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Abstract. We present an application of the transport theory developed for

area preserving dynamical systems, to the problem of pollution and in particu-

lar patchiness in clouds of pollution in partially strati�ed estuaries. We model

the 
ow in such estuaries using a 3 + 1 dimensional uncoupled cartoon of the

dominant underlying global circulation mechanisms present within the estuar-

ine 
ow. We separate the cross section up into di�erent regions, bounded by

partial and complete barriers. Using these barriers we then provide predictions

for the lower bound on the vertical local 
ux. We also present work on the

relationship between the time taken for a particle to leave the estuary, (ie. the

exit time), and the mixing within the estuary. This link is important as we

show that to optimally discharge pollution into an estuary both concepts have

to be considered. We �nish by suggesting coordinates in space time for an op-

timal discharge site and a discharge policy to ensure the continually optimal

discharge from such a site (or even a non optimal site).

1. Introduction. In this paper we present an application of transport theory (see
Rom-Kedar and Wiggins [21], Wiggins [31], MacKay, Meiss and Percival [11], Meiss
[14] and MacKay [12]) and chaotic advection (see Aref [1], [2], and Ottino [16]) to
the transport and patchiness of pollution in a partially strati�ed estuary. An under-
standing of the dynamics of pollution released into such 
ows is of fundamental im-
portance as many large industrial developments and cities are focussed about such

ows. Estuaries are used for a wide variety of activities including waste disposal,
providing drinking water, recreation, transport and power plant cooling. As could
be imagined, a poor understanding of the mixing could have severe consequences.
As in Pasmanter [17], Ridderinkhof and Zimmerman [20] and Stirling [27, 28] we
model the estuarine 
ow with a set of coupled ordinary di�erential equations which
describe the underlying dynamics of the estuarine 
ow. Our model is based on a set
of circulations, (see �gure 1) proposed by Smith [23] (see also Scott [22]) to model
the bouyancy driven circulations in an estuarine 
ow. The existence of these circu-
lations was veri�ed practically by Guymmer and West [9], [10], Nunes and Simpson
[15] and West and Mangat [30]. For the secondary circulation or transverse velocity
�eld (Vf and Wf ) we use a set of Hamiltonian equations obtained from a stream
function 	f presented in Stirling [28]. We add to these equations, an uncoupled
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velocity �eld Uf , in the along estuary direction X , where Uf is a function of Y , Z,
and t only.

We consider the evolution of a cloud of pollution discharged into such an estuary
as described by our model. One of the major questions is, what is the environmental

impact of such a cloud? The impact is governed by the peak concentration of the
cloud, and not its average, which is calculated in the standard approach to this
question. (For a review see Chatwin and Allen [4], Fischer [7], Fischer et al [8]
and Smith and Scott [26].) If there are trapping regions within the cloud, then the
concentration and 
ux associated with such regions are of fundamental importance.
As was explained in Stirling [27, 28], it is observed that within a typical cloud of
pollution there are large to medium scale patches of di�erent concentration. (See
Postma [19], Dorrestein [5] and Talbot and Talbot [29] for practical observations
of patchiness in estuarine and coastal 
ows.) We associate such patchiness with
trapping regions formed as a result of the large scale global dynamics of the 
ow.
The other main question of interest is, what are the optimal discharge positions,

within the space-time coordinates of the estuary, for the release of pollution? We
provide answers to this question via calculations of the 
ux in the vertical plane and
the time taken to exit from the two open ends of the estuary. By optimizing these
two parameters and understanding the Stokes drift we provide optimal discharge
site coordinates. These values of exit times could also be used to help explain
such things as the reason why mud remains in an estuary and does not get 
ushed
out. We present two general results with regards the exit times in 3-dimensional
time dependent 
ows. The �rst result is that the complete and partial barriers do

not only separate regions of di�erent mixing, they also separate regions of di�erent

Stokes drift and hence di�erent exit times. The second result is that regions of

good mixing, who's boundaries extend close to those of the 
uid are regions of long

exit time, for 
ows with non slip boundary conditions. (It is also shown that the
converse of this second result is true, ie. regions of poor mixing, whoes boundaries
remain far from those of the 
uid are regions of short exit time, for 
ows with non
slip boundary conditions.) We also show the importance of the Stokes drift and
how, by discharging in the wrong place, it is possible for the pollution to drift back
against the 
ow of the estuary. The environmental impact of such an event could
be severe.

