3566,45901</td>
<td>3547,73</td>
<td>3510,59</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>3507,267706</td>
<td>3504,88</td>
<td>3472</td>
<td>-</td>
</tr>
</tbody>
</table>
Àlex Aguilar Pérez

A l'hora d’analitzar aquestes comparatives, cal tenir en compte que la UNFCCC no propicia dades sobre les emissions de tots els països ja que els seus estudis es centren habitualment als estats de l’Annex 1 de la convenció. Per tant, en certes ocasions no hi hauran dades disponibles per part de la UNFCCC.

A més, és possible que les dades del WB mostren valors més elevats ja que inclouen les emissions causades pel tractament i ús de ciment. Tot i això, normalment les emissions relacionades amb el ciment són molt menors que les causades per la crema de combustibles fòssils, i per tant, les comparacions a gran escala no s’haurien de veure afectades.

Per altra banda, les dades del WB coincideixen amb les del GGCC. Per tant, es considera que la comparació entre fonts també serveix per a contrastar les seves dades.

A continuació es presenten els resultats d’aquesta comparació en forma de gràfica. Dita gráfica mostra, al mateix temps, l’èvolució de les emissions al llarg dels anys 1990-2012 segons el càlcul i segons les fonts esmentades anteriorment.

Figura 83. Comparativa entre les emissions calculades i les que presenten les principals fonts sobre energia i medi ambient.

Es pot veure que, com a mínim en el cas de la Unió Europea, el càlcul realitzat presenta uns resultats molt similars a les dades de les tres fonts escollides. No només presenten el mateix ordre de magnitud, sinó que la forma que presenta l’èvolució de les emissions al llarg dels anys es molt similar. Per tant, en aquest cas es pot dir que el mètode de càlcul que es proposa en el projecte és encertat.

Per a acabar de validar el mètode de càlcul es necessita demostrar que també presenta bons resultats en els altres països. Si es segueix el mateix procediment s’obtenen les gràfiques de la resta d’estats, i aquestes es mostren a continuació.
Figura 84. Evolució de les emissions a Aràbia Saudita.

Figura 85. Evolució de les emissions a Austràlia.

Figura 86. Evolució de les emissions a Brasil.
Àlex Aguilar Pérez

Figura 87. Evolució de les emissions a Canadà.

Figura 88. Evolució de les emissions als Estats Units.

Figura 89. Evolució de les emissions a la Índia.
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Figura 90. Evolució de les emissions a Indonèsia.

Figura 91. Evolució de les emissions a Iran.

Figura 92. Evolució de les emissions a Japó.
Figura 93. *Evolució de les emissions a la Mèxic.*

Figura 94. *Evolució de les emissions a la República de Corea.*

Figura 95. *Evolució de les emissions a Rússia.*
De manera similar al que mostra la Figura 83, els resultats de les comparatives entre diferents fonts demostren que el mètode de càlcul d’emissions de diòxid de carboni provinent de l’ús de combustibles fòssils que es proposa en aquest projecte és vàlid per a la seva aplicació ja que els seus resultats segueixen les mateixes dinàmiques que les dades de la IEA, la UNFCCC i el WB i mostren el mateix ordre de magnitud.

L’evolució d’aquestes emissions en els quinze estats estudiats en el projecte mostren una clara dinàmica en creixement, excepte en casos com la Unió Europea i Rússia, que han reduït les seves emissions en els últims 20 anys, i Estats Units, que ha reduït les seves emissions en els últims 10 anys, tot i que en menor proporció.

Aquest fet marca una clara relació amb els percentatges d’ús de combustibles fòssils de cada estat (Figures 37 a 51). És evident, doncs, que les emissions de diòxid de carboni, causants parcialment del canvi climàtic, són conseqüència directa de la crema de combustibles fòssils.
3.5. Emissions relatives al ciment

La indústria cimentera és la causant, aproximadament, del 5% de les emissions globals de diòxid de carboni. El CO\textsubscript{2} és un subproducte de la reacció química que té lloc en la fabricació del ciment, i a més, els forns que s'utilitzen en el procés consumeixen una gran quantitat de combustibles fòssils per a produir les elevades temperatures necessàries.

L'objectiu d'aquest apartat és analitzar quina informació es troba disponible a nivell internacional sobre les emissions de diòxid de carboni causades pel tractament i ús del ciment. Per a tal, es procedeix a estudiar tres de les principals fonts a les que s'ha recorregut al llarg del projecte, com són la International Energy Agency, la United Nations Framework Convention on Climate Change i el World Bank.

Ja que les emissions relatives al tractament de ciment no són tan desmesurades com les causades pels combustibles fòssils, la seva importància relativa és també menor, i això provoca que no hi hagi un control tan exhaustiu com en el cas dels combustibles fòssils. La conseqüència d'aquest fet és que les diferents fonts internacionals no tracten aquestes dades amb el mateix deteniment.

- Per una banda, la IEA no proporciona informació sobre aquest aspecte, ja que aquesta organització centra el seu treball en aspectes més energètics que mediambientals, tot i que aquests es troben íntimament relacionats. La seva secció d'estadístiques només ofereix dades de les emissions de diòxid de carboni relatives a l’ús de combustibles fòssils.

- La UNFCCC, en canvi, proporciona informació molt detallada sobre les emissions de CO\textsubscript{2}. De fet, presenta un inventari sobre gasos d’efecte hivernacle (Greenhouse Gas Inventory Data) molt extens. En relació al diòxid de carboni, en l’esmentat inventari es proporciona informació molt detallada ja sigui en l’ús de combustibles fòssils o en el tractament del ciment.

Cal tenir en compte, però, que aquestes dades tan detallades no es troben disponibles per a tots els països, ni tan sols per a la totalitat dels quinze que s’estudien en aquest projecte. Això és així perquè la UNFCCC centra els seus estudis en els estats que formen part de l’Annex 1 de la convenció, i en el cas dels estats que no en formen part la informació disponible no sempre és tan extensa com en la resta.

- Com ja s’ha dit en apartats posteriors d’aquest capítol, les dades que ofereix el WB sobre les emissions de diòxid de carboni ja inclouen tant les causades per l’ús de combustibles fòssils com les que són conseqüència del tractament del ciment. Així doncs, el WB no permet esbrinar les emissions dels combustibles fòssils i del ciment per separat.

Tenint tot això present, en aquest apartat es durà a terme una comparativa entre les dades de les diferents fonts amb l’objectiu de contrastar si aquestes dades mantenen certa coherència entre sí.
Dels quinze estats que s’estudien en aquest projecte, només sis apareixen en les dades de la UNFCCC relatives a les emissions de diòxid de carboni causat pel tractament del ciment. Per tant, basant-se en aquests sis països, la Taula 13 mostra les dades disponibles sobre les emissions de diòxid de carboni causades tant pels combustibles fòssils com pel ciment l’any 2010.

Taula 13. Informació disponible sobre emissions de CO₂ segons diverses fonts per a l’any 2010.

<table>
<thead>
<tr>
<th>Estat</th>
<th>IEA</th>
<th>UNFCCC</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fòssils</td>
<td>Fòssils</td>
<td>Ciment</td>
</tr>
<tr>
<td>Austràlia</td>
<td>387,3</td>
<td>368,08</td>
<td>3,55</td>
</tr>
<tr>
<td>Canadà</td>
<td>531,36</td>
<td>495,56</td>
<td>5,7</td>
</tr>
<tr>
<td>Estats Units</td>
<td>5427,14</td>
<td>5537,76</td>
<td>31,26</td>
</tr>
<tr>
<td>Japó</td>
<td>1134,05</td>
<td>1136,98</td>
<td>23,78</td>
</tr>
<tr>
<td>Rússia</td>
<td>1580,17</td>
<td>1415,84</td>
<td>22,69</td>
</tr>
<tr>
<td>Unió Europea</td>
<td>3678,88</td>
<td>3649,87</td>
<td>80,5</td>
</tr>
</tbody>
</table>

Per a comparar aquesta informació es decideix representar-la gràficament. La Figura 98 mostra aquesta gràfica en forma de diagrama de barres.

Figura 98. Comparativa d'emissions l'any 2010 segons diverses fonts

Aquesta figura permet comprovar que, tot i que les tres fonts escollides presenten unes dades amb ordres de magnitud similars, en alguns casos les informacions es contradiuen entre si. A continuació es mostren alguns d’aquests casos amb més detall.
Figura 99. Comparativa en el cas d’Austràlia.

Figura 100. Comparativa en el cas de Canadà.

Figura 101. Comparativa en el cas d’Estats Units.
Les Figures 99 a 102 són detalls de la Figura 98 i representen els casos concrets d’Austràlia, Canadà, Estats Units i Rússia. Algunes d’elles mostren situacions que indiquen una manca de coherència entre fonts.

Per exemple, en els casos d’Austràlia i Canadà, les emissions causades per la combustió de combustibles fòssils (segons IEA) són superiors a la suma de les causades per combustibles fòssils i ciment (segons UNFCCC i WB). En aquests dos casos, tenint en compte que les dades de la UNFCCC i el WB són pràcticament idèntiques, sembla que aquestes últimes són les opcions més fiables.

En canvi, la Figura 102 permet veure que les emissions totals que indica la UNFCCC són inferiors a les causades només pels combustibles fòssils segons la IEA. A més, la diferència entre les emissions totals indicades per la UNFCCC i les indicades pel WB presenten una diferència d’aproximadament 300 megatones de diòxid de carboni, una quantitat massa gran per considerar que les dades tenen certa coherència entre elles.

De tota manera, cal tenir en compte que en la majoria de casos, si bé no tots, les dades sí que mantenen una coherència i presenten uns ordres de magnitud molt similars. Tenint present que la UNFCCC es dedica principalment a l’àmbit de les emissions de gasos d’efecte hivernacle, sembla probable que les dades més acurades en els països membres de l’Annex 1 siguin les seves. Per altra banda, per tots aquells estats que no siguin membres de l’Annex 1, les seves dades es poden trobar gràcies al WB tot i que el seu grau de detall sigui menor.

3.6. Conclusions

Havent finalitzat el capítol, les conclusions extretes són les següents:

- La UNFCCC i l’IPCC són dues plataformes molt diferents però que formen part indispensable dels avenços que la humanitat dugui a terme en l’àmbit de la mitigació i l’adaptació per al canvi climàtic. En aquest capítol només s’ha estudiat una part molt petita de la seva producció de dades i documents, aquells aspectes que tenien una influència directa en el desenvolupament del projecte, i tot i així la seva ajuda ha estat indispensable.
• Els tres nivells del mètode de càlcul que proposa l’IPCC per a definir un inventari nacional d’emissions de gasos d’efecte hivernacle són exhaustius i estrictes, fins i tot el més senzill de tots tres, i són una bona guia que ha de permetre als diferents països acordar una manera comú, compartida i acceptada per tots de determinar les emissions propies, de manera que s’evitin discrepàncies en el moment d’acceptar-ne els resultats.

Tot i això, requereixen d’una informació que habitualment només es troba disponible a nivell nacional, i no sembla que siguin un mètode vàlid per aplicar a nivell internacional on, per exemple, esbrinar el consum de carbó de coc que va haver a Aràbia Saudita l’any 1992 pot ser relativament difícil.

• El mètode de càlcul d’emissions de diòxid de carboni amb origen en l’ús de combustibles fòssils que es proposa en aquest projecte és més senzill d’aplicar que els esmentats en el punt anterior ja que només es requereix conèixer els vectors Energy Supply de cada estat. Aquests vectors es poden definir partint de les dades de la IEA tal i com es mostra en el capítol segon d’aquest projecte. A més, la comparació dels resultats amb les dades de les principals fonts d’àmbit mediambiental demostren que el mètode és capaç de proporcionar resultats fiables i vàlids.

• Les emissions de diòxid de carboni dels principals emissors del planeta continuen en creixement, i mentre això sigui així no sembla que es pugui evitar que la temperatura mitjana del planeta superi els 2ºC per damunt del que seria sense la intervenció de l’ésser humà. S’espera que la COP de París 2015 estableixi uns límits que realment ajudin a aturar aquestes dinàmiques.

• Les dades disponibles a nivell internacional sobre les emissions de diòxid de carboni causades pel tractament del ciment no són tan accessibles com les causades per l’ús de combustibles fòssils. La principal font d’informació en aquest àmbit, la United Nations Framework Convention on Climate Change, habitualment es centra en els països membres de l’Annex 1 de la convenció i deixa de banda la resta. En aquests casos, la millor font disponible és el World Bank, que proporciona informació del conjunt d’emissions de diòxid de carboni (originades per l’ús de combustibles fòssils i pel tractament de ciment al mateix temps) però no presenta dades de les emissions causades únicament pel tractament de ciment.
CAPÍTOL 4: LA IDENTITAT DE KAYA I POSSIBLES DESENVOLUPAMENTS FUTURS D’AQUEST PROJECTE

4.1. Estat de l’art

4.1.1. La identitat de Kaya

La identitat de Kaya és una expressió matemàtica que permet relacionar els diferents factors antropogènics que influeixen en les emissions de diòxid de carboni relacionades amb l’ús de combustibles fòssils. Aquesta relació va ser formulada per l’economista energètic japonès Yoichi Kaya en el seu llibre Environment, Energy, and Economy: strategies for sustainability (Descomposició en factors de Kaya 2014).

La identitat es formula de la següent manera:

\[
\text{Emissions CO}_2 = \text{Població \cdot \left(\frac{PIB}{càpita} \right) \cdot \left(\frac{Intensitat}{Energètica} \right) \cdot \left(\frac{Intensitat}{d'Emissions} \right)}
\]

(6)
En la mesura en que els nivells de població no són controlables i que no és aquesta la causa de les emissions de diòxid de carboni, habitualment els termes relacionats amb la població queden fora de la igualtat, i el resultat és el següent:

\[
\text{Emissions } CO_2 = PIB \cdot \left(\frac{\text{Intensitat Energètica}}{\text{Intensitat d'Emisions}} \right)
\] \hspace{1cm} (7)

Seguint les definicions del punt 2.2.1 del projecte, aquesta igualtat pren la forma que indica l’expressió (8).

\[
\text{Emissions } CO_2 = PIB \cdot \frac{TPES}{PIB} \cdot \frac{Emissions CO_2}{TPES}
\] \hspace{1cm} (8)

Aquesta igualtat, doncs, no permet calcular les emissions de diòxid de carboni però sí que permet avaluar la influència que exerceixen en aquestes cadascun dels tres factors que hi apareixen.

En el segon capítol del projecte es pot veure que la pàgina d’indicadors de la International Energy Agency proporciona informació d’aquests tres factors. Per tant, en aquest capítol es prendran les dades de la IEA ja que es considera una font fiable i de fàcil accés.

Les definicions dels tres factors implicats en la identitat de Kaya són les següents:

- PIB (Producte Interior Brut). És un indicador econòmic que reflecteix el valor monetari dels bens i serveis produïts en un país durant un determinat període de temps, habitualment un any. En els indicadors de la IEA, aquest terme és expressat en dòlars estatunidencs constants del 2005.
- Intensitat energètica. Marca la relació entre l’energia adquirida per l’estat (TPES) i el producte interior brut (PIB). És un indicador de l’eficiència energètica de l’estat. Com menor sigui la intensitat energètica, menys energia requerirà produir una unitat monetària.
- Intensitat d’emissions. Indica la relació entre les emissions de diòxid de carboni del país i el subministrament total d’energia (TPES). Com menor sigui la intensitat d’emissions, més neta serà la tecnologia de l’estat (menys emissions per cada unitat d’energia).

El PIB d’un país és un indicador del seu desenvolupament econòmic, mentre que les intensitats energètica i d’emissions són factors tècnics i tecnològics que tenen a veure amb les tecnologies de combustió i els vectors energètics de cada estat, entre altres aspectes. Així doncs, la identitat de Kaya permet relacionar diferents factors antropogènics d’un país per a veure com influeixen en les seves emissions.
4.1.2. Possibles desenvolupaments futurs d’aquest projecte

En els capítols anteriors d’aquest projecte s’ha desenvolupat un mètode de càlcul d’emissions de diòxid de carboni que les relaciona de manera directa amb el vector energètic del país en qüestió. Si bé fins ara s’ha treballat en termes científics (vectors energètics, massa de CO₂ emesa per unitat d’energia, etcètera), el següent pas seria definir els principals factors antropogènics (econòmics, socials...) que tinguin una influència sobre aquestes emissions per a poder actuar-hi directament amb la intenció de reduir les emissions de gasos d’efecte hivernacle a l’atmosfera.

La identitat de Kaya permet fer precisament això, és a dir, avaluar com influeixen determinats factors humans en les emissions. Així doncs, una possible continuació del desenvolupament d’aquest projecte seria l’estudi dels factors antropogènics que apareixen a la identitat (7) per a veure quina relació hi ha amb tot allò que s’ha tractat en els capítols 2 i 3.

Com que l’objectiu d’aquest projecte ja ha estat assolit, aquest tema es presenta com una proposta per a futurs projectes. A continuació s’introdueixen breument algunes de les observacions que es podrien fer partint de la base que ofereix la identitat de Kaya.

4.2. Aplicació per al 2010

En aquest apartat es prendran de la IEA els valors dels tres factors antropogènics que formen part de la igualtat (7) amb la intenció de comprovar que aquesta es compleixi i avaluar-ne els resultats.

A més, el fet de treballar amb aquests factors permet dur a terme una comparació entre els quinze països per estudiar-ne diferents aspectes del seu desenvolupament tecnològic.

La taula següent mostra el procés d’aplicació en l’any 2010 i els seus resultats, així com una comparativa amb les dades d’emissions de la IEA per comprovar que els resultats són el que se n’espera.
<table>
<thead>
<tr>
<th>Estat</th>
<th>PIB</th>
<th>Intensitat energètica (TPES/PIB)</th>
<th>Intensitat de CO2 (CO2/TPES)</th>
<th>Emissions CO2 Segons càlcul (Mt CO2)</th>
<th>Emissions CO2 Segons IEA (Mt CO2)</th>
<th>Diferència Respecte IEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aràbia Saudita</td>
<td>435,99</td>
<td>0,43</td>
<td>2,24</td>
<td>419,945568</td>
<td>414,85</td>
<td>1,23%</td>
</tr>
<tr>
<td>Austràlia</td>
<td>870,1</td>
<td>0,14</td>
<td>3,16</td>
<td>384,93224</td>
<td>387,3</td>
<td>-0,61%</td>
</tr>
<tr>
<td>Brasil</td>
<td>1096,75</td>
<td>0,24</td>
<td>1,46</td>
<td>384,3012</td>
<td>388,52</td>
<td>-1,09%</td>
</tr>
<tr>
<td>Canadà</td>
<td>1240,07</td>
<td>0,2</td>
<td>2,11</td>
<td>523,30954</td>
<td>531,36</td>
<td>-1,52%</td>
</tr>
<tr>
<td>Estats Units</td>
<td>13595,64</td>
<td>0,16</td>
<td>2,45</td>
<td>5329,49088</td>
<td>5427,14</td>
<td>-1,80%</td>
</tr>
<tr>
<td>Índia</td>
<td>1243,68</td>
<td>0,58</td>
<td>2,42</td>
<td>1745,629248</td>
<td>1749,33</td>
<td>-0,21%</td>
</tr>
<tr>
<td>Indonèsia</td>
<td>377,9</td>
<td>0,55</td>
<td>1,87</td>
<td>388,67015</td>
<td>392,44</td>
<td>-0,96%</td>
</tr>
<tr>
<td>Iran</td>
<td>242,7</td>
<td>0,85</td>
<td>2,45</td>
<td>505,42275</td>
<td>508,47</td>
<td>-0,60%</td>
</tr>
<tr>
<td>Japó</td>
<td>4648,48</td>
<td>0,11</td>
<td>2,27</td>
<td>1160,725456</td>
<td>1134,05</td>
<td>2,35%</td>
</tr>
<tr>
<td>Mèxic</td>
<td>952,04</td>
<td>0,19</td>
<td>2,37</td>
<td>428,703612</td>
<td>417,94</td>
<td>2,58%</td>
</tr>
<tr>
<td>República de Corea</td>
<td>1019,09</td>
<td>0,25</td>
<td>2,26</td>
<td>575,78585</td>
<td>564,47</td>
<td>2,00%</td>
</tr>
<tr>
<td>Rússia</td>
<td>909,25</td>
<td>0,77</td>
<td>2,25</td>
<td>1575,275625</td>
<td>1580,17</td>
<td>-0,31%</td>
</tr>
<tr>
<td>Sud-àfrica</td>
<td>289,66</td>
<td>0,49</td>
<td>2,64</td>
<td>374,704176</td>
<td>376,31</td>
<td>-0,43%</td>
</tr>
<tr>
<td>Unió Europea</td>
<td>14430,94</td>
<td>0,12</td>
<td>2,14</td>
<td>3705,865392</td>
<td>3678,88</td>
<td>0,73%</td>
</tr>
<tr>
<td>Xina</td>
<td>3838</td>
<td>0,66</td>
<td>2,87</td>
<td>7269,9396</td>
<td>7294,92</td>
<td>-0,34%</td>
</tr>
</tbody>
</table>
Es pot veure que, efectivament, la igualtat es compleix si es tenen en compte petits marges d’error causats probablement per l’arrodoniment en alguns dels indicadors per part de la IEA.

L’aspecte més interessant de la identitat de Kaya, però, és analitzar els seus factors per separat. La Figura 103 mostra la intensitat energètica de cadascun dels països considerats.

Figura 103. Intensitat energètica dels quinze estats que s’estudien en el projecte en l’any 2010.

Com ja s’ha dit anteriorment, el millor és que la intensitat energètica sigui la menor possible. En aquest sentit, els països que requereixen menys energia per a produir una unitat monetària són Austràlia, Brasil, Canadà, Estats Units, Japó, Mèxic, la República de Corea i la Unió Europea.

És interessant veure que en aquest grup hi entra algun dels estats que encara no es consideren com plenament desenvolupats, com és Brasil, ja que és habitual que les economies en desenvolupament no disposin de tecnologies tan eficients com les ja desenvolupades. Aquest és el cas, per exemple, d’estats com Indonèsia o Sud-àfrica.

Per altra banda cal destacar que Rússia, un país que es considera plenament desenvolupat, encara té una intensitat energètica de les més altes.

La Figura 104 presenta els valors de la intensitat d’emissions per als quinze estats estudiats.
Àlex Aguilar Pérez

Figura 104. Intensitat d’emissions dels quinze estats que s’estudien en el projecte en l’any 2010.

De la mateixa manera que en el cas de la intensitat energètica, el més desitjable és que la intensitat d’emissions sigui el més petita possible ja que això implica menys emissions per unitat d’energia.

En aquest aspecte torna a destacar el cas de Brasil, que presenta la menor intensitat d’emissions dels quinze estats. També destaca Austràlia, en aquest cas per ser el país amb més emissions per unitat d’energia.

També cal notar que, a part de Brasil, els estats amb menor intensitat d’emissions són Canadà, Indonèsia i la Unió Europea. Es podria dir que dels quinze estats, aquests quatre és els que disposen d’una tecnologia més neta en quant a emissions de diòxid de carboni.

4.3. Aplicació en el període 2000-2010

En aquest apartat es durà a terme una tasca similar a la de l’apartat anterior, però s’aplicarà a un període d’onze anys, del 2000 al 2010.

El procediment aplicat en aquest apartat consisteix en adquirir les dades dels tres factors antropogènics que formen la identitat de Kaya per als anys 2000 i 2010 i calcular-ne la variació percentual entre l’inici i el final d’aquest període. Això permetrà representar aquestes variacions en una mateixa gràfica per a estudiar-les, cadascuna en relació a la resta.

La Taula 15 mostra el desenvolupament esmentat.
Taula 15. Aplicació de la identitat de Kaya partint de les dades de la IEA per al període 2000-2010. Les unitats són les mateixes que ja s’han tractat en aquest capítol.

<table>
<thead>
<tr>
<th>Estat</th>
<th>PIB</th>
<th>Δ%</th>
<th>Intensitat energètica</th>
<th>Intensitat de CO2</th>
<th>Δ%</th>
<th>Emissions de CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2010</td>
<td>Δ%</td>
<td>2000</td>
<td>2010</td>
<td>Δ%</td>
</tr>
<tr>
<td>Aràbia Saudita</td>
<td>258,61</td>
<td>435,99</td>
<td>68,6%</td>
<td>0,38</td>
<td>0,43</td>
<td>13,2%</td>
</tr>
<tr>
<td>Austràlia</td>
<td>643,13</td>
<td>870,1</td>
<td>35,3%</td>
<td>0,17</td>
<td>0,14</td>
<td>-17,6%</td>
</tr>
<tr>
<td>Brasil</td>
<td>768,99</td>
<td>1096,75</td>
<td>42,6%</td>
<td>0,24</td>
<td>0,24</td>
<td>0,0%</td>
</tr>
<tr>
<td>Canadà</td>
<td>1026,88</td>
<td>1240,07</td>
<td>20,8%</td>
<td>0,24</td>
<td>0,2</td>
<td>-16,7%</td>
</tr>
<tr>
<td>Estats Units</td>
<td>11558,79</td>
<td>13595,64</td>
<td>17,6%</td>
<td>0,2</td>
<td>0,16</td>
<td>-20,0%</td>
</tr>
<tr>
<td>Índia</td>
<td>602,65</td>
<td>1243,68</td>
<td>106,4%</td>
<td>0,76</td>
<td>0,58</td>
<td>-23,7%</td>
</tr>
<tr>
<td>Indonèsia</td>
<td>226,92</td>
<td>377,9</td>
<td>66,5%</td>
<td>0,69</td>
<td>0,55</td>
<td>-20,3%</td>
</tr>
<tr>
<td>Iran</td>
<td>146,28</td>
<td>242,7</td>
<td>65,9%</td>
<td>0,84</td>
<td>0,85</td>
<td>1,2%</td>
</tr>
<tr>
<td>Japó</td>
<td>4308,1</td>
<td>4648,48</td>
<td>7,9%</td>
<td>0,12</td>
<td>0,11</td>
<td>-8,3%</td>
</tr>
<tr>
<td>Mèxic</td>
<td>788,25</td>
<td>952,04</td>
<td>20,8%</td>
<td>0,18</td>
<td>0,19</td>
<td>5,6%</td>
</tr>
<tr>
<td>República de</td>
<td>678,27</td>
<td>1019,09</td>
<td>50,2%</td>
<td>0,28</td>
<td>0,25</td>
<td>-10,7%</td>
</tr>
<tr>
<td>Corea</td>
<td>Rússia</td>
<td>567,38</td>
<td>909,25</td>
<td>60,3%</td>
<td>1,09</td>
<td>0,77</td>
</tr>
<tr>
<td>Sud-àfrica</td>
<td>204,7</td>
<td>289,66</td>
<td>41,5%</td>
<td>0,53</td>
<td>0,49</td>
<td>-7,5%</td>
</tr>
<tr>
<td>Unió Europea</td>
<td>12582,83</td>
<td>14430,94</td>
<td>14,7%</td>
<td>0,13</td>
<td>0,12</td>
<td>-7,7%</td>
</tr>
<tr>
<td>Xina</td>
<td>1417,05</td>
<td>3838</td>
<td>170,8%</td>
<td>0,82</td>
<td>0,66</td>
<td>-19,5%</td>
</tr>
</tbody>
</table>
La següent figura permet observar d’una manera més visual els càlculs de la Taula 15.

Aquesta gràfica de barres apilades mostra la variació en tant per cent dels tres factors antropogènics que formen part de la identitat de Kaya. A més, es marca amb una creu la variació en les emissions originades per a poder relacionar-les amb les seves causes.

El que més destaca és l’augment del nivell econòmic de tots els estats que hi figuren, ja que tots reflecteixen un augment del PIB en major o menor mesura. El cas més desproporcionat és el de la Xina, que en el període de temps analitzat ha augmentat el seu PIB en un 170%, mentre que el Japó només mostra un augment del 8% en aquest àmbit.

Cal notar, però, que tots els països que han aconseguit augmentar el seu producte interior brut en grans proporcions mostren també un gran increment de les emissions de diòxid de carboni. En canvi, en els casos de les economies més estancades (especialment Japó, la Unió Europea i Estats Units) les seves emissions en aquest període o bé s’han reduït o s’han mantingut estables. És evident, doncs, que el desenvolupament econòmic en la primera dècada del segle XXI ha implicat un increment en les emissions de diòxid de carboni.

És interessant, per altra banda, analitzar els efectes de la resta de factors. Un bon anàlisi és el que resulta de comparar els casos de Canadà i Mèxic. Tots dos països mostren un creixement econòmic i una intensitat d’emissions molt similar. En canvi, la intensitat energètica de Canadà ha patit una disminució dels voltants de 17% mentre que a Mèxic aquest factor mostra un increment del 6% aproximadament.
Aquesta diferència s’ha traduït en un augment del 25% en les emissions de Mèxic, mentre que a Canadà s’hi han mantingut pràcticament estables. En resum, una diferència del 25% aproximadament en la intensitat energètica ha provocat, en aquest cas, un 25% de diferència en les emissions de diòxid de carboni, demostrant que la intensitat energètica pot influir de manera clara en aquestes últimes.

Un altre ànàlisi interessant pot ser observar com han variat la intensitat energètica i la intensitat d’emissions en el període 2000-2010. Com ja s’ha dit, una disminució en la intensitat energètica mostra que es requereix menys energia per a produir una unitat monetària, i implica un estalvi energètic (i per tant econòmic). Això es reflecteix en el fet que la majoria de països han intentat que aquest factor disminueixi o, com a mínim, que no augmenti.

En canvi, una disminució en la intensitat d’emissions causa una reducció en les emissions de diòxid de carboni. Com que això no implica directament un benefici econòmic, a diferència del cas de la intensitat energètica, no es veu que el conjunt dels estats hagi aplicat grans esforços en que això passi. També cal tenir en compte que disminuir la intensitat d’emissions passa per millorar els sistemes de combustió i per una transició a un sistema energètic més renovable, i això no és pas un objectiu senzill d’assolir.

Tot i això, crida l’atenció que, altra vegada, sigui Brasil l’estat que mostra una major disminució en la intensitat d’emissions, arribant a reduir-les en un 10% en el període 2000-2010.

4.4. Conclusions

Havent finalitzat el quart capítol del projecte, les conclusions extretes són les següents:

- La identitat de Kaya és una eina útil per a analitzar la relació entre diferents factors antropogènics i les emissions de diòxid de carboni, i presenta una bona continuació per al desenvolupament d’aquest projecte.
- L’augment en el nivell econòmic dels estats en desenvolupament durant els anys 2000-2010 ha implicat un increment considerable en les emissions de diòxid de carboni en aquests països.
- Es pot observar una reducció en la intensitat energètica de la majoria de països estudiats en aquest projecte, probablement a causa de l’estalvi econòmic que això implica. En canvi, no sembla que s’hagin produït molts esforços en promoure la reducció de la intensitat d’emissions.
- En l’àmbit dels factors antropogènics, destaca que Brasil, que és un estat en desenvolupament, presenta unes intensitats energètica i d’emissions molt baixes en comparació a la resta de països.
5.1. Conclusions tècniques

Entre totes les fonts internacionals de dades sobre l’àmbit energètic i mediambiental, l’Agència Internacional de l’Energia proporciona informació suficientment detallada per a estudiar els vectors energètics de cada estat. De les seves dades se’n pot extreure el Total Primary Energy Supply total, però a més és possible conèixer altres informacions associades com el consum d’energia primària en les centrals elèctriques i l’electricitat generada, entre altres aspectes clau del sector energètic d’un estat.

La United Nations Framework Convention on Climate Change i l’Intergovernmental Panel on Climate Change són dues plataformes que formen part indispensable dels avenços que la humanitat dugui a terme en l’àmbit de la mitigació i l’adaptació per al canvi climàtic. El Greenhouse Gas Inventory Data de la UNFCCC presenta una base de dades molt extensa relativa a les emissions de diversos gasos d’efecte hivernacle. Els vectors Total Primary Energy Supply són un reflex fidel de l’energia total adquirida per un estat, a l’hora que permeten definir el seu origen i el percentatge de combustibles fòssils sobre el total. Ara bé, el TPES no contempla les transformacions que pateix el petroli cru per a convertir-se en productes derivats del petroli, i per tant no és un factor apte per a servir com a base en el càlcul de les emissions de diòxid de carboni com a conseqüència de l’ús de combustibles fòssils, que era l’objectiu general del projecte. Per resoldre aquesta mancança, els vectors Energy Supply incorporen informació addicional al TPES i mostren la quantitat final de combustibles del petroli posteriors a la transformació del petroli cru, i per tant mostren el petroli que es consumeix amb finalitats energètiques. D’aquesta manera, els vectors Energy Supply sí que serveixen com a base
per al càlcul d’emissions de diòxid de carboni causats per l’ús dels combustibles fòssils.

Els tres nivells del mètode de càlcul que proposa l’IPCC per a definir un inventari nacional d’emissions de gasos d’efecte hivernacle són exhaustius i estrictes, fins i tot el més senzill de tots tres, i són una bona guia que ha de permetre als diferents països acordar una manera comú, compartida i acceptada per tots de determinar les emissions pròpies. Tot i això, requereixen d’una informació que habitualment només es troba disponible a nivell nacional, i no sembla que siguin un mètode vàlid per aplicar a nivell internacional.

El mètode de càlcul d’emissions de diòxid de carboni amb origen en l’ús de combustibles fòssils que es proposa en aquest projecte és més senzill d’aplicar que els esmentats en el punt anterior ja que només es requereix conèixer els vectors Energy Supply de cada estat. A més, la comparació dels resultats amb les dades de les principals fonts d’àmbit mediambiental demostren que el mètode és capaç de proporcionar resultats fiables i vàlids.

En relació als resultats de l’aplicació d’aquest mètode, s’observa que les emissions de diòxid de carboni dels principals emisors del planeta continuen en creixement, i mentre això sigui així no sembla que es pugui evitar que la temperatura mitjana del planeta superi els 2ºC per damunt del que seria sense la intervenció de l’èsser humà. S’espera que la COP de París 2015 estableixi uns límits que realment ajudin a aturar aquestes dinàmiques.

Les dades disponibles a nivell internacional sobre les emissions de diòxid de carboni causades pel tractament del ciment no són tan accessibles com les causades per l’ús de combustibles fòssils. La principal font d’informació en aquest àmbit, la United Nations Framework Convention on Climate Change, habitualment es centra en els països membres de l’Annex 1 de la convenció i deixa de banda la resta. En aquests casos, la millor font disponible és el World Bank, que proporciona informació del conjunt d’emissions de diòxid de carboni (originades per l’ús de combustibles fòssils i pel tractament de ciment al mateix temps) però no presenta dades de les emissions causades únicament pel tractament de ciment.

La identitat de Kaya és una eina útil per a analitzar la relació entre diferents factors antropogènics i les emissions de diòxid de carboni, i presenta una bona continuació per al desenvolupament d’aquest projecte.

Pel que fa a l’anàlisi d’aquests factors antropogènics, es pot veure que l’augment en el nivell econòmic dels estats en desenvolupament durant els anys 2000-2010 ha implicat un increment considerable en les emissions de diòxid de carboni en aquests països. També es pot apreciar una reducció en la intensitat energètica de la majoria de països estudiats en aquest projecte, probablement a causa de l’estalvi econòmic que això implica. En canvi, no sembla que s’hagin produït molts esforços en promoure la reducció de la intensitat d’emissions. En aquest aspecte destaca que Brasil, que és un país en desenvolupament, presenta unes intensitats energètica i d’emissions molt baixes en comparació a la resta de països.
Les comparatives que s’han dut a terme entre la base de dades del GGCC i les dades que han aparegut en el projecte (ja siguin calculades o extretes directament de les diverses fonts tractades) han mostrat que es treballa sempre amb el mateix ordre de magnitud. En la majoria de casos la similitud entre dades és gairebé idèntica, exceptuant casos menors i molt concrets que no influeixen en la valoració general.

5.2. Conclusions personals

Un cop finalitzat el desenvolupament del projecte, es considera que l’objectiu principal s’ha complert satisfactòriament. Al llarg del seu desenvolupament han aparegut certs problemes, especialment per la dificultat d’assimilar correctament el concepte de Total Primary Energy Supply i per la complexitat dels mètodes de càlcul d’emissions de diòxid de carboni que proposa l’Intergovernmental Panel on Climate Change, però tots dos problemes s’han pogut resoldre gràcies a la definició d’un nou vector energètic, l’Energy Supply, i a l’adaptació del mètode de càlcul a aquest nou vector energètic.

Així doncs, en acabar el projecte la sensació és de satisfacció, no només pels objectius assolits sinó per haver pogut iniciar el camí a futurs projectes que basin la seva anàlisi en la identitat de Kaya.
6.1. Referències bibliogràfiques

6.2. Bibliografia de Consulta

Annexos

ESTUDI DE LES CORRELACIONS ENTRE LES EMISSIONS DE CO₂ I ELS VECTORS ENERGETICS

TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Àlex Aguilar Pérez

Barcelona, 09 de Juny de 2015

Director: Josep Xercavins i Valls
Departament de Mecànica de Fluids (MF)
Universitat Politècnica de Catalunya (UPC)
ÍNDICE ANNEXOS

Índex Annexos ... 1
 1. Annex a l’apartat 2.3.1.. 3
 2. Annex a l’apartat 2.3.2 ..18
 3. Annex a l’apartat 2.3.3 ..34
 4. Annex a l’apartat 2.4. ..42
 5. Annex a l’apartat 3.4. ..58
1. Annex a l’apartat 2.3.1

En aquest annex es mostren les taules resultants de la comparativa entre els valors de TPES de la IEA i la base de dades del GGCC.