The presence of negative Stokes drift and patchiness shows the need for a full
or more complete treatment of pollution before it is discharged and enters the
estuary. This is because the trapping regions which cause the patchiness do not
allow for the dispersion of pollutants via stirring. The only means of escape from
such regions is via di�usion (ie. turbulent and molecular). Secondly, such regions
are often associated with a positive or, more importantly, a negative Stokes drift.
This negative Stokes drift has the e�ect of keeping the pollution in such a region
at a high concentration whilst with increasing tidal periods the pollution will drift
back upstream, where it came from. Both these e�ects support our claim regarding
the treatment of the pollution. As was discussed in Stirling [27, 28], the standard
averaged approach to modeling does not account for such regions and therefore
we claim that such approaches could have a serious potential to underestimate the
impact of a cloud of pollution by not attempting to model the peak concentrations.
As a side issue it has to be noted that Stirling [27, 28] carries an even worse message.
In a model we developed there, not only do we get negative Stokes drift and trapping
regions, but the trapping regions can also be regions of attraction.
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Figure 1. Cartoon of 
ow in an estuary, showing the single cell
(wind or bend-driven) and the periodic two cell (density driven)
transverse motion.

In �gure 2 we show the evolution of a blob of material in our 
ow. The square
can be thought of as a section through a cube of initial starting conditions. In our
model all vertical sections evolve in an identical manner due to the uncoupled nature
of our model, and the lack of dependency of Uf on the longitudinal coordinate X .

From �gure 2 we can visualize how complex the shape of the box at t = 0 can
get after evolution in the 
ow, and also how the mixing is highly dependent upon
the initial placement of the material. What is a little more diÆcult to observe in
the blob diagrams and Poincar�e maps is the simplicity of the global stretching and
folding mechanism generating the chaos and hence mixing. This global mechanism
is obviously that generated by the double plus single circulation cells, see �gure 3.
The barriers seen in the Poincar�e map (�gures 5 and 6) do not change the global
circulation they just trap particles.

In the following sections of this paper we �rst present the equations we use to
model the estuarine 
ow, and the equations governing the underlying dynamics in
the estuarine 
ow (ie. the \cartoon" or \template"). We also present how our model
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Figure 2. Blob diagram showing the three dimensional evolution
of a vertical cross section though a cube of material.

Figure 3. The stretching and folding via the large scale global circulations.

can be scaled up to suitable estuarine dimensions, and some of the assumptions we
have made. In the third section we show how the full 3-dimensional Poincar�e
map is obtained. We also show how a vertical cross section can be split up into
di�erent regions, and �nish by linking this in with patches and patchiness in clouds
of pollution in an estuarine 
ow. The fourth section is about the e�ect of the third
dimension X . We �rst introduce the concept of Stokes drift and show how this links
in with the concept of a map. We then go onto explain how the barriers observed in
the Y Z Poincar�e map will appear when seen in the full 3 dimensional time periodic

ow. Section 5 presents the predicted values for the 
ux, both in our model and in
the estuary. This section also includes a subsection on exit times, and is one of the
most important parts of the paper. In it we present our results regarding the link
between the exit times and the mixing. Section 6, applies the results presented in
section 5, to the problem of pollution discharges into the estuary. In the �rst part
we present the practical implications of the predicted di�usion rates we obtained
from our cartoon of the turbulent 
ow. Using this information we then suggest
an optimal discharge region in the vertical cross section. We �nish the section
by providing optimal discharge coordinates in space (ie. XY Z coordinates) and
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discussing the need for suitable discharge policies to keep these coordinates optimal
through out the whole tidal period.

2. Introduction to the model. Here we �rst present the assumptions we have
made in our model and then we present the fundamental velocity �eld, vf , of the
estuarine 
ow. We refer to vf as the cartoon or template. The cartoon vf is that
part of the velocity �eld V which dominates the large scale global dynamics of the
estuarine 
ow, (ie. vf = V � v0 where v0 is the essentially random part of the
turbulent 
ow). We then go on to discuss solutions found on the boundaries of the
estuary.

2.1. The material exiting out of sea and river end, and other assumptions.

In our model, material can exit out of both the sea and the river end of our estuary.
We make two assumptions regarding this, the �rst is that the material which leaves
through the sea end does not come back into the system, and secondly the material
leaving through the river end is re-injected back into the estuary, though we do not
state where. These are fairly realistic assumptions if we also make the assumption
that the material entering into the river can only move in the direction of the river

ow as there is no tidal oscillation. It is standard to think of and treat the estuary
and the coastal sea as separate entities.

We also make the assumption that the coupling between the X and Y; Z direc-
tional velocity �elds is nonexistent or very weak (ie. essentially zero). There are
two obvious situations were this is valid. The �rst is the sort of situation where
the 
ows dynamics does not change suÆciently with X to consider its inclusion
important in the model. Flow along a regular shaped channel would be a good
example of this. (See Stirling [27, 28] for the case where the 
ow does change with
X .) The second situation is 
ow along a self similar channel. See the paper of
Smith [24] for examples of such channel shapes.

2.2. The cartoon or fundamental velocity �eld: a \template". Figure 1
shows the circulations in our estuary. These are the dominant large scale global
circulation mechanisms which underly our 
ow. In this section we consider the
equations of the cartoon or template. They describe a velocity �eld which has
the same large scale global circulation mechanisms as were originally predicted by
Smith [23] to underly an estuarine 
ow (ie. a double circulation cell surrounded by
a single circulation cell).

The following equations are a modi�cation of those presented in Stirling [27, 28],
such that Uf is uncoupled from both Vf and Wf . The following stream function  
is used to model the 
ow in the vertical Y Z cross section:

 f = (1� Y 2)Z(1 + Z)2(1 +KY sin(�t)); (1)

This gives

Vf = _Y = �
@ f

@Z
= (3Z + 1)(Z + 1)(Y 2 � 1)(1 +KY sin(�t)); (2)

Wf = _Z =
@ f

@Y
= Z(1 + Z)2((1� 3Y 2)K sin(�t)� 2Y ): (3)

For the along estuary velocity �eld we use

Uf = _X = L(1� Y 2)(1� Z2)(R + sin(�t)): (4)
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Where _Z =Wf is the vertical velocity component and _Y = Vf is the horizontal
velocity component. For Uf the 
ow in the along estuary X direction, the Z

structure is that of plane Poiseuille 
ow with a free surface at Z = 0. Due to
Uf being independent of X and the use of the stream function  , conservation of
volume is satis�ed:

@Uf

@X
+
@Vf

@Y
+
@Wf

@Z
= 0: (5)

In the above set of equations (ie. 2 to 4), R is the ratio of the river's component
of the velocity �eld to that of the tide, L is a parameter which measures the rela-
tive strengths of the longitudinal circulation to the transversal circulation and the
parameter K is a measure of the relative strengths of the buoyancy driven to the
bend driven circulation, in the vertical Y Z cross section.

These equations are in the form where the transversal velocity �eld (ie. Vf
and Wf ) resulting from the secondary circulations is Hamiltonian. However the
trajectories evolvution has a 3-dimensional element. We think of these equations
as like a deck of cards, on which we can have our own separate Poincar�e maps. As
we evolve through the tidal period these cards are bent, stretched and deformed,
though two cards always conserve their X directional separation, due to the fact
that Uf is not a function of X . As we shall explain later, the uncoupled nature
of the velocity �eld means the evolution in the Y Z coordinates can be studied in
terms of the 2 dimensional Poincar�e map.

Our model, and hence the equations, are unbounded in the X direction, though
we consider that when a trajectory leaves the bounds �1 � X � 1 in the 
ow, it
has left the estuary, and therefore we are not interested in it anymore. The bounds
on the other dimensions are �1 � Y � 1 and �1 � Z � 0, see �gure 4. In the 3
dimensional work that follows we consider the evolution of trajectories starting on
a vertical cross section at X = 0 (ie. we consider the behaviour of the middle card
of the deck). As explained above, all other such cards or vertical cross sections can
be considered exact replicas of this and each other. However the cards nearer the
X boundaries will be less complete than others, due to the fact that many parts of
the card take less time to leave the bounds of the estuary.