Aràbia Saudita

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>2,5</td>
<td>2,9</td>
<td>3,3</td>
<td>3,4</td>
<td>3,6</td>
<td>3,7</td>
<td>3,9</td>
<td>3,7</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>59,7</td>
<td>69,5</td>
<td>79,1</td>
<td>80,8</td>
<td>86,4</td>
<td>87,4</td>
<td>92,9</td>
<td>89,1</td>
<td>94,6</td>
<td>96,5</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>58,0</td>
<td>67,5</td>
<td>76,9</td>
<td>79,9</td>
<td>84,0</td>
<td>84,5</td>
<td>90,5</td>
<td>86,3</td>
<td>91,9</td>
<td>93,6</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>2,84%</td>
<td>2,90%</td>
<td>2,82%</td>
<td>1,22%</td>
<td>2,78%</td>
<td>3,42%</td>
<td>2,72%</td>
<td>3,24%</td>
<td>2,93%</td>
<td>3,08%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>4,2</td>
<td>4,5</td>
<td>4,9</td>
<td>5,1</td>
<td>6,0</td>
<td>6,1</td>
<td>6,6</td>
<td>6,0</td>
<td>6,4</td>
<td>7,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>101,2</td>
<td>106,5</td>
<td>116,8</td>
<td>121,2</td>
<td>143,5</td>
<td>145,3</td>
<td>157,9</td>
<td>143,9</td>
<td>153,8</td>
<td>175,4</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>97,9</td>
<td>100,5</td>
<td>111,3</td>
<td>112,6</td>
<td>119,8</td>
<td>122,6</td>
<td>135,8</td>
<td>140,3</td>
<td>156,5</td>
<td>166,6</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>3,37%</td>
<td>6,00%</td>
<td>4,95%</td>
<td>7,64%</td>
<td>19,75%</td>
<td>18,56%</td>
<td>16,32%</td>
<td>2,56%</td>
<td>1,71%</td>
<td>5,28%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>8,0</td>
<td>7,8</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>191,7</td>
<td>186,8</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>185,4</td>
<td>178,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>3,39%</td>
<td>4,90%</td>
</tr>
</tbody>
</table>
Austràlia

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>3,6</td>
<td>3,6</td>
<td>3,6</td>
<td>3,8</td>
<td>3,8</td>
<td>3,9</td>
<td>4,1</td>
<td>4,2</td>
<td>4,3</td>
<td>4,4</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>86,1</td>
<td>85,0</td>
<td>86,6</td>
<td>91,0</td>
<td>91,1</td>
<td>92,4</td>
<td>98,8</td>
<td>101,1</td>
<td>103,8</td>
<td>106,0</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>86,4</td>
<td>85,2</td>
<td>86,8</td>
<td>90,9</td>
<td>90,9</td>
<td>92,7</td>
<td>98,8</td>
<td>101,3</td>
<td>103,9</td>
<td>106,2</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,34%</td>
<td>0,19%</td>
<td>0,20%</td>
<td>0,09%</td>
<td>0,25%</td>
<td>0,31%</td>
<td>0,02%</td>
<td>0,16%</td>
<td>0,15%</td>
<td>0,16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>4,5</td>
<td>4,4</td>
<td>4,6</td>
<td>4,6</td>
<td>4,6</td>
<td>4,7</td>
<td>4,7</td>
<td>4,8</td>
<td>5,0</td>
<td>5,1</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>107,9</td>
<td>105,6</td>
<td>109,3</td>
<td>110,6</td>
<td>112,5</td>
<td>113,3</td>
<td>114,8</td>
<td>118,5</td>
<td>122,3</td>
<td>121,9</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>108,1</td>
<td>105,7</td>
<td>109,5</td>
<td>110,8</td>
<td>112,7</td>
<td>113,5</td>
<td>114,9</td>
<td>118,6</td>
<td>122,5</td>
<td>122,1</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,15%</td>
<td>0,15%</td>
<td>0,15%</td>
<td>0,07%</td>
<td>0,10%</td>
<td>0,13%</td>
<td>0,15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>5,1</td>
<td>5,1</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>122,3</td>
<td>122,7</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>122,5</td>
<td>122,9</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,15%</td>
<td>0,16%</td>
</tr>
</tbody>
</table>
Brasil

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>5,9</td>
<td>6,0</td>
<td>6,0</td>
<td>6,2</td>
<td>6,5</td>
<td>6,7</td>
<td>7,1</td>
<td>7,5</td>
<td>7,6</td>
<td>7,8</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>140,0</td>
<td>142,6</td>
<td>144,1</td>
<td>147,7</td>
<td>155,5</td>
<td>160,8</td>
<td>169,4</td>
<td>178,0</td>
<td>182,2</td>
<td>186,4</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>140,2</td>
<td>142,8</td>
<td>144,3</td>
<td>148,0</td>
<td>155,8</td>
<td>161,1</td>
<td>169,7</td>
<td>178,3</td>
<td>182,6</td>
<td>186,7</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,10%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>7,8</td>
<td>8,0</td>
<td>8,2</td>
<td>8,3</td>
<td>8,8</td>
<td>9,0</td>
<td>9,3</td>
<td>9,8</td>
<td>10,4</td>
<td>10,1</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>187,1</td>
<td>190,4</td>
<td>195,4</td>
<td>198,6</td>
<td>209,7</td>
<td>215,0</td>
<td>222,4</td>
<td>235,1</td>
<td>248,2</td>
<td>240,1</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>187,4</td>
<td>190,7</td>
<td>195,8</td>
<td>199,0</td>
<td>210,0</td>
<td>215,3</td>
<td>222,8</td>
<td>235,5</td>
<td>248,6</td>
<td>240,5</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,16%</td>
<td>0,16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>11,1</td>
<td>11,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>265,4</td>
<td>269,6</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>265,9</td>
<td>270,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,16%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>
Canadà

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>8,7</td>
<td>8,7</td>
<td>8,9</td>
<td>9,2</td>
<td>9,5</td>
<td>9,6</td>
<td>9,9</td>
<td>10,0</td>
<td>9,9</td>
<td>10,2</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>208,2</td>
<td>207,8</td>
<td>213,0</td>
<td>220,0</td>
<td>227,7</td>
<td>230,4</td>
<td>235,7</td>
<td>238,5</td>
<td>236,7</td>
<td>243,9</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>208,6</td>
<td>208,1</td>
<td>213,3</td>
<td>220,3</td>
<td>228,1</td>
<td>230,8</td>
<td>236,1</td>
<td>238,9</td>
<td>237,1</td>
<td>244,3</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,18%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>10,5</td>
<td>10,4</td>
<td>10,4</td>
<td>11,0</td>
<td>11,2</td>
<td>11,4</td>
<td>11,2</td>
<td>11,4</td>
<td>11,1</td>
<td>10,5</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>251,0</td>
<td>247,5</td>
<td>247,8</td>
<td>261,6</td>
<td>267,2</td>
<td>271,8</td>
<td>267,9</td>
<td>271,3</td>
<td>264,3</td>
<td>250,9</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>251,5</td>
<td>247,9</td>
<td>248,4</td>
<td>262,0</td>
<td>267,6</td>
<td>270,7</td>
<td>272,1</td>
<td>265,6</td>
<td>264,4</td>
<td>249,2</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,19%</td>
<td>0,16%</td>
<td>0,24%</td>
<td>0,16%</td>
<td>0,17%</td>
<td>0,38%</td>
<td>1,57%</td>
<td>2,13%</td>
<td>0,04%</td>
<td>0,67%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>10,5</td>
<td>10,5</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>250,6</td>
<td>251,4</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>251,3</td>
<td>253,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,29%</td>
<td>0,62%</td>
</tr>
</tbody>
</table>
Estats Units

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>80,0</td>
<td>80,7</td>
<td>82,3</td>
<td>83,8</td>
<td>85,3</td>
<td>86,4</td>
<td>88,3</td>
<td>89,2</td>
<td>90,0</td>
<td>92,4</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>1911,8</td>
<td>1927,4</td>
<td>1966,1</td>
<td>2000,6</td>
<td>2037,7</td>
<td>2063,8</td>
<td>2109,6</td>
<td>2130,9</td>
<td>2149,1</td>
<td>2207,2</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>1915,1</td>
<td>1930,6</td>
<td>1969,4</td>
<td>2003,8</td>
<td>2041,3</td>
<td>2067,3</td>
<td>2113,3</td>
<td>2134,5</td>
<td>2152,7</td>
<td>2210,9</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,16%</td>
<td>0,18%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>95,0</td>
<td>93,2</td>
<td>94,3</td>
<td>94,5</td>
<td>96,5</td>
<td>96,9</td>
<td>96,0</td>
<td>97,7</td>
<td>95,2</td>
<td>90,5</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>2269,5</td>
<td>2227,1</td>
<td>2252,2</td>
<td>2257,4</td>
<td>2304,0</td>
<td>2315,0</td>
<td>2292,8</td>
<td>2333,1</td>
<td>2273,2</td>
<td>2160,8</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>2273,3</td>
<td>2230,7</td>
<td>2255,9</td>
<td>2261,2</td>
<td>2307,8</td>
<td>2318,8</td>
<td>2296,8</td>
<td>2337,0</td>
<td>2277,1</td>
<td>2164,8</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,16%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>92,6</td>
<td>91,6</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>2211,8</td>
<td>2187,5</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>2215,4</td>
<td>2191,2</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,16%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>
Índia

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>13,2</td>
<td>13,8</td>
<td>14,3</td>
<td>14,6</td>
<td>15,2</td>
<td>16,1</td>
<td>16,6</td>
<td>17,2</td>
<td>17,7</td>
<td>18,7</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>316,2</td>
<td>328,9</td>
<td>342,1</td>
<td>349,9</td>
<td>363,4</td>
<td>383,6</td>
<td>396,0</td>
<td>411,5</td>
<td>421,6</td>
<td>447,6</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>316,4</td>
<td>328,9</td>
<td>342,0</td>
<td>350,1</td>
<td>363,7</td>
<td>383,9</td>
<td>396,2</td>
<td>411,7</td>
<td>421,7</td>
<td>445,9</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,06%</td>
<td>0,01%</td>
<td>0,02%</td>
<td>0,07%</td>
<td>0,07%</td>
<td>0,05%</td>
<td>0,05%</td>
<td>0,04%</td>
<td>0,04%</td>
<td>0,39%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>19,1</td>
<td>19,4</td>
<td>20,0</td>
<td>20,5</td>
<td>21,7</td>
<td>22,5</td>
<td>23,7</td>
<td>25,3</td>
<td>26,5</td>
<td>29,2</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>456,4</td>
<td>463,7</td>
<td>476,7</td>
<td>488,7</td>
<td>518,3</td>
<td>538,5</td>
<td>566,2</td>
<td>603,6</td>
<td>631,9</td>
<td>697,2</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>456,4</td>
<td>464,1</td>
<td>478,0</td>
<td>489,7</td>
<td>517,9</td>
<td>539,7</td>
<td>569,7</td>
<td>603,8</td>
<td>632,3</td>
<td>696,5</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,00%</td>
<td>0,08%</td>
<td>0,27%</td>
<td>0,21%</td>
<td>0,07%</td>
<td>0,23%</td>
<td>0,61%</td>
<td>0,03%</td>
<td>0,06%</td>
<td>0,10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>30,3</td>
<td>31,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>722,5</td>
<td>748,2</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>722,5</td>
<td>751,8</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,00%</td>
<td>0,48%</td>
</tr>
</tbody>
</table>
Indonèsia

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>4,1</td>
<td>4,3</td>
<td>4,5</td>
<td>5,0</td>
<td>5,0</td>
<td>5,5</td>
<td>5,7</td>
<td>5,9</td>
<td>5,7</td>
<td>6,0</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>98,5</td>
<td>103,3</td>
<td>107,7</td>
<td>118,3</td>
<td>118,4</td>
<td>130,6</td>
<td>135,3</td>
<td>139,9</td>
<td>136,8</td>
<td>143,4</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>98,6</td>
<td>103,4</td>
<td>107,8</td>
<td>118,4</td>
<td>118,6</td>
<td>130,8</td>
<td>135,6</td>
<td>140,1</td>
<td>137,1</td>
<td>143,6</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>6,5</td>
<td>6,6</td>
<td>6,9</td>
<td>6,9</td>
<td>7,4</td>
<td>7,5</td>
<td>7,7</td>
<td>7,6</td>
<td>7,8</td>
<td>8,4</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>154,5</td>
<td>158,7</td>
<td>164,6</td>
<td>165,1</td>
<td>175,9</td>
<td>179,2</td>
<td>183,4</td>
<td>182,6</td>
<td>186,3</td>
<td>199,4</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>155,6</td>
<td>159,3</td>
<td>165,2</td>
<td>165,7</td>
<td>176,6</td>
<td>179,8</td>
<td>184,0</td>
<td>183,2</td>
<td>186,8</td>
<td>200,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,72%</td>
<td>0,37%</td>
<td>0,37%</td>
<td>0,37%</td>
<td>0,40%</td>
<td>0,35%</td>
<td>0,33%</td>
<td>0,33%</td>
<td>0,27%</td>
<td>0,27%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>8,8</td>
<td>8,7</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>210,9</td>
<td>208,7</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>209,4</td>
<td>205,3</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,72%</td>
<td>1,62%</td>
</tr>
</tbody>
</table>
Iran

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>2,9</td>
<td>3,2</td>
<td>3,4</td>
<td>3,6</td>
<td>4,0</td>
<td>4,2</td>
<td>4,1</td>
<td>4,6</td>
<td>4,7</td>
<td>5,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>69,2</td>
<td>76,7</td>
<td>80,8</td>
<td>87,0</td>
<td>96,6</td>
<td>101,1</td>
<td>97,5</td>
<td>109,1</td>
<td>111,1</td>
<td>126,0</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>69,3</td>
<td>76,9</td>
<td>80,9</td>
<td>87,1</td>
<td>96,7</td>
<td>101,2</td>
<td>97,6</td>
<td>109,3</td>
<td>111,3</td>
<td>126,2</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,19%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>5,1</td>
<td>5,6</td>
<td>5,8</td>
<td>6,0</td>
<td>6,5</td>
<td>7,2</td>
<td>7,5</td>
<td>8,0</td>
<td>8,5</td>
<td>8,9</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>122,8</td>
<td>133,2</td>
<td>137,8</td>
<td>142,4</td>
<td>155,3</td>
<td>172,2</td>
<td>179,9</td>
<td>190,3</td>
<td>204,0</td>
<td>213,1</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>123,0</td>
<td>133,5</td>
<td>138,0</td>
<td>142,7</td>
<td>155,6</td>
<td>172,7</td>
<td>180,4</td>
<td>190,9</td>
<td>204,6</td>
<td>207,5</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,19%</td>
<td>0,19%</td>
<td>0,19%</td>
<td>0,18%</td>
<td>0,19%</td>
<td>0,29%</td>
<td>0,28%</td>
<td>0,34%</td>
<td>0,32%</td>
<td>2,69%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>8,8</td>
<td>8,9</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>210,3</td>
<td>211,8</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>207,5</td>
<td>212,4</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>1,36%</td>
<td>0,29%</td>
</tr>
</tbody>
</table>

Estudi de les correlacions entre les emissions de CO\textsubscript{2} i els vectors energètics

Japó

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>18,4</td>
<td>18,6</td>
<td>19,0</td>
<td>19,1</td>
<td>20,2</td>
<td>20,7</td>
<td>21,2</td>
<td>21,4</td>
<td>21,0</td>
<td>21,4</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>438,6</td>
<td>443,3</td>
<td>453,8</td>
<td>456,8</td>
<td>482,5</td>
<td>495,4</td>
<td>506,2</td>
<td>511,6</td>
<td>502,4</td>
<td>511,5</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>439,2</td>
<td>443,8</td>
<td>453,7</td>
<td>456,7</td>
<td>480,7</td>
<td>494,3</td>
<td>504,7</td>
<td>510,2</td>
<td>500,9</td>
<td>508,7</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,14%</td>
<td>0,12%</td>
<td>0,02%</td>
<td>0,03%</td>
<td>0,37%</td>
<td>0,23%</td>
<td>0,30%</td>
<td>0,28%</td>
<td>0,31%</td>
<td>0,55%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>21,7</td>
<td>21,4</td>
<td>21,3</td>
<td>21,2</td>
<td>21,8</td>
<td>21,8</td>
<td>21,7</td>
<td>21,5</td>
<td>20,7</td>
<td>19,7</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>518,1</td>
<td>509,9</td>
<td>509,5</td>
<td>505,4</td>
<td>521,6</td>
<td>519,7</td>
<td>518,9</td>
<td>514,3</td>
<td>494,5</td>
<td>471,4</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>519,0</td>
<td>510,5</td>
<td>510,4</td>
<td>506,3</td>
<td>522,5</td>
<td>520,4</td>
<td>519,7</td>
<td>515,1</td>
<td>495,3</td>
<td>472,4</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,18%</td>
<td>0,11%</td>
<td>0,18%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,14%</td>
<td>0,15%</td>
<td>0,15%</td>
<td>0,15%</td>
<td>0,22%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>20,9</td>
<td>19,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>498,3</td>
<td>460,7</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>498,7</td>
<td>462,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,09%</td>
<td>0,27%</td>
</tr>
</tbody>
</table>
Mèxic

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>5,1</td>
<td>5,4</td>
<td>5,4</td>
<td>5,4</td>
<td>5,6</td>
<td>5,4</td>
<td>5,6</td>
<td>5,7</td>
<td>5,9</td>
<td>6,1</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>122,3</td>
<td>127,8</td>
<td>129,2</td>
<td>129,7</td>
<td>134,1</td>
<td>129,7</td>
<td>132,8</td>
<td>136,8</td>
<td>141,2</td>
<td>146,7</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>122,5</td>
<td>128,0</td>
<td>129,5</td>
<td>130,0</td>
<td>134,3</td>
<td>129,9</td>
<td>133,0</td>
<td>137,0</td>
<td>141,4</td>
<td>146,7</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,16%</td>
<td>0,18%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,15%</td>
<td>0,14%</td>
<td>0,02%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>6,1</td>
<td>6,1</td>
<td>6,3</td>
<td>6,4</td>
<td>6,7</td>
<td>7,1</td>
<td>7,2</td>
<td>7,4</td>
<td>7,6</td>
<td>7,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>145,1</td>
<td>146,1</td>
<td>150,6</td>
<td>153,4</td>
<td>159,1</td>
<td>170,0</td>
<td>172,0</td>
<td>176,4</td>
<td>181,6</td>
<td>175,5</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>144,8</td>
<td>148,5</td>
<td>149,2</td>
<td>156,8</td>
<td>160,8</td>
<td>168,7</td>
<td>170,9</td>
<td>175,5</td>
<td>180,8</td>
<td>175,3</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,23%</td>
<td>1,62%</td>
<td>0,95%</td>
<td>2,19%</td>
<td>1,10%</td>
<td>0,76%</td>
<td>0,67%</td>
<td>0,51%</td>
<td>0,41%</td>
<td>0,11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>7,5</td>
<td>7,8</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>178,6</td>
<td>185,9</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>176,3</td>
<td>183,6</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>1,34%</td>
<td>1,23%</td>
</tr>
</tbody>
</table>
República de Corea

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>3,9</td>
<td>4,2</td>
<td>4,6</td>
<td>5,2</td>
<td>5,5</td>
<td>6,1</td>
<td>6,6</td>
<td>7,2</td>
<td>6,5</td>
<td>7,2</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>92,9</td>
<td>99,8</td>
<td>110,7</td>
<td>124,2</td>
<td>131,9</td>
<td>144,5</td>
<td>157,0</td>
<td>170,9</td>
<td>156,1</td>
<td>172,6</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>92,9</td>
<td>99,9</td>
<td>110,9</td>
<td>124,4</td>
<td>132,1</td>
<td>144,8</td>
<td>157,3</td>
<td>171,2</td>
<td>156,3</td>
<td>172,9</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,02%</td>
<td>0,09%</td>
<td>0,13%</td>
<td>0,14%</td>
<td>0,15%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>7,9</td>
<td>8,0</td>
<td>8,3</td>
<td>8,5</td>
<td>8,7</td>
<td>8,8</td>
<td>8,9</td>
<td>9,3</td>
<td>9,5</td>
<td>9,6</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>187,8</td>
<td>190,7</td>
<td>198,3</td>
<td>202,4</td>
<td>207,9</td>
<td>209,8</td>
<td>213,2</td>
<td>221,8</td>
<td>226,6</td>
<td>228,8</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>188,2</td>
<td>191,1</td>
<td>198,7</td>
<td>202,8</td>
<td>208,3</td>
<td>210,3</td>
<td>213,7</td>
<td>222,2</td>
<td>227,1</td>
<td>229,2</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,18%</td>
<td>0,18%</td>
<td>0,19%</td>
<td>0,22%</td>
<td>0,23%</td>
<td>0,21%</td>
<td>0,23%</td>
<td>0,20%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>10,4</td>
<td>10,9</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>249,5</td>
<td>260,0</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>250,0</td>
<td>260,5</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,18%</td>
<td>0,18%</td>
</tr>
</tbody>
</table>

- 13 -
Rússia

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>36,8</td>
<td>36,4</td>
<td>33,3</td>
<td>31,4</td>
<td>27,5</td>
<td>26,6</td>
<td>26,3</td>
<td>25,2</td>
<td>24,6</td>
<td>25,5</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>877,7</td>
<td>869,7</td>
<td>794,3</td>
<td>749,9</td>
<td>655,9</td>
<td>635,6</td>
<td>629,0</td>
<td>601,0</td>
<td>587,0</td>
<td>608,0</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>879,2</td>
<td>871,1</td>
<td>795,7</td>
<td>751,2</td>
<td>657,0</td>
<td>636,6</td>
<td>623,1</td>
<td>602,0</td>
<td>588,0</td>
<td>609,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,95%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>25,9</td>
<td>26,2</td>
<td>26,0</td>
<td>27,0</td>
<td>27,1</td>
<td>27,2</td>
<td>28,0</td>
<td>28,1</td>
<td>28,8</td>
<td>27,0</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>618,2</td>
<td>625,0</td>
<td>622,1</td>
<td>644,2</td>
<td>646,3</td>
<td>650,6</td>
<td>669,6</td>
<td>671,5</td>
<td>687,3</td>
<td>645,8</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>619,3</td>
<td>626,0</td>
<td>623,1</td>
<td>645,3</td>
<td>647,4</td>
<td>651,7</td>
<td>670,7</td>
<td>672,6</td>
<td>688,5</td>
<td>646,9</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>29,4</td>
<td>30,6</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>701,1</td>
<td>729,7</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>703,5</td>
<td>738,5</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,35%</td>
<td>1,19%</td>
</tr>
</tbody>
</table>
Sud-àfrica

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>3,8</td>
<td>4,0</td>
<td>3,7</td>
<td>4,0</td>
<td>4,1</td>
<td>4,3</td>
<td>4,4</td>
<td>4,5</td>
<td>4,5</td>
<td>4,6</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>90,8</td>
<td>94,8</td>
<td>88,4</td>
<td>94,8</td>
<td>98,0</td>
<td>103,4</td>
<td>106,0</td>
<td>108,2</td>
<td>106,3</td>
<td>108,9</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>91,0</td>
<td>95,0</td>
<td>88,6</td>
<td>94,9</td>
<td>98,2</td>
<td>103,6</td>
<td>106,2</td>
<td>108,4</td>
<td>106,5</td>
<td>109,6</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,17%</td>
<td>0,63%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>4,6</td>
<td>4,7</td>
<td>4,6</td>
<td>4,9</td>
<td>5,4</td>
<td>5,4</td>
<td>5,3</td>
<td>5,7</td>
<td>6,1</td>
<td>6,0</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>109,1</td>
<td>112,2</td>
<td>109,7</td>
<td>117,2</td>
<td>128,5</td>
<td>128,0</td>
<td>127,0</td>
<td>136,4</td>
<td>146,5</td>
<td>142,5</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>109,3</td>
<td>112,4</td>
<td>110,0</td>
<td>117,5</td>
<td>128,8</td>
<td>128,3</td>
<td>127,4</td>
<td>136,8</td>
<td>147,1</td>
<td>142,4</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,16%</td>
<td>0,17%</td>
<td>0,24%</td>
<td>0,24%</td>
<td>0,26%</td>
<td>0,27%</td>
<td>0,29%</td>
<td>0,30%</td>
<td>0,40%</td>
<td>0,11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>5,9</td>
<td>5,9</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>142,1</td>
<td>141,1</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>142,7</td>
<td>141,9</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,43%</td>
<td>0,53%</td>
</tr>
</tbody>
</table>
Unió Europea

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>68,8</td>
<td>68,8</td>
<td>67,2</td>
<td>67,1</td>
<td>66,8</td>
<td>68,7</td>
<td>71,1</td>
<td>70,4</td>
<td>70,8</td>
<td>70,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>1642,0</td>
<td>1644,3</td>
<td>1605,5</td>
<td>1603,2</td>
<td>1596,3</td>
<td>1641,6</td>
<td>1697,8</td>
<td>1681,8</td>
<td>1692,0</td>
<td>1678,4</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>1644,7</td>
<td>1646,9</td>
<td>1608,1</td>
<td>1605,9</td>
<td>1599,0</td>
<td>1644,4</td>
<td>1700,7</td>
<td>1684,2</td>
<td>1694,5</td>
<td>1681,0</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,14%</td>
<td>0,15%</td>
<td>0,16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>70,8</td>
<td>72,4</td>
<td>72,2</td>
<td>73,8</td>
<td>74,6</td>
<td>74,6</td>
<td>74,7</td>
<td>73,9</td>
<td>73,5</td>
<td>69,3</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>1689,9</td>
<td>1730,2</td>
<td>1725,2</td>
<td>1761,7</td>
<td>1780,9</td>
<td>1782,9</td>
<td>1784,6</td>
<td>1763,9</td>
<td>1756,2</td>
<td>1656,3</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>1692,7</td>
<td>1733,0</td>
<td>1728,2</td>
<td>1763,6</td>
<td>1782,5</td>
<td>1787,0</td>
<td>1793,7</td>
<td>1763,9</td>
<td>1755,3</td>
<td>1654,4</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,16%</td>
<td>0,16%</td>
<td>0,17%</td>
<td>0,11%</td>
<td>0,09%</td>
<td>0,23%</td>
<td>0,51%</td>
<td>0,00%</td>
<td>0,05%</td>
<td>0,11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>72,1</td>
<td>69,5</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>1721,4</td>
<td>1659,7</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>1720,7</td>
<td>1659,7</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,04%</td>
<td>0,00%</td>
</tr>
</tbody>
</table>
Xina

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>36,4</td>
<td>35,4</td>
<td>36,6</td>
<td>38,8</td>
<td>40,7</td>
<td>43,7</td>
<td>44,9</td>
<td>44,8</td>
<td>45,1</td>
<td>46,0</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>869,2</td>
<td>846,5</td>
<td>875,3</td>
<td>927,2</td>
<td>971,1</td>
<td>1042,7</td>
<td>1071,7</td>
<td>1070,8</td>
<td>1078,1</td>
<td>1098,9</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>870,7</td>
<td>848,0</td>
<td>876,8</td>
<td>928,8</td>
<td>972,7</td>
<td>1044,5</td>
<td>1073,5</td>
<td>1072,6</td>
<td>1079,9</td>
<td>1100,7</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>48,5</td>
<td>49,6</td>
<td>52,4</td>
<td>59,7</td>
<td>68,5</td>
<td>74,2</td>
<td>81,0</td>
<td>85,5</td>
<td>88,7</td>
<td>95,6</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>1159,4</td>
<td>1184,8</td>
<td>1251,7</td>
<td>1425,2</td>
<td>1637,1</td>
<td>1772,7</td>
<td>1935,7</td>
<td>2041,2</td>
<td>2117,3</td>
<td>2282,3</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>1161,4</td>
<td>1186,8</td>
<td>1253,8</td>
<td>1427,6</td>
<td>1639,9</td>
<td>1775,7</td>
<td>1938,9</td>
<td>2044,6</td>
<td>2120,8</td>
<td>2286,1</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,17%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES GGCC (EJ)</td>
<td>105,2</td>
<td>114,0</td>
</tr>
<tr>
<td>TPES GGCC (Mtoe)</td>
<td>2512,5</td>
<td>2723,2</td>
</tr>
<tr>
<td>TPES IEA (Mtoe)</td>
<td>2526,5</td>
<td>2746,9</td>
</tr>
<tr>
<td>Diferència (%)</td>
<td>0,55%</td>
<td>0,86%</td>
</tr>
</tbody>
</table>
2. Annex a l’apartat 2.3.2.

En aquest annex es presenten les taules del factor *Total Primary Energy Supply* per a cada font energètica de tots els estats considerats en el projecte durant el període d’anys 1990-2012.

Totes les unitats són kilotones de petroli equivalent.
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Aràbia Saudita

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí cru</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0</td>
<td>105023</td>
<td>-66511</td>
<td>19482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>58006</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td>106304</td>
<td>-58690</td>
<td>19896</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>67522</td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
<td>116379</td>
<td>-61509</td>
<td>22050</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>76928</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>117347</td>
<td>-60434</td>
<td>22941</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>79860</td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>121308</td>
<td>-62160</td>
<td>24870</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>84031</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>120902</td>
<td>-61175</td>
<td>24770</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>84507</td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>133134</td>
<td>-68378</td>
<td>25701</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>90461</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
<td>124744</td>
<td>-65033</td>
<td>26550</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>86265</td>
</tr>
<tr>
<td>1998</td>
<td>0</td>
<td>127119</td>
<td>-63115</td>
<td>27923</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>91931</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>124859</td>
<td>-59138</td>
<td>27865</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>93590</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>128396</td>
<td>-61314</td>
<td>30772</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>97858</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>126408</td>
<td>-57900</td>
<td>31937</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>100450</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>128365</td>
<td>-54434</td>
<td>37317</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>111253</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>135953</td>
<td>-61874</td>
<td>38492</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>112576</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>144179</td>
<td>-66197</td>
<td>41817</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>119804</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>145209</td>
<td>-68620</td>
<td>45957</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>122552</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>150047</td>
<td>-62511</td>
<td>48248</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>135790</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>147026</td>
<td>-56327</td>
<td>49574</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>140279</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>157401</td>
<td>-55592</td>
<td>54672</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>156487</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>170177</td>
<td>-55853</td>
<td>52247</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>166577</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>181729</td>
<td>-56221</td>
<td>59885</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>185399</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>169145</td>
<td>-52116</td>
<td>60994</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>178030</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>186436</td>
<td>-52411</td>
<td>66224</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>200256</td>
</tr>
</tbody>
</table>
Austràlia

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli cru</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>35129</td>
<td>33074</td>
<td>-1873</td>
<td>14786</td>
<td>0</td>
<td>1217</td>
<td>81</td>
<td>3961</td>
<td>0</td>
<td>0</td>
<td>86375</td>
</tr>
<tr>
<td>1991</td>
<td>36329</td>
<td>32513</td>
<td>-2891</td>
<td>13845</td>
<td>0</td>
<td>1361</td>
<td>81</td>
<td>3934</td>
<td>0</td>
<td>0</td>
<td>85172</td>
</tr>
<tr>
<td>1992</td>
<td>36894</td>
<td>33704</td>
<td>-3083</td>
<td>14338</td>
<td>0</td>
<td>1320</td>
<td>80</td>
<td>3508</td>
<td>0</td>
<td>0</td>
<td>86761</td>
</tr>
<tr>
<td>1993</td>
<td>37310</td>
<td>36028</td>
<td>-2993</td>
<td>14920</td>
<td>0</td>
<td>1422</td>
<td>81</td>
<td>4173</td>
<td>0</td>
<td>0</td>
<td>90941</td>
</tr>
<tr>
<td>1994</td>
<td>36700</td>
<td>35420</td>
<td>-2386</td>
<td>15589</td>
<td>0</td>
<td>1407</td>
<td>81</td>
<td>4068</td>
<td>0</td>
<td>0</td>
<td>90879</td>
</tr>
<tr>
<td>1995</td>
<td>37685</td>
<td>35286</td>
<td>-2732</td>
<td>16738</td>
<td>0</td>
<td>1366</td>
<td>82</td>
<td>4270</td>
<td>0</td>
<td>0</td>
<td>92695</td>
</tr>
<tr>
<td>1996</td>
<td>40495</td>
<td>37935</td>
<td>-2744</td>
<td>16803</td>
<td>0</td>
<td>1325</td>
<td>82</td>
<td>4866</td>
<td>0</td>
<td>0</td>
<td>98762</td>
</tr>
<tr>
<td>1997</td>
<td>44331</td>
<td>37111</td>
<td>-3654</td>
<td>16922</td>
<td>0</td>
<td>1420</td>
<td>82</td>
<td>5068</td>
<td>0</td>
<td>0</td>
<td>101280</td>
</tr>
<tr>
<td>1998</td>
<td>47121</td>
<td>37266</td>
<td>-4444</td>
<td>17610</td>
<td>0</td>
<td>1323</td>
<td>83</td>
<td>4955</td>
<td>0</td>
<td>0</td>
<td>103914</td>
</tr>
<tr>
<td>1999</td>
<td>48093</td>
<td>36355</td>
<td>-3069</td>
<td>18354</td>
<td>0</td>
<td>1393</td>
<td>86</td>
<td>4968</td>
<td>0</td>
<td>0</td>
<td>106180</td>
</tr>
<tr>
<td>2000</td>
<td>48147</td>
<td>36577</td>
<td>-2425</td>
<td>19269</td>
<td>0</td>
<td>1407</td>
<td>90</td>
<td>5035</td>
<td>0</td>
<td>0</td>
<td>108100</td>
</tr>
<tr>
<td>2001</td>
<td>48212</td>
<td>33731</td>
<td>-3125</td>
<td>20306</td>
<td>0</td>
<td>1424</td>
<td>108</td>
<td>5086</td>
<td>0</td>
<td>0</td>
<td>105742</td>
</tr>
<tr>
<td>2002</td>
<td>48601</td>
<td>36008</td>
<td>-3507</td>
<td>21447</td>
<td>0</td>
<td>1365</td>
<td>123</td>
<td>5414</td>
<td>0</td>
<td>0</td>
<td>109451</td>
</tr>
<tr>
<td>2003</td>
<td>48145</td>
<td>37754</td>
<td>-2390</td>
<td>20509</td>
<td>0</td>
<td>1400</td>
<td>132</td>
<td>5242</td>
<td>0</td>
<td>0</td>
<td>110792</td>
</tr>
<tr>
<td>2004</td>
<td>49900</td>
<td>33921</td>
<td>1619</td>
<td>20551</td>
<td>0</td>
<td>1385</td>
<td>129</td>
<td>5169</td>
<td>0</td>
<td>0</td>
<td>112674</td>
</tr>
<tr>
<td>2005</td>
<td>51035</td>
<td>33973</td>
<td>2940</td>
<td>18967</td>
<td>0</td>
<td>1317</td>
<td>146</td>
<td>5102</td>
<td>0</td>
<td>0</td>
<td>113480</td>
</tr>
<tr>
<td>2006</td>
<td>51699</td>
<td>32188</td>
<td>4412</td>
<td>19846</td>
<td>0</td>
<td>1370</td>
<td>213</td>
<td>5177</td>
<td>0</td>
<td>0</td>
<td>114905</td>
</tr>
<tr>
<td>2007</td>
<td>51896</td>
<td>32988</td>
<td>3870</td>
<td>22841</td>
<td>0</td>
<td>1233</td>
<td>378</td>
<td>5364</td>
<td>0</td>
<td>0</td>
<td>118570</td>
</tr>
<tr>
<td>2008</td>
<td>51502</td>
<td>32086</td>
<td>7406</td>
<td>24308</td>
<td>0</td>
<td>1024</td>
<td>437</td>
<td>5707</td>
<td>0</td>
<td>0</td>
<td>122470</td>
</tr>
<tr>
<td>2009</td>
<td>52671</td>
<td>30513</td>
<td>8645</td>
<td>24549</td>
<td>0</td>
<td>1015</td>
<td>540</td>
<td>4154</td>
<td>0</td>
<td>0</td>
<td>122087</td>
</tr>
<tr>
<td>2010</td>
<td>50026</td>
<td>30641</td>
<td>9582</td>
<td>26207</td>
<td>0</td>
<td>1161</td>
<td>702</td>
<td>4173</td>
<td>0</td>
<td>0</td>
<td>122492</td>
</tr>
<tr>
<td>2011</td>
<td>48157</td>
<td>32820</td>
<td>8545</td>
<td>27020</td>
<td>0</td>
<td>1441</td>
<td>836</td>
<td>4055</td>
<td>0</td>
<td>0</td>
<td>122874</td>
</tr>
<tr>
<td>2012</td>
<td>46892</td>
<td>32758</td>
<td>11658</td>
<td>29774</td>
<td>0</td>
<td>1206</td>
<td>927</td>
<td>5060</td>
<td>0</td>
<td>0</td>
<td>128275</td>
</tr>
</tbody>
</table>
Brasil