We now look at the boundaries to the 
ow and the dynamics on these boundaries.
If we now look at the velocity �elds shown in equations 2, 3 and 4, we �nd on the
boundaries

Z = �1; Uf = 0; Vf = 0; Wf = 0; (6)

Z = 0; Uf = L(1� Y 2)(R + sin(�t));

Vf = (Y 2 � 1)(1 +KY sin(�t)); Wf = 0; (7)

Y = +1; Uf = 0; Vf = 0; Wf = �2Z(1 + Z)2(K sin(�t) + 1); (8)

Y = �1; Uf = 0; Vf = 0; Wf = �2Z(1 + Z)2(K sin(�t)� 1): (9)

The long term drift of particles on the walls (Y = �1) is vertically upwards when
Y = 1 and vertically downwards when Y = �1. There is no X or Y component to
any movement on the walls. Trajectories on the bed (ie. Z = �1) of the estuary
can not move at all, this is a set of degenerate �xed points. The only place where
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Figure 4. The bounds of our estuary.

interesting dynamics may occur is on the free surface of the estuary (ie. Z = 0).
Here particles can move both across and along the estuary, with the long term drift
however being towards the Y = �1 boundary.

2.3. Scaling to real estuaries. To scale our model so as to obtain predictions on

uxes etc. for a particular estuary, we have to make certain assumptions. The main
assumption is to do with the shape of the estuary's cross section. For volume to be
conserved in our scaled version of our model, there must exist a conformal mapping
between the estuary's cross section and a rectangle. The structures observed in the
estuary would therefore be topologically equivalent to those shown in this paper.
The only serious restriction resulting from the need for there to exist a conformal
mapping is that there cannot be islands within the estuary's bounds.

The values of scaling parameters we use to scale our model up to the dimensions
of a typical partially strati�ed estuary are,

He = 20m; Be = 1000m; Rc = 10000m; L = 1

Te = 12hrs = 43200s; �U = 0:2ms�1; R = 0:01; K = 11: (10)

Where He is the depth of the estuary, Be is its breadth, Te is the tidal period, �U
the mean X directional velocity, K is the ratio of the buoyancy driven to the bend
driven circulation (K is also approximately equal to the radius of curvature of the
estuary Rc divided by the width of the estuary Be), and R is a value for the ratio
of the strength of the component of the velocity �eld due to the river to that due to
the tide. The value of R used may seem very low when �rst observed, though for an
estuary of the type of dimensions we are using it gives 40 tonnes per second fresh
water input which is a realistic value. Such parameters are now far removed from
the quick mixing assumptions commonly made when modelling estuarine 
ows, and
yet there are still a large class of estuaries (ie. partially strati�ed estuaries), which
satisfy our conditions.
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3. Transport into and out of regions in Y Z. Here we �rst explain the con-
nection between the Hamiltonian Poincar�e map for Y Z and the full 3-dimensional
map. We then go on to split the Y Z map up into di�erent regions and we �nish by
connecting these di�erent regions to the patches (ie. di�erences in concentration)
we observe in clouds of pollution.

3.1. The Poincar�e map, a deck of cards. As we stated earlier we think of the
3-dimensional XY Z space (ie. the whole estuary), at time t = 0 as a deck of cards,
with the X , along estuary, direction being that of the depth of the pack. Each
card in the deck is identical, with the dynamics on each card and its deformation
being de�ned by two di�erent Poincar�e maps, or one 3-dimensional Poincar�e map.
The Y Z map controls the dynamics on the card as seen in projection (on to either
the X = �1 or the X = 1 ends of the estuary), while the X map controls how
the card is deformed with time. If we were now to evolve our maps over time we
would see the deck of cards deform in such a manner that the deformation of each
card is identical and the deformation of the deck is just the sum of that of all the
individual cards. What is more, if we were to glue the deformed cards together
after an arbitrary integer number of periods and then make a new deck of cards
by slicing the glued cards vertically, we would �nd we had exactly the same card
(dynamics wise) as the original one at t = 0. This means the Y Z map governs the
Y Z dynamics of any arbitrary Y Z cross section. This allows us to study the two
maps separately, which means we can understand the mixing in the vertical plane
independently from that in the horizontal plane. We can therefore obtain a Y Z

ux from an understanding of the Y Z map only.

Figure 5. Poincar�e map for the velocity �eld vf or in other words
the template, for K = 11. This shows the underlying barriers (ie.
the KAM tori) and the partial barriers (cantori) in the estuary's

ow.