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petróli cru</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geòtèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>9670</td>
<td>61302</td>
<td>-2408</td>
<td>3243</td>
<td>583</td>
<td>17777</td>
<td>0</td>
<td>47757</td>
<td>2282</td>
<td>0</td>
<td>140206</td>
</tr>
<tr>
<td>1991</td>
<td>11056</td>
<td>60170</td>
<td>-177</td>
<td>3172</td>
<td>276</td>
<td>18729</td>
<td>0</td>
<td>47203</td>
<td>2329</td>
<td>0</td>
<td>142758</td>
</tr>
<tr>
<td>1992</td>
<td>10702</td>
<td>61806</td>
<td>132</td>
<td>3409</td>
<td>458</td>
<td>19207</td>
<td>0</td>
<td>46568</td>
<td>2065</td>
<td>0</td>
<td>144347</td>
</tr>
<tr>
<td>1993</td>
<td>11011</td>
<td>62450</td>
<td>1626</td>
<td>3723</td>
<td>115</td>
<td>20216</td>
<td>0</td>
<td>46450</td>
<td>2369</td>
<td>0</td>
<td>147960</td>
</tr>
<tr>
<td>1994</td>
<td>11304</td>
<td>64010</td>
<td>3791</td>
<td>3862</td>
<td>14</td>
<td>20873</td>
<td>0</td>
<td>49174</td>
<td>2732</td>
<td>0</td>
<td>155760</td>
</tr>
<tr>
<td>1995</td>
<td>11863</td>
<td>64407</td>
<td>7558</td>
<td>4143</td>
<td>656</td>
<td>21836</td>
<td>0</td>
<td>47591</td>
<td>3040</td>
<td>0</td>
<td>161094</td>
</tr>
<tr>
<td>1996</td>
<td>12227</td>
<td>70159</td>
<td>8436</td>
<td>4643</td>
<td>632</td>
<td>22856</td>
<td>0</td>
<td>47565</td>
<td>3144</td>
<td>0</td>
<td>169662</td>
</tr>
<tr>
<td>1997</td>
<td>12306</td>
<td>73979</td>
<td>9610</td>
<td>5155</td>
<td>826</td>
<td>23992</td>
<td>0</td>
<td>48929</td>
<td>3480</td>
<td>0</td>
<td>178277</td>
</tr>
<tr>
<td>1998</td>
<td>12016</td>
<td>79869</td>
<td>7382</td>
<td>5410</td>
<td>851</td>
<td>25066</td>
<td>0</td>
<td>48570</td>
<td>3389</td>
<td>0</td>
<td>182553</td>
</tr>
<tr>
<td>1999</td>
<td>12200</td>
<td>82290</td>
<td>6381</td>
<td>6082</td>
<td>1036</td>
<td>25198</td>
<td>21</td>
<td>49973</td>
<td>3437</td>
<td>73</td>
<td>186691</td>
</tr>
<tr>
<td>2000</td>
<td>13015</td>
<td>83638</td>
<td>4589</td>
<td>7909</td>
<td>1576</td>
<td>26179</td>
<td>31</td>
<td>46619</td>
<td>3813</td>
<td>74</td>
<td>187443</td>
</tr>
<tr>
<td>2001</td>
<td>12813</td>
<td>86590</td>
<td>3019</td>
<td>10002</td>
<td>3721</td>
<td>23037</td>
<td>51</td>
<td>48136</td>
<td>3255</td>
<td>87</td>
<td>190711</td>
</tr>
<tr>
<td>2002</td>
<td>12392</td>
<td>85358</td>
<td>1751</td>
<td>12382</td>
<td>3606</td>
<td>24604</td>
<td>65</td>
<td>52372</td>
<td>3145</td>
<td>83</td>
<td>195758</td>
</tr>
<tr>
<td>2003</td>
<td>12865</td>
<td>85145</td>
<td>-2045</td>
<td>12758</td>
<td>3481</td>
<td>26283</td>
<td>78</td>
<td>57126</td>
<td>3194</td>
<td>90</td>
<td>198975</td>
</tr>
<tr>
<td>2004</td>
<td>13469</td>
<td>90037</td>
<td>-4328</td>
<td>15712</td>
<td>3026</td>
<td>27589</td>
<td>92</td>
<td>61124</td>
<td>3215</td>
<td>106</td>
<td>210042</td>
</tr>
<tr>
<td>2005</td>
<td>12988</td>
<td>90309</td>
<td>-3194</td>
<td>16720</td>
<td>2568</td>
<td>29021</td>
<td>110</td>
<td>63287</td>
<td>3358</td>
<td>165</td>
<td>215332</td>
</tr>
<tr>
<td>2006</td>
<td>12817</td>
<td>91390</td>
<td>-2675</td>
<td>17503</td>
<td>3584</td>
<td>29997</td>
<td>138</td>
<td>66377</td>
<td>3540</td>
<td>145</td>
<td>222816</td>
</tr>
<tr>
<td>2007</td>
<td>13591</td>
<td>93547</td>
<td>-912</td>
<td>17768</td>
<td>3218</td>
<td>32165</td>
<td>190</td>
<td>72177</td>
<td>3340</td>
<td>374</td>
<td>235458</td>
</tr>
<tr>
<td>2008</td>
<td>13733</td>
<td>94624</td>
<td>1111</td>
<td>21208</td>
<td>3640</td>
<td>31782</td>
<td>304</td>
<td>78434</td>
<td>3630</td>
<td>111</td>
<td>248577</td>
</tr>
<tr>
<td>2009</td>
<td>10980</td>
<td>95174</td>
<td>247</td>
<td>16995</td>
<td>3377</td>
<td>33625</td>
<td>417</td>
<td>76086</td>
<td>3439</td>
<td>114</td>
<td>240454</td>
</tr>
<tr>
<td>2010</td>
<td>14450</td>
<td>95658</td>
<td>9072</td>
<td>23018</td>
<td>3785</td>
<td>34683</td>
<td>556</td>
<td>81594</td>
<td>2980</td>
<td>68</td>
<td>265864</td>
</tr>
<tr>
<td>2011</td>
<td>15431</td>
<td>97992</td>
<td>11035</td>
<td>22887</td>
<td>4081</td>
<td>36837</td>
<td>653</td>
<td>77912</td>
<td>3086</td>
<td>114</td>
<td>270028</td>
</tr>
<tr>
<td>2012</td>
<td>15247</td>
<td>103471</td>
<td>13359</td>
<td>27228</td>
<td>4180</td>
<td>35719</td>
<td>932</td>
<td>78069</td>
<td>3462</td>
<td>58</td>
<td>281725</td>
</tr>
<tr>
<td>Any</td>
<td>Carbó</td>
<td>Petroli cru</td>
<td>Productes del petroli</td>
<td>Gas natural</td>
<td>Nuclear</td>
<td>Hidroelèctrica</td>
<td>Geotèrmica, solar i altres</td>
<td>Biocombustibles</td>
<td>Electricitat</td>
<td>Calor</td>
<td>Total</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>1990</td>
<td>24277</td>
<td>82797</td>
<td>-6283</td>
<td>54728</td>
<td>19398</td>
<td>25519</td>
<td>2</td>
<td>8158</td>
<td>-30</td>
<td>0</td>
<td>208566</td>
</tr>
<tr>
<td>1991</td>
<td>25309</td>
<td>78852</td>
<td>-7186</td>
<td>55389</td>
<td>22625</td>
<td>26511</td>
<td>3</td>
<td>8226</td>
<td>-1585</td>
<td>0</td>
<td>208144</td>
</tr>
<tr>
<td>1992</td>
<td>26252</td>
<td>78360</td>
<td>-4563</td>
<td>58366</td>
<td>21300</td>
<td>27209</td>
<td>8</td>
<td>8534</td>
<td>-2154</td>
<td>0</td>
<td>213312</td>
</tr>
<tr>
<td>1993</td>
<td>24106</td>
<td>82638</td>
<td>-6890</td>
<td>61944</td>
<td>24644</td>
<td>27826</td>
<td>8</td>
<td>8413</td>
<td>-2358</td>
<td>0</td>
<td>220331</td>
</tr>
<tr>
<td>1994</td>
<td>24797</td>
<td>83573</td>
<td>-7880</td>
<td>64990</td>
<td>28197</td>
<td>28366</td>
<td>8</td>
<td>9813</td>
<td>-3777</td>
<td>0</td>
<td>228087</td>
</tr>
<tr>
<td>1995</td>
<td>25317</td>
<td>84199</td>
<td>-7020</td>
<td>67092</td>
<td>25561</td>
<td>28889</td>
<td>8</td>
<td>9821</td>
<td>-3098</td>
<td>0</td>
<td>230769</td>
</tr>
<tr>
<td>1996</td>
<td>25881</td>
<td>87401</td>
<td>-9056</td>
<td>70418</td>
<td>24236</td>
<td>30586</td>
<td>9</td>
<td>9854</td>
<td>-3238</td>
<td>0</td>
<td>236091</td>
</tr>
<tr>
<td>1997</td>
<td>27531</td>
<td>91159</td>
<td>-9573</td>
<td>70945</td>
<td>21536</td>
<td>30160</td>
<td>9</td>
<td>10171</td>
<td>-3073</td>
<td>0</td>
<td>238865</td>
</tr>
<tr>
<td>1998</td>
<td>29305</td>
<td>93073</td>
<td>-8611</td>
<td>68098</td>
<td>18636</td>
<td>28543</td>
<td>9</td>
<td>10368</td>
<td>-2351</td>
<td>0</td>
<td>237070</td>
</tr>
<tr>
<td>1999</td>
<td>29457</td>
<td>93956</td>
<td>-8081</td>
<td>71125</td>
<td>19152</td>
<td>29736</td>
<td>18</td>
<td>11470</td>
<td>-2484</td>
<td>0</td>
<td>244349</td>
</tr>
<tr>
<td>2000</td>
<td>31713</td>
<td>96682</td>
<td>-9584</td>
<td>74237</td>
<td>18972</td>
<td>30832</td>
<td>27</td>
<td>11688</td>
<td>-3065</td>
<td>0</td>
<td>251502</td>
</tr>
<tr>
<td>2001</td>
<td>31127</td>
<td>99333</td>
<td>-11994</td>
<td>71859</td>
<td>19987</td>
<td>28665</td>
<td>33</td>
<td>10831</td>
<td>-1989</td>
<td>0</td>
<td>247852</td>
</tr>
<tr>
<td>2002</td>
<td>29966</td>
<td>98732</td>
<td>-13596</td>
<td>73328</td>
<td>19683</td>
<td>30148</td>
<td>40</td>
<td>11814</td>
<td>-1722</td>
<td>0</td>
<td>248393</td>
</tr>
<tr>
<td>2003</td>
<td>29703</td>
<td>103571</td>
<td>-10903</td>
<td>79706</td>
<td>19517</td>
<td>29020</td>
<td>76</td>
<td>11924</td>
<td>-584</td>
<td>0</td>
<td>262030</td>
</tr>
<tr>
<td>2004</td>
<td>28557</td>
<td>108062</td>
<td>-11481</td>
<td>78003</td>
<td>23555</td>
<td>29312</td>
<td>86</td>
<td>12468</td>
<td>-930</td>
<td>0</td>
<td>267632</td>
</tr>
<tr>
<td>2005</td>
<td>27223</td>
<td>105734</td>
<td>-9494</td>
<td>80666</td>
<td>23986</td>
<td>31125</td>
<td>139</td>
<td>13408</td>
<td>-2051</td>
<td>0</td>
<td>270736</td>
</tr>
<tr>
<td>2006</td>
<td>27289</td>
<td>106512</td>
<td>-8618</td>
<td>79709</td>
<td>25530</td>
<td>30345</td>
<td>216</td>
<td>12792</td>
<td>-1644</td>
<td>0</td>
<td>272131</td>
</tr>
<tr>
<td>2007</td>
<td>27013</td>
<td>103884</td>
<td>-10406</td>
<td>78429</td>
<td>24362</td>
<td>31612</td>
<td>263</td>
<td>13122</td>
<td>-2662</td>
<td>0</td>
<td>265617</td>
</tr>
<tr>
<td>2008</td>
<td>28308</td>
<td>97896</td>
<td>-7619</td>
<td>78553</td>
<td>25023</td>
<td>32461</td>
<td>330</td>
<td>12191</td>
<td>-2766</td>
<td>0</td>
<td>264377</td>
</tr>
<tr>
<td>2009</td>
<td>21904</td>
<td>94865</td>
<td>-9802</td>
<td>77519</td>
<td>23479</td>
<td>31704</td>
<td>583</td>
<td>11875</td>
<td>-2891</td>
<td>0</td>
<td>249236</td>
</tr>
<tr>
<td>2010</td>
<td>22229</td>
<td>95737</td>
<td>-9697</td>
<td>78678</td>
<td>23626</td>
<td>30216</td>
<td>763</td>
<td>11970</td>
<td>-2210</td>
<td>0</td>
<td>251312</td>
</tr>
<tr>
<td>2011</td>
<td>20205</td>
<td>87848</td>
<td>-5599</td>
<td>83574</td>
<td>24390</td>
<td>32309</td>
<td>901</td>
<td>12508</td>
<td>-3144</td>
<td>0</td>
<td>252992</td>
</tr>
<tr>
<td>2012</td>
<td>18364</td>
<td>94584</td>
<td>-12118</td>
<td>83483</td>
<td>24722</td>
<td>32724</td>
<td>1004</td>
<td>12401</td>
<td>-4040</td>
<td>0</td>
<td>251124</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Estats Units

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petróli cru</th>
<th>Productes del petróli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>460253</td>
<td>783541</td>
<td>-26698</td>
<td>438232</td>
<td>159384</td>
<td>23491</td>
<td>14422</td>
<td>62255</td>
<td>170</td>
<td>0</td>
<td>1915050</td>
</tr>
<tr>
<td>1991</td>
<td>454956</td>
<td>773870</td>
<td>-32860</td>
<td>458471</td>
<td>169237</td>
<td>24786</td>
<td>14664</td>
<td>65577</td>
<td>1915</td>
<td>0</td>
<td>1930616</td>
</tr>
<tr>
<td>1992</td>
<td>461628</td>
<td>786583</td>
<td>-30415</td>
<td>467483</td>
<td>170950</td>
<td>21876</td>
<td>15431</td>
<td>73387</td>
<td>2438</td>
<td>0</td>
<td>1969361</td>
</tr>
<tr>
<td>1993</td>
<td>472650</td>
<td>810137</td>
<td>-37824</td>
<td>480711</td>
<td>168609</td>
<td>24364</td>
<td>15991</td>
<td>66762</td>
<td>2445</td>
<td>0</td>
<td>2003845</td>
</tr>
<tr>
<td>1994</td>
<td>475728</td>
<td>816813</td>
<td>-29347</td>
<td>490519</td>
<td>176931</td>
<td>22598</td>
<td>15789</td>
<td>68417</td>
<td>3839</td>
<td>0</td>
<td>2041287</td>
</tr>
<tr>
<td>1995</td>
<td>474065</td>
<td>819672</td>
<td>-34114</td>
<td>507299</td>
<td>186022</td>
<td>27014</td>
<td>13596</td>
<td>70527</td>
<td>3235</td>
<td>0</td>
<td>2067316</td>
</tr>
<tr>
<td>1996</td>
<td>491505</td>
<td>840679</td>
<td>-28173</td>
<td>503033</td>
<td>186389</td>
<td>30179</td>
<td>14321</td>
<td>72052</td>
<td>3269</td>
<td>0</td>
<td>2113254</td>
</tr>
<tr>
<td>1997</td>
<td>505737</td>
<td>867604</td>
<td>-34720</td>
<td>506808</td>
<td>173658</td>
<td>28653</td>
<td>13599</td>
<td>70249</td>
<td>2929</td>
<td>0</td>
<td>2134517</td>
</tr>
<tr>
<td>1998</td>
<td>507882</td>
<td>873219</td>
<td>-26542</td>
<td>498610</td>
<td>186105</td>
<td>25464</td>
<td>13989</td>
<td>71649</td>
<td>2303</td>
<td>0</td>
<td>2152679</td>
</tr>
<tr>
<td>1999</td>
<td>511953</td>
<td>867263</td>
<td>-6746</td>
<td>524139</td>
<td>201139</td>
<td>23901</td>
<td>15830</td>
<td>70925</td>
<td>2493</td>
<td>0</td>
<td>2210897</td>
</tr>
<tr>
<td>2000</td>
<td>533639</td>
<td>887052</td>
<td>-15905</td>
<td>547580</td>
<td>207890</td>
<td>21776</td>
<td>15163</td>
<td>73232</td>
<td>2917</td>
<td>0</td>
<td>2273344</td>
</tr>
<tr>
<td>2001</td>
<td>526116</td>
<td>896216</td>
<td>-10529</td>
<td>514321</td>
<td>206557</td>
<td>16190</td>
<td>14995</td>
<td>64945</td>
<td>1894</td>
<td>0</td>
<td>2230705</td>
</tr>
<tr>
<td>2002</td>
<td>533448</td>
<td>883799</td>
<td>-6005</td>
<td>534490</td>
<td>209663</td>
<td>22965</td>
<td>10665</td>
<td>64959</td>
<td>1962</td>
<td>0</td>
<td>2255946</td>
</tr>
<tr>
<td>2003</td>
<td>532072</td>
<td>902390</td>
<td>-2370</td>
<td>518808</td>
<td>205310</td>
<td>23960</td>
<td>10788</td>
<td>69658</td>
<td>552</td>
<td>0</td>
<td>2261668</td>
</tr>
<tr>
<td>2004</td>
<td>552484</td>
<td>921893</td>
<td>3607</td>
<td>509565</td>
<td>211961</td>
<td>23316</td>
<td>11263</td>
<td>72706</td>
<td>973</td>
<td>0</td>
<td>2307768</td>
</tr>
<tr>
<td>2005</td>
<td>558321</td>
<td>911615</td>
<td>17566</td>
<td>507071</td>
<td>211280</td>
<td>23430</td>
<td>11582</td>
<td>75779</td>
<td>2126</td>
<td>0</td>
<td>2318770</td>
</tr>
<tr>
<td>2006</td>
<td>550653</td>
<td>917936</td>
<td>-3900</td>
<td>502001</td>
<td>212705</td>
<td>25101</td>
<td>12398</td>
<td>78347</td>
<td>1584</td>
<td>0</td>
<td>2296825</td>
</tr>
<tr>
<td>2007</td>
<td>554791</td>
<td>910919</td>
<td>-7580</td>
<td>542688</td>
<td>218032</td>
<td>21467</td>
<td>13321</td>
<td>80676</td>
<td>2688</td>
<td>0</td>
<td>2337002</td>
</tr>
<tr>
<td>2008</td>
<td>545810</td>
<td>890963</td>
<td>-42888</td>
<td>540910</td>
<td>218337</td>
<td>22077</td>
<td>14561</td>
<td>84488</td>
<td>2823</td>
<td>0</td>
<td>2277081</td>
</tr>
<tr>
<td>2009</td>
<td>485338</td>
<td>860997</td>
<td>-59918</td>
<td>535369</td>
<td>216358</td>
<td>21701</td>
<td>16243</td>
<td>83802</td>
<td>2929</td>
<td>0</td>
<td>2162819</td>
</tr>
<tr>
<td>2010</td>
<td>502600</td>
<td>875559</td>
<td>-69946</td>
<td>555918</td>
<td>218631</td>
<td>22555</td>
<td>18435</td>
<td>89407</td>
<td>2234</td>
<td>0</td>
<td>2215393</td>
</tr>
<tr>
<td>2011</td>
<td>479075</td>
<td>884230</td>
<td>-98212</td>
<td>568601</td>
<td>214063</td>
<td>27669</td>
<td>21038</td>
<td>91480</td>
<td>3205</td>
<td>0</td>
<td>2191149</td>
</tr>
<tr>
<td>2012</td>
<td>425036</td>
<td>872515</td>
<td>-101192</td>
<td>595533</td>
<td>208779</td>
<td>23952</td>
<td>23334</td>
<td>88599</td>
<td>4065</td>
<td>0</td>
<td>2140621</td>
</tr>
<tr>
<td>Any</td>
<td>Carbó</td>
<td>Petroli cru</td>
<td>Productes del petroli</td>
<td>Gas natural</td>
<td>Nuclear</td>
<td>Hidroelèctrica</td>
<td>Geotèrmica, solar i altres</td>
<td>Biocombustibles</td>
<td>Electricitat</td>
<td>Calor</td>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>1990</td>
<td>103383</td>
<td>56477</td>
<td>4621</td>
<td>10568</td>
<td>1600</td>
<td>6162</td>
<td>10</td>
<td>133458</td>
<td>118</td>
<td>0</td>
<td>316397</td>
</tr>
<tr>
<td>1991</td>
<td>110852</td>
<td>57823</td>
<td>5139</td>
<td>11954</td>
<td>1440</td>
<td>6259</td>
<td>16</td>
<td>135289</td>
<td>125</td>
<td>0</td>
<td>328897</td>
</tr>
<tr>
<td>1992</td>
<td>117464</td>
<td>60071</td>
<td>6287</td>
<td>13341</td>
<td>1753</td>
<td>6010</td>
<td>22</td>
<td>137145</td>
<td>104</td>
<td>0</td>
<td>342197</td>
</tr>
<tr>
<td>1993</td>
<td>122644</td>
<td>61910</td>
<td>6521</td>
<td>13526</td>
<td>1407</td>
<td>6061</td>
<td>25</td>
<td>137891</td>
<td>124</td>
<td>0</td>
<td>350109</td>
</tr>
<tr>
<td>1994</td>
<td>129197</td>
<td>63647</td>
<td>9018</td>
<td>14352</td>
<td>1472</td>
<td>7115</td>
<td>36</td>
<td>138637</td>
<td>122</td>
<td>0</td>
<td>363596</td>
</tr>
<tr>
<td>1995</td>
<td>135957</td>
<td>67179</td>
<td>14865</td>
<td>17327</td>
<td>2080</td>
<td>6243</td>
<td>67</td>
<td>140003</td>
<td>131</td>
<td>0</td>
<td>383852</td>
</tr>
<tr>
<td>1996</td>
<td>141847</td>
<td>71688</td>
<td>15164</td>
<td>17652</td>
<td>2364</td>
<td>5928</td>
<td>103</td>
<td>141339</td>
<td>133</td>
<td>0</td>
<td>396218</td>
</tr>
<tr>
<td>1997</td>
<td>147550</td>
<td>73485</td>
<td>18301</td>
<td>20318</td>
<td>2628</td>
<td>6421</td>
<td>114</td>
<td>142788</td>
<td>92</td>
<td>0</td>
<td>411697</td>
</tr>
<tr>
<td>1998</td>
<td>146358</td>
<td>77950</td>
<td>21424</td>
<td>21279</td>
<td>3107</td>
<td>7138</td>
<td>129</td>
<td>144232</td>
<td>96</td>
<td>0</td>
<td>421713</td>
</tr>
<tr>
<td>1999</td>
<td>157118</td>
<td>96314</td>
<td>12030</td>
<td>22987</td>
<td>3453</td>
<td>6953</td>
<td>164</td>
<td>146710</td>
<td>116</td>
<td>0</td>
<td>445845</td>
</tr>
<tr>
<td>2000</td>
<td>161457</td>
<td>112967</td>
<td>-982</td>
<td>23062</td>
<td>4405</td>
<td>6404</td>
<td>180</td>
<td>148824</td>
<td>112</td>
<td>0</td>
<td>456429</td>
</tr>
<tr>
<td>2001</td>
<td>165886</td>
<td>117429</td>
<td>-5004</td>
<td>23209</td>
<td>5075</td>
<td>6338</td>
<td>231</td>
<td>150817</td>
<td>111</td>
<td>0</td>
<td>464092</td>
</tr>
<tr>
<td>2002</td>
<td>171546</td>
<td>122147</td>
<td>-5146</td>
<td>25167</td>
<td>5053</td>
<td>5884</td>
<td>272</td>
<td>152968</td>
<td>116</td>
<td>0</td>
<td>478007</td>
</tr>
<tr>
<td>2003</td>
<td>175425</td>
<td>131045</td>
<td>-9966</td>
<td>25870</td>
<td>4634</td>
<td>6994</td>
<td>360</td>
<td>155244</td>
<td>145</td>
<td>0</td>
<td>489706</td>
</tr>
<tr>
<td>2004</td>
<td>196393</td>
<td>137126</td>
<td>-14796</td>
<td>28375</td>
<td>4433</td>
<td>7784</td>
<td>451</td>
<td>158024</td>
<td>146</td>
<td>0</td>
<td>517936</td>
</tr>
<tr>
<td>2005</td>
<td>208041</td>
<td>139275</td>
<td>-14689</td>
<td>31801</td>
<td>4515</td>
<td>9280</td>
<td>631</td>
<td>160751</td>
<td>134</td>
<td>0</td>
<td>539739</td>
</tr>
<tr>
<td>2006</td>
<td>223264</td>
<td>153300</td>
<td>-20178</td>
<td>33439</td>
<td>4900</td>
<td>10352</td>
<td>956</td>
<td>163465</td>
<td>236</td>
<td>0</td>
<td>569734</td>
</tr>
<tr>
<td>2007</td>
<td>243033</td>
<td>163882</td>
<td>-22424</td>
<td>35658</td>
<td>4419</td>
<td>10996</td>
<td>1185</td>
<td>166671</td>
<td>425</td>
<td>0</td>
<td>603845</td>
</tr>
<tr>
<td>2008</td>
<td>261606</td>
<td>174698</td>
<td>-25811</td>
<td>25983</td>
<td>3890</td>
<td>10045</td>
<td>1367</td>
<td>169982</td>
<td>502</td>
<td>0</td>
<td>622262</td>
</tr>
<tr>
<td>2009</td>
<td>297565</td>
<td>202166</td>
<td>-43185</td>
<td>49632</td>
<td>4857</td>
<td>9730</td>
<td>1846</td>
<td>173426</td>
<td>456</td>
<td>0</td>
<td>696493</td>
</tr>
<tr>
<td>2010</td>
<td>310073</td>
<td>210332</td>
<td>-49274</td>
<td>54386</td>
<td>6845</td>
<td>10584</td>
<td>1992</td>
<td>177119</td>
<td>477</td>
<td>0</td>
<td>722534</td>
</tr>
<tr>
<td>2011</td>
<td>325782</td>
<td>219010</td>
<td>-52813</td>
<td>54992</td>
<td>8414</td>
<td>12348</td>
<td>2532</td>
<td>181113</td>
<td>440</td>
<td>0</td>
<td>751818</td>
</tr>
<tr>
<td>2012</td>
<td>354247</td>
<td>233025</td>
<td>-55845</td>
<td>48928</td>
<td>8566</td>
<td>10821</td>
<td>3079</td>
<td>184892</td>
<td>412</td>
<td>0</td>
<td>788125</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energetics

Indonèsia

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrom cru</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3549</td>
<td>42261</td>
<td>-8915</td>
<td>15804</td>
<td>0</td>
<td>491</td>
<td>1934</td>
<td>43490</td>
<td>0</td>
<td>0</td>
<td>98614</td>
</tr>
<tr>
<td>1991</td>
<td>3270</td>
<td>42638</td>
<td>-8069</td>
<td>18870</td>
<td>0</td>
<td>570</td>
<td>1804</td>
<td>44363</td>
<td>0</td>
<td>0</td>
<td>103446</td>
</tr>
<tr>
<td>1992</td>
<td>3808</td>
<td>44287</td>
<td>-7908</td>
<td>19885</td>
<td>0</td>
<td>758</td>
<td>1864</td>
<td>45137</td>
<td>0</td>
<td>0</td>
<td>107831</td>
</tr>
<tr>
<td>1993</td>
<td>6351</td>
<td>47897</td>
<td>-4937</td>
<td>20670</td>
<td>0</td>
<td>678</td>
<td>1874</td>
<td>45911</td>
<td>0</td>
<td>0</td>
<td>118444</td>
</tr>
<tr>
<td>1994</td>
<td>5755</td>
<td>45525</td>
<td>-6532</td>
<td>23419</td>
<td>0</td>
<td>525</td>
<td>3327</td>
<td>46579</td>
<td>0</td>
<td>0</td>
<td>118598</td>
</tr>
<tr>
<td>1995</td>
<td>6330</td>
<td>51093</td>
<td>-3474</td>
<td>25320</td>
<td>0</td>
<td>648</td>
<td>3800</td>
<td>47092</td>
<td>0</td>
<td>0</td>
<td>130809</td>
</tr>
<tr>
<td>1996</td>
<td>8806</td>
<td>53368</td>
<td>-5082</td>
<td>26295</td>
<td>0</td>
<td>702</td>
<td>4044</td>
<td>47423</td>
<td>0</td>
<td>0</td>
<td>135556</td>
</tr>
<tr>
<td>1997</td>
<td>6992</td>
<td>50783</td>
<td>900</td>
<td>28266</td>
<td>0</td>
<td>439</td>
<td>4479</td>
<td>48257</td>
<td>0</td>
<td>0</td>
<td>140116</td>
</tr>
<tr>
<td>1998</td>
<td>6915</td>
<td>51563</td>
<td>-2206</td>
<td>26877</td>
<td>0</td>
<td>833</td>
<td>4500</td>
<td>48579</td>
<td>0</td>
<td>0</td>
<td>137061</td>
</tr>
<tr>
<td>1999</td>
<td>8915</td>
<td>50598</td>
<td>1516</td>
<td>28293</td>
<td>0</td>
<td>808</td>
<td>4690</td>
<td>48755</td>
<td>0</td>
<td>0</td>
<td>143575</td>
</tr>
<tr>
<td>2000</td>
<td>12009</td>
<td>54205</td>
<td>3661</td>
<td>26542</td>
<td>0</td>
<td>861</td>
<td>8372</td>
<td>49981</td>
<td>0</td>
<td>0</td>
<td>155631</td>
</tr>
<tr>
<td>2001</td>
<td>14368</td>
<td>52656</td>
<td>3288</td>
<td>27579</td>
<td>0</td>
<td>1002</td>
<td>10369</td>
<td>50030</td>
<td>0</td>
<td>0</td>
<td>159292</td>
</tr>
<tr>
<td>2002</td>
<td>15345</td>
<td>52121</td>
<td>6553</td>
<td>29311</td>
<td>0</td>
<td>854</td>
<td>10725</td>
<td>50306</td>
<td>0</td>
<td>0</td>
<td>165215</td>
</tr>
<tr>
<td>2003</td>
<td>15451</td>
<td>50778</td>
<td>6153</td>
<td>31063</td>
<td>0</td>
<td>783</td>
<td>10822</td>
<td>50646</td>
<td>0</td>
<td>0</td>
<td>165696</td>
</tr>
<tr>
<td>2004</td>
<td>20417</td>
<td>52281</td>
<td>12541</td>
<td>28350</td>
<td>0</td>
<td>832</td>
<td>11444</td>
<td>50782</td>
<td>0</td>
<td>0</td>
<td>176647</td>
</tr>
<tr>
<td>2005</td>
<td>22127</td>
<td>50278</td>
<td>15172</td>
<td>29248</td>
<td>0</td>
<td>922</td>
<td>11355</td>
<td>50686</td>
<td>0</td>
<td>0</td>
<td>179788</td>
</tr>
<tr>
<td>2006</td>
<td>26495</td>
<td>53067</td>
<td>10964</td>
<td>29377</td>
<td>0</td>
<td>828</td>
<td>11447</td>
<td>51848</td>
<td>0</td>
<td>0</td>
<td>184026</td>
</tr>
<tr>
<td>2007</td>
<td>28397</td>
<td>47762</td>
<td>14217</td>
<td>27878</td>
<td>0</td>
<td>971</td>
<td>12072</td>
<td>51879</td>
<td>0</td>
<td>0</td>
<td>183176</td>
</tr>
<tr>
<td>2008</td>
<td>25786</td>
<td>48780</td>
<td>14788</td>
<td>29785</td>
<td>0</td>
<td>991</td>
<td>14286</td>
<td>52389</td>
<td>0</td>
<td>0</td>
<td>186805</td>
</tr>
<tr>
<td>2009</td>
<td>30513</td>
<td>51304</td>
<td>14114</td>
<td>34370</td>
<td>0</td>
<td>979</td>
<td>15982</td>
<td>52731</td>
<td>0</td>
<td>0</td>
<td>199993</td>
</tr>
<tr>
<td>2010</td>
<td>30483</td>
<td>50879</td>
<td>19514</td>
<td>38789</td>
<td>0</td>
<td>1501</td>
<td>16088</td>
<td>52173</td>
<td>0</td>
<td>0</td>
<td>209427</td>
</tr>
<tr>
<td>2011</td>
<td>25492</td>
<td>50433</td>
<td>22788</td>
<td>35627</td>
<td>0</td>
<td>1068</td>
<td>16113</td>
<td>53813</td>
<td>0</td>
<td>0</td>
<td>205334</td>
</tr>
<tr>
<td>2012</td>
<td>29792</td>
<td>49638</td>
<td>27543</td>
<td>34975</td>
<td>0</td>
<td>1101</td>
<td>16192</td>
<td>54089</td>
<td>257</td>
<td>0</td>
<td>213587</td>
</tr>
</tbody>
</table>

- 25 -
<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petróli cru</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>710</td>
<td>48231</td>
<td>2175</td>
<td>17480</td>
<td>0</td>
<td>523</td>
<td>0</td>
<td>218</td>
<td>0</td>
<td>0</td>
<td>69337</td>
</tr>
<tr>
<td>1991</td>
<td>1014</td>
<td>50664</td>
<td>2680</td>
<td>21675</td>
<td>0</td>
<td>607</td>
<td>0</td>
<td>225</td>
<td>0</td>
<td>0</td>
<td>76865</td>
</tr>
<tr>
<td>1992</td>
<td>893</td>
<td>53644</td>
<td>2307</td>
<td>22999</td>
<td>0</td>
<td>820</td>
<td>0</td>
<td>249</td>
<td>0</td>
<td>0</td>
<td>80912</td>
</tr>
<tr>
<td>1993</td>
<td>1098</td>
<td>59605</td>
<td>-1196</td>
<td>26512</td>
<td>0</td>
<td>845</td>
<td>0</td>
<td>269</td>
<td>-17</td>
<td>0</td>
<td>87116</td>
</tr>
<tr>
<td>1994</td>
<td>1103</td>
<td>68146</td>
<td>-5459</td>
<td>32016</td>
<td>0</td>
<td>640</td>
<td>0</td>
<td>287</td>
<td>-17</td>
<td>0</td>
<td>96716</td>
</tr>
<tr>
<td>1995</td>
<td>1032</td>
<td>70911</td>
<td>-7235</td>
<td>35636</td>
<td>0</td>
<td>627</td>
<td>0</td>
<td>267</td>
<td>-14</td>
<td>0</td>
<td>101224</td>
</tr>
<tr>
<td>1996</td>
<td>1080</td>
<td>69225</td>
<td>-9037</td>
<td>35492</td>
<td>0</td>
<td>636</td>
<td>0</td>
<td>272</td>
<td>-33</td>
<td>0</td>
<td>97635</td>
</tr>
<tr>
<td>1997</td>
<td>1107</td>
<td>78588</td>
<td>-10954</td>
<td>39716</td>
<td>0</td>
<td>596</td>
<td>0</td>
<td>245</td>
<td>-45</td>
<td>0</td>
<td>109253</td>
</tr>
<tr>
<td>1998</td>
<td>1289</td>
<td>79288</td>
<td>-13163</td>
<td>43097</td>
<td>0</td>
<td>605</td>
<td>0</td>
<td>197</td>
<td>-53</td>
<td>0</td>
<td>111260</td>
</tr>
<tr>
<td>1999</td>
<td>1343</td>
<td>95724</td>
<td>-21314</td>
<td>49926</td>
<td>0</td>
<td>425</td>
<td>3</td>
<td>174</td>
<td>-68</td>
<td>0</td>
<td>126213</td>
</tr>
<tr>
<td>2000</td>
<td>1458</td>
<td>85979</td>
<td>-17449</td>
<td>52618</td>
<td>0</td>
<td>314</td>
<td>2</td>
<td>153</td>
<td>-58</td>
<td>0</td>
<td>123017</td>
</tr>
<tr>
<td>2001</td>
<td>1267</td>
<td>90873</td>
<td>-15000</td>
<td>55766</td>
<td>0</td>
<td>435</td>
<td>3</td>
<td>142</td>
<td>-26</td>
<td>0</td>
<td>133460</td>
</tr>
<tr>
<td>2002</td>
<td>1273</td>
<td>88430</td>
<td>-15303</td>
<td>62826</td>
<td>0</td>
<td>692</td>
<td>3</td>
<td>108</td>
<td>15</td>
<td>0</td>
<td>138044</td>
</tr>
<tr>
<td>2003</td>
<td>1401</td>
<td>84761</td>
<td>-13827</td>
<td>69228</td>
<td>0</td>
<td>954</td>
<td>2</td>
<td>98</td>
<td>49</td>
<td>0</td>
<td>142666</td>
</tr>
<tr>
<td>2004</td>
<td>1379</td>
<td>86642</td>
<td>-11632</td>
<td>78152</td>
<td>0</td>
<td>914</td>
<td>4</td>
<td>97</td>
<td>29</td>
<td>0</td>
<td>155585</td>
</tr>
<tr>
<td>2005</td>
<td>1682</td>
<td>95789</td>
<td>-10542</td>
<td>83813</td>
<td>0</td>
<td>1385</td>
<td>6</td>
<td>582</td>
<td>-58</td>
<td>0</td>
<td>172657</td>
</tr>
<tr>
<td>2006</td>
<td>1647</td>
<td>93157</td>
<td>-8795</td>
<td>92296</td>
<td>0</td>
<td>1571</td>
<td>11</td>
<td>577</td>
<td>-20</td>
<td>0</td>
<td>180444</td>
</tr>
<tr>
<td>2007</td>
<td>1735</td>
<td>91011</td>
<td>-8095</td>
<td>104180</td>
<td>0</td>
<td>1547</td>
<td>12</td>
<td>609</td>
<td>-58</td>
<td>0</td>
<td>190941</td>
</tr>
<tr>
<td>2008</td>
<td>1617</td>
<td>97876</td>
<td>-5727</td>
<td>109981</td>
<td>0</td>
<td>430</td>
<td>17</td>
<td>617</td>
<td>-188</td>
<td>0</td>
<td>204623</td>
</tr>
<tr>
<td>2009</td>
<td>1191</td>
<td>99156</td>
<td>-9137</td>
<td>115377</td>
<td>0</td>
<td>622</td>
<td>19</td>
<td>617</td>
<td>-351</td>
<td>0</td>
<td>207494</td>
</tr>
<tr>
<td>2010</td>
<td>1488</td>
<td>97136</td>
<td>-14370</td>
<td>122114</td>
<td>0</td>
<td>819</td>
<td>14</td>
<td>618</td>
<td>-318</td>
<td>0</td>
<td>207501</td>
</tr>
<tr>
<td>2011</td>
<td>1463</td>
<td>100909</td>
<td>-20350</td>
<td>129166</td>
<td>85</td>
<td>1037</td>
<td>19</td>
<td>504</td>
<td>-431</td>
<td>0</td>
<td>212402</td>
</tr>
<tr>
<td>2012</td>
<td>1129</td>
<td>103802</td>
<td>-15087</td>
<td>128282</td>
<td>481</td>
<td>1070</td>
<td>18</td>
<td>508</td>
<td>-613</td>
<td>0</td>
<td>219590</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Japó

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli cru</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>76615</td>
<td>204614</td>
<td>45803</td>
<td>44161</td>
<td>52713</td>
<td>7680</td>
<td>2743</td>
<td>4896</td>
<td>0</td>
<td>0</td>
<td>439225</td>
</tr>
<tr>
<td>1991</td>
<td>78497</td>
<td>208342</td>
<td>38810</td>
<td>46476</td>
<td>55629</td>
<td>8384</td>
<td>2759</td>
<td>4952</td>
<td>0</td>
<td>0</td>
<td>443849</td>
</tr>
<tr>
<td>1992</td>
<td>76238</td>
<td>222160</td>
<td>34832</td>
<td>47560</td>
<td>58183</td>
<td>7099</td>
<td>2722</td>
<td>4868</td>
<td>0</td>
<td>0</td>
<td>453662</td>
</tr>
<tr>
<td>1993</td>
<td>76573</td>
<td>222148</td>
<td>28639</td>
<td>48772</td>
<td>64958</td>
<td>8221</td>
<td>2685</td>
<td>4678</td>
<td>0</td>
<td>0</td>
<td>456674</td>
</tr>
<tr>
<td>1994</td>
<td>81294</td>
<td>236066</td>
<td>28691</td>
<td>52033</td>
<td>70136</td>
<td>5785</td>
<td>1934</td>
<td>4757</td>
<td>0</td>
<td>0</td>
<td>480696</td>
</tr>
<tr>
<td>1995</td>
<td>84097</td>
<td>229490</td>
<td>35594</td>
<td>53193</td>
<td>75903</td>
<td>7062</td>
<td>3945</td>
<td>5026</td>
<td>0</td>
<td>0</td>
<td>494310</td>
</tr>
<tr>
<td>1996</td>
<td>86322</td>
<td>229309</td>
<td>37709</td>
<td>56202</td>
<td>78755</td>
<td>6925</td>
<td>4366</td>
<td>5152</td>
<td>0</td>
<td>0</td>
<td>504740</td>
</tr>
<tr>
<td>1997</td>
<td>88998</td>
<td>232460</td>
<td>29360</td>
<td>58574</td>
<td>83179</td>
<td>7723</td>
<td>4447</td>
<td>5452</td>
<td>0</td>
<td>0</td>
<td>510193</td>
</tr>
<tr>
<td>1998</td>
<td>83647</td>
<td>223530</td>
<td>29847</td>
<td>59893</td>
<td>86611</td>
<td>7956</td>
<td>4128</td>
<td>5252</td>
<td>0</td>
<td>0</td>
<td>500864</td>
</tr>
<tr>
<td>1999</td>
<td>89040</td>
<td>219131</td>
<td>37730</td>
<td>63413</td>
<td>82512</td>
<td>7432</td>
<td>3987</td>
<td>5466</td>
<td>0</td>
<td>0</td>
<td>508711</td>
</tr>
<tr>
<td>2000</td>
<td>97125</td>
<td>220097</td>
<td>35114</td>
<td>65652</td>
<td>83928</td>
<td>7504</td>
<td>3946</td>
<td>5639</td>
<td>0</td>
<td>0</td>
<td>519005</td>
</tr>
<tr>
<td>2001</td>
<td>99212</td>
<td>209304</td>
<td>35638</td>
<td>66449</td>
<td>83357</td>
<td>7238</td>
<td>3985</td>
<td>5340</td>
<td>0</td>
<td>0</td>
<td>510523</td>
</tr>
<tr>
<td>2002</td>
<td>102512</td>
<td>210308</td>
<td>37519</td>
<td>66522</td>
<td>76903</td>
<td>7085</td>
<td>3961</td>
<td>5638</td>
<td>0</td>
<td>0</td>
<td>510448</td>
</tr>
<tr>
<td>2003</td>
<td>105512</td>
<td>213343</td>
<td>35531</td>
<td>71302</td>
<td>62549</td>
<td>8136</td>
<td>4009</td>
<td>5885</td>
<td>0</td>
<td>0</td>
<td>506270</td>
</tr>
<tr>
<td>2004</td>
<td>115472</td>
<td>210465</td>
<td>34537</td>
<td>70574</td>
<td>73606</td>
<td>8089</td>
<td>3916</td>
<td>5854</td>
<td>0</td>
<td>0</td>
<td>522513</td>
</tr>
<tr>
<td>2005</td>
<td>110046</td>
<td>215701</td>
<td>27467</td>
<td>70565</td>
<td>79421</td>
<td>6576</td>
<td>3837</td>
<td>6807</td>
<td>0</td>
<td>0</td>
<td>520420</td>
</tr>
<tr>
<td>2006</td>
<td>111433</td>
<td>207722</td>
<td>25818</td>
<td>77454</td>
<td>79075</td>
<td>7527</td>
<td>3738</td>
<td>6928</td>
<td>0</td>
<td>0</td>
<td>519695</td>
</tr>
<tr>
<td>2007</td>
<td>116363</td>
<td>211644</td>
<td>18038</td>
<td>83046</td>
<td>68756</td>
<td>6365</td>
<td>3729</td>
<td>7170</td>
<td>0</td>
<td>0</td>
<td>515111</td>
</tr>
<tr>
<td>2008</td>
<td>113572</td>
<td>202602</td>
<td>11243</td>
<td>83715</td>
<td>67270</td>
<td>6575</td>
<td>3482</td>
<td>6821</td>
<td>0</td>
<td>0</td>
<td>495280</td>
</tr>
<tr>
<td>2009</td>
<td>101273</td>
<td>185411</td>
<td>15415</td>
<td>80732</td>
<td>72905</td>
<td>6613</td>
<td>3682</td>
<td>6381</td>
<td>0</td>
<td>0</td>
<td>472412</td>
</tr>
<tr>
<td>2010</td>
<td>115116</td>
<td>185314</td>
<td>17009</td>
<td>86014</td>
<td>75114</td>
<td>7070</td>
<td>3522</td>
<td>9547</td>
<td>0</td>
<td>0</td>
<td>498706</td>
</tr>
<tr>
<td>2011</td>
<td>107531</td>
<td>181067</td>
<td>25802</td>
<td>100062</td>
<td>26520</td>
<td>7155</td>
<td>3704</td>
<td>10116</td>
<td>0</td>
<td>0</td>
<td>461957</td>
</tr>
<tr>
<td>2012</td>
<td>112178</td>
<td>183087</td>
<td>27107</td>
<td>105282</td>
<td>4154</td>
<td>6492</td>
<td>3781</td>
<td>10191</td>
<td>0</td>
<td>0</td>
<td>452272</td>
</tr>
<tr>
<td>Any</td>
<td>Carbó</td>
<td>Petroli cru</td>
<td>Productes del petroli</td>
<td>Gas natural</td>
<td>Nuclear</td>
<td>Hidroelèctrica</td>
<td>Geotèrmica, solar i altres</td>
<td>Biocombustibles</td>
<td>Electricitat</td>
<td>Calor</td>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1990</td>
<td>3476</td>
<td>82018</td>
<td>-1753</td>
<td>23120</td>
<td>765</td>
<td>2019</td>
<td>4423</td>
<td>8552</td>
<td>-118</td>
<td>0</td>
<td>122502</td>
</tr>
<tr>
<td>1991</td>
<td>3317</td>
<td>84151</td>
<td>66</td>
<td>24144</td>
<td>1105</td>
<td>1879</td>
<td>4691</td>
<td>8799</td>
<td>-120</td>
<td>0</td>
<td>128032</td>
</tr>
<tr>
<td>1992</td>
<td>3590</td>
<td>83980</td>
<td>524</td>
<td>24294</td>
<td>1021</td>
<td>2251</td>
<td>5010</td>
<td>8895</td>
<td>-90</td>
<td>0</td>
<td>129475</td>
</tr>
<tr>
<td>1993</td>
<td>4043</td>
<td>85616</td>
<td>-555</td>
<td>23517</td>
<td>1285</td>
<td>2256</td>
<td>5075</td>
<td>8823</td>
<td>-95</td>
<td>0</td>
<td>129965</td>
</tr>
<tr>
<td>1994</td>
<td>4808</td>
<td>88224</td>
<td>792</td>
<td>24413</td>
<td>1105</td>
<td>1724</td>
<td>4838</td>
<td>8470</td>
<td>-70</td>
<td>0</td>
<td>134304</td>
</tr>
<tr>
<td>1995</td>
<td>5496</td>
<td>83498</td>
<td>-2209</td>
<td>24944</td>
<td>2200</td>
<td>2367</td>
<td>4900</td>
<td>8803</td>
<td>-67</td>
<td>0</td>
<td>129932</td>
</tr>
<tr>
<td>1996</td>
<td>6392</td>
<td>80192</td>
<td>1104</td>
<td>26777</td>
<td>2053</td>
<td>2704</td>
<td>4954</td>
<td>8808</td>
<td>9</td>
<td>0</td>
<td>132993</td>
</tr>
<tr>
<td>1997</td>
<td>6560</td>
<td>79577</td>
<td>5946</td>
<td>25996</td>
<td>2725</td>
<td>2273</td>
<td>4731</td>
<td>9053</td>
<td>126</td>
<td>0</td>
<td>136987</td>
</tr>
<tr>
<td>1998</td>
<td>6653</td>
<td>82207</td>
<td>6433</td>
<td>27436</td>
<td>2415</td>
<td>2118</td>
<td>4899</td>
<td>9148</td>
<td>123</td>
<td>0</td>
<td>141432</td>
</tr>
<tr>
<td>1999</td>
<td>6844</td>
<td>84674</td>
<td>8042</td>
<td>27809</td>
<td>2607</td>
<td>2819</td>
<td>4874</td>
<td>8998</td>
<td>45</td>
<td>0</td>
<td>146712</td>
</tr>
<tr>
<td>2000</td>
<td>7023</td>
<td>77858</td>
<td>11884</td>
<td>28921</td>
<td>2142</td>
<td>2849</td>
<td>5119</td>
<td>8939</td>
<td>75</td>
<td>0</td>
<td>144810</td>
</tr>
<tr>
<td>2001</td>
<td>7554</td>
<td>83311</td>
<td>9811</td>
<td>29588</td>
<td>2274</td>
<td>2451</td>
<td>4840</td>
<td>8632</td>
<td>5</td>
<td>0</td>
<td>148466</td>
</tr>
<tr>
<td>2002</td>
<td>8532</td>
<td>82470</td>
<td>7077</td>
<td>33178</td>
<td>2540</td>
<td>2146</td>
<td>4701</td>
<td>8507</td>
<td>17</td>
<td>0</td>
<td>149168</td>
</tr>
<tr>
<td>2003</td>
<td>9566</td>
<td>87773</td>
<td>5382</td>
<td>35726</td>
<td>2737</td>
<td>1710</td>
<td>5470</td>
<td>8546</td>
<td>-74</td>
<td>0</td>
<td>156836</td>
</tr>
<tr>
<td>2004</td>
<td>8059</td>
<td>89156</td>
<td>7161</td>
<td>37635</td>
<td>2396</td>
<td>2168</td>
<td>5731</td>
<td>8601</td>
<td>-82</td>
<td>0</td>
<td>160825</td>
</tr>
<tr>
<td>2005</td>
<td>10096</td>
<td>90545</td>
<td>9650</td>
<td>38066</td>
<td>2816</td>
<td>2379</td>
<td>6362</td>
<td>8883</td>
<td>-104</td>
<td>0</td>
<td>168693</td>
</tr>
<tr>
<td>2006</td>
<td>10056</td>
<td>86735</td>
<td>11177</td>
<td>43010</td>
<td>2832</td>
<td>2614</td>
<td>5847</td>
<td>8675</td>
<td>-67</td>
<td>0</td>
<td>170879</td>
</tr>
<tr>
<td>2007</td>
<td>9831</td>
<td>85416</td>
<td>13768</td>
<td>46351</td>
<td>2716</td>
<td>2346</td>
<td>6497</td>
<td>8689</td>
<td>-101</td>
<td>0</td>
<td>175513</td>
</tr>
<tr>
<td>2008</td>
<td>8460</td>
<td>86933</td>
<td>15740</td>
<td>48999</td>
<td>2555</td>
<td>3369</td>
<td>6224</td>
<td>8653</td>
<td>-95</td>
<td>0</td>
<td>180838</td>
</tr>
<tr>
<td>2009</td>
<td>8842</td>
<td>87429</td>
<td>11140</td>
<td>48514</td>
<td>2737</td>
<td>2297</td>
<td>6008</td>
<td>8383</td>
<td>-78</td>
<td>0</td>
<td>175272</td>
</tr>
<tr>
<td>2010</td>
<td>9438</td>
<td>78263</td>
<td>16383</td>
<td>53264</td>
<td>1532</td>
<td>3192</td>
<td>5916</td>
<td>8362</td>
<td>-82</td>
<td>0</td>
<td>176268</td>
</tr>
<tr>
<td>2011</td>
<td>9977</td>
<td>78667</td>
<td>18892</td>
<td>56218</td>
<td>2629</td>
<td>3119</td>
<td>5878</td>
<td>8268</td>
<td>-49</td>
<td>0</td>
<td>183599</td>
</tr>
<tr>
<td>2012</td>
<td>9361</td>
<td>81608</td>
<td>20399</td>
<td>58468</td>
<td>2286</td>
<td>2740</td>
<td>5473</td>
<td>8422</td>
<td>-365</td>
<td>0</td>
<td>188392</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

República de Corea

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí cru</th>
<th>Productes del petrolí</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>25383</td>
<td>43240</td>
<td>6495</td>
<td>2724</td>
<td>13783</td>
<td>547</td>
<td>10</td>
<td>731</td>
<td>0</td>
<td>0</td>
<td>92913</td>
</tr>
<tr>
<td>1991</td>
<td>25094</td>
<td>55080</td>
<td>901</td>
<td>3151</td>
<td>14675</td>
<td>300</td>
<td>11</td>
<td>655</td>
<td>0</td>
<td>0</td>
<td>99867</td>
</tr>
<tr>
<td>1992</td>
<td>22228</td>
<td>70399</td>
<td>-1524</td>
<td>4057</td>
<td>14732</td>
<td>266</td>
<td>13</td>
<td>701</td>
<td>0</td>
<td>0</td>
<td>110872</td>
</tr>
<tr>
<td>1993</td>
<td>24887</td>
<td>77254</td>
<td>793</td>
<td>5174</td>
<td>15151</td>
<td>364</td>
<td>14</td>
<td>735</td>
<td>0</td>
<td>0</td>
<td>124372</td>
</tr>
<tr>
<td>1994</td>
<td>25590</td>
<td>79305</td>
<td>4113</td>
<td>6864</td>
<td>15285</td>
<td>202</td>
<td>17</td>
<td>693</td>
<td>0</td>
<td>0</td>
<td>132069</td>
</tr>
<tr>
<td>1995</td>
<td>26610</td>
<td>89909</td>
<td>1217</td>
<td>8321</td>
<td>17468</td>
<td>237</td>
<td>22</td>
<td>969</td>
<td>0</td>
<td>0</td>
<td>144753</td>
</tr>
<tr>
<td>1996</td>
<td>28693</td>
<td>101648</td>
<td>-4310</td>
<td>10912</td>
<td>19265</td>
<td>208</td>
<td>32</td>
<td>832</td>
<td>0</td>
<td>0</td>
<td>157280</td>
</tr>
<tr>
<td>1997</td>
<td>31838</td>
<td>124220</td>
<td>-19447</td>
<td>13326</td>
<td>20089</td>
<td>242</td>
<td>46</td>
<td>917</td>
<td>0</td>
<td>0</td>
<td>171231</td>
</tr>
<tr>
<td>1998</td>
<td>32352</td>
<td>115487</td>
<td>-28765</td>
<td>12488</td>
<td>23373</td>
<td>368</td>
<td>44</td>
<td>991</td>
<td>0</td>
<td>0</td>
<td>156338</td>
</tr>
<tr>
<td>1999</td>
<td>34436</td>
<td>122996</td>
<td>-28113</td>
<td>15206</td>
<td>26859</td>
<td>358</td>
<td>43</td>
<td>1103</td>
<td>0</td>
<td>0</td>
<td>172888</td>
</tr>
<tr>
<td>2000</td>
<td>41949</td>
<td>126493</td>
<td>-27454</td>
<td>17005</td>
<td>28397</td>
<td>345</td>
<td>44</td>
<td>1379</td>
<td>0</td>
<td>0</td>
<td>188158</td>
</tr>
<tr>
<td>2001</td>
<td>45491</td>
<td>120846</td>
<td>-25060</td>
<td>18737</td>
<td>29223</td>
<td>357</td>
<td>39</td>
<td>1426</td>
<td>0</td>
<td>0</td>
<td>191059</td>
</tr>
<tr>
<td>2002</td>
<td>47089</td>
<td>111014</td>
<td>-13527</td>
<td>21203</td>
<td>31039</td>
<td>278</td>
<td>37</td>
<td>1569</td>
<td>0</td>
<td>0</td>
<td>198702</td>
</tr>
<tr>
<td>2003</td>
<td>48687</td>
<td>108982</td>
<td>-12974</td>
<td>22001</td>
<td>33793</td>
<td>422</td>
<td>36</td>
<td>1804</td>
<td>0</td>
<td>0</td>
<td>202751</td>
</tr>
<tr>
<td>2004</td>
<td>50210</td>
<td>118034</td>
<td>-21687</td>
<td>25280</td>
<td>34065</td>
<td>372</td>
<td>42</td>
<td>2008</td>
<td>0</td>
<td>0</td>
<td>208324</td>
</tr>
<tr>
<td>2005</td>
<td>49657</td>
<td>118805</td>
<td>-26315</td>
<td>27368</td>
<td>38251</td>
<td>316</td>
<td>50</td>
<td>2144</td>
<td>0</td>
<td>12</td>
<td>210288</td>
</tr>
<tr>
<td>2006</td>
<td>52822</td>
<td>121846</td>
<td>-31209</td>
<td>28700</td>
<td>38765</td>
<td>298</td>
<td>63</td>
<td>2434</td>
<td>0</td>
<td>17</td>
<td>213736</td>
</tr>
<tr>
<td>2007</td>
<td>56231</td>
<td>122072</td>
<td>-27620</td>
<td>31152</td>
<td>37250</td>
<td>312</td>
<td>79</td>
<td>2746</td>
<td>0</td>
<td>17</td>
<td>222239</td>
</tr>
<tr>
<td>2008</td>
<td>62917</td>
<td>120052</td>
<td>-30431</td>
<td>31807</td>
<td>39341</td>
<td>264</td>
<td>107</td>
<td>2996</td>
<td>0</td>
<td>42</td>
<td>227095</td>
</tr>
<tr>
<td>2009</td>
<td>64913</td>
<td>115011</td>
<td>-24416</td>
<td>31703</td>
<td>38510</td>
<td>242</td>
<td>168</td>
<td>3044</td>
<td>0</td>
<td>71</td>
<td>229246</td>
</tr>
<tr>
<td>2010</td>
<td>73454</td>
<td>120993</td>
<td>-25878</td>
<td>38625</td>
<td>38725</td>
<td>317</td>
<td>216</td>
<td>3448</td>
<td>0</td>
<td>91</td>
<td>249991</td>
</tr>
<tr>
<td>2011</td>
<td>80264</td>
<td>128026</td>
<td>-34315</td>
<td>41576</td>
<td>40322</td>
<td>395</td>
<td>254</td>
<td>3856</td>
<td>0</td>
<td>90</td>
<td>260468</td>
</tr>
<tr>
<td>2012</td>
<td>77079</td>
<td>130505</td>
<td>-33283</td>
<td>44966</td>
<td>39176</td>
<td>341</td>
<td>299</td>
<td>4276</td>
<td>0</td>
<td>82</td>
<td>263441</td>
</tr>
</tbody>
</table>
Rússia

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí cru</th>
<th>Productes del petrolí</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroeelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>191071</td>
<td>321938</td>
<td>-58160</td>
<td>367287</td>
<td>31299</td>
<td>14269</td>
<td>24</td>
<td>12180</td>
<td>-715</td>
<td>0</td>
<td>879193</td>
</tr>
<tr>
<td>1991</td>
<td>180832</td>
<td>315477</td>
<td>-55373</td>
<td>373586</td>
<td>31709</td>
<td>14411</td>
<td>25</td>
<td>11492</td>
<td>-1037</td>
<td>0</td>
<td>871122</td>
</tr>
<tr>
<td>1992</td>
<td>159029</td>
<td>263135</td>
<td>-48104</td>
<td>364192</td>
<td>31560</td>
<td>14778</td>
<td>25</td>
<td>12449</td>
<td>-1397</td>
<td>0</td>
<td>795667</td>
</tr>
<tr>
<td>1993</td>
<td>142572</td>
<td>237633</td>
<td>-41497</td>
<td>355915</td>
<td>31418</td>
<td>14912</td>
<td>24</td>
<td>11835</td>
<td>-1611</td>
<td>0</td>
<td>751201</td>
</tr>
<tr>
<td>1994</td>
<td>133683</td>
<td>194450</td>
<td>-46584</td>
<td>327583</td>
<td>25859</td>
<td>15048</td>
<td>27</td>
<td>8660</td>
<td>-1763</td>
<td>0</td>
<td>656963</td>
</tr>
<tr>
<td>1995</td>
<td>129174</td>
<td>189297</td>
<td>-46579</td>
<td>316545</td>
<td>26249</td>
<td>15085</td>
<td>26</td>
<td>8535</td>
<td>-1686</td>
<td>0</td>
<td>636646</td>
</tr>
<tr>
<td>1996</td>
<td>130630</td>
<td>187619</td>
<td>-53629</td>
<td>318228</td>
<td>18768</td>
<td>16186</td>
<td>24</td>
<td>6934</td>
<td>-1676</td>
<td>0</td>
<td>623084</td>
</tr>
<tr>
<td>1997</td>
<td>117348</td>
<td>181792</td>
<td>-55579</td>
<td>311476</td>
<td>28613</td>
<td>13466</td>
<td>26</td>
<td>6530</td>
<td>-1693</td>
<td>0</td>
<td>601978</td>
</tr>
<tr>
<td>1998</td>
<td>110835</td>
<td>170297</td>
<td>-49754</td>
<td>310874</td>
<td>27784</td>
<td>13631</td>
<td>26</td>
<td>5806</td>
<td>-1549</td>
<td>0</td>
<td>587950</td>
</tr>
<tr>
<td>1999</td>
<td>118758</td>
<td>175075</td>
<td>-51565</td>
<td>314473</td>
<td>32119</td>
<td>13802</td>
<td>24</td>
<td>7519</td>
<td>-1218</td>
<td>0</td>
<td>608987</td>
</tr>
<tr>
<td>2000</td>
<td>119969</td>
<td>183807</td>
<td>-57695</td>
<td>318916</td>
<td>34419</td>
<td>14111</td>
<td>50</td>
<td>6897</td>
<td>-1209</td>
<td>0</td>
<td>619265</td>
</tr>
<tr>
<td>2001</td>
<td>115276</td>
<td>188835</td>
<td>-59885</td>
<td>325215</td>
<td>36050</td>
<td>14955</td>
<td>78</td>
<td>6853</td>
<td>-1364</td>
<td>0</td>
<td>626013</td>
</tr>
<tr>
<td>2002</td>
<td>116072</td>
<td>194927</td>
<td>-70617</td>
<td>325564</td>
<td>37274</td>
<td>13951</td>
<td>135</td>
<td>6906</td>
<td>-1113</td>
<td>0</td>
<td>623099</td>
</tr>
<tr>
<td>2003</td>
<td>117164</td>
<td>198602</td>
<td>-71170</td>
<td>342503</td>
<td>39546</td>
<td>13396</td>
<td>279</td>
<td>6153</td>
<td>-1151</td>
<td>0</td>
<td>645322</td>
</tr>
<tr>
<td>2004</td>
<td>114043</td>
<td>202398</td>
<td>-75542</td>
<td>346562</td>
<td>38075</td>
<td>15121</td>
<td>347</td>
<td>7043</td>
<td>-655</td>
<td>0</td>
<td>647392</td>
</tr>
<tr>
<td>2005</td>
<td>112637</td>
<td>216840</td>
<td>-87642</td>
<td>349570</td>
<td>39255</td>
<td>14850</td>
<td>353</td>
<td>6914</td>
<td>-1065</td>
<td>0</td>
<td>651712</td>
</tr>
<tr>
<td>2006</td>
<td>115726</td>
<td>228628</td>
<td>-94831</td>
<td>358605</td>
<td>41116</td>
<td>14908</td>
<td>398</td>
<td>7482</td>
<td>-1360</td>
<td>0</td>
<td>670672</td>
</tr>
<tr>
<td>2007</td>
<td>110959</td>
<td>232177</td>
<td>-99785</td>
<td>365960</td>
<td>42059</td>
<td>15226</td>
<td>418</td>
<td>6678</td>
<td>-1101</td>
<td>0</td>
<td>672591</td>
</tr>
<tr>
<td>2008</td>
<td>117069</td>
<td>244530</td>
<td>-101403</td>
<td>366172</td>
<td>42829</td>
<td>14170</td>
<td>400</td>
<td>6232</td>
<td>-1516</td>
<td>0</td>
<td>688483</td>
</tr>
<tr>
<td>2009</td>
<td>95271</td>
<td>243658</td>
<td>-105734</td>
<td>350295</td>
<td>42959</td>
<td>14980</td>
<td>399</td>
<td>6367</td>
<td>-1278</td>
<td>0</td>
<td>646917</td>
</tr>
<tr>
<td>2010</td>
<td>114827</td>
<td>256925</td>
<td>-116592</td>
<td>383435</td>
<td>44761</td>
<td>14318</td>
<td>430</td>
<td>6943</td>
<td>-1500</td>
<td>0</td>
<td>703547</td>
</tr>
<tr>
<td>2011</td>
<td>118806</td>
<td>267031</td>
<td>-108508</td>
<td>395877</td>
<td>45439</td>
<td>14263</td>
<td>449</td>
<td>7088</td>
<td>-1940</td>
<td>0</td>
<td>738505</td>
</tr>
<tr>
<td>2012</td>
<td>133422</td>
<td>281418</td>
<td>-112574</td>
<td>387008</td>
<td>46627</td>
<td>14267</td>
<td>411</td>
<td>7432</td>
<td>-1417</td>
<td>0</td>
<td>756594</td>
</tr>
</tbody>
</table>
Sud-àfrica

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí cru</th>
<th>Productes del petrolí</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>66539</td>
<td>12556</td>
<td>-2235</td>
<td>1504</td>
<td>2202</td>
<td>87</td>
<td>0</td>
<td>10412</td>
<td>-109</td>
<td>0</td>
<td>90956</td>
</tr>
<tr>
<td>1991</td>
<td>70142</td>
<td>12690</td>
<td>-2417</td>
<td>1526</td>
<td>2383</td>
<td>170</td>
<td>0</td>
<td>10627</td>
<td>-140</td>
<td>0</td>
<td>94981</td>
</tr>
<tr>
<td>1992</td>
<td>64863</td>
<td>11798</td>
<td>-2762</td>
<td>1537</td>
<td>2421</td>
<td>65</td>
<td>0</td>
<td>10794</td>
<td>-127</td>
<td>0</td>
<td>88589</td>
</tr>
<tr>
<td>1993</td>
<td>72844</td>
<td>12984</td>
<td>-5278</td>
<td>1715</td>
<td>1891</td>
<td>13</td>
<td>0</td>
<td>10985</td>
<td>-214</td>
<td>0</td>
<td>94940</td>
</tr>
<tr>
<td>1994</td>
<td>75054</td>
<td>13775</td>
<td>-5969</td>
<td>1715</td>
<td>2527</td>
<td>92</td>
<td>0</td>
<td>11200</td>
<td>-226</td>
<td>0</td>
<td>98168</td>
</tr>
<tr>
<td>1995</td>
<td>78132</td>
<td>16223</td>
<td>-6673</td>
<td>1715</td>
<td>2945</td>
<td>45</td>
<td>0</td>
<td>11439</td>
<td>-245</td>
<td>0</td>
<td>103581</td>
</tr>
<tr>
<td>1996</td>
<td>79543</td>
<td>15516</td>
<td>-6238</td>
<td>1543</td>
<td>3069</td>
<td>113</td>
<td>0</td>
<td>11633</td>
<td>1063</td>
<td>0</td>
<td>106242</td>
</tr>
<tr>
<td>1997</td>
<td>81086</td>
<td>21157</td>
<td>-11649</td>
<td>1378</td>
<td>3296</td>
<td>180</td>
<td>0</td>
<td>11819</td>
<td>1107</td>
<td>0</td>
<td>108374</td>
</tr>
<tr>
<td>1998</td>
<td>78597</td>
<td>16182</td>
<td>-6202</td>
<td>1160</td>
<td>3545</td>
<td>137</td>
<td>0</td>
<td>12032</td>
<td>1066</td>
<td>0</td>
<td>106517</td>
</tr>
<tr>
<td>1999</td>
<td>81789</td>
<td>17131</td>
<td>-8151</td>
<td>1518</td>
<td>3345</td>
<td>62</td>
<td>0</td>
<td>12326</td>
<td>1035</td>
<td>0</td>
<td>109055</td>
</tr>
<tr>
<td>2000</td>
<td>82000</td>
<td>17736</td>
<td>-9050</td>
<td>1397</td>
<td>3390</td>
<td>95</td>
<td>0</td>
<td>12635</td>
<td>1061</td>
<td>0</td>
<td>109264</td>
</tr>
<tr>
<td>2001</td>
<td>81988</td>
<td>21735</td>
<td>-9201</td>
<td>1815</td>
<td>2793</td>
<td>171</td>
<td>12</td>
<td>12896</td>
<td>190</td>
<td>0</td>
<td>112399</td>
</tr>
<tr>
<td>2002</td>
<td>78553</td>
<td>23946</td>
<td>-11008</td>
<td>1800</td>
<td>3125</td>
<td>205</td>
<td>17</td>
<td>13154</td>
<td>194</td>
<td>0</td>
<td>109986</td>
</tr>
<tr>
<td>2003</td>
<td>86640</td>
<td>20988</td>
<td>-7778</td>
<td>1079</td>
<td>3300</td>
<td>60</td>
<td>19</td>
<td>13327</td>
<td>-178</td>
<td>0</td>
<td>117457</td>
</tr>
<tr>
<td>2004</td>
<td>94398</td>
<td>20022</td>
<td>-5152</td>
<td>2780</td>
<td>3483</td>
<td>82</td>
<td>21</td>
<td>13502</td>
<td>-295</td>
<td>0</td>
<td>128841</td>
</tr>
<tr>
<td>2005</td>
<td>91937</td>
<td>24394</td>
<td>-7310</td>
<td>2758</td>
<td>2943</td>
<td>115</td>
<td>21</td>
<td>13680</td>
<td>-201</td>
<td>0</td>
<td>128337</td>
</tr>
<tr>
<td>2006</td>
<td>93595</td>
<td>17620</td>
<td>-2973</td>
<td>2676</td>
<td>2613</td>
<td>249</td>
<td>21</td>
<td>13861</td>
<td>-255</td>
<td>0</td>
<td>127407</td>
</tr>
<tr>
<td>2007</td>
<td>96484</td>
<td>18603</td>
<td>1055</td>
<td>3824</td>
<td>2949</td>
<td>75</td>
<td>23</td>
<td>14045</td>
<td>-271</td>
<td>0</td>
<td>136787</td>
</tr>
<tr>
<td>2008</td>
<td>105522</td>
<td>19841</td>
<td>370</td>
<td>3907</td>
<td>3389</td>
<td>103</td>
<td>58</td>
<td>14231</td>
<td>-309</td>
<td>0</td>
<td>147112</td>
</tr>
<tr>
<td>2009</td>
<td>102852</td>
<td>17551</td>
<td>1085</td>
<td>3074</td>
<td>3337</td>
<td>120</td>
<td>68</td>
<td>14421</td>
<td>-151</td>
<td>0</td>
<td>142357</td>
</tr>
<tr>
<td>2010</td>
<td>100965</td>
<td>19471</td>
<td>540</td>
<td>3873</td>
<td>3153</td>
<td>182</td>
<td>76</td>
<td>14615</td>
<td>-213</td>
<td>0</td>
<td>142662</td>
</tr>
<tr>
<td>2011</td>
<td>98456</td>
<td>20489</td>
<td>775</td>
<td>3844</td>
<td>3519</td>
<td>177</td>
<td>81</td>
<td>14811</td>
<td>-264</td>
<td>0</td>
<td>141888</td>
</tr>
<tr>
<td>2012</td>
<td>97058</td>
<td>20783</td>
<td>-120</td>
<td>4035</td>
<td>3407</td>
<td>171</td>
<td>91</td>
<td>15011</td>
<td>-432</td>
<td>0</td>
<td>140004</td>
</tr>
<tr>
<td>Any</td>
<td>Carbó</td>
<td>Petróli cru</td>
<td>Productes del petróli</td>
<td>Gas natural</td>
<td>Nuclear</td>
<td>Hidroelèctrica</td>
<td>Geotèrmica, solar i altres</td>
<td>Biocombustibles</td>
<td>Electricitat</td>
<td>Calor</td>
<td>Total</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1990</td>
<td>455558</td>
<td>639075</td>
<td>-3284</td>
<td>286942</td>
<td>207314</td>
<td>24895</td>
<td>3433</td>
<td>46694</td>
<td>3944</td>
<td>85</td>
<td>1634656</td>
</tr>
<tr>
<td>1991</td>
<td>434152</td>
<td>640699</td>
<td>-27921</td>
<td>306665</td>
<td>213714</td>
<td>25893</td>
<td>3447</td>
<td>48412</td>
<td>1722</td>
<td>81</td>
<td>1646864</td>
</tr>
<tr>
<td>1992</td>
<td>405090</td>
<td>642397</td>
<td>-35514</td>
<td>297912</td>
<td>215689</td>
<td>27024</td>
<td>3774</td>
<td>49444</td>
<td>1898</td>
<td>406</td>
<td>1608120</td>
</tr>
<tr>
<td>1993</td>
<td>379907</td>
<td>654523</td>
<td>-49748</td>
<td>309334</td>
<td>224770</td>
<td>27623</td>
<td>4028</td>
<td>53125</td>
<td>1919</td>
<td>374</td>
<td>1605855</td>
</tr>
<tr>
<td>1994</td>
<td>370464</td>
<td>667434</td>
<td>-60270</td>
<td>309104</td>
<td>223869</td>
<td>28523</td>
<td>3985</td>
<td>53781</td>
<td>1743</td>
<td>353</td>
<td>1598986</td>
</tr>
<tr>
<td>1995</td>
<td>365044</td>
<td>672523</td>
<td>-49580</td>
<td>335520</td>
<td>229637</td>
<td>28447</td>
<td>4141</td>
<td>56519</td>
<td>1809</td>
<td>379</td>
<td>1644439</td>
</tr>
<tr>
<td>1996</td>
<td>365125</td>
<td>688170</td>
<td>-53730</td>
<td>369329</td>
<td>241410</td>
<td>28456</td>
<td>4511</td>
<td>60036</td>
<td>-58</td>
<td>401</td>
<td>1703650</td>
</tr>
<tr>
<td>1997</td>
<td>349287</td>
<td>698136</td>
<td>-66962</td>
<td>361784</td>
<td>244453</td>
<td>28943</td>
<td>4872</td>
<td>62758</td>
<td>590</td>
<td>352</td>
<td>1684213</td>
</tr>
<tr>
<td>1998</td>
<td>333033</td>
<td>717409</td>
<td>-72380</td>
<td>373242</td>
<td>243190</td>
<td>29954</td>
<td>5511</td>
<td>63872</td>
<td>145</td>
<td>470</td>
<td>1694446</td>
</tr>
<tr>
<td>1999</td>
<td>313376</td>
<td>682910</td>
<td>-47203</td>
<td>384668</td>
<td>245933</td>
<td>29805</td>
<td>6002</td>
<td>63872</td>
<td>1206</td>
<td>474</td>
<td>1681043</td>
</tr>
<tr>
<td>2000</td>
<td>321270</td>
<td>691505</td>
<td>-68848</td>
<td>395797</td>
<td>246347</td>
<td>30653</td>
<td>3997</td>
<td>66341</td>
<td>2030</td>
<td>561</td>
<td>1689653</td>
</tr>
<tr>
<td>2001</td>
<td>323281</td>
<td>689857</td>
<td>-50783</td>
<td>406112</td>
<td>255262</td>
<td>32528</td>
<td>7298</td>
<td>68195</td>
<td>659</td>
<td>543</td>
<td>1732952</td>
</tr>
<tr>
<td>2002</td>
<td>320276</td>
<td>683532</td>
<td>-49036</td>
<td>407630</td>
<td>258182</td>
<td>27342</td>
<td>8323</td>
<td>69914</td>
<td>1377</td>
<td>619</td>
<td>1728159</td>
</tr>
<tr>
<td>2003</td>
<td>330370</td>
<td>697548</td>
<td>-60398</td>
<td>424446</td>
<td>259659</td>
<td>26472</td>
<td>9708</td>
<td>75144</td>
<td>58</td>
<td>579</td>
<td>1763586</td>
</tr>
<tr>
<td>2004</td>
<td>327329</td>
<td>715960</td>
<td>-78278</td>
<td>435130</td>
<td>262961</td>
<td>28195</td>
<td>11120</td>
<td>79870</td>
<td>-315</td>
<td>563</td>
<td>1782535</td>
</tr>
<tr>
<td>2005</td>
<td>318142</td>
<td>717318</td>
<td>-81024</td>
<td>445025</td>
<td>260162</td>
<td>26808</td>
<td>12198</td>
<td>86367</td>
<td>1412</td>
<td>614</td>
<td>1787022</td>
</tr>
<tr>
<td>2006</td>
<td>329504</td>
<td>710205</td>
<td>-79142</td>
<td>440078</td>
<td>258125</td>
<td>27064</td>
<td>13584</td>
<td>92893</td>
<td>782</td>
<td>620</td>
<td>1793713</td>
</tr>
<tr>
<td>2007</td>
<td>329072</td>
<td>700135</td>
<td>-87414</td>
<td>434822</td>
<td>243891</td>
<td>16981</td>
<td>15878</td>
<td>98440</td>
<td>1449</td>
<td>654</td>
<td>1753908</td>
</tr>
<tr>
<td>2008</td>
<td>305510</td>
<td>698472</td>
<td>-90184</td>
<td>443609</td>
<td>244395</td>
<td>28488</td>
<td>17632</td>
<td>104648</td>
<td>2033</td>
<td>711</td>
<td>1755314</td>
</tr>
<tr>
<td>2009</td>
<td>268707</td>
<td>648440</td>
<td>-74336</td>
<td>415244</td>
<td>233139</td>
<td>28785</td>
<td>19473</td>
<td>112499</td>
<td>1791</td>
<td>663</td>
<td>1654405</td>
</tr>
<tr>
<td>2010</td>
<td>282984</td>
<td>639104</td>
<td>-68734</td>
<td>446860</td>
<td>238994</td>
<td>32272</td>
<td>22095</td>
<td>125715</td>
<td>712</td>
<td>727</td>
<td>1720729</td>
</tr>
<tr>
<td>2011</td>
<td>287579</td>
<td>626252</td>
<td>-78214</td>
<td>403594</td>
<td>236412</td>
<td>26768</td>
<td>27283</td>
<td>128547</td>
<td>674</td>
<td>765</td>
<td>1659660</td>
</tr>
<tr>
<td>2012</td>
<td>294017</td>
<td>620050</td>
<td>-93599</td>
<td>392478</td>
<td>230059</td>
<td>28817</td>
<td>32548</td>
<td>136747</td>
<td>1648</td>
<td>830</td>
<td>1643595</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Xina

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí cru</th>
<th>Productes del petrolí</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>527594</td>
<td>117622</td>
<td>1166</td>
<td>12800</td>
<td>0</td>
<td>10898</td>
<td>33</td>
<td>200407</td>
<td>158</td>
<td>0</td>
<td>870678</td>
</tr>
<tr>
<td>1991</td>
<td>500749</td>
<td>123649</td>
<td>-3303</td>
<td>13445</td>
<td>0</td>
<td>10758</td>
<td>62</td>
<td>202348</td>
<td>245</td>
<td>0</td>
<td>847953</td>
</tr>
<tr>
<td>1992</td>
<td>517248</td>
<td>131565</td>
<td>-644</td>
<td>13210</td>
<td>0</td>
<td>11392</td>
<td>98</td>
<td>203491</td>
<td>428</td>
<td>0</td>
<td>876788</td>
</tr>
<tr>
<td>1993</td>
<td>551154</td>
<td>139784</td>
<td>5248</td>
<td>14027</td>
<td>418</td>
<td>13056</td>
<td>152</td>
<td>204544</td>
<td>377</td>
<td>0</td>
<td>928760</td>
</tr>
<tr>
<td>1994</td>
<td>591069</td>
<td>139942</td>
<td>3739</td>
<td>14690</td>
<td>3846</td>
<td>14396</td>
<td>219</td>
<td>205005</td>
<td>-176</td>
<td>0</td>
<td>972730</td>
</tr>
<tr>
<td>1995</td>
<td>648032</td>
<td>147949</td>
<td>8134</td>
<td>14993</td>
<td>3344</td>
<td>16390</td>
<td>1198</td>
<td>204883</td>
<td>-463</td>
<td>0</td>
<td>1044660</td>
</tr>
<tr>
<td>1996</td>
<td>661602</td>
<td>159287</td>
<td>11543</td>
<td>15454</td>
<td>3737</td>
<td>16165</td>
<td>1401</td>
<td>204625</td>
<td>-309</td>
<td>0</td>
<td>1073505</td>
</tr>
<tr>
<td>1997</td>
<td>638289</td>
<td>174996</td>
<td>16303</td>
<td>16849</td>
<td>3757</td>
<td>16855</td>
<td>1629</td>
<td>204487</td>
<td>-612</td>
<td>0</td>
<td>1072553</td>
</tr>
<tr>
<td>1998</td>
<td>649462</td>
<td>172478</td>
<td>13484</td>
<td>17463</td>
<td>3675</td>
<td>17888</td>
<td>1879</td>
<td>204207</td>
<td>-616</td>
<td>0</td>
<td>1079920</td>
</tr>
<tr>
<td>1999</td>
<td>650221</td>
<td>189645</td>
<td>15097</td>
<td>18862</td>
<td>3896</td>
<td>17527</td>
<td>2197</td>
<td>204010</td>
<td>-755</td>
<td>0</td>
<td>1100700</td>
</tr>
<tr>
<td>2000</td>
<td>690577</td>
<td>213910</td>
<td>7170</td>
<td>20750</td>
<td>4362</td>
<td>19128</td>
<td>2552</td>
<td>203622</td>
<td>-717</td>
<td>0</td>
<td>1161354</td>
</tr>
<tr>
<td>2001</td>
<td>703138</td>
<td>215471</td>
<td>10779</td>
<td>23349</td>
<td>4553</td>
<td>23859</td>
<td>2914</td>
<td>203455</td>
<td>-722</td>
<td>0</td>
<td>1186796</td>
</tr>
<tr>
<td>2002</td>
<td>748179</td>
<td>227837</td>
<td>14875</td>
<td>25758</td>
<td>6548</td>
<td>24766</td>
<td>3348</td>
<td>203157</td>
<td>-637</td>
<td>0</td>
<td>1253831</td>
</tr>
<tr>
<td>2003</td>
<td>888194</td>
<td>251927</td>
<td>17868</td>
<td>27727</td>
<td>11295</td>
<td>24397</td>
<td>3858</td>
<td>202922</td>
<td>-633</td>
<td>0</td>
<td>1427555</td>
</tr>
<tr>
<td>2004</td>
<td>1042301</td>
<td>290191</td>
<td>24565</td>
<td>32645</td>
<td>13153</td>
<td>30405</td>
<td>4377</td>
<td>202739</td>
<td>-523</td>
<td>0</td>
<td>1639853</td>
</tr>
<tr>
<td>2005</td>
<td>1162860</td>
<td>300965</td>
<td>16683</td>
<td>38779</td>
<td>13835</td>
<td>34143</td>
<td>5282</td>
<td>203661</td>
<td>-532</td>
<td>0</td>
<td>1775676</td>
</tr>
<tr>
<td>2006</td>
<td>1289516</td>
<td>322582</td>
<td>17329</td>
<td>47357</td>
<td>14292</td>
<td>37478</td>
<td>6406</td>
<td>204579</td>
<td>-592</td>
<td>0</td>
<td>1938947</td>
</tr>
<tr>
<td>2007</td>
<td>1359798</td>
<td>340455</td>
<td>14292</td>
<td>59116</td>
<td>16191</td>
<td>41733</td>
<td>7620</td>
<td>206289</td>
<td>-887</td>
<td>0</td>
<td>2044607</td>
</tr>
<tr>
<td>2008</td>
<td>1406354</td>
<td>355107</td>
<td>7347</td>
<td>68318</td>
<td>17824</td>
<td>50326</td>
<td>9875</td>
<td>206763</td>
<td>-1101</td>
<td>0</td>
<td>2120813</td>
</tr>
<tr>
<td>2009</td>
<td>1543705</td>
<td>381434</td>
<td>-7179</td>
<td>75040</td>
<td>18277</td>
<td>52945</td>
<td>12977</td>
<td>209912</td>
<td>-979</td>
<td>0</td>
<td>2286132</td>
</tr>
<tr>
<td>2010</td>
<td>1700703</td>
<td>428909</td>
<td>-658</td>
<td>88568</td>
<td>19254</td>
<td>61187</td>
<td>16026</td>
<td>213621</td>
<td>-1162</td>
<td>0</td>
<td>2526448</td>
</tr>
<tr>
<td>2011</td>
<td>1878795</td>
<td>439766</td>
<td>2479</td>
<td>107746</td>
<td>22503</td>
<td>59172</td>
<td>21141</td>
<td>216409</td>
<td>-1096</td>
<td>0</td>
<td>2746915</td>
</tr>
<tr>
<td>2012</td>
<td>1969038</td>
<td>467009</td>
<td>-2822</td>
<td>120539</td>
<td>25381</td>
<td>74201</td>
<td>25954</td>
<td>215911</td>
<td>-927</td>
<td>0</td>
<td>2894284</td>
</tr>
</tbody>
</table>
3. Annex a l’apartat 2.3.3.

En aquest annex es presenten els resultats del càlcul del percentatge d’ús de combustibles fòssils juntament amb les dades que recull el GGCC per a poder comparar-les.

Aràbia Saudita

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>99,98%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1991</td>
<td>99,98%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1992</td>
<td>99,99%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1993</td>
<td>99,99%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1994</td>
<td>99,98%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1995</td>
<td>99,99%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1996</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1997</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1998</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1999</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2000</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2001</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2002</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2003</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2004</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2005</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2006</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2007</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2008</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2009</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2010</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2011</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2012</td>
<td>100,00%</td>
<td>-</td>
</tr>
</tbody>
</table>

Austràlia

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>99,98%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1991</td>
<td>99,98%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1992</td>
<td>99,99%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1993</td>
<td>99,99%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1994</td>
<td>99,98%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1995</td>
<td>99,99%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1996</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1997</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1998</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>1999</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2000</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2001</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2002</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2003</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2004</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2005</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2006</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2007</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2008</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2009</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2010</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2011</td>
<td>100,00%</td>
<td>100,0%</td>
</tr>
<tr>
<td>2012</td>
<td>100,00%</td>
<td>-</td>
</tr>
</tbody>
</table>
Brasil

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>51,2%</td>
<td>51,2%</td>
</tr>
<tr>
<td>1991</td>
<td>52,0%</td>
<td>52,0%</td>
</tr>
<tr>
<td>1992</td>
<td>52,7%</td>
<td>52,7%</td>
</tr>
<tr>
<td>1993</td>
<td>53,3%</td>
<td>53,3%</td>
</tr>
<tr>
<td>1994</td>
<td>53,3%</td>
<td>53,3%</td>
</tr>
<tr>
<td>1995</td>
<td>54,6%</td>
<td>54,6%</td>
</tr>
<tr>
<td>1996</td>
<td>56,3%</td>
<td>56,3%</td>
</tr>
<tr>
<td>1997</td>
<td>56,7%</td>
<td>56,7%</td>
</tr>
<tr>
<td>1998</td>
<td>57,3%</td>
<td>57,3%</td>
</tr>
<tr>
<td>1999</td>
<td>57,3%</td>
<td>57,3%</td>
</tr>
<tr>
<td>2000</td>
<td>58,2%</td>
<td>58,2%</td>
</tr>
<tr>
<td>2001</td>
<td>58,9%</td>
<td>58,9%</td>
</tr>
<tr>
<td>2002</td>
<td>57,2%</td>
<td>57,2%</td>
</tr>
<tr>
<td>2003</td>
<td>54,6%</td>
<td>54,6%</td>
</tr>
<tr>
<td>2004</td>
<td>54,7%</td>
<td>54,7%</td>
</tr>
<tr>
<td>2005</td>
<td>54,3%</td>
<td>54,3%</td>
</tr>
<tr>
<td>2006</td>
<td>53,4%</td>
<td>53,4%</td>
</tr>
<tr>
<td>2007</td>
<td>52,7%</td>
<td>52,7%</td>
</tr>
<tr>
<td>2008</td>
<td>52,6%</td>
<td>52,6%</td>
</tr>
<tr>
<td>2009</td>
<td>51,3%</td>
<td>51,3%</td>
</tr>
<tr>
<td>2010</td>
<td>53,5%</td>
<td>53,5%</td>
</tr>
<tr>
<td>2011</td>
<td>54,6%</td>
<td>54,6%</td>
</tr>
<tr>
<td>2012</td>
<td>56,5%</td>
<td>-</td>
</tr>
</tbody>
</table>

Canadà

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>74,6%</td>
<td>74,6%</td>
</tr>
<tr>
<td>1991</td>
<td>73,2%</td>
<td>73,2%</td>
</tr>
<tr>
<td>1992</td>
<td>74,3%</td>
<td>74,3%</td>
</tr>
<tr>
<td>1993</td>
<td>73,4%</td>
<td>73,4%</td>
</tr>
<tr>
<td>1994</td>
<td>72,6%</td>
<td>72,6%</td>
</tr>
<tr>
<td>1995</td>
<td>73,5%</td>
<td>73,5%</td>
</tr>
<tr>
<td>1996</td>
<td>74,0%</td>
<td>74,0%</td>
</tr>
<tr>
<td>1997</td>
<td>75,4%</td>
<td>75,4%</td>
</tr>
<tr>
<td>1998</td>
<td>76,7%</td>
<td>76,7%</td>
</tr>
<tr>
<td>1999</td>
<td>76,3%</td>
<td>76,3%</td>
</tr>
<tr>
<td>2000</td>
<td>76,8%</td>
<td>76,8%</td>
</tr>
<tr>
<td>2001</td>
<td>76,8%</td>
<td>76,8%</td>
</tr>
<tr>
<td>2002</td>
<td>75,9%</td>
<td>75,9%</td>
</tr>
<tr>
<td>2003</td>
<td>77,1%</td>
<td>77,1%</td>
</tr>
<tr>
<td>2004</td>
<td>75,9%</td>
<td>75,9%</td>
</tr>
<tr>
<td>2005</td>
<td>75,4%</td>
<td>75,4%</td>
</tr>
<tr>
<td>2006</td>
<td>75,3%</td>
<td>75,3%</td>
</tr>
<tr>
<td>2007</td>
<td>74,9%</td>
<td>75,8%</td>
</tr>
<tr>
<td>2008</td>
<td>74,6%</td>
<td>75,0%</td>
</tr>
<tr>
<td>2009</td>
<td>74,0%</td>
<td>74,2%</td>
</tr>
<tr>
<td>2010</td>
<td>74,4%</td>
<td>74,3%</td>
</tr>
<tr>
<td>2011</td>
<td>73,5%</td>
<td>73,5%</td>
</tr>
<tr>
<td>2012</td>
<td>73,4%</td>
<td>73,7%</td>
</tr>
<tr>
<td>Any</td>
<td>Ús de combustibles fòssils</td>
<td>GGCC</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1990</td>
<td>86,4%</td>
<td>86,4%</td>
</tr>
<tr>
<td>1991</td>
<td>85,7%</td>
<td>85,7%</td>
</tr>
<tr>
<td>1992</td>
<td>85,6%</td>
<td>85,6%</td>
</tr>
<tr>
<td>1993</td>
<td>86,1%</td>
<td>86,1%</td>
</tr>
<tr>
<td>1994</td>
<td>85,9%</td>
<td>85,9%</td>
</tr>
<tr>
<td>1995</td>
<td>85,5%</td>
<td>85,5%</td>
</tr>
<tr>
<td>1996</td>
<td>85,5%</td>
<td>85,5%</td>
</tr>
<tr>
<td>1997</td>
<td>86,5%</td>
<td>86,5%</td>
</tr>
<tr>
<td>1998</td>
<td>86,1%</td>
<td>86,1%</td>
</tr>
<tr>
<td>1999</td>
<td>85,8%</td>
<td>85,8%</td>
</tr>
<tr>
<td>2000</td>
<td>85,9%</td>
<td>85,9%</td>
</tr>
<tr>
<td>2001</td>
<td>86,3%</td>
<td>86,3%</td>
</tr>
<tr>
<td>2002</td>
<td>86,2%</td>
<td>86,2%</td>
</tr>
<tr>
<td>2003</td>
<td>86,3%</td>
<td>86,3%</td>
</tr>
<tr>
<td>2004</td>
<td>86,1%</td>
<td>86,1%</td>
</tr>
<tr>
<td>2005</td>
<td>86,0%</td>
<td>86,0%</td>
</tr>
<tr>
<td>2006</td>
<td>85,6%</td>
<td>85,6%</td>
</tr>
<tr>
<td>2007</td>
<td>85,6%</td>
<td>85,6%</td>
</tr>
<tr>
<td>2008</td>
<td>85,0%</td>
<td>85,0%</td>
</tr>
<tr>
<td>2009</td>
<td>84,2%</td>
<td>84,2%</td>
</tr>
<tr>
<td>2010</td>
<td>84,1%</td>
<td>84,1%</td>
</tr>
<tr>
<td>2011</td>
<td>83,7%</td>
<td>83,7%</td>
</tr>
<tr>
<td>2012</td>
<td>83,7%</td>
<td>83,6%</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO\(_2\) i els vectors energètics

Indonèsia

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>53,4%</td>
<td>53,4%</td>
</tr>
<tr>
<td>1991</td>
<td>54,8%</td>
<td>54,8%</td>
</tr>
<tr>
<td>1992</td>
<td>55,7%</td>
<td>55,7%</td>
</tr>
<tr>
<td>1993</td>
<td>59,1%</td>
<td>59,1%</td>
</tr>
<tr>
<td>1994</td>
<td>57,5%</td>
<td>57,5%</td>
</tr>
<tr>
<td>1995</td>
<td>60,6%</td>
<td>60,6%</td>
</tr>
<tr>
<td>1996</td>
<td>61,5%</td>
<td>61,5%</td>
</tr>
<tr>
<td>1997</td>
<td>62,0%</td>
<td>62,0%</td>
</tr>
<tr>
<td>1998</td>
<td>60,7%</td>
<td>60,7%</td>
</tr>
<tr>
<td>1999</td>
<td>62,2%</td>
<td>62,2%</td>
</tr>
<tr>
<td>2000</td>
<td>62,0%</td>
<td>62,3%</td>
</tr>
<tr>
<td>2001</td>
<td>61,5%</td>
<td>61,6%</td>
</tr>
<tr>
<td>2002</td>
<td>62,5%</td>
<td>62,7%</td>
</tr>
<tr>
<td>2003</td>
<td>62,4%</td>
<td>62,6%</td>
</tr>
<tr>
<td>2004</td>
<td>64,3%</td>
<td>64,5%</td>
</tr>
<tr>
<td>2005</td>
<td>65,0%</td>
<td>65,1%</td>
</tr>
<tr>
<td>2006</td>
<td>65,2%</td>
<td>65,3%</td>
</tr>
<tr>
<td>2007</td>
<td>64,6%</td>
<td>64,7%</td>
</tr>
<tr>
<td>2008</td>
<td>63,8%</td>
<td>63,8%</td>
</tr>
<tr>
<td>2009</td>
<td>65,2%</td>
<td>65,2%</td>
</tr>
<tr>
<td>2010</td>
<td>66,7%</td>
<td>66,1%</td>
</tr>
<tr>
<td>2011</td>
<td>65,4%</td>
<td>66,4%</td>
</tr>
<tr>
<td>2012</td>
<td>66,5%</td>
<td>-</td>
</tr>
</tbody>
</table>

Iran

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>98,9%</td>
<td>98,9%</td>
</tr>
<tr>
<td>1991</td>
<td>98,9%</td>
<td>98,9%</td>
</tr>
<tr>
<td>1992</td>
<td>98,7%</td>
<td>98,7%</td>
</tr>
<tr>
<td>1993</td>
<td>98,7%</td>
<td>98,7%</td>
</tr>
<tr>
<td>1994</td>
<td>99,1%</td>
<td>99,1%</td>
</tr>
<tr>
<td>1995</td>
<td>99,1%</td>
<td>99,1%</td>
</tr>
<tr>
<td>1996</td>
<td>99,1%</td>
<td>99,1%</td>
</tr>
<tr>
<td>1997</td>
<td>99,3%</td>
<td>99,3%</td>
</tr>
<tr>
<td>1998</td>
<td>99,3%</td>
<td>99,3%</td>
</tr>
<tr>
<td>1999</td>
<td>99,6%</td>
<td>99,6%</td>
</tr>
<tr>
<td>2000</td>
<td>99,7%</td>
<td>99,7%</td>
</tr>
<tr>
<td>2001</td>
<td>99,6%</td>
<td>99,6%</td>
</tr>
<tr>
<td>2002</td>
<td>99,4%</td>
<td>99,4%</td>
</tr>
<tr>
<td>2003</td>
<td>99,2%</td>
<td>99,2%</td>
</tr>
<tr>
<td>2004</td>
<td>99,3%</td>
<td>99,3%</td>
</tr>
<tr>
<td>2005</td>
<td>98,9%</td>
<td>99,0%</td>
</tr>
<tr>
<td>2006</td>
<td>98,8%</td>
<td>98,9%</td>
</tr>
<tr>
<td>2007</td>
<td>98,9%</td>
<td>99,1%</td>
</tr>
<tr>
<td>2008</td>
<td>99,6%</td>
<td>99,7%</td>
</tr>
<tr>
<td>2009</td>
<td>99,6%</td>
<td>99,7%</td>
</tr>
<tr>
<td>2010</td>
<td>99,5%</td>
<td>99,6%</td>
</tr>
<tr>
<td>2011</td>
<td>99,4%</td>
<td>99,5%</td>
</tr>
<tr>
<td>2012</td>
<td>99,3%</td>
<td>-</td>
</tr>
<tr>
<td>Any</td>
<td>Ús de combustibles fòssils</td>
<td>GGCC</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1990</td>
<td>84,5%</td>
<td>84,5%</td>
</tr>
<tr>
<td>1991</td>
<td>83,8%</td>
<td>83,8%</td>
</tr>
<tr>
<td>1992</td>
<td>83,9%</td>
<td>83,9%</td>
</tr>
<tr>
<td>1993</td>
<td>82,4%</td>
<td>82,4%</td>
</tr>
<tr>
<td>1994</td>
<td>82,8%</td>
<td>82,7%</td>
</tr>
<tr>
<td>1995</td>
<td>81,4%</td>
<td>81,4%</td>
</tr>
<tr>
<td>1996</td>
<td>81,1%</td>
<td>81,2%</td>
</tr>
<tr>
<td>1997</td>
<td>80,2%</td>
<td>80,3%</td>
</tr>
<tr>
<td>1998</td>
<td>79,2%</td>
<td>79,3%</td>
</tr>
<tr>
<td>1999</td>
<td>80,5%</td>
<td>80,6%</td>
</tr>
<tr>
<td>2000</td>
<td>80,5%</td>
<td>80,5%</td>
</tr>
<tr>
<td>2001</td>
<td>80,4%</td>
<td>80,4%</td>
</tr>
<tr>
<td>2002</td>
<td>81,7%</td>
<td>81,6%</td>
</tr>
<tr>
<td>2003</td>
<td>84,1%</td>
<td>84,0%</td>
</tr>
<tr>
<td>2004</td>
<td>82,5%</td>
<td>82,4%</td>
</tr>
<tr>
<td>2005</td>
<td>81,4%</td>
<td>81,4%</td>
</tr>
<tr>
<td>2006</td>
<td>81,3%</td>
<td>81,2%</td>
</tr>
<tr>
<td>2007</td>
<td>83,3%</td>
<td>83,3%</td>
</tr>
<tr>
<td>2008</td>
<td>83,0%</td>
<td>83,0%</td>
</tr>
<tr>
<td>2009</td>
<td>81,0%</td>
<td>81,0%</td>
</tr>
<tr>
<td>2010</td>
<td>80,9%</td>
<td>80,8%</td>
</tr>
<tr>
<td>2011</td>
<td>89,7%</td>
<td>89,6%</td>
</tr>
<tr>
<td>2012</td>
<td>94,6%</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>87,2%</td>
<td>87,2%</td>
</tr>
<tr>
<td>1991</td>
<td>87,2%</td>
<td>87,2%</td>
</tr>
<tr>
<td>1992</td>
<td>86,8%</td>
<td>86,8%</td>
</tr>
<tr>
<td>1993</td>
<td>86,7%</td>
<td>86,7%</td>
</tr>
<tr>
<td>1994</td>
<td>88,0%</td>
<td>88,0%</td>
</tr>
<tr>
<td>1995</td>
<td>86,0%</td>
<td>86,0%</td>
</tr>
<tr>
<td>1996</td>
<td>86,1%</td>
<td>86,1%</td>
</tr>
<tr>
<td>1997</td>
<td>86,2%</td>
<td>86,2%</td>
</tr>
<tr>
<td>1998</td>
<td>86,8%</td>
<td>86,8%</td>
</tr>
<tr>
<td>1999</td>
<td>86,8%</td>
<td>86,8%</td>
</tr>
<tr>
<td>2000</td>
<td>86,8%</td>
<td>86,8%</td>
</tr>
<tr>
<td>2001</td>
<td>87,7%</td>
<td>87,6%</td>
</tr>
<tr>
<td>2002</td>
<td>88,0%</td>
<td>88,1%</td>
</tr>
<tr>
<td>2003</td>
<td>88,3%</td>
<td>88,0%</td>
</tr>
<tr>
<td>2004</td>
<td>88,3%</td>
<td>88,2%</td>
</tr>
<tr>
<td>2005</td>
<td>87,9%</td>
<td>88,1%</td>
</tr>
<tr>
<td>2006</td>
<td>88,4%</td>
<td>88,5%</td>
</tr>
<tr>
<td>2007</td>
<td>88,5%</td>
<td>88,6%</td>
</tr>
<tr>
<td>2008</td>
<td>88,5%</td>
<td>88,6%</td>
</tr>
<tr>
<td>2009</td>
<td>89,0%</td>
<td>89,0%</td>
</tr>
<tr>
<td>2010</td>
<td>89,3%</td>
<td>89,4%</td>
</tr>
<tr>
<td>2011</td>
<td>89,2%</td>
<td>89,3%</td>
</tr>
<tr>
<td>2012</td>
<td>90,2%</td>
<td>90,1%</td>
</tr>
</tbody>
</table>
República de Corea

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>83,8%</td>
<td>83,8%</td>
</tr>
<tr>
<td>1991</td>
<td>84,3%</td>
<td>84,3%</td>
</tr>
<tr>
<td>1992</td>
<td>85,8%</td>
<td>85,8%</td>
</tr>
<tr>
<td>1993</td>
<td>86,9%</td>
<td>86,9%</td>
</tr>
<tr>
<td>1994</td>
<td>87,7%</td>
<td>87,7%</td>
</tr>
<tr>
<td>1995</td>
<td>87,1%</td>
<td>87,1%</td>
</tr>
<tr>
<td>1996</td>
<td>87,1%</td>
<td>87,1%</td>
</tr>
<tr>
<td>1997</td>
<td>87,6%</td>
<td>87,6%</td>
</tr>
<tr>
<td>1998</td>
<td>84,2%</td>
<td>84,2%</td>
</tr>
<tr>
<td>1999</td>
<td>83,6%</td>
<td>83,6%</td>
</tr>
<tr>
<td>2000</td>
<td>84,0%</td>
<td>84,0%</td>
</tr>
<tr>
<td>2001</td>
<td>83,8%</td>
<td>83,8%</td>
</tr>
<tr>
<td>2002</td>
<td>83,4%</td>
<td>83,4%</td>
</tr>
<tr>
<td>2003</td>
<td>82,2%</td>
<td>82,2%</td>
</tr>
<tr>
<td>2004</td>
<td>82,5%</td>
<td>82,5%</td>
</tr>
<tr>
<td>2005</td>
<td>80,6%</td>
<td>80,6%</td>
</tr>
<tr>
<td>2006</td>
<td>80,5%</td>
<td>80,5%</td>
</tr>
<tr>
<td>2007</td>
<td>81,8%</td>
<td>81,8%</td>
</tr>
<tr>
<td>2008</td>
<td>81,2%</td>
<td>81,2%</td>
</tr>
<tr>
<td>2009</td>
<td>81,7%</td>
<td>81,7%</td>
</tr>
<tr>
<td>2010</td>
<td>82,9%</td>
<td>82,9%</td>
</tr>
<tr>
<td>2011</td>
<td>82,8%</td>
<td>82,8%</td>
</tr>
<tr>
<td>2012</td>
<td>83,2%</td>
<td>82,8%</td>
</tr>
</tbody>
</table>

Rússia

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòssils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>93,5%</td>
<td>93,4%</td>
</tr>
<tr>
<td>1991</td>
<td>93,5%</td>
<td>93,4%</td>
</tr>
<tr>
<td>1992</td>
<td>92,8%</td>
<td>92,6%</td>
</tr>
<tr>
<td>1993</td>
<td>92,5%</td>
<td>92,4%</td>
</tr>
<tr>
<td>1994</td>
<td>92,7%</td>
<td>92,6%</td>
</tr>
<tr>
<td>1995</td>
<td>92,4%</td>
<td>92,3%</td>
</tr>
<tr>
<td>1996</td>
<td>93,5%</td>
<td>92,3%</td>
</tr>
<tr>
<td>1997</td>
<td>92,2%</td>
<td>92,1%</td>
</tr>
<tr>
<td>1998</td>
<td>92,2%</td>
<td>92,1%</td>
</tr>
<tr>
<td>1999</td>
<td>91,4%</td>
<td>91,3%</td>
</tr>
<tr>
<td>2000</td>
<td>91,2%</td>
<td>91,1%</td>
</tr>
<tr>
<td>2001</td>
<td>91,0%</td>
<td>90,9%</td>
</tr>
<tr>
<td>2002</td>
<td>90,8%</td>
<td>90,8%</td>
</tr>
<tr>
<td>2003</td>
<td>91,0%</td>
<td>90,9%</td>
</tr>
<tr>
<td>2004</td>
<td>90,7%</td>
<td>90,7%</td>
</tr>
<tr>
<td>2005</td>
<td>90,7%</td>
<td>90,7%</td>
</tr>
<tr>
<td>2006</td>
<td>90,7%</td>
<td>90,6%</td>
</tr>
<tr>
<td>2007</td>
<td>90,6%</td>
<td>90,6%</td>
</tr>
<tr>
<td>2008</td>
<td>91,0%</td>
<td>90,9%</td>
</tr>
<tr>
<td>2009</td>
<td>90,2%</td>
<td>90,2%</td>
</tr>
<tr>
<td>2010</td>
<td>90,8%</td>
<td>90,7%</td>
</tr>
<tr>
<td>2011</td>
<td>91,2%</td>
<td>91,0%</td>
</tr>
<tr>
<td>2012</td>
<td>91,1%</td>
<td>-</td>
</tr>
<tr>
<td>Any</td>
<td>Ús de combustibles fòssils</td>
<td>GGCC</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>1990</td>
<td>86,2%</td>
<td>86,2%</td>
</tr>
<tr>
<td>1991</td>
<td>86,3%</td>
<td>86,3%</td>
</tr>
<tr>
<td>1992</td>
<td>85,2%</td>
<td>85,2%</td>
</tr>
<tr>
<td>1993</td>
<td>86,6%</td>
<td>86,7%</td>
</tr>
<tr>
<td>1994</td>
<td>86,2%</td>
<td>86,2%</td>
</tr>
<tr>
<td>1995</td>
<td>86,3%</td>
<td>86,3%</td>
</tr>
<tr>
<td>1996</td>
<td>85,1%</td>
<td>85,0%</td>
</tr>
<tr>
<td>1997</td>
<td>84,9%</td>
<td>84,9%</td>
</tr>
<tr>
<td>1998</td>
<td>84,2%</td>
<td>84,2%</td>
</tr>
<tr>
<td>1999</td>
<td>84,6%</td>
<td>84,6%</td>
</tr>
<tr>
<td>2000</td>
<td>84,3%</td>
<td>84,3%</td>
</tr>
<tr>
<td>2001</td>
<td>85,7%</td>
<td>85,7%</td>
</tr>
<tr>
<td>2002</td>
<td>84,8%</td>
<td>84,9%</td>
</tr>
<tr>
<td>2003</td>
<td>85,9%</td>
<td>86,0%</td>
</tr>
<tr>
<td>2004</td>
<td>87,0%</td>
<td>87,0%</td>
</tr>
<tr>
<td>2005</td>
<td>87,1%</td>
<td>87,2%</td>
</tr>
<tr>
<td>2006</td>
<td>87,1%</td>
<td>87,2%</td>
</tr>
<tr>
<td>2007</td>
<td>87,7%</td>
<td>87,8%</td>
</tr>
<tr>
<td>2008</td>
<td>88,1%</td>
<td>88,2%</td>
</tr>
<tr>
<td>2009</td>
<td>87,5%</td>
<td>87,7%</td>
</tr>
<tr>
<td>2010</td>
<td>87,5%</td>
<td>87,7%</td>
</tr>
<tr>
<td>2011</td>
<td>87,1%</td>
<td>87,2%</td>
</tr>
<tr>
<td>2012</td>
<td>87,0%</td>
<td>-</td>
</tr>
</tbody>
</table>
Xina

<table>
<thead>
<tr>
<th>Any</th>
<th>Ús de combustibles fòsils</th>
<th>GGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>75,7%</td>
<td>75,7%</td>
</tr>
<tr>
<td>1991</td>
<td>74,8%</td>
<td>74,8%</td>
</tr>
<tr>
<td>1992</td>
<td>75,4%</td>
<td>75,4%</td>
</tr>
<tr>
<td>1993</td>
<td>76,5%</td>
<td>76,5%</td>
</tr>
<tr>
<td>1994</td>
<td>77,0%</td>
<td>77,0%</td>
</tr>
<tr>
<td>1995</td>
<td>78,4%</td>
<td>78,4%</td>
</tr>
<tr>
<td>1996</td>
<td>79,0%</td>
<td>79,0%</td>
</tr>
<tr>
<td>1997</td>
<td>78,9%</td>
<td>78,9%</td>
</tr>
<tr>
<td>1998</td>
<td>79,0%</td>
<td>79,0%</td>
</tr>
<tr>
<td>1999</td>
<td>79,4%</td>
<td>79,4%</td>
</tr>
<tr>
<td>2000</td>
<td>80,3%</td>
<td>80,3%</td>
</tr>
<tr>
<td>2001</td>
<td>80,3%</td>
<td>80,3%</td>
</tr>
<tr>
<td>2002</td>
<td>81,1%</td>
<td>81,1%</td>
</tr>
<tr>
<td>2003</td>
<td>83,1%</td>
<td>83,1%</td>
</tr>
<tr>
<td>2004</td>
<td>84,7%</td>
<td>84,7%</td>
</tr>
<tr>
<td>2005</td>
<td>85,6%</td>
<td>85,6%</td>
</tr>
<tr>
<td>2006</td>
<td>86,5%</td>
<td>86,5%</td>
</tr>
<tr>
<td>2007</td>
<td>86,7%</td>
<td>86,7%</td>
</tr>
<tr>
<td>2008</td>
<td>86,6%</td>
<td>86,6%</td>
</tr>
<tr>
<td>2009</td>
<td>87,2%</td>
<td>87,2%</td>
</tr>
<tr>
<td>2010</td>
<td>87,8%</td>
<td>87,7%</td>
</tr>
<tr>
<td>2011</td>
<td>88,4%</td>
<td>88,3%</td>
</tr>
<tr>
<td>2012</td>
<td>88,2%</td>
<td>-</td>
</tr>
</tbody>
</table>
4. Annex a l’apartat 2.4.

Aquest annex mostra les taules del factor *Total Primary Energy Supply* per a cada font energètica de tots els estats considerats en el projecte durant el període d’anys 1990-2012.

Totes les unitats són kilotones de petroli equivalent.
Estudi de les correlacions entre les emissions de \(\text{CO}_2 \) i els vectors energètics

Aràbia Saudita

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0</td>
<td>35249</td>
<td>19482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td>38999</td>
<td>19896</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
<td>41205</td>
<td>22050</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>44380</td>
<td>22941</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>44195</td>
<td>24870</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>43541</td>
<td>24770</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>47496</td>
<td>25701</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
<td>47936</td>
<td>26550</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>0</td>
<td>50644</td>
<td>27923</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>52949</td>
<td>27865</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>54991</td>
<td>30772</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>58240</td>
<td>31937</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>62401</td>
<td>37317</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>65966</td>
<td>38492</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>71455</td>
<td>41817</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>73877</td>
<td>45957</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>78211</td>
<td>48248</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>81230</td>
<td>49574</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>87356</td>
<td>54672</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>84796</td>
<td>52247</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>88829</td>
<td>59885</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>93456</td>
<td>60994</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>101234</td>
<td>66224</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Austràlia

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>35129</td>
<td>32790</td>
<td>14786</td>
<td>0</td>
<td>1217</td>
<td>81</td>
<td>3961</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>36329</td>
<td>32399</td>
<td>13845</td>
<td>0</td>
<td>1361</td>
<td>81</td>
<td>3934</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>36894</td>
<td>31746</td>
<td>14338</td>
<td>0</td>
<td>1320</td>
<td>80</td>
<td>3508</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>37310</td>
<td>33532</td>
<td>14920</td>
<td>0</td>
<td>1422</td>
<td>81</td>
<td>4173</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>36700</td>
<td>34643</td>
<td>15589</td>
<td>0</td>
<td>1407</td>
<td>81</td>
<td>4068</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>37685</td>
<td>35295</td>
<td>16738</td>
<td>0</td>
<td>1366</td>
<td>82</td>
<td>4270</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>40495</td>
<td>36116</td>
<td>16803</td>
<td>0</td>
<td>1325</td>
<td>82</td>
<td>4866</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>44331</td>
<td>35631</td>
<td>16922</td>
<td>0</td>
<td>1420</td>
<td>82</td>
<td>5068</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>47121</td>
<td>35787</td>
<td>17610</td>
<td>0</td>
<td>1323</td>
<td>83</td>
<td>4955</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>48093</td>
<td>36591</td>
<td>18354</td>
<td>0</td>
<td>1393</td>
<td>86</td>
<td>4968</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>48147</td>
<td>38874</td>
<td>19269</td>
<td>0</td>
<td>1407</td>
<td>90</td>
<td>5035</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>48212</td>
<td>37237</td>
<td>20306</td>
<td>0</td>
<td>1424</td>
<td>108</td>
<td>5086</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>48601</td>
<td>36356</td>
<td>21447</td>
<td>0</td>
<td>1365</td>
<td>123</td>
<td>5414</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>48145</td>
<td>38452</td>
<td>20509</td>
<td>0</td>
<td>1400</td>
<td>132</td>
<td>5242</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>49900</td>
<td>41251</td>
<td>20551</td>
<td>0</td>
<td>1385</td>
<td>129</td>
<td>5169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>51035</td>
<td>42105</td>
<td>18967</td>
<td>0</td>
<td>1317</td>
<td>146</td>
<td>5102</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>51699</td>
<td>41320</td>
<td>19846</td>
<td>0</td>
<td>1370</td>
<td>213</td>
<td>5177</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>51896</td>
<td>41479</td>
<td>22841</td>
<td>0</td>
<td>1233</td>
<td>378</td>
<td>5364</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>51502</td>
<td>44930</td>
<td>24308</td>
<td>0</td>
<td>1024</td>
<td>437</td>
<td>5707</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>52671</td>
<td>45886</td>
<td>24549</td>
<td>0</td>
<td>1015</td>
<td>540</td>
<td>4154</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>50026</td>
<td>45814</td>
<td>26207</td>
<td>0</td>
<td>1161</td>
<td>702</td>
<td>4173</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>48157</td>
<td>45905</td>
<td>27020</td>
<td>0</td>
<td>1441</td>
<td>836</td>
<td>4055</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>46892</td>
<td>46569</td>
<td>29774</td>
<td>0</td>
<td>1206</td>
<td>927</td>
<td>5060</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Brasil

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>9670</td>
<td>60048</td>
<td>3243</td>
<td>583</td>
<td>17777</td>
<td>0</td>
<td>47757</td>
<td>2282</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>11056</td>
<td>59974</td>
<td>3172</td>
<td>276</td>
<td>18729</td>
<td>0</td>
<td>47203</td>
<td>2329</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>10702</td>
<td>62130</td>
<td>3409</td>
<td>458</td>
<td>19207</td>
<td>0</td>
<td>46568</td>
<td>2065</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>11011</td>
<td>64232</td>
<td>3723</td>
<td>115</td>
<td>20216</td>
<td>0</td>
<td>46450</td>
<td>2369</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>11304</td>
<td>70314</td>
<td>3862</td>
<td>14</td>
<td>20873</td>
<td>0</td>
<td>49174</td>
<td>2732</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>11863</td>
<td>72984</td>
<td>4143</td>
<td>656</td>
<td>21836</td>
<td>0</td>
<td>47591</td>
<td>3040</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>12227</td>
<td>78385</td>
<td>4643</td>
<td>632</td>
<td>22856</td>
<td>0</td>
<td>47565</td>
<td>3144</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>12306</td>
<td>85321</td>
<td>5155</td>
<td>826</td>
<td>23992</td>
<td>0</td>
<td>48929</td>
<td>3480</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>12016</td>
<td>88205</td>
<td>5410</td>
<td>851</td>
<td>25066</td>
<td>0</td>
<td>48570</td>
<td>3389</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>12200</td>
<td>90314</td>
<td>6082</td>
<td>1036</td>
<td>25198</td>
<td>21</td>
<td>49973</td>
<td>3437</td>
<td>73</td>
</tr>
<tr>
<td>2000</td>
<td>13015</td>
<td>90488</td>
<td>7909</td>
<td>1576</td>
<td>26179</td>
<td>31</td>
<td>46619</td>
<td>3813</td>
<td>74</td>
</tr>
<tr>
<td>2001</td>
<td>12813</td>
<td>91160</td>
<td>10002</td>
<td>3721</td>
<td>23037</td>
<td>51</td>
<td>48136</td>
<td>3255</td>
<td>87</td>
</tr>
<tr>
<td>2002</td>
<td>12392</td>
<td>88557</td>
<td>12382</td>
<td>3606</td>
<td>24604</td>
<td>65</td>
<td>52372</td>
<td>3145</td>
<td>83</td>
</tr>
<tr>
<td>2003</td>
<td>12865</td>
<td>85697</td>
<td>12758</td>
<td>3481</td>
<td>26283</td>
<td>78</td>
<td>57126</td>
<td>3194</td>
<td>90</td>
</tr>
<tr>
<td>2004</td>
<td>13469</td>
<td>89094</td>
<td>15712</td>
<td>3026</td>
<td>27589</td>
<td>92</td>
<td>61124</td>
<td>3215</td>
<td>106</td>
</tr>
<tr>
<td>2005</td>
<td>12988</td>
<td>90100</td>
<td>16720</td>
<td>2568</td>
<td>29021</td>
<td>110</td>
<td>63287</td>
<td>3358</td>
<td>165</td>
</tr>
<tr>
<td>2006</td>
<td>12817</td>
<td>91431</td>
<td>17503</td>
<td>3584</td>
<td>29997</td>
<td>138</td>
<td>66377</td>
<td>3540</td>
<td>145</td>
</tr>
<tr>
<td>2007</td>
<td>13591</td>
<td>95522</td>
<td>17768</td>
<td>3218</td>
<td>32165</td>
<td>190</td>
<td>72177</td>
<td>3340</td>
<td>374</td>
</tr>
<tr>
<td>2008</td>
<td>13733</td>
<td>97974</td>
<td>21208</td>
<td>3640</td>
<td>31782</td>
<td>304</td>
<td>78434</td>
<td>3630</td>
<td>111</td>
</tr>
<tr>
<td>2009</td>
<td>10980</td>
<td>97767</td>
<td>16995</td>
<td>3377</td>
<td>33625</td>
<td>417</td>
<td>76086</td>
<td>3439</td>
<td>114</td>
</tr>
<tr>
<td>2010</td>
<td>14450</td>
<td>107404</td>
<td>23018</td>
<td>3785</td>
<td>34683</td>
<td>556</td>
<td>81594</td>
<td>2980</td>
<td>68</td>
</tr>
<tr>
<td>2011</td>
<td>15431</td>
<td>111351</td>
<td>22887</td>
<td>4081</td>
<td>36837</td>
<td>653</td>
<td>77912</td>
<td>3086</td>
<td>114</td>
</tr>
<tr>
<td>2012</td>
<td>15247</td>
<td>119664</td>
<td>27228</td>
<td>4180</td>
<td>35719</td>
<td>932</td>
<td>78069</td>
<td>3462</td>
<td>58</td>
</tr>
</tbody>
</table>

- 45 -
Canadà

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>24277</td>
<td>79856</td>
<td>54728</td>
<td>19398</td>
<td>25519</td>
<td>2</td>
<td>8158</td>
<td>-30</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>25309</td>
<td>75407</td>
<td>55389</td>
<td>22625</td>
<td>26511</td>
<td>3</td>
<td>8226</td>
<td>-1585</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>26252</td>
<td>77798</td>
<td>58366</td>
<td>21300</td>
<td>27209</td>
<td>8</td>
<td>8534</td>
<td>-2154</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>24106</td>
<td>79059</td>
<td>61944</td>
<td>24644</td>
<td>27826</td>
<td>8</td>
<td>8413</td>
<td>-2358</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>24797</td>
<td>80674</td>
<td>64990</td>
<td>28197</td>
<td>28366</td>
<td>8</td>
<td>9813</td>
<td>-3777</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>25317</td>
<td>81882</td>
<td>67092</td>
<td>25561</td>
<td>28889</td>
<td>8</td>
<td>9821</td>
<td>-3098</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>25881</td>
<td>84018</td>
<td>70418</td>
<td>24236</td>
<td>30586</td>
<td>9</td>
<td>9854</td>
<td>-3238</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>27531</td>
<td>86796</td>
<td>70945</td>
<td>21536</td>
<td>30160</td>
<td>9</td>
<td>10171</td>
<td>-3073</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>29305</td>
<td>87267</td>
<td>68098</td>
<td>18636</td>
<td>28543</td>
<td>9</td>
<td>10368</td>
<td>-2351</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>29457</td>
<td>89958</td>
<td>71125</td>
<td>19152</td>
<td>29736</td>
<td>18</td>
<td>11470</td>
<td>-2484</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>31713</td>
<td>90516</td>
<td>74237</td>
<td>18972</td>
<td>30832</td>
<td>27</td>
<td>11688</td>
<td>-3065</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>31127</td>
<td>91196</td>
<td>71859</td>
<td>19987</td>
<td>28665</td>
<td>33</td>
<td>10831</td>
<td>-1989</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>29966</td>
<td>93131</td>
<td>73328</td>
<td>19683</td>
<td>30148</td>
<td>40</td>
<td>11814</td>
<td>-1722</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>29703</td>
<td>99327</td>
<td>79706</td>
<td>19517</td>
<td>29020</td>
<td>76</td>
<td>11924</td>
<td>-584</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>28557</td>
<td>102378</td>
<td>78003</td>
<td>23555</td>
<td>29312</td>
<td>86</td>
<td>12468</td>
<td>-930</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>27223</td>
<td>102228</td>
<td>80666</td>
<td>23986</td>
<td>31125</td>
<td>139</td>
<td>13408</td>
<td>-2051</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>27289</td>
<td>101142</td>
<td>79709</td>
<td>25530</td>
<td>30345</td>
<td>216</td>
<td>12792</td>
<td>-1644</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>27013</td>
<td>101017</td>
<td>78429</td>
<td>24362</td>
<td>31612</td>
<td>263</td>
<td>13122</td>
<td>-2662</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>28308</td>
<td>100007</td>
<td>78553</td>
<td>25023</td>
<td>32461</td>
<td>330</td>
<td>12191</td>
<td>-2766</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>21904</td>
<td>94058</td>
<td>77519</td>
<td>23479</td>
<td>31704</td>
<td>583</td>
<td>11875</td>
<td>-2891</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>22229</td>
<td>97708</td>
<td>78678</td>
<td>23626</td>
<td>30216</td>
<td>763</td>
<td>11970</td>
<td>-2210</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>20205</td>
<td>99256</td>
<td>83574</td>
<td>24390</td>
<td>32309</td>
<td>901</td>
<td>12508</td>
<td>-3144</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>18364</td>
<td>103371</td>
<td>83483</td>
<td>24722</td>
<td>32724</td>
<td>1004</td>
<td>12401</td>
<td>-4040</td>
<td>0</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Estats Units

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>460253</td>
<td>763305</td>
<td>438232</td>
<td>159384</td>
<td>23491</td>
<td>14422</td>
<td>62255</td>
<td>170</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>454956</td>
<td>747192</td>
<td>458471</td>
<td>169237</td>
<td>24786</td>
<td>14664</td>
<td>65577</td>
<td>1915</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>461628</td>
<td>759524</td>
<td>467483</td>
<td>170950</td>
<td>21876</td>
<td>15431</td>
<td>73387</td>
<td>2438</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>472650</td>
<td>772117</td>
<td>480711</td>
<td>168609</td>
<td>24364</td>
<td>15991</td>
<td>66762</td>
<td>2445</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>475728</td>
<td>790302</td>
<td>490519</td>
<td>176931</td>
<td>22598</td>
<td>15789</td>
<td>68417</td>
<td>3839</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>474065</td>
<td>790087</td>
<td>507299</td>
<td>186022</td>
<td>27014</td>
<td>13596</td>
<td>70527</td>
<td>3235</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>491505</td>
<td>815869</td>
<td>503033</td>
<td>186389</td>
<td>30179</td>
<td>14321</td>
<td>72052</td>
<td>3269</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>505737</td>
<td>829376</td>
<td>506808</td>
<td>173658</td>
<td>28653</td>
<td>13599</td>
<td>70249</td>
<td>2929</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>507882</td>
<td>845115</td>
<td>498610</td>
<td>186105</td>
<td>25464</td>
<td>13989</td>
<td>71649</td>
<td>2303</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>511953</td>
<td>867517</td>
<td>524139</td>
<td>201139</td>
<td>23901</td>
<td>15830</td>
<td>70925</td>
<td>2493</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>533639</td>
<td>876047</td>
<td>547580</td>
<td>207890</td>
<td>21776</td>
<td>15163</td>
<td>73232</td>
<td>2917</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>526116</td>
<td>882594</td>
<td>514321</td>
<td>206557</td>
<td>16190</td>
<td>14995</td>
<td>64945</td>
<td>1894</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>533448</td>
<td>879677</td>
<td>534490</td>
<td>209663</td>
<td>22965</td>
<td>10665</td>
<td>64959</td>
<td>1962</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>532072</td>
<td>896738</td>
<td>518808</td>
<td>205310</td>
<td>23960</td>
<td>10788</td>
<td>69658</td>
<td>552</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>552484</td>
<td>927314</td>
<td>509565</td>
<td>211961</td>
<td>23316</td>
<td>11263</td>
<td>72706</td>
<td>973</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>558321</td>
<td>926663</td>
<td>507071</td>
<td>211280</td>
<td>23430</td>
<td>11582</td>
<td>75779</td>
<td>2126</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>550653</td>
<td>908527</td>
<td>502001</td>
<td>212705</td>
<td>25101</td>
<td>12398</td>
<td>78347</td>
<td>1584</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>554791</td>
<td>900443</td>
<td>542688</td>
<td>218032</td>
<td>21467</td>
<td>13321</td>
<td>80676</td>
<td>2688</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>545810</td>
<td>841957</td>
<td>540910</td>
<td>218337</td>
<td>22077</td>
<td>14561</td>
<td>84488</td>
<td>2823</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>485338</td>
<td>790351</td>
<td>535369</td>
<td>216358</td>
<td>21701</td>
<td>16243</td>
<td>83802</td>
<td>2929</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>502600</td>
<td>813946</td>
<td>555918</td>
<td>218631</td>
<td>22555</td>
<td>18435</td>
<td>89407</td>
<td>2234</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>479075</td>
<td>800208</td>
<td>568601</td>
<td>214063</td>
<td>27669</td>
<td>21038</td>
<td>91480</td>
<td>3205</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>425036</td>
<td>758203</td>
<td>595533</td>
<td>208779</td>
<td>23952</td>
<td>23334</td>
<td>88599</td>
<td>4065</td>
<td>0</td>
</tr>
<tr>
<td>Any</td>
<td>Carbó</td>
<td>Productes del petroli</td>
<td>Gas natural</td>
<td>Nuclear</td>
<td>Hidroelèctrica</td>
<td>Geotèrmica, solar i altres</td>
<td>Biocombustibles</td>
<td>Electricitat</td>
<td>Calor</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>1990</td>
<td>103383</td>
<td>59166</td>
<td>10568</td>
<td>1600</td>
<td>6162</td>
<td>10</td>
<td>133458</td>
<td>118</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>110852</td>
<td>60055</td>
<td>11954</td>
<td>1440</td>
<td>6259</td>
<td>16</td>
<td>135289</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>117464</td>
<td>63736</td>
<td>13341</td>
<td>1753</td>
<td>6010</td>
<td>22</td>
<td>137145</td>
<td>104</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>122644</td>
<td>65014</td>
<td>13526</td>
<td>1407</td>
<td>6061</td>
<td>25</td>
<td>137891</td>
<td>124</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>129197</td>
<td>69819</td>
<td>14352</td>
<td>1472</td>
<td>7115</td>
<td>36</td>
<td>138637</td>
<td>122</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>135957</td>
<td>78613</td>
<td>17327</td>
<td>2080</td>
<td>6243</td>
<td>67</td>
<td>140003</td>
<td>131</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>141847</td>
<td>83335</td>
<td>17652</td>
<td>2364</td>
<td>5928</td>
<td>103</td>
<td>141339</td>
<td>133</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>147550</td>
<td>89077</td>
<td>20318</td>
<td>2628</td>
<td>6421</td>
<td>114</td>
<td>142788</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>146358</td>
<td>95974</td>
<td>21279</td>
<td>3107</td>
<td>7138</td>
<td>129</td>
<td>144232</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>157118</td>
<td>103994</td>
<td>22987</td>
<td>3453</td>
<td>6953</td>
<td>164</td>
<td>146710</td>
<td>116</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>161457</td>
<td>108991</td>
<td>23062</td>
<td>4405</td>
<td>6404</td>
<td>180</td>
<td>148824</td>
<td>112</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>165886</td>
<td>109903</td>
<td>23209</td>
<td>5075</td>
<td>6338</td>
<td>231</td>
<td>150817</td>
<td>111</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>171546</td>
<td>113367</td>
<td>25167</td>
<td>5053</td>
<td>5884</td>
<td>272</td>
<td>152968</td>
<td>116</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>175425</td>
<td>117975</td>
<td>25870</td>
<td>4634</td>
<td>6949</td>
<td>360</td>
<td>155244</td>
<td>145</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>196393</td>
<td>118777</td>
<td>28375</td>
<td>4433</td>
<td>7784</td>
<td>451</td>
<td>158024</td>
<td>146</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>208041</td>
<td>121315</td>
<td>31801</td>
<td>4515</td>
<td>9280</td>
<td>631</td>
<td>160751</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>223264</td>
<td>131445</td>
<td>33439</td>
<td>4900</td>
<td>10352</td>
<td>956</td>
<td>163465</td>
<td>236</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>243033</td>
<td>139874</td>
<td>35658</td>
<td>4419</td>
<td>10996</td>
<td>1185</td>
<td>166671</td>
<td>425</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>261606</td>
<td>142430</td>
<td>25983</td>
<td>3890</td>
<td>10045</td>
<td>1367</td>
<td>169982</td>
<td>502</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>297565</td>
<td>157560</td>
<td>49632</td>
<td>4857</td>
<td>9730</td>
<td>1846</td>
<td>173426</td>
<td>456</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>310073</td>
<td>160936</td>
<td>54386</td>
<td>6845</td>
<td>10584</td>
<td>1992</td>
<td>177119</td>
<td>477</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>325782</td>
<td>164213</td>
<td>54992</td>
<td>8414</td>
<td>12348</td>
<td>2532</td>
<td>181113</td>
<td>440</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>354247</td>
<td>176266</td>
<td>48928</td>
<td>8566</td>
<td>10821</td>
<td>3079</td>
<td>184892</td>
<td>412</td>
<td>0</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics

Indonèsia

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3549</td>
<td>31572</td>
<td>15804</td>
<td>0</td>
<td>491</td>
<td>1934</td>
<td>43490</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>3270</td>
<td>32945</td>
<td>18870</td>
<td>0</td>
<td>570</td>
<td>1804</td>
<td>44363</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>3808</td>
<td>35156</td>
<td>19885</td>
<td>0</td>
<td>758</td>
<td>1864</td>
<td>45137</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>6351</td>
<td>38393</td>
<td>20670</td>
<td>0</td>
<td>678</td>
<td>1874</td>
<td>45911</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>5755</td>
<td>37179</td>
<td>23419</td>
<td>0</td>
<td>525</td>
<td>3327</td>
<td>46579</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>6330</td>
<td>43881</td>
<td>25320</td>
<td>0</td>
<td>648</td>
<td>3800</td>
<td>47092</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>8806</td>
<td>45326</td>
<td>26295</td>
<td>0</td>
<td>702</td>
<td>4044</td>
<td>47423</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>6992</td>
<td>49876</td>
<td>28266</td>
<td>0</td>
<td>439</td>
<td>4479</td>
<td>48257</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>6915</td>
<td>46951</td>
<td>26877</td>
<td>0</td>
<td>833</td>
<td>4500</td>
<td>48579</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>8915</td>
<td>51760</td>
<td>28293</td>
<td>0</td>
<td>808</td>
<td>4690</td>
<td>48755</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>12009</td>
<td>55947</td>
<td>26542</td>
<td>0</td>
<td>861</td>
<td>8372</td>
<td>49981</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>14368</td>
<td>56035</td>
<td>27579</td>
<td>0</td>
<td>1002</td>
<td>10369</td>
<td>50030</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>15345</td>
<td>56766</td>
<td>29311</td>
<td>0</td>
<td>854</td>
<td>10725</td>
<td>50306</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>15451</td>
<td>57703</td>
<td>31063</td>
<td>0</td>
<td>783</td>
<td>10822</td>
<td>50646</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>20417</td>
<td>64164</td>
<td>28350</td>
<td>0</td>
<td>832</td>
<td>11444</td>
<td>50782</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>22127</td>
<td>64616</td>
<td>29248</td>
<td>0</td>
<td>922</td>
<td>11355</td>
<td>50686</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>26495</td>
<td>59586</td>
<td>29377</td>
<td>0</td>
<td>828</td>
<td>11447</td>
<td>51848</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>28397</td>
<td>62095</td>
<td>27878</td>
<td>0</td>
<td>971</td>
<td>12072</td>
<td>51879</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>25786</td>
<td>64731</td>
<td>29785</td>
<td>0</td>
<td>991</td>
<td>14286</td>
<td>52389</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>30513</td>
<td>66414</td>
<td>34370</td>
<td>0</td>
<td>979</td>
<td>15982</td>
<td>52731</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>30483</td>
<td>68236</td>
<td>38789</td>
<td>0</td>
<td>1501</td>
<td>16088</td>
<td>52173</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>25492</td>
<td>72241</td>
<td>35627</td>
<td>0</td>
<td>1068</td>
<td>16113</td>
<td>53813</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>29792</td>
<td>76061</td>
<td>34975</td>
<td>0</td>
<td>1101</td>
<td>16192</td>
<td>54089</td>
<td>257</td>
<td>0</td>
</tr>
<tr>
<td>Any</td>
<td>Carbó</td>
<td>Productes del petroli</td>
<td>Gas natural</td>
<td>Nuclear</td>
<td>Hidroelèctrica</td>
<td>Geotèrmica, solar i altres</td>
<td>Biocombustibles</td>
<td>Electricitat</td>
<td>Calor</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>1990</td>
<td>710</td>
<td>43538</td>
<td>17480</td>
<td>0</td>
<td>523</td>
<td>0</td>
<td>218</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>1014</td>
<td>49819</td>
<td>21675</td>
<td>0</td>
<td>607</td>
<td>0</td>
<td>225</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>893</td>
<td>50067</td>
<td>22999</td>
<td>0</td>
<td>820</td>
<td>0</td>
<td>249</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>1098</td>
<td>53122</td>
<td>26512</td>
<td>0</td>
<td>845</td>
<td>0</td>
<td>269</td>
<td>-17</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>1103</td>
<td>55228</td>
<td>32016</td>
<td>0</td>
<td>640</td>
<td>0</td>
<td>287</td>
<td>-17</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>1032</td>
<td>54846</td>
<td>35636</td>
<td>0</td>
<td>627</td>
<td>0</td>
<td>267</td>
<td>-14</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>1080</td>
<td>56373</td>
<td>35492</td>
<td>0</td>
<td>636</td>
<td>0</td>
<td>272</td>
<td>-33</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>1107</td>
<td>59111</td>
<td>39716</td>
<td>0</td>
<td>596</td>
<td>0</td>
<td>245</td>
<td>-45</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>1289</td>
<td>60507</td>
<td>43097</td>
<td>0</td>
<td>605</td>
<td>0</td>
<td>197</td>
<td>-53</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>1343</td>
<td>59640</td>
<td>49926</td>
<td>0</td>
<td>425</td>
<td>3</td>
<td>174</td>
<td>-68</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>1458</td>
<td>62399</td>
<td>52618</td>
<td>0</td>
<td>314</td>
<td>2</td>
<td>153</td>
<td>-58</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>1267</td>
<td>65622</td>
<td>55766</td>
<td>0</td>
<td>435</td>
<td>3</td>
<td>142</td>
<td>-26</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>1273</td>
<td>65255</td>
<td>62826</td>
<td>0</td>
<td>692</td>
<td>3</td>
<td>108</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>1401</td>
<td>67360</td>
<td>69228</td>
<td>0</td>
<td>954</td>
<td>2</td>
<td>98</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>1379</td>
<td>70958</td>
<td>78152</td>
<td>0</td>
<td>914</td>
<td>4</td>
<td>97</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>1682</td>
<td>74237</td>
<td>83813</td>
<td>0</td>
<td>1385</td>
<td>6</td>
<td>582</td>
<td>-58</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>1647</td>
<td>80883</td>
<td>92296</td>
<td>0</td>
<td>1571</td>
<td>11</td>
<td>577</td>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>1735</td>
<td>83338</td>
<td>104180</td>
<td>0</td>
<td>1547</td>
<td>12</td>
<td>609</td>
<td>-58</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>1617</td>
<td>87331</td>
<td>109981</td>
<td>0</td>
<td>430</td>
<td>17</td>
<td>617</td>
<td>-188</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>1191</td>
<td>85958</td>
<td>115377</td>
<td>0</td>
<td>622</td>
<td>19</td>
<td>617</td>
<td>-351</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>1488</td>
<td>80333</td>
<td>122114</td>
<td>0</td>
<td>819</td>
<td>14</td>
<td>618</td>
<td>-318</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>1463</td>
<td>76756</td>
<td>129166</td>
<td>85</td>
<td>1037</td>
<td>19</td>
<td>504</td>
<td>-431</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>1129</td>
<td>84008</td>
<td>128282</td>
<td>481</td>
<td>1070</td>
<td>18</td>
<td>508</td>
<td>-613</td>
<td>0</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics

Japó

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>76615</td>
<td>230136</td>
<td>44161</td>
<td>52713</td>
<td>7680</td>
<td>2743</td>
<td>4896</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>78497</td>
<td>233144</td>
<td>46476</td>
<td>55629</td>
<td>8384</td>
<td>2759</td>
<td>4952</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>76238</td>
<td>239072</td>
<td>47560</td>
<td>58183</td>
<td>7099</td>
<td>2722</td>
<td>4868</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>76573</td>
<td>239167</td>
<td>48772</td>
<td>64958</td>
<td>8221</td>
<td>2685</td>
<td>4678</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>81294</td>
<td>248662</td>
<td>52033</td>
<td>70136</td>
<td>5785</td>
<td>1934</td>
<td>4757</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>84097</td>
<td>254448</td>
<td>53193</td>
<td>75903</td>
<td>7062</td>
<td>3945</td>
<td>5026</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>86322</td>
<td>255106</td>
<td>56202</td>
<td>78755</td>
<td>6925</td>
<td>4366</td>
<td>5152</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>88998</td>
<td>253334</td>
<td>58574</td>
<td>83179</td>
<td>7723</td>
<td>4447</td>
<td>5452</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>83647</td>
<td>249276</td>
<td>59893</td>
<td>86611</td>
<td>7956</td>
<td>4128</td>
<td>5252</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>89040</td>
<td>254871</td>
<td>63413</td>
<td>82512</td>
<td>7432</td>
<td>3987</td>
<td>5466</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>97125</td>
<td>250695</td>
<td>65652</td>
<td>83928</td>
<td>7504</td>
<td>3946</td>
<td>5639</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>99212</td>
<td>245718</td>
<td>66449</td>
<td>83357</td>
<td>7238</td>
<td>3985</td>
<td>5340</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>102512</td>
<td>248443</td>
<td>66522</td>
<td>76903</td>
<td>7085</td>
<td>3961</td>
<td>5638</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>105515</td>
<td>246072</td>
<td>71302</td>
<td>62549</td>
<td>8136</td>
<td>4009</td>
<td>5885</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>115472</td>
<td>241913</td>
<td>70574</td>
<td>73606</td>
<td>8089</td>
<td>3916</td>
<td>5854</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>110046</td>
<td>240903</td>
<td>70565</td>
<td>79421</td>
<td>6576</td>
<td>3837</td>
<td>6807</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>111433</td>
<td>230354</td>
<td>77454</td>
<td>79075</td>
<td>7527</td>
<td>3738</td>
<td>6928</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>116363</td>
<td>224584</td>
<td>83046</td>
<td>68756</td>
<td>6365</td>
<td>3729</td>
<td>7170</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>113572</td>
<td>208629</td>
<td>83715</td>
<td>67270</td>
<td>6575</td>
<td>3482</td>
<td>6821</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>101273</td>
<td>202438</td>
<td>80732</td>
<td>72905</td>
<td>6613</td>
<td>3682</td>
<td>6381</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>115116</td>
<td>203139</td>
<td>86014</td>
<td>75114</td>
<td>7070</td>
<td>3522</td>
<td>9547</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>107531</td>
<td>202341</td>
<td>100062</td>
<td>26520</td>
<td>7155</td>
<td>3704</td>
<td>10116</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>112178</td>
<td>203189</td>
<td>105282</td>
<td>4154</td>
<td>6492</td>
<td>3781</td>
<td>10191</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Mèxic

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3476</td>
<td>77382</td>
<td>23120</td>
<td>765</td>
<td>2019</td>
<td>4423</td>
<td>8552</td>
<td>-118</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>3317</td>
<td>81274</td>
<td>24144</td>
<td>1105</td>
<td>1879</td>
<td>4691</td>
<td>8799</td>
<td>-120</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>3590</td>
<td>82322</td>
<td>24294</td>
<td>1021</td>
<td>2251</td>
<td>5010</td>
<td>8895</td>
<td>-90</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>4043</td>
<td>83362</td>
<td>23517</td>
<td>1285</td>
<td>2256</td>
<td>5075</td>
<td>8823</td>
<td>-95</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>4808</td>
<td>86703</td>
<td>24413</td>
<td>1105</td>
<td>1724</td>
<td>4838</td>
<td>8470</td>
<td>-70</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>5496</td>
<td>80088</td>
<td>24944</td>
<td>2200</td>
<td>2367</td>
<td>4900</td>
<td>8803</td>
<td>-67</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>6392</td>
<td>82081</td>
<td>26777</td>
<td>2053</td>
<td>2704</td>
<td>4954</td>
<td>8808</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>6560</td>
<td>86035</td>
<td>25996</td>
<td>2725</td>
<td>2273</td>
<td>4731</td>
<td>9053</td>
<td>126</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>6653</td>
<td>87631</td>
<td>27436</td>
<td>2415</td>
<td>2118</td>
<td>4899</td>
<td>9148</td>
<td>123</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>6844</td>
<td>89276</td>
<td>27809</td>
<td>2607</td>
<td>2819</td>
<td>4874</td>
<td>8998</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>7023</td>
<td>91341</td>
<td>28921</td>
<td>2142</td>
<td>2849</td>
<td>5119</td>
<td>8939</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>7554</td>
<td>90906</td>
<td>29588</td>
<td>2274</td>
<td>2451</td>
<td>4840</td>
<td>8632</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>8532</td>
<td>89336</td>
<td>33178</td>
<td>2540</td>
<td>2146</td>
<td>4701</td>
<td>8507</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>9566</td>
<td>91098</td>
<td>35726</td>
<td>2737</td>
<td>1710</td>
<td>5470</td>
<td>8546</td>
<td>-74</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>8059</td>
<td>93844</td>
<td>37635</td>
<td>2396</td>
<td>2168</td>
<td>5731</td>
<td>8601</td>
<td>-82</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>10096</td>
<td>94454</td>
<td>38066</td>
<td>2816</td>
<td>2379</td>
<td>6362</td>
<td>8883</td>
<td>-104</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>10056</td>
<td>95980</td>
<td>43010</td>
<td>2832</td>
<td>2614</td>
<td>5847</td>
<td>8675</td>
<td>-67</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>9831</td>
<td>96073</td>
<td>46351</td>
<td>2716</td>
<td>2346</td>
<td>6497</td>
<td>8689</td>
<td>-101</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>8460</td>
<td>96302</td>
<td>48999</td>
<td>2555</td>
<td>3369</td>
<td>6224</td>
<td>8653</td>
<td>-95</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>8842</td>
<td>94428</td>
<td>48514</td>
<td>2737</td>
<td>2297</td>
<td>6008</td>
<td>8383</td>
<td>-78</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>9438</td>
<td>95778</td>
<td>53264</td>
<td>1532</td>
<td>3192</td>
<td>5916</td>
<td>8362</td>
<td>-82</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>9977</td>
<td>94213</td>
<td>56218</td>
<td>2629</td>
<td>3119</td>
<td>5878</td>
<td>8268</td>
<td>-49</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>9361</td>
<td>96381</td>
<td>58468</td>
<td>2286</td>
<td>2740</td>
<td>5473</td>
<td>8422</td>
<td>-365</td>
<td>0</td>
</tr>
</tbody>
</table>
República de Corea

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>25383</td>
<td>50034</td>
<td>2724</td>
<td>13783</td>
<td>547</td>
<td>10</td>
<td>731</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>25094</td>
<td>59699</td>
<td>3151</td>
<td>14675</td>
<td>300</td>
<td>11</td>
<td>655</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>22228</td>
<td>71111</td>
<td>4057</td>
<td>14732</td>
<td>266</td>
<td>13</td>
<td>701</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>24887</td>
<td>78513</td>
<td>5174</td>
<td>15151</td>
<td>364</td>
<td>14</td>
<td>735</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>25590</td>
<td>85783</td>
<td>6864</td>
<td>15285</td>
<td>202</td>
<td>17</td>
<td>693</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>26610</td>
<td>93161</td>
<td>8321</td>
<td>17468</td>
<td>237</td>
<td>22</td>
<td>969</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>28693</td>
<td>98635</td>
<td>10912</td>
<td>19265</td>
<td>208</td>
<td>32</td>
<td>832</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>31838</td>
<td>105132</td>
<td>13326</td>
<td>20089</td>
<td>242</td>
<td>46</td>
<td>917</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>32352</td>
<td>88583</td>
<td>12488</td>
<td>23373</td>
<td>368</td>
<td>44</td>
<td>991</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>34436</td>
<td>96015</td>
<td>15206</td>
<td>26859</td>
<td>358</td>
<td>43</td>
<td>1103</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>41949</td>
<td>98670</td>
<td>17005</td>
<td>28397</td>
<td>345</td>
<td>44</td>
<td>1379</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>45491</td>
<td>98112</td>
<td>18737</td>
<td>29223</td>
<td>357</td>
<td>39</td>
<td>1426</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>47089</td>
<td>99927</td>
<td>21203</td>
<td>31039</td>
<td>278</td>
<td>37</td>
<td>1569</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>48687</td>
<td>100779</td>
<td>22001</td>
<td>33793</td>
<td>422</td>
<td>36</td>
<td>1804</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>50210</td>
<td>98679</td>
<td>25280</td>
<td>34065</td>
<td>372</td>
<td>42</td>
<td>2008</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>49657</td>
<td>98396</td>
<td>27368</td>
<td>38251</td>
<td>316</td>
<td>50</td>
<td>2144</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>2006</td>
<td>52822</td>
<td>96401</td>
<td>28700</td>
<td>38765</td>
<td>298</td>
<td>63</td>
<td>2434</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>2007</td>
<td>56231</td>
<td>100514</td>
<td>31152</td>
<td>37250</td>
<td>312</td>
<td>79</td>
<td>2746</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>2008</td>
<td>62917</td>
<td>95658</td>
<td>31807</td>
<td>39341</td>
<td>264</td>
<td>107</td>
<td>2996</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>2009</td>
<td>64913</td>
<td>98273</td>
<td>31703</td>
<td>38510</td>
<td>242</td>
<td>168</td>
<td>3044</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>2010</td>
<td>73454</td>
<td>100276</td>
<td>38625</td>
<td>38725</td>
<td>317</td>
<td>216</td>
<td>3448</td>
<td>0</td>
<td>91</td>
</tr>
<tr>
<td>2011</td>
<td>80264</td>
<td>100226</td>
<td>41576</td>
<td>40322</td>
<td>395</td>
<td>254</td>
<td>3856</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>2012</td>
<td>77079</td>
<td>105040</td>
<td>44966</td>
<td>39176</td>
<td>341</td>
<td>299</td>
<td>4276</td>
<td>0</td>
<td>82</td>
</tr>
</tbody>
</table>
Rússia

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>191071</td>
<td>211559</td>
<td>367287</td>
<td>31299</td>
<td>14269</td>
<td>24</td>
<td>12180</td>
<td>-715</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>180832</td>
<td>223711</td>
<td>373586</td>
<td>31709</td>
<td>14411</td>
<td>25</td>
<td>11492</td>
<td>-1037</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>159029</td>
<td>199908</td>
<td>364192</td>
<td>31560</td>
<td>14778</td>
<td>25</td>
<td>12449</td>
<td>-1397</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>142572</td>
<td>178170</td>
<td>355915</td>
<td>31418</td>
<td>14912</td>
<td>24</td>
<td>11835</td>
<td>-1611</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>133683</td>
<td>137360</td>
<td>327583</td>
<td>25859</td>
<td>15048</td>
<td>27</td>
<td>8660</td>
<td>-1763</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>129174</td>
<td>132360</td>
<td>316545</td>
<td>26249</td>
<td>15085</td>
<td>26</td>
<td>8535</td>
<td>-1686</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>130630</td>
<td>119973</td>
<td>318228</td>
<td>18768</td>
<td>16186</td>
<td>24</td>
<td>6934</td>
<td>-1676</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>117348</td>
<td>117088</td>
<td>311476</td>
<td>28613</td>
<td>13466</td>
<td>25</td>
<td>6530</td>
<td>-1693</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>110835</td>
<td>114083</td>
<td>310874</td>
<td>27784</td>
<td>13631</td>
<td>26</td>
<td>5806</td>
<td>-1549</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>118758</td>
<td>118147</td>
<td>314473</td>
<td>32119</td>
<td>13802</td>
<td>24</td>
<td>7519</td>
<td>-1218</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>119969</td>
<td>122212</td>
<td>318916</td>
<td>34419</td>
<td>14111</td>
<td>50</td>
<td>6897</td>
<td>-1209</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>115276</td>
<td>124958</td>
<td>325215</td>
<td>36050</td>
<td>14955</td>
<td>78</td>
<td>6853</td>
<td>-1364</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>116072</td>
<td>121183</td>
<td>325564</td>
<td>37274</td>
<td>13951</td>
<td>135</td>
<td>6906</td>
<td>-1113</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>117164</td>
<td>122470</td>
<td>342503</td>
<td>39546</td>
<td>13396</td>
<td>279</td>
<td>6153</td>
<td>-1151</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>114043</td>
<td>121385</td>
<td>346562</td>
<td>38075</td>
<td>15121</td>
<td>347</td>
<td>7043</td>
<td>-655</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>112637</td>
<td>121213</td>
<td>349570</td>
<td>39255</td>
<td>14850</td>
<td>353</td>
<td>6914</td>
<td>-1065</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>115726</td>
<td>125012</td>
<td>358605</td>
<td>41116</td>
<td>14908</td>
<td>398</td>
<td>7482</td>
<td>-1360</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>110959</td>
<td>127439</td>
<td>365960</td>
<td>42059</td>
<td>15226</td>
<td>418</td>
<td>6678</td>
<td>-1101</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>117069</td>
<td>132006</td>
<td>366172</td>
<td>42829</td>
<td>14170</td>
<td>400</td>
<td>6232</td>
<td>-1516</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>95271</td>
<td>125876</td>
<td>350295</td>
<td>42959</td>
<td>14980</td>
<td>399</td>
<td>6367</td>
<td>-1278</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>114827</td>
<td>131920</td>
<td>383435</td>
<td>44761</td>
<td>14318</td>
<td>430</td>
<td>6943</td>
<td>-1500</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>118806</td>
<td>143975</td>
<td>395877</td>
<td>45439</td>
<td>14263</td>
<td>449</td>
<td>7088</td>
<td>-1940</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>133422</td>
<td>145434</td>
<td>387008</td>
<td>46627</td>
<td>14267</td>
<td>411</td>
<td>7432</td>
<td>-1417</td>
<td>0</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Sud-àfrica

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>66539</td>
<td>15796</td>
<td>1504</td>
<td>2202</td>
<td>87</td>
<td>0</td>
<td>10412</td>
<td>-109</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>70142</td>
<td>15765</td>
<td>1526</td>
<td>2383</td>
<td>170</td>
<td>0</td>
<td>10627</td>
<td>-140</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>64863</td>
<td>15555</td>
<td>1537</td>
<td>2421</td>
<td>65</td>
<td>0</td>
<td>10794</td>
<td>-127</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>72844</td>
<td>15468</td>
<td>1715</td>
<td>1891</td>
<td>13</td>
<td>0</td>
<td>10985</td>
<td>-214</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>75054</td>
<td>15583</td>
<td>1715</td>
<td>2527</td>
<td>92</td>
<td>0</td>
<td>11200</td>
<td>-226</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>78132</td>
<td>17061</td>
<td>1715</td>
<td>2945</td>
<td>45</td>
<td>0</td>
<td>11439</td>
<td>-245</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>79543</td>
<td>16995</td>
<td>1543</td>
<td>3069</td>
<td>113</td>
<td>0</td>
<td>11633</td>
<td>1063</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>81086</td>
<td>17556</td>
<td>1378</td>
<td>3296</td>
<td>180</td>
<td>0</td>
<td>11819</td>
<td>1107</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>78597</td>
<td>17340</td>
<td>1160</td>
<td>3545</td>
<td>137</td>
<td>0</td>
<td>12032</td>
<td>1066</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>81789</td>
<td>17446</td>
<td>1518</td>
<td>3345</td>
<td>62</td>
<td>0</td>
<td>12326</td>
<td>1035</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>82000</td>
<td>17114</td>
<td>1397</td>
<td>3390</td>
<td>95</td>
<td>0</td>
<td>12635</td>
<td>1061</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>81988</td>
<td>17594</td>
<td>1815</td>
<td>2793</td>
<td>171</td>
<td>12</td>
<td>12896</td>
<td>190</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>78553</td>
<td>18064</td>
<td>1800</td>
<td>3125</td>
<td>205</td>
<td>17</td>
<td>13154</td>
<td>194</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>86640</td>
<td>18884</td>
<td>1079</td>
<td>3300</td>
<td>60</td>
<td>19</td>
<td>13327</td>
<td>-178</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>94398</td>
<td>19831</td>
<td>2780</td>
<td>3483</td>
<td>82</td>
<td>21</td>
<td>13502</td>
<td>-295</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>91937</td>
<td>20618</td>
<td>2758</td>
<td>2943</td>
<td>115</td>
<td>21</td>
<td>13680</td>
<td>-201</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>93595</td>
<td>20241</td>
<td>2676</td>
<td>2613</td>
<td>249</td>
<td>21</td>
<td>13861</td>
<td>-255</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>96484</td>
<td>24263</td>
<td>3824</td>
<td>2949</td>
<td>75</td>
<td>23</td>
<td>14045</td>
<td>-271</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>105522</td>
<td>24876</td>
<td>3907</td>
<td>3389</td>
<td>103</td>
<td>58</td>
<td>14231</td>
<td>-309</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>102852</td>
<td>23801</td>
<td>3074</td>
<td>3337</td>
<td>120</td>
<td>68</td>
<td>14421</td>
<td>-151</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>100965</td>
<td>24699</td>
<td>3873</td>
<td>3153</td>
<td>182</td>
<td>76</td>
<td>14615</td>
<td>-213</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>98456</td>
<td>25850</td>
<td>3844</td>
<td>3519</td>
<td>177</td>
<td>81</td>
<td>14811</td>
<td>-264</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>97058</td>
<td>25688</td>
<td>4035</td>
<td>3407</td>
<td>171</td>
<td>91</td>
<td>15011</td>
<td>-432</td>
<td>0</td>
</tr>
</tbody>
</table>
Unió Europea

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>455558</td>
<td>620129</td>
<td>286942</td>
<td>207314</td>
<td>24895</td>
<td>3433</td>
<td>46694</td>
<td>3944</td>
<td>85</td>
</tr>
<tr>
<td>1991</td>
<td>434152</td>
<td>625452</td>
<td>306665</td>
<td>213714</td>
<td>25893</td>
<td>3447</td>
<td>48412</td>
<td>1722</td>
<td>81</td>
</tr>
<tr>
<td>1992</td>
<td>405090</td>
<td>621461</td>
<td>297912</td>
<td>215689</td>
<td>27024</td>
<td>3774</td>
<td>49444</td>
<td>1898</td>
<td>406</td>
</tr>
<tr>
<td>1993</td>
<td>379907</td>
<td>618924</td>
<td>309334</td>
<td>224770</td>
<td>27623</td>
<td>4028</td>
<td>53125</td>
<td>1919</td>
<td>374</td>
</tr>
<tr>
<td>1994</td>
<td>370464</td>
<td>619022</td>
<td>309104</td>
<td>223869</td>
<td>28523</td>
<td>3985</td>
<td>53781</td>
<td>1743</td>
<td>353</td>
</tr>
<tr>
<td>1995</td>
<td>365044</td>
<td>627808</td>
<td>335520</td>
<td>229637</td>
<td>28447</td>
<td>4141</td>
<td>56519</td>
<td>1809</td>
<td>379</td>
</tr>
<tr>
<td>1996</td>
<td>365125</td>
<td>641051</td>
<td>369329</td>
<td>241410</td>
<td>28456</td>
<td>4511</td>
<td>60036</td>
<td>-58</td>
<td>401</td>
</tr>
<tr>
<td>1997</td>
<td>349287</td>
<td>641317</td>
<td>361784</td>
<td>244453</td>
<td>28943</td>
<td>4872</td>
<td>62758</td>
<td>590</td>
<td>352</td>
</tr>
<tr>
<td>1998</td>
<td>333033</td>
<td>655805</td>
<td>373242</td>
<td>243190</td>
<td>29954</td>
<td>5511</td>
<td>63872</td>
<td>145</td>
<td>470</td>
</tr>
<tr>
<td>1999</td>
<td>313376</td>
<td>643045</td>
<td>384668</td>
<td>245933</td>
<td>29805</td>
<td>6002</td>
<td>63872</td>
<td>1206</td>
<td>474</td>
</tr>
<tr>
<td>2000</td>
<td>321270</td>
<td>630974</td>
<td>395797</td>
<td>246347</td>
<td>30653</td>
<td>3997</td>
<td>66341</td>
<td>2030</td>
<td>561</td>
</tr>
<tr>
<td>2001</td>
<td>323281</td>
<td>649882</td>
<td>406112</td>
<td>255262</td>
<td>32528</td>
<td>7298</td>
<td>68195</td>
<td>659</td>
<td>543</td>
</tr>
<tr>
<td>2002</td>
<td>320276</td>
<td>639056</td>
<td>407630</td>
<td>258182</td>
<td>27342</td>
<td>8323</td>
<td>69914</td>
<td>1377</td>
<td>619</td>
</tr>
<tr>
<td>2003</td>
<td>330370</td>
<td>643531</td>
<td>424446</td>
<td>259659</td>
<td>26472</td>
<td>9708</td>
<td>75144</td>
<td>58</td>
<td>579</td>
</tr>
<tr>
<td>2004</td>
<td>327329</td>
<td>644848</td>
<td>435130</td>
<td>262961</td>
<td>28195</td>
<td>11120</td>
<td>79870</td>
<td>-315</td>
<td>563</td>
</tr>
<tr>
<td>2005</td>
<td>318142</td>
<td>641730</td>
<td>445025</td>
<td>260162</td>
<td>26808</td>
<td>12198</td>
<td>86367</td>
<td>1412</td>
<td>614</td>
</tr>
<tr>
<td>2006</td>
<td>329504</td>
<td>637341</td>
<td>440078</td>
<td>258125</td>
<td>27064</td>
<td>13584</td>
<td>92893</td>
<td>782</td>
<td>620</td>
</tr>
<tr>
<td>2007</td>
<td>329072</td>
<td>619555</td>
<td>434822</td>
<td>243891</td>
<td>16981</td>
<td>15878</td>
<td>98440</td>
<td>1449</td>
<td>654</td>
</tr>
<tr>
<td>2008</td>
<td>305510</td>
<td>615739</td>
<td>443609</td>
<td>244395</td>
<td>28488</td>
<td>17632</td>
<td>104648</td>
<td>2033</td>
<td>711</td>
</tr>
<tr>
<td>2009</td>
<td>268707</td>
<td>582872</td>
<td>415244</td>
<td>233139</td>
<td>28785</td>
<td>19473</td>
<td>112499</td>
<td>1791</td>
<td>663</td>
</tr>
<tr>
<td>2010</td>
<td>282984</td>
<td>580997</td>
<td>446860</td>
<td>238994</td>
<td>32272</td>
<td>22095</td>
<td>125715</td>
<td>712</td>
<td>727</td>
</tr>
<tr>
<td>2011</td>
<td>287579</td>
<td>558880</td>
<td>403594</td>
<td>236412</td>
<td>26768</td>
<td>27283</td>
<td>128547</td>
<td>674</td>
<td>765</td>
</tr>
<tr>
<td>2012</td>
<td>294017</td>
<td>538346</td>
<td>392478</td>
<td>230059</td>
<td>28817</td>
<td>32548</td>
<td>136747</td>
<td>1648</td>
<td>830</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Xina

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Productes del petroli</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidroelèctrica</th>
<th>Geotèrmica, solar i altres</th>
<th>Biocombustibles</th>
<th>Electricitat</th>
<th>Calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>527594</td>
<td>109343</td>
<td>12800</td>
<td>0</td>
<td>10898</td>
<td>33</td>
<td>200407</td>
<td>158</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>500749</td>
<td>111847</td>
<td>13445</td>
<td>0</td>
<td>10758</td>
<td>62</td>
<td>202348</td>
<td>245</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>517248</td>
<td>121577</td>
<td>13210</td>
<td>0</td>
<td>11392</td>
<td>98</td>
<td>203491</td>
<td>428</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>551154</td>
<td>134870</td>
<td>14027</td>
<td>418</td>
<td>13056</td>
<td>152</td>
<td>204544</td>
<td>377</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>591069</td>
<td>134284</td>
<td>14690</td>
<td>3846</td>
<td>14396</td>
<td>219</td>
<td>205005</td>
<td>-176</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>648032</td>
<td>149635</td>
<td>14993</td>
<td>3344</td>
<td>16390</td>
<td>1198</td>
<td>204883</td>
<td>-463</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>661602</td>
<td>162081</td>
<td>15454</td>
<td>3737</td>
<td>16165</td>
<td>1401</td>
<td>204625</td>
<td>-309</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>638289</td>
<td>181135</td>
<td>16849</td>
<td>3757</td>
<td>16855</td>
<td>1629</td>
<td>204487</td>
<td>-612</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>649462</td>
<td>179123</td>
<td>17463</td>
<td>3675</td>
<td>17888</td>
<td>1879</td>
<td>204207</td>
<td>-616</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>650221</td>
<td>194752</td>
<td>18862</td>
<td>3896</td>
<td>17527</td>
<td>2197</td>
<td>204010</td>
<td>-755</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>690577</td>
<td>207297</td>
<td>20750</td>
<td>4362</td>
<td>19128</td>
<td>2552</td>
<td>203622</td>
<td>-717</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>703138</td>
<td>213328</td>
<td>23349</td>
<td>4553</td>
<td>23859</td>
<td>2914</td>
<td>203455</td>
<td>-722</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>748179</td>
<td>226693</td>
<td>25758</td>
<td>6548</td>
<td>24766</td>
<td>3348</td>
<td>203157</td>
<td>-637</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>888194</td>
<td>252074</td>
<td>27727</td>
<td>11295</td>
<td>24397</td>
<td>3858</td>
<td>202922</td>
<td>-633</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>1042301</td>
<td>295060</td>
<td>32645</td>
<td>13153</td>
<td>30405</td>
<td>4377</td>
<td>202739</td>
<td>-523</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>1162860</td>
<td>302174</td>
<td>38779</td>
<td>13835</td>
<td>34143</td>
<td>5282</td>
<td>203661</td>
<td>-532</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>1289516</td>
<td>320298</td>
<td>47357</td>
<td>14292</td>
<td>37478</td>
<td>6406</td>
<td>204579</td>
<td>-592</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>1359798</td>
<td>336297</td>
<td>59116</td>
<td>16191</td>
<td>41733</td>
<td>7620</td>
<td>206289</td>
<td>-887</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>1406354</td>
<td>341471</td>
<td>68318</td>
<td>17824</td>
<td>50326</td>
<td>9875</td>
<td>206763</td>
<td>-1101</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>1543705</td>
<td>354121</td>
<td>75040</td>
<td>18277</td>
<td>52945</td>
<td>12977</td>
<td>209912</td>
<td>-979</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>1700703</td>
<td>408951</td>
<td>88568</td>
<td>19254</td>
<td>61187</td>
<td>16026</td>
<td>213621</td>
<td>-1162</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>1878795</td>
<td>426164</td>
<td>107746</td>
<td>22503</td>
<td>59172</td>
<td>21141</td>
<td>216409</td>
<td>-1096</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>1969038</td>
<td>445982</td>
<td>120539</td>
<td>25381</td>
<td>74201</td>
<td>25954</td>
<td>215911</td>
<td>-927</td>
<td>0</td>
</tr>
</tbody>
</table>
5. Annex a l’apartat 3.4.

En aquest annex es mostren les taules del procés de càlcul d’emissions de diòxid de carboni que es proposa en el projecte.

Les columns de carbò, petroli i gas natural tenen les seves unitats en kilotones de petroli equivalent. En ocasions, especialment en els estats que no formen part de l’Annex 1 de la UNFCCC, les dades d’emissions relatives a aquesta no hi són disponibles. Les dades del banc mundial no indiquen les emissions causades únicament per la combustió de combustibles fòssils sinó que inclouen les emissions derivades del tractament de ciment i, a més, cal dir que aquestes dades són coincidents amb les del GGCC.
Aràbia Saudita

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0</td>
<td>35249</td>
<td>19482</td>
<td>144,089978</td>
<td>-</td>
<td>151,06</td>
<td></td>
<td>217,95</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td>38999</td>
<td>19896</td>
<td>155,9469956</td>
<td>8,23%</td>
<td>157,58</td>
<td></td>
<td>267,77</td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
<td>41205</td>
<td>22050</td>
<td>166,9214358</td>
<td>7,04%</td>
<td>171,65</td>
<td></td>
<td>285,53</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>44380</td>
<td>22941</td>
<td>178,0918182</td>
<td>6,69%</td>
<td>182,24</td>
<td></td>
<td>313,82</td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>44195</td>
<td>24870</td>
<td>181,5877962</td>
<td>1,96%</td>
<td>193,5</td>
<td></td>
<td>309,02</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>43541</td>
<td>24770</td>
<td>179,4617392</td>
<td>-1,17%</td>
<td>192,56</td>
<td></td>
<td>236,25</td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>47496</td>
<td>25701</td>
<td>193,0018504</td>
<td>7,54%</td>
<td>204,77</td>
<td></td>
<td>258,75</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
<td>47936</td>
<td>26550</td>
<td>196,0686814</td>
<td>1,59%</td>
<td>207,48</td>
<td></td>
<td>216,24</td>
</tr>
<tr>
<td>1998</td>
<td>0</td>
<td>50644</td>
<td>27923</td>
<td>206,8794176</td>
<td>5,51%</td>
<td>221,51</td>
<td></td>
<td>207,68</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>52949</td>
<td>27865</td>
<td>213,5134022</td>
<td>3,21%</td>
<td>227,55</td>
<td></td>
<td>226,46</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>54991</td>
<td>30772</td>
<td>225,583528</td>
<td>5,65%</td>
<td>236,26</td>
<td></td>
<td>296,94</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>58240</td>
<td>31937</td>
<td>237,5443782</td>
<td>5,30%</td>
<td>241,27</td>
<td></td>
<td>297,21</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>62401</td>
<td>37317</td>
<td>261,0017626</td>
<td>9,87%</td>
<td>256,93</td>
<td></td>
<td>326,41</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>65966</td>
<td>38492</td>
<td>273,909667</td>
<td>4,95%</td>
<td>267,92</td>
<td></td>
<td>327,27</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>71455</td>
<td>41817</td>
<td>296,9571636</td>
<td>8,41%</td>
<td>283,93</td>
<td></td>
<td>395,83</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>73877</td>
<td>45957</td>
<td>312,7221403</td>
<td>5,31%</td>
<td>299,31</td>
<td></td>
<td>397,64</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>78211</td>
<td>48248</td>
<td>330,2200336</td>
<td>5,60%</td>
<td>316,23</td>
<td></td>
<td>432,74</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>81230</td>
<td>49574</td>
<td>341,8438464</td>
<td>3,52%</td>
<td>332,22</td>
<td></td>
<td>393,54</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>87356</td>
<td>54672</td>
<td>370,4698354</td>
<td>8,37%</td>
<td>361,5</td>
<td></td>
<td>418,24</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>84796</td>
<td>52247</td>
<td>357,8905948</td>
<td>-3,40%</td>
<td>378,61</td>
<td></td>
<td>431,03</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>88829</td>
<td>59885</td>
<td>385,699739</td>
<td>7,77%</td>
<td>414,85</td>
<td></td>
<td>464,48</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>93456</td>
<td>60994</td>
<td>401,5819462</td>
<td>4,12%</td>
<td>429,76</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>101234</td>
<td>66224</td>
<td>435,3258794</td>
<td>8,40%</td>
<td>458,8</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Austràlia

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>35129</td>
<td>32790</td>
<td>14786</td>
<td>259,4229203</td>
<td>-</td>
<td>260,46</td>
<td>250,65</td>
<td>287,33</td>
</tr>
<tr>
<td>1991</td>
<td>36329</td>
<td>32399</td>
<td>13845</td>
<td>260,8288477</td>
<td>0,54%</td>
<td>261,83</td>
<td>252,91</td>
<td>281,53</td>
</tr>
<tr>
<td>1992</td>
<td>36894</td>
<td>31746</td>
<td>14338</td>
<td>262,0760954</td>
<td>0,48%</td>
<td>265,54</td>
<td>257,13</td>
<td>294,46</td>
</tr>
<tr>
<td>1993</td>
<td>37310</td>
<td>33532</td>
<td>14920</td>
<td>270,0963295</td>
<td>3,06%</td>
<td>269,57</td>
<td>261,35</td>
<td>302,12</td>
</tr>
<tr>
<td>1994</td>
<td>36700</td>
<td>34643</td>
<td>15589</td>
<td>272,4543353</td>
<td>0,87%</td>
<td>275,66</td>
<td>264,39</td>
<td>303,96</td>
</tr>
<tr>
<td>1995</td>
<td>37685</td>
<td>35295</td>
<td>16738</td>
<td>280,4821056</td>
<td>2,95%</td>
<td>285,96</td>
<td>275,12</td>
<td>307,43</td>
</tr>
<tr>
<td>1996</td>
<td>40495</td>
<td>36116</td>
<td>16803</td>
<td>293,6127478</td>
<td>4,68%</td>
<td>296,21</td>
<td>282,09</td>
<td>329,26</td>
</tr>
<tr>
<td>1997</td>
<td>44331</td>
<td>35631</td>
<td>16922</td>
<td>306,8949521</td>
<td>4,52%</td>
<td>303,71</td>
<td>290,43</td>
<td>333,62</td>
</tr>
<tr>
<td>1998</td>
<td>47121</td>
<td>35787</td>
<td>17610</td>
<td>319,3054646</td>
<td>4,04%</td>
<td>323,11</td>
<td>303,17</td>
<td>346,91</td>
</tr>
<tr>
<td>1999</td>
<td>48093</td>
<td>36591</td>
<td>18354</td>
<td>326,8818979</td>
<td>2,37%</td>
<td>329,33</td>
<td>311,64</td>
<td>325,52</td>
</tr>
<tr>
<td>2000</td>
<td>48147</td>
<td>38874</td>
<td>19269</td>
<td>335,6917625</td>
<td>2,70%</td>
<td>335,35</td>
<td>317,46</td>
<td>329,60</td>
</tr>
<tr>
<td>2001</td>
<td>48212</td>
<td>37237</td>
<td>20306</td>
<td>333,309892</td>
<td>-0,71%</td>
<td>341,93</td>
<td>324,96</td>
<td>324,86</td>
</tr>
<tr>
<td>2002</td>
<td>48601</td>
<td>36356</td>
<td>21447</td>
<td>334,5822605</td>
<td>0,38%</td>
<td>346,54</td>
<td>329,43</td>
<td>341,00</td>
</tr>
<tr>
<td>2003</td>
<td>48145</td>
<td>38452</td>
<td>20509</td>
<td>337,0432615</td>
<td>0,74%</td>
<td>353,7</td>
<td>334,89</td>
<td>346,48</td>
</tr>
<tr>
<td>2004</td>
<td>49900</td>
<td>41251</td>
<td>20551</td>
<td>351,9474322</td>
<td>4,42%</td>
<td>368,16</td>
<td>346,46</td>
<td>348,76</td>
</tr>
<tr>
<td>2005</td>
<td>51035</td>
<td>42105</td>
<td>18967</td>
<td>355,4111178</td>
<td>0,98%</td>
<td>371,92</td>
<td>351,79</td>
<td>362,68</td>
</tr>
<tr>
<td>2006</td>
<td>51699</td>
<td>41320</td>
<td>19846</td>
<td>357,4526555</td>
<td>0,57%</td>
<td>376,27</td>
<td>356,13</td>
<td>371,21</td>
</tr>
<tr>
<td>2007</td>
<td>51896</td>
<td>41479</td>
<td>22841</td>
<td>364,930699</td>
<td>2,09%</td>
<td>386,28</td>
<td>362,31</td>
<td>377,24</td>
</tr>
<tr>
<td>2008</td>
<td>51502</td>
<td>44930</td>
<td>24308</td>
<td>376,6311302</td>
<td>3,21%</td>
<td>388,88</td>
<td>368,23</td>
<td>387,63</td>
</tr>
<tr>
<td>2009</td>
<td>52671</td>
<td>45886</td>
<td>24549</td>
<td>384,3423785</td>
<td>2,05%</td>
<td>395,19</td>
<td>369,85</td>
<td>395,09</td>
</tr>
<tr>
<td>2010</td>
<td>50026</td>
<td>45814</td>
<td>26207</td>
<td>377,6355436</td>
<td>-1,75%</td>
<td>387,3</td>
<td>368,08</td>
<td>373,08</td>
</tr>
<tr>
<td>2011</td>
<td>48157</td>
<td>45905</td>
<td>27020</td>
<td>372,5615606</td>
<td>-1,34%</td>
<td>388,32</td>
<td>366,88</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>46892</td>
<td>46569</td>
<td>29774</td>
<td>375,5061371</td>
<td>0,79%</td>
<td>386,27</td>
<td>369,25</td>
<td>-</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO$_2$ i els vectors energètics

Brasil

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>9670</td>
<td>60048</td>
<td>3243</td>
<td>219,2128931</td>
<td>-</td>
<td>146,05</td>
<td>172,37</td>
<td>208,89</td>
</tr>
<tr>
<td>1991</td>
<td>11056</td>
<td>59974</td>
<td>3172</td>
<td>224,0699998</td>
<td>2,22%</td>
<td>158,69</td>
<td>178,1</td>
<td>219,33</td>
</tr>
<tr>
<td>1992</td>
<td>10702</td>
<td>62130</td>
<td>3409</td>
<td>229,5509396</td>
<td>2,45%</td>
<td>166,61</td>
<td>181,85</td>
<td>220,71</td>
</tr>
<tr>
<td>1993</td>
<td>11011</td>
<td>64232</td>
<td>3723</td>
<td>237,5330738</td>
<td>3,48%</td>
<td>181,23</td>
<td>189,65</td>
<td>230,74</td>
</tr>
<tr>
<td>1994</td>
<td>11304</td>
<td>70314</td>
<td>3862</td>
<td>256,7529979</td>
<td>8,09%</td>
<td>192,2</td>
<td>198,22</td>
<td>242,15</td>
</tr>
<tr>
<td>1995</td>
<td>11863</td>
<td>72984</td>
<td>4143</td>
<td>267,2727516</td>
<td>4,10%</td>
<td>214,38</td>
<td>214,44</td>
<td>258,35</td>
</tr>
<tr>
<td>1996</td>
<td>12227</td>
<td>78358</td>
<td>4643</td>
<td>285,4409515</td>
<td>6,80%</td>
<td>231,86</td>
<td>233,19</td>
<td>284,78</td>
</tr>
<tr>
<td>1997</td>
<td>12306</td>
<td>85321</td>
<td>5155</td>
<td>307,2173357</td>
<td>7,63%</td>
<td>251,35</td>
<td>248,38</td>
<td>300,55</td>
</tr>
<tr>
<td>1998</td>
<td>12016</td>
<td>88205</td>
<td>5410</td>
<td>315,1107097</td>
<td>2,57%</td>
<td>253,8</td>
<td>253,89</td>
<td>312,29</td>
</tr>
<tr>
<td>1999</td>
<td>12200</td>
<td>90314</td>
<td>6082</td>
<td>323,3917814</td>
<td>2,63%</td>
<td>273,08</td>
<td>270</td>
<td>320,17</td>
</tr>
<tr>
<td>2000</td>
<td>13015</td>
<td>90488</td>
<td>7909</td>
<td>330,7973933</td>
<td>2,29%</td>
<td>272,84</td>
<td>279,09</td>
<td>327,98</td>
</tr>
<tr>
<td>2001</td>
<td>12813</td>
<td>91160</td>
<td>10002</td>
<td>336,38719</td>
<td>1,69%</td>
<td>291</td>
<td>287,91</td>
<td>337,43</td>
</tr>
<tr>
<td>2002</td>
<td>12392</td>
<td>88557</td>
<td>12382</td>
<td>332,1543352</td>
<td>-1,26%</td>
<td>297,24</td>
<td>285,23</td>
<td>332,27</td>
</tr>
<tr>
<td>2003</td>
<td>12865</td>
<td>85697</td>
<td>12758</td>
<td>326,3418007</td>
<td>-1,75%</td>
<td>325,19</td>
<td>281,61</td>
<td>321,62</td>
</tr>
<tr>
<td>2004</td>
<td>13469</td>
<td>89094</td>
<td>15712</td>
<td>344,7574405</td>
<td>5,64%</td>
<td>330,89</td>
<td>298,8</td>
<td>337,83</td>
</tr>
<tr>
<td>2005</td>
<td>12988</td>
<td>90100</td>
<td>16720</td>
<td>348,0034666</td>
<td>0,94%</td>
<td>335,71</td>
<td>299,94</td>
<td>347,31</td>
</tr>
<tr>
<td>2006</td>
<td>12817</td>
<td>91431</td>
<td>17503</td>
<td>352,8990918</td>
<td>1,41%</td>
<td>353,77</td>
<td></td>
<td>347,67</td>
</tr>
<tr>
<td>2007</td>
<td>13591</td>
<td>95522</td>
<td>17768</td>
<td>368,3601068</td>
<td>4,38%</td>
<td>367,51</td>
<td></td>
<td>363,21</td>
</tr>
<tr>
<td>2008</td>
<td>13733</td>
<td>97974</td>
<td>21208</td>
<td>383,2826994</td>
<td>4,05%</td>
<td>361,39</td>
<td></td>
<td>387,68</td>
</tr>
<tr>
<td>2009</td>
<td>10980</td>
<td>97767</td>
<td>16995</td>
<td>363,4829035</td>
<td>-5,17%</td>
<td>379,1</td>
<td></td>
<td>367,15</td>
</tr>
<tr>
<td>2010</td>
<td>14450</td>
<td>107404</td>
<td>23018</td>
<td>417,4105622</td>
<td>14,84%</td>
<td>392,44</td>
<td></td>
<td>419,75</td>
</tr>
<tr>
<td>2011</td>
<td>15431</td>
<td>111351</td>
<td>22887</td>
<td>432,4005623</td>
<td>3,59%</td>
<td>400,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>15247</td>
<td>119664</td>
<td>27228</td>
<td>465,1580855</td>
<td>7,58%</td>
<td>435,48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Canadà

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>24277</td>
<td>79856</td>
<td>54728</td>
<td>440,085015</td>
<td>-</td>
<td>428,2</td>
<td>413,9</td>
<td>450,08</td>
</tr>
<tr>
<td>1991</td>
<td>25309</td>
<td>75407</td>
<td>55389</td>
<td>432,318501</td>
<td>-1,76%</td>
<td>422,37</td>
<td>404,06</td>
<td>449,05</td>
</tr>
<tr>
<td>1992</td>
<td>26252</td>
<td>77798</td>
<td>58366</td>
<td>449,1113371</td>
<td>3,88%</td>
<td>434,93</td>
<td>417,81</td>
<td>467,65</td>
</tr>
<tr>
<td>1993</td>
<td>24106</td>
<td>79059</td>
<td>61944</td>
<td>452,2108252</td>
<td>0,69%</td>
<td>434,28</td>
<td>414,99</td>
<td>477,92</td>
</tr>
<tr>
<td>1994</td>
<td>24797</td>
<td>80674</td>
<td>64990</td>
<td>465,9242699</td>
<td>3,03%</td>
<td>449,76</td>
<td>427,63</td>
<td>454,49</td>
</tr>
<tr>
<td>1995</td>
<td>25317</td>
<td>81882</td>
<td>67092</td>
<td>475,8243772</td>
<td>2,12%</td>
<td>460,88</td>
<td>438,53</td>
<td>459,79</td>
</tr>
<tr>
<td>1996</td>
<td>25881</td>
<td>84018</td>
<td>70418</td>
<td>491,1723486</td>
<td>3,23%</td>
<td>476,17</td>
<td>451,39</td>
<td>467,88</td>
</tr>
<tr>
<td>1997</td>
<td>27531</td>
<td>86796</td>
<td>70945</td>
<td>506,6346197</td>
<td>3,15%</td>
<td>492,77</td>
<td>464,27</td>
<td>483,23</td>
</tr>
<tr>
<td>1998</td>
<td>29305</td>
<td>87267</td>
<td>68098</td>
<td>508,7397427</td>
<td>0,42%</td>
<td>497,32</td>
<td>471,49</td>
<td>517,22</td>
</tr>
<tr>
<td>1999</td>
<td>29457</td>
<td>89958</td>
<td>71125</td>
<td>523,5358939</td>
<td>2,91%</td>
<td>507,95</td>
<td>487,69</td>
<td>515,42</td>
</tr>
<tr>
<td>2000</td>
<td>31713</td>
<td>90516</td>
<td>74237</td>
<td>540,1867975</td>
<td>3,18%</td>
<td>528,57</td>
<td>509,93</td>
<td>534,48</td>
</tr>
<tr>
<td>2001</td>
<td>31127</td>
<td>91196</td>
<td>71859</td>
<td>534,9934908</td>
<td>-0,96%</td>
<td>520,31</td>
<td>504,79</td>
<td>525,69</td>
</tr>
<tr>
<td>2002</td>
<td>29966</td>
<td>93131</td>
<td>73328</td>
<td>539,3649287</td>
<td>0,82%</td>
<td>526,67</td>
<td>508,39</td>
<td>519,16</td>
</tr>
<tr>
<td>2003</td>
<td>29703</td>
<td>99327</td>
<td>79706</td>
<td>569,8846073</td>
<td>5,66%</td>
<td>548,89</td>
<td>523,35</td>
<td>553,19</td>
</tr>
<tr>
<td>2004</td>
<td>28557</td>
<td>102378</td>
<td>7803</td>
<td>570,9430303</td>
<td>0,19%</td>
<td>543,28</td>
<td>519,94</td>
<td>552,35</td>
</tr>
<tr>
<td>2005</td>
<td>27223</td>
<td>102228</td>
<td>80666</td>
<td>571,0514684</td>
<td>0,02%</td>
<td>549,12</td>
<td>514,32</td>
<td>563,07</td>
</tr>
<tr>
<td>2006</td>
<td>27289</td>
<td>101142</td>
<td>79709</td>
<td>566,1139752</td>
<td>-0,86%</td>
<td>540,4</td>
<td>505,67</td>
<td>550,23</td>
</tr>
<tr>
<td>2007</td>
<td>27013</td>
<td>101017</td>
<td>78429</td>
<td>562,0280771</td>
<td>-0,72%</td>
<td>569,39</td>
<td>529,86</td>
<td>560,80</td>
</tr>
<tr>
<td>2008</td>
<td>28308</td>
<td>100007</td>
<td>78553</td>
<td>564,2073065</td>
<td>0,39%</td>
<td>554,16</td>
<td>513,42</td>
<td>544,97</td>
</tr>
<tr>
<td>2009</td>
<td>21904</td>
<td>94058</td>
<td>77519</td>
<td>520,4765992</td>
<td>-7,75%</td>
<td>519,89</td>
<td>486,24</td>
<td>513,94</td>
</tr>
<tr>
<td>2010</td>
<td>22229</td>
<td>97708</td>
<td>78678</td>
<td>534,8247628</td>
<td>2,76%</td>
<td>531,36</td>
<td>495,56</td>
<td>499,14</td>
</tr>
<tr>
<td>2011</td>
<td>20205</td>
<td>99256</td>
<td>83574</td>
<td>541,9841908</td>
<td>1,34%</td>
<td>536,66</td>
<td>497,75</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>18364</td>
<td>103371</td>
<td>83483</td>
<td>546,9166598</td>
<td>0,91%</td>
<td>533,74</td>
<td>489,59</td>
<td>-</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Estats Units

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroi</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO₂)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>460253</td>
<td>763305</td>
<td>438232</td>
<td>4888,747165</td>
<td>-</td>
<td>4868,66</td>
<td>4873,88</td>
<td>4768,137761</td>
</tr>
<tr>
<td>1991</td>
<td>454956</td>
<td>747192</td>
<td>458471</td>
<td>4863,93242</td>
<td>-0,51%</td>
<td>4834,98</td>
<td>4834,46</td>
<td>4826,703418</td>
</tr>
<tr>
<td>1992</td>
<td>461628</td>
<td>759524</td>
<td>467483</td>
<td>4944,08117</td>
<td>1,65%</td>
<td>4890,17</td>
<td>4938,49</td>
<td>4922,195765</td>
</tr>
<tr>
<td>1993</td>
<td>472650</td>
<td>772117</td>
<td>480711</td>
<td>5050,211944</td>
<td>2,15%</td>
<td>5007,22</td>
<td>5048,62</td>
<td>5029,76721</td>
</tr>
<tr>
<td>1994</td>
<td>475728</td>
<td>793032</td>
<td>490519</td>
<td>5143,63913</td>
<td>1,85%</td>
<td>5087,85</td>
<td>5129,35</td>
<td>5121,559554</td>
</tr>
<tr>
<td>1995</td>
<td>474065</td>
<td>790087</td>
<td>507299</td>
<td>5163,868911</td>
<td>0,39%</td>
<td>5138,73</td>
<td>5183,17</td>
<td>5156,1687</td>
</tr>
<tr>
<td>1996</td>
<td>491505</td>
<td>815869</td>
<td>503033</td>
<td>5296,215333</td>
<td>2,56%</td>
<td>5303,73</td>
<td>5371,91</td>
<td>5286,046506</td>
</tr>
<tr>
<td>1997</td>
<td>505737</td>
<td>829376</td>
<td>506808</td>
<td>5397,331577</td>
<td>1,91%</td>
<td>5482,1</td>
<td>5444,24</td>
<td>5419,440965</td>
</tr>
<tr>
<td>1998</td>
<td>507882</td>
<td>845115</td>
<td>498610</td>
<td>5434,379733</td>
<td>0,69%</td>
<td>5479,44</td>
<td>5495,88</td>
<td>5456,09263</td>
</tr>
<tr>
<td>1999</td>
<td>511953</td>
<td>867517</td>
<td>524139</td>
<td>5568,817044</td>
<td>2,47%</td>
<td>5505,78</td>
<td>5570,46</td>
<td>5531,691502</td>
</tr>
<tr>
<td>2000</td>
<td>533639</td>
<td>876047</td>
<td>547580</td>
<td>5724,603266</td>
<td>2,80%</td>
<td>5698,15</td>
<td>5747,1</td>
<td>5713,560034</td>
</tr>
<tr>
<td>2001</td>
<td>526116</td>
<td>882594</td>
<td>514321</td>
<td>5645,818995</td>
<td>-1,38%</td>
<td>5677,65</td>
<td>5668,6</td>
<td>5601,404839</td>
</tr>
<tr>
<td>2002</td>
<td>533448</td>
<td>879677</td>
<td>534490</td>
<td>5707,119608</td>
<td>1,09%</td>
<td>5605,21</td>
<td>5708,79</td>
<td>5650,949676</td>
</tr>
<tr>
<td>2003</td>
<td>532072</td>
<td>896738</td>
<td>518808</td>
<td>5719,107673</td>
<td>0,21%</td>
<td>5681,05</td>
<td>5763,74</td>
<td>5681,664468</td>
</tr>
<tr>
<td>2004</td>
<td>552484</td>
<td>927314</td>
<td>509565</td>
<td>5866,28416</td>
<td>2,57%</td>
<td>5765,67</td>
<td>5876,81</td>
<td>5790,765052</td>
</tr>
<tr>
<td>2005</td>
<td>558321</td>
<td>926663</td>
<td>507071</td>
<td>5881,149812</td>
<td>0,25%</td>
<td>5773,51</td>
<td>5906,31</td>
<td>5826,393624</td>
</tr>
<tr>
<td>2006</td>
<td>550653</td>
<td>908527</td>
<td>502001</td>
<td>5788,490066</td>
<td>-1,58%</td>
<td>5684,44</td>
<td>5825,16</td>
<td>5737,615554</td>
</tr>
<tr>
<td>2007</td>
<td>554791</td>
<td>900443</td>
<td>542688</td>
<td>5865,564494</td>
<td>1,33%</td>
<td>5761,89</td>
<td>5912,04</td>
<td>5828,6965</td>
</tr>
<tr>
<td>2008</td>
<td>545810</td>
<td>841957</td>
<td>540910</td>
<td>5656,592469</td>
<td>-3,56%</td>
<td>5585,23</td>
<td>5733,29</td>
<td>5656,838878</td>
</tr>
<tr>
<td>2009</td>
<td>485338</td>
<td>790351</td>
<td>535369</td>
<td>5265,882386</td>
<td>-6,91%</td>
<td>5182,49</td>
<td>5345,51</td>
<td>5311,840184</td>
</tr>
<tr>
<td>2010</td>
<td>502600</td>
<td>813946</td>
<td>555918</td>
<td>5443,096232</td>
<td>3,37%</td>
<td>5427,14</td>
<td>5537,76</td>
<td>5433,056536</td>
</tr>
<tr>
<td>2011</td>
<td>479075</td>
<td>800208</td>
<td>568601</td>
<td>5340,73902</td>
<td>-1,88%</td>
<td>5288,43</td>
<td>5400,55</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>425036</td>
<td>758203</td>
<td>595533</td>
<td>5070,386459</td>
<td>-5,06%</td>
<td>5074,14</td>
<td>5194,78</td>
<td>-</td>
</tr>
<tr>
<td>Any</td>
<td>Carbó</td>
<td>Petrolí</td>
<td>Gas Natural</td>
<td>Emissions (Mt CO2)</td>
<td>Taxa anual</td>
<td>Emissions (IEA) -Mt</td>
<td>Emissions (UNFCCC) - Mt</td>
<td>Emissions (WB) - Mt</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1990</td>
<td>103383</td>
<td>59166</td>
<td>10568</td>
<td>585,0839473</td>
<td>-</td>
<td>580,47</td>
<td>690,58</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>110852</td>
<td>60055</td>
<td>11954</td>
<td>618,7349336</td>
<td>5,75%</td>
<td>621,65</td>
<td>737,85</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>117464</td>
<td>63736</td>
<td>13341</td>
<td>657,3414164</td>
<td>6,24%</td>
<td>652,34</td>
<td>783,63</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>122644</td>
<td>65014</td>
<td>13526</td>
<td>680,9930683</td>
<td>3,60%</td>
<td>677,01</td>
<td>814,30</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>129197</td>
<td>69819</td>
<td>14352</td>
<td>721,4970089</td>
<td>5,95%</td>
<td>714,79</td>
<td>864,93</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>135957</td>
<td>78613</td>
<td>17327</td>
<td>778,9704685</td>
<td>7,97%</td>
<td>772,48</td>
<td>920,05</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>141847</td>
<td>83335</td>
<td>17652</td>
<td>815,684099</td>
<td>4,71%</td>
<td>811,28</td>
<td>1002,22</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>147550</td>
<td>89077</td>
<td>20318</td>
<td>859,5831157</td>
<td>5,38%</td>
<td>853,65</td>
<td>1043,94</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>146358</td>
<td>95974</td>
<td>21279</td>
<td>877,3167258</td>
<td>2,06%</td>
<td>866,62</td>
<td>1071,91</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>157118</td>
<td>103994</td>
<td>22987</td>
<td>944,9419194</td>
<td>7,71%</td>
<td>931,8</td>
<td>1144,39</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>161457</td>
<td>108991</td>
<td>23062</td>
<td>976,0938048</td>
<td>3,30%</td>
<td>978,1</td>
<td>1186,66</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>165886</td>
<td>109903</td>
<td>23209</td>
<td>995,7633912</td>
<td>2,02%</td>
<td>994,5</td>
<td>1203,84</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>171546</td>
<td>113367</td>
<td>25167</td>
<td>1031,34198</td>
<td>3,57%</td>
<td>1025,87</td>
<td>1226,79</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>175425</td>
<td>117975</td>
<td>25870</td>
<td>1060,93512</td>
<td>2,87%</td>
<td>1051,75</td>
<td>1281,91</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>196393</td>
<td>118777</td>
<td>28375</td>
<td>1147,539497</td>
<td>8,16%</td>
<td>1133,44</td>
<td>1348,52</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>208041</td>
<td>121315</td>
<td>31801</td>
<td>1206,040816</td>
<td>5,10%</td>
<td>1191,1</td>
<td>1411,13</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>223264</td>
<td>131445</td>
<td>33439</td>
<td>1296,520494</td>
<td>7,50%</td>
<td>1283,19</td>
<td>1504,36</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>243033</td>
<td>139874</td>
<td>35658</td>
<td>1400,361089</td>
<td>8,01%</td>
<td>1404,1</td>
<td>1611,40</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>261606</td>
<td>142430</td>
<td>25983</td>
<td>1457,58376</td>
<td>4,09%</td>
<td>1483,62</td>
<td>1811,29</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>297565</td>
<td>157560</td>
<td>49632</td>
<td>1686,930802</td>
<td>15,73%</td>
<td>1675,46</td>
<td>1982,26</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>310073</td>
<td>160936</td>
<td>54386</td>
<td>1753,908717</td>
<td>3,97%</td>
<td>1749,33</td>
<td>2008,82</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>325782</td>
<td>164213</td>
<td>54992</td>
<td>1823,974815</td>
<td>3,99%</td>
<td>1828,76</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>354247</td>
<td>176266</td>
<td>48928</td>
<td>1953,864423</td>
<td>7,12%</td>
<td>1954,02</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Indonèsia

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO₂)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3549</td>
<td>31572</td>
<td>15804</td>
<td>138,9871062</td>
<td>-</td>
<td>146,05</td>
<td>128,4</td>
<td>149,57</td>
</tr>
<tr>
<td>1991</td>
<td>3270</td>
<td>32945</td>
<td>18870</td>
<td>148,3780986</td>
<td>6,76%</td>
<td>158,69</td>
<td>140,41</td>
<td>179,73</td>
</tr>
<tr>
<td>1992</td>
<td>3808</td>
<td>35156</td>
<td>19885</td>
<td>159,0100585</td>
<td>7,17%</td>
<td>166,61</td>
<td>149,93</td>
<td>202,58</td>
</tr>
<tr>
<td>1993</td>
<td>6351</td>
<td>38393</td>
<td>20670</td>
<td>179,7225768</td>
<td>13,03%</td>
<td>181,23</td>
<td>158,32</td>
<td>218,60</td>
</tr>
<tr>
<td>1994</td>
<td>5755</td>
<td>37179</td>
<td>23419</td>
<td>179,6735912</td>
<td>-0,03%</td>
<td>192,2</td>
<td>170,02</td>
<td>221,41</td>
</tr>
<tr>
<td>1995</td>
<td>6330</td>
<td>43881</td>
<td>25320</td>
<td>205,4617672</td>
<td>14,35%</td>
<td>214,38</td>
<td>224,94</td>
<td>253,29</td>
</tr>
<tr>
<td>1996</td>
<td>8806</td>
<td>45326</td>
<td>26295</td>
<td>221,0676455</td>
<td>7,60%</td>
<td>231,86</td>
<td>253,9</td>
<td>278,66</td>
</tr>
<tr>
<td>1997</td>
<td>6992</td>
<td>49876</td>
<td>28266</td>
<td>231,6933252</td>
<td>4,81%</td>
<td>251,35</td>
<td>278,8</td>
<td>282,58</td>
</tr>
<tr>
<td>1998</td>
<td>6915</td>
<td>46951</td>
<td>26877</td>
<td>219,9229744</td>
<td>-5,08%</td>
<td>253,8</td>
<td>210,21</td>
<td>241,99</td>
</tr>
<tr>
<td>1999</td>
<td>8915</td>
<td>51760</td>
<td>28293</td>
<td>244,5174936</td>
<td>11,18%</td>
<td>273,08</td>
<td>241,99</td>
<td>263,42</td>
</tr>
<tr>
<td>2000</td>
<td>12009</td>
<td>55947</td>
<td>26542</td>
<td>264,7816056</td>
<td>8,29%</td>
<td>272,84</td>
<td>294,91</td>
<td>294,91</td>
</tr>
<tr>
<td>2001</td>
<td>14368</td>
<td>56035</td>
<td>27579</td>
<td>276,0993634</td>
<td>4,27%</td>
<td>291</td>
<td>291</td>
<td>306,74</td>
</tr>
<tr>
<td>2002</td>
<td>15345</td>
<td>56766</td>
<td>29311</td>
<td>285,548971</td>
<td>3,42%</td>
<td>297,24</td>
<td>297,24</td>
<td>316,79</td>
</tr>
<tr>
<td>2003</td>
<td>15451</td>
<td>57703</td>
<td>31063</td>
<td>292,3621506</td>
<td>2,39%</td>
<td>325,19</td>
<td>325,19</td>
<td>337,64</td>
</tr>
<tr>
<td>2004</td>
<td>20417</td>
<td>64164</td>
<td>28350</td>
<td>324,3308807</td>
<td>10,93%</td>
<td>330,89</td>
<td>330,89</td>
<td>341,99</td>
</tr>
<tr>
<td>2005</td>
<td>22127</td>
<td>64616</td>
<td>29248</td>
<td>333,9789426</td>
<td>2,97%</td>
<td>335,71</td>
<td>335,71</td>
<td>345,12</td>
</tr>
<tr>
<td>2006</td>
<td>26495</td>
<td>59586</td>
<td>29377</td>
<td>335,9664166</td>
<td>0,60%</td>
<td>353,77</td>
<td>353,77</td>
<td>375,54</td>
</tr>
<tr>
<td>2007</td>
<td>28397</td>
<td>62095</td>
<td>27878</td>
<td>347,348651</td>
<td>3,39%</td>
<td>367,51</td>
<td>367,51</td>
<td>412,39</td>
</tr>
<tr>
<td>2008</td>
<td>25786</td>
<td>64731</td>
<td>29785</td>
<td>349,2276869</td>
<td>0,54%</td>
<td>361,39</td>
<td>361,39</td>
<td>453,11</td>
</tr>
<tr>
<td>2009</td>
<td>30513</td>
<td>66414</td>
<td>34370</td>
<td>381,5702982</td>
<td>9,26%</td>
<td>379,1</td>
<td>379,1</td>
<td>433,99</td>
</tr>
<tr>
<td>2010</td>
<td>30483</td>
<td>68236</td>
<td>38789</td>
<td>396,0478339</td>
<td>3,79%</td>
<td>392,44</td>
<td>392,44</td>
<td>433,99</td>
</tr>
<tr>
<td>2011</td>
<td>25492</td>
<td>72241</td>
<td>35627</td>
<td>382,35951</td>
<td>-3,46%</td>
<td>400,3</td>
<td>400,3</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>29792</td>
<td>76061</td>
<td>34975</td>
<td>408,3930324</td>
<td>6,81%</td>
<td>435,48</td>
<td>435,48</td>
<td>-</td>
</tr>
</tbody>
</table>
Iran

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) - Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>710</td>
<td>43538</td>
<td>17480</td>
<td>166,8674261</td>
<td>-</td>
<td>178,69</td>
<td>211,13</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>1014</td>
<td>49819</td>
<td>21675</td>
<td>195,2028511</td>
<td>16,98%</td>
<td>197,75</td>
<td>228,04</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>893</td>
<td>50067</td>
<td>22999</td>
<td>198,2453987</td>
<td>1,56%</td>
<td>215,07</td>
<td>229,07</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>1098</td>
<td>53122</td>
<td>26512</td>
<td>215,3254493</td>
<td>8,62%</td>
<td>216,46</td>
<td>237,77</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>1103</td>
<td>55228</td>
<td>32016</td>
<td>233,038544</td>
<td>8,23%</td>
<td>245,39</td>
<td>265,82</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1032</td>
<td>54846</td>
<td>35636</td>
<td>239,2295652</td>
<td>2,66%</td>
<td>251,37</td>
<td>273,53</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>1080</td>
<td>56373</td>
<td>35492</td>
<td>243,5842559</td>
<td>1,82%</td>
<td>258,71</td>
<td>276,73</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>1107</td>
<td>59111</td>
<td>39716</td>
<td>260,5529376</td>
<td>6,97%</td>
<td>272,93</td>
<td>269,98</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>1289</td>
<td>60507</td>
<td>43097</td>
<td>272,4078618</td>
<td>4,55%</td>
<td>276,26</td>
<td>309,23</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>1343</td>
<td>59640</td>
<td>49926</td>
<td>284,3662</td>
<td>4,39%</td>
<td>302,7</td>
<td>382,71</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1458</td>
<td>62399</td>
<td>52618</td>
<td>298,5209334</td>
<td>4,98%</td>
<td>315,13</td>
<td>372,70</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1267</td>
<td>65622</td>
<td>55766</td>
<td>313,8370852</td>
<td>5,13%</td>
<td>330,46</td>
<td>398,83</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>1273</td>
<td>65255</td>
<td>62826</td>
<td>327,563509</td>
<td>4,37%</td>
<td>346,06</td>
<td>402,18</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1401</td>
<td>67360</td>
<td>69228</td>
<td>347,6170249</td>
<td>6,12%</td>
<td>360,34</td>
<td>418,86</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1379</td>
<td>70958</td>
<td>78152</td>
<td>376,7605024</td>
<td>8,38%</td>
<td>389,8</td>
<td>447,48</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1682</td>
<td>74237</td>
<td>83813</td>
<td>399,3629422</td>
<td>6,00%</td>
<td>421,64</td>
<td>469,33</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1647</td>
<td>80883</td>
<td>92296</td>
<td>436,4672011</td>
<td>9,29%</td>
<td>455,05</td>
<td>509,89</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>1735</td>
<td>83338</td>
<td>104180</td>
<td>468,8717771</td>
<td>7,42%</td>
<td>488,39</td>
<td>539,79</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>1617</td>
<td>87331</td>
<td>109981</td>
<td>492,273477</td>
<td>4,99%</td>
<td>497,67</td>
<td>570,57</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1191</td>
<td>85958</td>
<td>115377</td>
<td>497,9403108</td>
<td>1,15%</td>
<td>515,11</td>
<td>577,48</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1488</td>
<td>80333</td>
<td>122114</td>
<td>496,6771532</td>
<td>-0,25%</td>
<td>508,47</td>
<td>571,61</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1463</td>
<td>76756</td>
<td>129166</td>
<td>500,8622785</td>
<td>0,84%</td>
<td>525,77</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1129</td>
<td>84008</td>
<td>128282</td>
<td>519,0070324</td>
<td>3,62%</td>
<td>532,15</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Japó

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) - Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>76615</td>
<td>230136</td>
<td>44161</td>
<td>1055,614535</td>
<td>-</td>
<td>1056,75</td>
<td>1068,26</td>
<td>1094,83</td>
</tr>
<tr>
<td>1991</td>
<td>78497</td>
<td>233144</td>
<td>46476</td>
<td>1076,368083</td>
<td>1,97%</td>
<td>1064,11</td>
<td>1076,05</td>
<td>1100,53</td>
</tr>
<tr>
<td>1992</td>
<td>76238</td>
<td>239072</td>
<td>47560</td>
<td>1087,498691</td>
<td>1,03%</td>
<td>1074,13</td>
<td>1083,47</td>
<td>1123,57</td>
</tr>
<tr>
<td>1993</td>
<td>76573</td>
<td>239167</td>
<td>48772</td>
<td>1091,576634</td>
<td>0,37%</td>
<td>1069,38</td>
<td>1077,11</td>
<td>1108,56</td>
</tr>
<tr>
<td>1994</td>
<td>81294</td>
<td>248662</td>
<td>52033</td>
<td>1144,020073</td>
<td>4,80%</td>
<td>1122,28</td>
<td>1133,16</td>
<td>1174,03</td>
</tr>
<tr>
<td>1995</td>
<td>84097</td>
<td>254448</td>
<td>53193</td>
<td>1173,967834</td>
<td>2,62%</td>
<td>1136,67</td>
<td>1145,77</td>
<td>1183,95</td>
</tr>
<tr>
<td>1996</td>
<td>86322</td>
<td>255106</td>
<td>56202</td>
<td>1190,579382</td>
<td>1,41%</td>
<td>1151,04</td>
<td>1157,91</td>
<td>1205,61</td>
</tr>
<tr>
<td>1997</td>
<td>88998</td>
<td>253334</td>
<td>58574</td>
<td>1200,435109</td>
<td>0,83%</td>
<td>1147,32</td>
<td>1154,9</td>
<td>1201,63</td>
</tr>
<tr>
<td>1998</td>
<td>83647</td>
<td>249276</td>
<td>59893</td>
<td>1171,14007</td>
<td>-2,44%</td>
<td>1116,08</td>
<td>1124,99</td>
<td>1159,07</td>
</tr>
<tr>
<td>1999</td>
<td>89040</td>
<td>254871</td>
<td>63413</td>
<td>1215,227911</td>
<td>3,76%</td>
<td>1155,97</td>
<td>1160,11</td>
<td>1198,04</td>
</tr>
<tr>
<td>2000</td>
<td>97125</td>
<td>250695</td>
<td>65652</td>
<td>1238,14143</td>
<td>1,89%</td>
<td>1170,6</td>
<td>1180,04</td>
<td>1219,59</td>
</tr>
<tr>
<td>2001</td>
<td>99212</td>
<td>245718</td>
<td>66449</td>
<td>1233,087544</td>
<td>-0,41%</td>
<td>1156,43</td>
<td>1167,39</td>
<td>1202,27</td>
</tr>
<tr>
<td>2002</td>
<td>102512</td>
<td>248443</td>
<td>66522</td>
<td>1253,661479</td>
<td>1,67%</td>
<td>1193,06</td>
<td>1207,89</td>
<td>1216,75</td>
</tr>
<tr>
<td>2003</td>
<td>105515</td>
<td>246072</td>
<td>71302</td>
<td>1268,034763</td>
<td>1,15%</td>
<td>1200,16</td>
<td>1213,89</td>
<td>1237,43</td>
</tr>
<tr>
<td>2004</td>
<td>115472</td>
<td>241913</td>
<td>70574</td>
<td>1291,840908</td>
<td>1,88%</td>
<td>1201,08</td>
<td>1212,99</td>
<td>1259,65</td>
</tr>
<tr>
<td>2005</td>
<td>110046</td>
<td>240903</td>
<td>70065</td>
<td>1268,416181</td>
<td>-1,81%</td>
<td>1208,09</td>
<td>1217,7</td>
<td>1238,18</td>
</tr>
<tr>
<td>2006</td>
<td>111433</td>
<td>230354</td>
<td>77454</td>
<td>1257,147409</td>
<td>-0,89%</td>
<td>1193,08</td>
<td>1199,3</td>
<td>1231,30</td>
</tr>
<tr>
<td>2007</td>
<td>116363</td>
<td>224584</td>
<td>83046</td>
<td>1270,520048</td>
<td>1,06%</td>
<td>1229,02</td>
<td>1233,37</td>
<td>1251,14</td>
</tr>
<tr>
<td>2008</td>
<td>113572</td>
<td>208629</td>
<td>83715</td>
<td>1214,643434</td>
<td>-4,40%</td>
<td>1143,3</td>
<td>1153,04</td>
<td>1206,92</td>
</tr>
<tr>
<td>2009</td>
<td>101273</td>
<td>202438</td>
<td>80732</td>
<td>1143,910378</td>
<td>-5,82%</td>
<td>1085,24</td>
<td>1088,8</td>
<td>1100,65</td>
</tr>
<tr>
<td>2010</td>
<td>115116</td>
<td>203139</td>
<td>86014</td>
<td>1209,184265</td>
<td>5,71%</td>
<td>1134,05</td>
<td>1136,98</td>
<td>1170,72</td>
</tr>
<tr>
<td>2011</td>
<td>107531</td>
<td>202341</td>
<td>100062</td>
<td>1207,672412</td>
<td>-0,13%</td>
<td>1183,39</td>
<td>1186,94</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>112178</td>
<td>203189</td>
<td>105282</td>
<td>1238,595698</td>
<td>2,56%</td>
<td>1223,3</td>
<td>1221,57</td>
<td>-</td>
</tr>
</tbody>
</table>
Mèxic

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3476</td>
<td>77382</td>
<td>23120</td>
<td>288,2854634</td>
<td>-</td>
<td>265,26</td>
<td>314,42</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>3317</td>
<td>81274</td>
<td>24144</td>
<td>301,2364919</td>
<td>4,49%</td>
<td>290,03</td>
<td>326,34</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>3590</td>
<td>82322</td>
<td>24294</td>
<td>305,6506351</td>
<td>1,47%</td>
<td>292,32</td>
<td>328,47</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>4043</td>
<td>83362</td>
<td>23517</td>
<td>308,7790121</td>
<td>1,02%</td>
<td>289,97</td>
<td>330,33</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>4808</td>
<td>86703</td>
<td>24413</td>
<td>323,3289794</td>
<td>4,71%</td>
<td>310,68</td>
<td>347,98</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>5496</td>
<td>80088</td>
<td>24944</td>
<td>307,646064</td>
<td>-4,85%</td>
<td>296,95</td>
<td>328,04</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>6392</td>
<td>82081</td>
<td>26777</td>
<td>320,7005064</td>
<td>4,24%</td>
<td>309,62</td>
<td>340,81</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>6560</td>
<td>86035</td>
<td>25996</td>
<td>331,2868302</td>
<td>3,30%</td>
<td>319,69</td>
<td>358,38</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>6653</td>
<td>87631</td>
<td>27436</td>
<td>339,3292543</td>
<td>2,43%</td>
<td>338,39</td>
<td>373,41</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>6844</td>
<td>89276</td>
<td>27809</td>
<td>345,6509036</td>
<td>1,86%</td>
<td>334,32</td>
<td>381,85</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>7023</td>
<td>91341</td>
<td>28921</td>
<td>354,7052773</td>
<td>2,62%</td>
<td>349,55</td>
<td>381,52</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>7554</td>
<td>90906</td>
<td>29588</td>
<td>356,8275662</td>
<td>0,60%</td>
<td>350</td>
<td>394,80</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>8532</td>
<td>89336</td>
<td>33178</td>
<td>363,4268004</td>
<td>1,85%</td>
<td>356,69</td>
<td>391,25</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>9566</td>
<td>91098</td>
<td>35726</td>
<td>377,8210188</td>
<td>3,96%</td>
<td>363,19</td>
<td>405,63</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>8059</td>
<td>93844</td>
<td>37635</td>
<td>384,1866295</td>
<td>1,68%</td>
<td>368,84</td>
<td>410,74</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>10096</td>
<td>94454</td>
<td>38066</td>
<td>394,552309</td>
<td>2,70%</td>
<td>385,77</td>
<td>435,05</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>10056</td>
<td>95980</td>
<td>43010</td>
<td>409,2236935</td>
<td>3,72%</td>
<td>394,94</td>
<td>441,80</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>9831</td>
<td>96073</td>
<td>46351</td>
<td>415,6424766</td>
<td>1,57%</td>
<td>410,1</td>
<td>455,84</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>8460</td>
<td>96302</td>
<td>48999</td>
<td>416,6908513</td>
<td>0,25%</td>
<td>404,01</td>
<td>471,44</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>8842</td>
<td>94428</td>
<td>48514</td>
<td>411,6227299</td>
<td>-1,22%</td>
<td>399,94</td>
<td>446,24</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>9438</td>
<td>95778</td>
<td>53264</td>
<td>427,7687054</td>
<td>3,92%</td>
<td>417,94</td>
<td>443,67</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>9977</td>
<td>94213</td>
<td>56218</td>
<td>431,3969863</td>
<td>0,85%</td>
<td>432,5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>9361</td>
<td>96381</td>
<td>58468</td>
<td>440,1398621</td>
<td>2,03%</td>
<td>435,79</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
República de Corea

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petróli</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO₂)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>25383</td>
<td>50034</td>
<td>2724</td>
<td>247,9862574</td>
<td>-</td>
<td>229,3</td>
<td>232,49</td>
<td>246,94</td>
</tr>
<tr>
<td>1991</td>
<td>25094</td>
<td>59699</td>
<td>3151</td>
<td>276,1169479</td>
<td>11,34%</td>
<td>254,27</td>
<td>251,41</td>
<td>261,48</td>
</tr>
<tr>
<td>1992</td>
<td>22228</td>
<td>71111</td>
<td>4057</td>
<td>300,6599695</td>
<td>8,89%</td>
<td>276,91</td>
<td>272,44</td>
<td>284,28</td>
</tr>
<tr>
<td>1993</td>
<td>24887</td>
<td>78513</td>
<td>5174</td>
<td>334,7112139</td>
<td>11,33%</td>
<td>304,2</td>
<td>303,38</td>
<td>321,95</td>
</tr>
<tr>
<td>1994</td>
<td>25590</td>
<td>85783</td>
<td>6864</td>
<td>362,2046735</td>
<td>8,21%</td>
<td>329,04</td>
<td>323,16</td>
<td>344,04</td>
</tr>
<tr>
<td>1995</td>
<td>26610</td>
<td>93161</td>
<td>8321</td>
<td>390,721387</td>
<td>7,87%</td>
<td>358,65</td>
<td>349,34</td>
<td>374,77</td>
</tr>
<tr>
<td>1996</td>
<td>28693</td>
<td>98635</td>
<td>10912</td>
<td>420,0373606</td>
<td>7,50%</td>
<td>383,72</td>
<td>381,14</td>
<td>403,72</td>
</tr>
<tr>
<td>1997</td>
<td>31838</td>
<td>105132</td>
<td>13326</td>
<td>455,9827133</td>
<td>8,56%</td>
<td>407,91</td>
<td>405,35</td>
<td>430,01</td>
</tr>
<tr>
<td>1998</td>
<td>32352</td>
<td>88583</td>
<td>12488</td>
<td>407,6641105</td>
<td>-10,60%</td>
<td>351,06</td>
<td>345,9</td>
<td>364,82</td>
</tr>
<tr>
<td>1999</td>
<td>34436</td>
<td>96015</td>
<td>15206</td>
<td>442,9881421</td>
<td>8,66%</td>
<td>385,35</td>
<td>376,41</td>
<td>399,85</td>
</tr>
<tr>
<td>2000</td>
<td>41949</td>
<td>98670</td>
<td>17005</td>
<td>482,8452221</td>
<td>9,00%</td>
<td>437,72</td>
<td>405,47</td>
<td>447,56</td>
</tr>
<tr>
<td>2001</td>
<td>45491</td>
<td>98112</td>
<td>18737</td>
<td>498,1823078</td>
<td>3,18%</td>
<td>452,07</td>
<td>419,37</td>
<td>450,19</td>
</tr>
<tr>
<td>2002</td>
<td>47089</td>
<td>99927</td>
<td>21203</td>
<td>514,6854174</td>
<td>3,31%</td>
<td>446,13</td>
<td>437,9</td>
<td>465,63</td>
</tr>
<tr>
<td>2003</td>
<td>48687</td>
<td>100779</td>
<td>22001</td>
<td>524,8744139</td>
<td>1,98%</td>
<td>448,91</td>
<td>445,35</td>
<td>466,22</td>
</tr>
<tr>
<td>2004</td>
<td>50210</td>
<td>98679</td>
<td>25280</td>
<td>531,3229232</td>
<td>1,23%</td>
<td>469,82</td>
<td>452,71</td>
<td>482,28</td>
</tr>
<tr>
<td>2005</td>
<td>49657</td>
<td>98396</td>
<td>27368</td>
<td>532,780767</td>
<td>0,27%</td>
<td>469,12</td>
<td>460,53</td>
<td>462,92</td>
</tr>
<tr>
<td>2006</td>
<td>52822</td>
<td>96401</td>
<td>28700</td>
<td>541,6484094</td>
<td>1,66%</td>
<td>476,69</td>
<td>466,6</td>
<td>470,81</td>
</tr>
<tr>
<td>2007</td>
<td>56231</td>
<td>100514</td>
<td>31152</td>
<td>571,6811632</td>
<td>5,54%</td>
<td>490,43</td>
<td>485,08</td>
<td>495,84</td>
</tr>
<tr>
<td>2008</td>
<td>62917</td>
<td>95658</td>
<td>31807</td>
<td>584,0142199</td>
<td>2,16%</td>
<td>501,77</td>
<td>498,43</td>
<td>508,05</td>
</tr>
<tr>
<td>2009</td>
<td>64913</td>
<td>98273</td>
<td>31703</td>
<td>598,9816112</td>
<td>2,56%</td>
<td>515,62</td>
<td>505,49</td>
<td>509,38</td>
</tr>
<tr>
<td>2010</td>
<td>73454</td>
<td>100276</td>
<td>38625</td>
<td>651,5259512</td>
<td>8,77%</td>
<td>564,47</td>
<td>557,46</td>
<td>567,57</td>
</tr>
<tr>
<td>2011</td>
<td>80264</td>
<td>100226</td>
<td>41576</td>
<td>683,2179338</td>
<td>4,86%</td>
<td>589,93</td>
<td>585,43</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>77079</td>
<td>105040</td>
<td>44966</td>
<td>692,4217763</td>
<td>1,35%</td>
<td>592,92</td>
<td>587,22</td>
<td>-</td>
</tr>
<tr>
<td>Any</td>
<td>Carbó</td>
<td>Petrolí</td>
<td>Gas Natural</td>
<td>Emissions (Mt CO2)</td>
<td>Taxa anual</td>
<td>Emissions (IEA) -Mt</td>
<td>Emissions (UNFCCC) - Mt</td>
<td>Emissions (WB) - Mt</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1990</td>
<td>191071</td>
<td>211559</td>
<td>367287</td>
<td>2108,885717</td>
<td>-</td>
<td>2178,84</td>
<td>2274,86</td>
<td>2505,4</td>
</tr>
<tr>
<td>1991</td>
<td>180832</td>
<td>223711</td>
<td>373586</td>
<td>2119,104859</td>
<td>-1,4%</td>
<td>2168,53</td>
<td>2159,79</td>
<td>2358,6</td>
</tr>
<tr>
<td>1992</td>
<td>159029</td>
<td>199908</td>
<td>364192</td>
<td>1947,522258</td>
<td>-8,10%</td>
<td>1989,81</td>
<td>1760,61</td>
<td>2139,72</td>
</tr>
<tr>
<td>1993</td>
<td>142572</td>
<td>178170</td>
<td>355915</td>
<td>1804,474375</td>
<td>-7,35%</td>
<td>1828,2</td>
<td>1690,13</td>
<td>1963,94</td>
</tr>
<tr>
<td>1994</td>
<td>133683</td>
<td>137360</td>
<td>327583</td>
<td>1592,065032</td>
<td>-11,77%</td>
<td>1611,64</td>
<td>1499,92</td>
<td>1722,55</td>
</tr>
<tr>
<td>1995</td>
<td>129174</td>
<td>132360</td>
<td>316545</td>
<td>1537,313829</td>
<td>-3,44%</td>
<td>1558,73</td>
<td>1438,33</td>
<td>1662,53</td>
</tr>
<tr>
<td>1996</td>
<td>130630</td>
<td>119973</td>
<td>318228</td>
<td>1510,02008</td>
<td>-1,78%</td>
<td>1526,8</td>
<td>1411,3</td>
<td>1631,91</td>
</tr>
<tr>
<td>1997</td>
<td>117348</td>
<td>117088</td>
<td>311476</td>
<td>1437,382031</td>
<td>-4,81%</td>
<td>1426,42</td>
<td>1336,23</td>
<td>1559,24</td>
</tr>
<tr>
<td>1998</td>
<td>110835</td>
<td>114083</td>
<td>310874</td>
<td>1402,773105</td>
<td>-2,41%</td>
<td>1416,55</td>
<td>1318,25</td>
<td>1526,74</td>
</tr>
<tr>
<td>1999</td>
<td>118758</td>
<td>118147</td>
<td>314473</td>
<td>1452,072675</td>
<td>3,51%</td>
<td>1456,21</td>
<td>1337,58</td>
<td>1538,83</td>
</tr>
<tr>
<td>2000</td>
<td>119969</td>
<td>122212</td>
<td>318916</td>
<td>1477,850384</td>
<td>1,78%</td>
<td>1496,72</td>
<td>1327,1</td>
<td>1558,11</td>
</tr>
<tr>
<td>2001</td>
<td>115276</td>
<td>124958</td>
<td>325215</td>
<td>1481,40079</td>
<td>0,24%</td>
<td>1498,1</td>
<td>1344,01</td>
<td>1558,01</td>
</tr>
<tr>
<td>2002</td>
<td>116072</td>
<td>121183</td>
<td>325564</td>
<td>1474,067191</td>
<td>-0,50%</td>
<td>1487,22</td>
<td>1334,01</td>
<td>1557,66</td>
</tr>
<tr>
<td>2003</td>
<td>117164</td>
<td>122470</td>
<td>342503</td>
<td>1517,413969</td>
<td>2,94%</td>
<td>1517,88</td>
<td>1358,62</td>
<td>1604,97</td>
</tr>
<tr>
<td>2004</td>
<td>114043</td>
<td>121385</td>
<td>346562</td>
<td>1510,970903</td>
<td>-0,42%</td>
<td>1509,25</td>
<td>1352,2</td>
<td>1602,96</td>
</tr>
<tr>
<td>2005</td>
<td>112637</td>
<td>121213</td>
<td>349570</td>
<td>1511,465782</td>
<td>0,03%</td>
<td>1511,83</td>
<td>1350,81</td>
<td>1615,69</td>
</tr>
<tr>
<td>2006</td>
<td>115726</td>
<td>125012</td>
<td>358605</td>
<td>1553,153331</td>
<td>2,76%</td>
<td>1566,56</td>
<td>1397,14</td>
<td>1669,62</td>
</tr>
<tr>
<td>2007</td>
<td>110959</td>
<td>127439</td>
<td>365960</td>
<td>1557,700615</td>
<td>0,29%</td>
<td>1566,35</td>
<td>1383,87</td>
<td>1667,60</td>
</tr>
<tr>
<td>2008</td>
<td>117069</td>
<td>132006</td>
<td>366172</td>
<td>1594,55241</td>
<td>2,37%</td>
<td>1585,35</td>
<td>1435,27</td>
<td>1715,64</td>
</tr>
<tr>
<td>2009</td>
<td>95271</td>
<td>125876</td>
<td>350295</td>
<td>1461,212459</td>
<td>-8,36%</td>
<td>1478,37</td>
<td>1369,18</td>
<td>1574,37</td>
</tr>
<tr>
<td>2010</td>
<td>114827</td>
<td>131920</td>
<td>383435</td>
<td>1621,990603</td>
<td>11,00%</td>
<td>1580,17</td>
<td>1415,84</td>
<td>1740,78</td>
</tr>
<tr>
<td>2011</td>
<td>118806</td>
<td>143975</td>
<td>395877</td>
<td>1698,360348</td>
<td>4,71%</td>
<td>1653,23</td>
<td>1454,6</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>133422</td>
<td>145434</td>
<td>387008</td>
<td>1739,144804</td>
<td>2,40%</td>
<td>1659,03</td>
<td>1465,97</td>
<td>-</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO₂ i els vectors energètics

Sud-àfrica

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO₂)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>66539</td>
<td>15796</td>
<td>1504</td>
<td>300,1696952</td>
<td>-</td>
<td>253,65</td>
<td>333,51</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>70142</td>
<td>15765</td>
<td>1526</td>
<td>313,7014328</td>
<td>4,51%</td>
<td>249,93</td>
<td>346,34</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>64863</td>
<td>15555</td>
<td>1537</td>
<td>293,2170952</td>
<td>-6,53%</td>
<td>245,38</td>
<td>324,85</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>72844</td>
<td>15468</td>
<td>1715</td>
<td>323,40811</td>
<td>10,30%</td>
<td>251,98</td>
<td>342,55</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>75054</td>
<td>15583</td>
<td>1715</td>
<td>332,0726926</td>
<td>2,68%</td>
<td>257,6</td>
<td>358,93</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>78132</td>
<td>17061</td>
<td>1715</td>
<td>348,0026292</td>
<td>4,80%</td>
<td>274,49</td>
<td>353,46</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>79543</td>
<td>16995</td>
<td>1543</td>
<td>352,7659516</td>
<td>1,37%</td>
<td>284,76</td>
<td>358,64</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>81086</td>
<td>17556</td>
<td>1378</td>
<td>359,8789061</td>
<td>2,02%</td>
<td>299,09</td>
<td>371,33</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>78597</td>
<td>17340</td>
<td>1160</td>
<td>349,41065</td>
<td>-2,91%</td>
<td>306,51</td>
<td>372,22</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>81789</td>
<td>17446</td>
<td>1518</td>
<td>362,4985868</td>
<td>3,75%</td>
<td>289,95</td>
<td>371,03</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>82000</td>
<td>17114</td>
<td>1397</td>
<td>362,0673464</td>
<td>-0,12%</td>
<td>297,06</td>
<td>368,61</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>81988</td>
<td>17594</td>
<td>1815</td>
<td>364,303935</td>
<td>0,62%</td>
<td>282,78</td>
<td>362,74</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>78553</td>
<td>18064</td>
<td>1800</td>
<td>352,706499</td>
<td>-3,18%</td>
<td>293,76</td>
<td>347,69</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>86640</td>
<td>18884</td>
<td>1079</td>
<td>384,0731672</td>
<td>8,89%</td>
<td>319,88</td>
<td>380,81</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>94398</td>
<td>19831</td>
<td>2780</td>
<td>419,6425453</td>
<td>9,26%</td>
<td>335,76</td>
<td>427,13</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>91937</td>
<td>20618</td>
<td>2758</td>
<td>412,6296553</td>
<td>-1,67%</td>
<td>329,45</td>
<td>396,12</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>93595</td>
<td>20241</td>
<td>2676</td>
<td>417,600643</td>
<td>1,20%</td>
<td>330,74</td>
<td>424,84</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>96484</td>
<td>24263</td>
<td>3824</td>
<td>442,6774816</td>
<td>6,00%</td>
<td>355,67</td>
<td>443,65</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>105522</td>
<td>24876</td>
<td>3907</td>
<td>478,7040582</td>
<td>8,14%</td>
<td>384,25</td>
<td>465,02</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>102852</td>
<td>23801</td>
<td>3074</td>
<td>463,7488086</td>
<td>-3,12%</td>
<td>365,5</td>
<td>503,94</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>100965</td>
<td>24699</td>
<td>3873</td>
<td>460,9428152</td>
<td>-0,61%</td>
<td>376,31</td>
<td>460,12</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>98456</td>
<td>25850</td>
<td>3844</td>
<td>454,8011983</td>
<td>-1,33%</td>
<td>361,51</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>97058</td>
<td>25688</td>
<td>4035</td>
<td>449,4584228</td>
<td>-1,17%</td>
<td>376,12</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Unió Europea

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petrolí</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO2)</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>455558</td>
<td>620129</td>
<td>286942</td>
<td>4134,730862</td>
<td>-</td>
<td>4067,76</td>
<td>4110,16</td>
<td>4113,09</td>
</tr>
<tr>
<td>1991</td>
<td>434152</td>
<td>625452</td>
<td>306665</td>
<td>4110,959049</td>
<td>-0,57%</td>
<td>4045,02</td>
<td>4081,6</td>
<td>4167,78</td>
</tr>
<tr>
<td>1992</td>
<td>405090</td>
<td>621461</td>
<td>297912</td>
<td>3971,429752</td>
<td>-3,39%</td>
<td>3918,27</td>
<td>3933,53</td>
<td>4052,92</td>
</tr>
<tr>
<td>1993</td>
<td>379907</td>
<td>618924</td>
<td>309334</td>
<td>3893,012663</td>
<td>-1,97%</td>
<td>3840,09</td>
<td>3864,38</td>
<td>3974,40</td>
</tr>
<tr>
<td>1994</td>
<td>370464</td>
<td>619022</td>
<td>309104</td>
<td>3857,236038</td>
<td>-0,92%</td>
<td>3822,24</td>
<td>3829,18</td>
<td>3927,41</td>
</tr>
<tr>
<td>1995</td>
<td>365044</td>
<td>627808</td>
<td>335520</td>
<td>3917,861739</td>
<td>1,57%</td>
<td>3864,38</td>
<td>3867,07</td>
<td>3997,73</td>
</tr>
<tr>
<td>1996</td>
<td>365125</td>
<td>641051</td>
<td>369329</td>
<td>4027,754772</td>
<td>2,80%</td>
<td>3981,89</td>
<td>3975,43</td>
<td>4117,96</td>
</tr>
<tr>
<td>1997</td>
<td>349287</td>
<td>641317</td>
<td>361784</td>
<td>3953,060167</td>
<td>-1,85%</td>
<td>3896,46</td>
<td>3879,29</td>
<td>4012,48</td>
</tr>
<tr>
<td>1998</td>
<td>333033</td>
<td>655805</td>
<td>373242</td>
<td>3958,260173</td>
<td>0,13%</td>
<td>3899,22</td>
<td>3881,51</td>
<td>4015,52</td>
</tr>
<tr>
<td>1999</td>
<td>313376</td>
<td>643045</td>
<td>384668</td>
<td>3870,712929</td>
<td>-2,21%</td>
<td>3835,03</td>
<td>3824,45</td>
<td>3895,75</td>
</tr>
<tr>
<td>2000</td>
<td>321270</td>
<td>630974</td>
<td>395797</td>
<td>3888,378712</td>
<td>0,46%</td>
<td>3852,05</td>
<td>3838,4</td>
<td>3914,06</td>
</tr>
<tr>
<td>2001</td>
<td>323281</td>
<td>649882</td>
<td>406112</td>
<td>3972,964633</td>
<td>2,18%</td>
<td>3927,88</td>
<td>3919,6</td>
<td>3998,48</td>
</tr>
<tr>
<td>2002</td>
<td>320276</td>
<td>639056</td>
<td>407630</td>
<td>3933,090806</td>
<td>-1,00%</td>
<td>3900,85</td>
<td>3892,79</td>
<td>3967,91</td>
</tr>
<tr>
<td>2003</td>
<td>330370</td>
<td>643531</td>
<td>424446</td>
<td>4019,443974</td>
<td>2,20%</td>
<td>4008,58</td>
<td>3979,82</td>
<td>4058,41</td>
</tr>
<tr>
<td>2004</td>
<td>327329</td>
<td>644848</td>
<td>435130</td>
<td>4034,210818</td>
<td>0,37%</td>
<td>4007,61</td>
<td>3979,61</td>
<td>4068,78</td>
</tr>
<tr>
<td>2005</td>
<td>318142</td>
<td>641730</td>
<td>445025</td>
<td>4011,169183</td>
<td>-0,57%</td>
<td>3988,26</td>
<td>3955,27</td>
<td>4047,10</td>
</tr>
<tr>
<td>2006</td>
<td>329504</td>
<td>637341</td>
<td>440078</td>
<td>4030,763407</td>
<td>0,49%</td>
<td>3997,85</td>
<td>3962,02</td>
<td>4058,77</td>
</tr>
<tr>
<td>2007</td>
<td>329072</td>
<td>619555</td>
<td>434822</td>
<td>3966,006171</td>
<td>-1,61%</td>
<td>3945,82</td>
<td>3904,29</td>
<td>4009,95</td>
</tr>
<tr>
<td>2008</td>
<td>305510</td>
<td>615739</td>
<td>443609</td>
<td>3884,432653</td>
<td>-2,06%</td>
<td>3862,03</td>
<td>3822,85</td>
<td>3926,14</td>
</tr>
<tr>
<td>2009</td>
<td>268707</td>
<td>582872</td>
<td>415244</td>
<td>3590,049953</td>
<td>-7,58%</td>
<td>3565,16</td>
<td>3546,44</td>
<td>3629,05</td>
</tr>
<tr>
<td>2010</td>
<td>282984</td>
<td>580997</td>
<td>446860</td>
<td>3704,537162</td>
<td>3,19%</td>
<td>3678,88</td>
<td>3649,87</td>
<td>3709,76</td>
</tr>
<tr>
<td>2011</td>
<td>287579</td>
<td>558880</td>
<td>403594</td>
<td>3566,45901</td>
<td>-3,73%</td>
<td>3547,73</td>
<td>3510,59</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>294017</td>
<td>538346</td>
<td>392478</td>
<td>3507,267706</td>
<td>-1,66%</td>
<td>3504,88</td>
<td>3472</td>
<td>-</td>
</tr>
</tbody>
</table>
Estudi de les correlacions entre les emissions de CO\textsubscript{2} i els vectors energètics

Xina

<table>
<thead>
<tr>
<th>Any</th>
<th>Carbó</th>
<th>Petroli</th>
<th>Gas Natural</th>
<th>Emissions (Mt CO\textsubscript{2})</th>
<th>Taxa anual</th>
<th>Emissions (IEA) -Mt</th>
<th>Emissions (UNFCCC) - Mt</th>
<th>Emissions (WB) - Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>527594</td>
<td>109343</td>
<td>12800</td>
<td>2335,291114</td>
<td>-</td>
<td>2244,86</td>
<td>2460,74</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>500749</td>
<td>111847</td>
<td>13445</td>
<td>2242,824799</td>
<td>-3,96%</td>
<td>2353,72</td>
<td>2584,54</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>517248</td>
<td>121577</td>
<td>13210</td>
<td>2333,019356</td>
<td>4,02%</td>
<td>2462,01</td>
<td>2695,98</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>551154</td>
<td>134870</td>
<td>14027</td>
<td>2501,450133</td>
<td>7,22%</td>
<td>2660,98</td>
<td>2878,69</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>591069</td>
<td>134284</td>
<td>14690</td>
<td>2651,525142</td>
<td>6,00%</td>
<td>2775</td>
<td>3058,24</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>648032</td>
<td>149635</td>
<td>14993</td>
<td>2911,792959</td>
<td>9,82%</td>
<td>3021,63</td>
<td>3320,29</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>661602</td>
<td>162081</td>
<td>15454</td>
<td>3000,367643</td>
<td>3,04%</td>
<td>3090,56</td>
<td>3463,09</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>638289</td>
<td>181135</td>
<td>16849</td>
<td>2971,284456</td>
<td>-0,97%</td>
<td>3062,75</td>
<td>3469,51</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>649462</td>
<td>179123</td>
<td>17463</td>
<td>3008,774319</td>
<td>1,26%</td>
<td>3139,1</td>
<td>3324,34</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>650221</td>
<td>194752</td>
<td>18862</td>
<td>3060,367837</td>
<td>1,71%</td>
<td>3039,99</td>
<td>3318,06</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>690577</td>
<td>207297</td>
<td>20750</td>
<td>3253,152811</td>
<td>6,30%</td>
<td>3310,07</td>
<td>3405,18</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>703138</td>
<td>213328</td>
<td>23349</td>
<td>3323,600326</td>
<td>2,17%</td>
<td>3396,15</td>
<td>3487,57</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>748179</td>
<td>226693</td>
<td>25758</td>
<td>3537,532827</td>
<td>6,44%</td>
<td>3605,39</td>
<td>3694,24</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>888194</td>
<td>252074</td>
<td>27727</td>
<td>4143,633673</td>
<td>17,13%</td>
<td>4176,63</td>
<td>4525,18</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1042301</td>
<td>295060</td>
<td>32645</td>
<td>4860,604333</td>
<td>17,30%</td>
<td>4837,28</td>
<td>5288,17</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1162860</td>
<td>302174</td>
<td>38779</td>
<td>5348,575454</td>
<td>10,04%</td>
<td>5403,09</td>
<td>5790,02</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1289516</td>
<td>320298</td>
<td>47357</td>
<td>5896,90474</td>
<td>10,25%</td>
<td>5913,49</td>
<td>6414,46</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>1359798</td>
<td>336297</td>
<td>59116</td>
<td>6233,24127</td>
<td>5,70%</td>
<td>6316,44</td>
<td>6791,80</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>1406354</td>
<td>341471</td>
<td>68318</td>
<td>6443,097084</td>
<td>3,37%</td>
<td>6489,98</td>
<td>7035,44</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1543705</td>
<td>354121</td>
<td>75040</td>
<td>7011,798083</td>
<td>8,83%</td>
<td>6792,94</td>
<td>7692,21</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1700703</td>
<td>408951</td>
<td>88568</td>
<td>7792,398472</td>
<td>11,13%</td>
<td>7252,77</td>
<td>8286,89</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1878795</td>
<td>426164</td>
<td>107746</td>
<td>8554,064896</td>
<td>9,77%</td>
<td>7954,79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1969038</td>
<td>445982</td>
<td>120539</td>
<td>8978,974017</td>
<td>4,97%</td>
<td>8205,86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ESTUDI DE LES CORRELACIONS ENTRE LES EMISSIONS DE CO\textsubscript{2} I ELS VECTORS ENERGETICS

TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Àlex Aguilar Pérez

Barcelona, 09 de Juny de 2015

Director: Josep Xercavins i Valls
Departament de Mecànica de Fluids (MF)
Universitat Politècnica de Catalunya (UPC)
ÍNDEX PRESSUPOST

Índex Pressupost.. 1
 1. Pressupost... 3
1. Pressupost

En aquest document es presenta el pressupost del projecte. Com que aquest projecte no implica la compra de cap material ni el pagament de taxes ni llicències, únicament es tenen en compte les hores que s’hi han dedicat ja que no hi ha cost material.

Es considera el sou habitual d’un enginyer júnior, que seria d’uns 20 €/hora. A més, s’ha tingut en compte una dedicació mitjana de 25 hores setmanals durant 18 setmanes, resultant en un total de 450 hores.

Finalment s’aplica l’impost sobre el valor afegit (IVA) corresponent.

Càlcul del cost del projecte

Preu: 20,00 €/hora
Hores de dedicació: 450 hores
Cost sense IVA: 9.000,00 €
IVA: 21%

Pressupost final: 10.890,00 €