3.2. Poincar�e maps, turnstile lobes, regions and patchiness. We now look
at the Poincar�e map �gure 5 governing the Y Z dynamics. In Rom-Kedar and
Wiggins [21], Wiggins [31], MacKay, Meiss, Percival [11], Meiss [14], MacKay [12]
and Stirling [27, 28] it is shown in detail how to form partial barriers. It was shown
in Rom-Kedar and Wiggins [21], Wiggins [31], Meiss [14] that the area of what is
known as the turnstile lobe, gives the amount of material moving from one region
to the adjacent region across the partial barrier.



CHAOTIC ADVECTION AND POLLUTION IN ESTUARIES 9

Figure 6. Turnstile lobes generated from a period 21 approxi-
mation to the two cantori (ie. seen as bounds to the dark band,
in which there is a higher concentration of points) and also the
unstable and stable manifolds of a hyperbolic �xed point, K = 11.

In �gure 6 we see two main partial barriers. The inner barrier correspond to a
partial barrier, formed from segments of stable and unstable manifolds of a hyper-
bolic �xed point (see �gure 11 for information on the formation of such barriers).
The outer barrier corresponds to a period 21 approximation of the partial barrier
formed by the nearby cantorus. It has been show that the 
ux across a cantorus can
be approximated by using a near by periodic orbit whoes frequency corresponds to
a truncation of the continued fraction expansion of that of the cantorus, MacKay-
Meiss-Percival [11], see also Meiss [14] for a detailed review. This method involves
passing an abitary curve (Mather [13]) C0 between adjacent period n minimising
orbits, via the intermidate period n minimax orbit. This curve is then itterated
backwards n times. With the barrier being de�ned as that formed from the seg-
ments of curve corresponding to the original curve C0 and all its preimages through
till the C�n+1 preimage. The region between the original curve C0 and its C�n

preimage de�nes the turnstile lobe and hence the 
ux across the partial barrier.
We now use these partial barriers and the full barriers formed by the KAM curves

to separate Y Z space into 7 separate regions, as shown in �gure 7. If we now bear
in mind the di�erent regions that the 
ow can be separated into and the di�erence
in transport rates or 
uxes associated with such regions within the cross section,
then we can understand some of the mechanisms for generating patches in a cloud
of pollution (ie. regions of di�erent concentration). We make the claim that the
presence of these di�erent structures or regions within the 
ow would result in the
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Figure 7. This shows the main regions we split the Y Z space
into. Regions 1A and 1B are bounded by the KAM curves sur-
rounding the elliptical �xed points. The barrier separating regions
2A and 3 and regions 2B and 3 is that formed by the unstable and
stable manifolds of the hyperbolic �xed point. While the barrier
separating regions 3 and 4 is that formed by period 21 approxima-
tion to the cantorus. The barrier separating regions 4 and 5 is a
KAM curve. The outer bounds to region 5 are the boundaries of
the estuary.

creation of large to intermediate scale patches of higher concentration within clouds
of pollution. The smaller regions that could be formed using the high period orbits
are, we assume, not seen in the real 
ow as they are obliterated due to the e�ect
of turbulent 
uctuations.

4. The third dimension: structured but uncoupled. Here we �rst introduce
the concept of Stokes drift for the X-directional component of a trajectory. We
also show how it links in with maps and 
ows. We then go on to discuss how the
regions we see in the Y Z map would translate to regions in the 
ow. We �nish by
extending the concept of the barriers seen in the 2-dimensional maps to barriers in
3-dimensional 
ows.

4.1. Negative Stokes drift, maps and 
ows. Here we present the concept of
Stokes drift and tie it in with our more dynamics oriented language of maps and

ows.

The Stokes drift is de�ned as the period averaged movement of particles. (See
Pedley and Kamm [18] for an application to transport in an oscillatory tube 
ow.)
A map therefore can be thought of as just a visualisation of the Stokes drift. This
is because all the map is doing is recording where a particle has evolved to after
1 tidal period, ie. the Stokes drift. If we observe the Stokes drift in our model
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Figure 8. The Poincar�e map in the full XY Z space, R = 0, with
di�erent colours representing di�erent orbits. This shows Stokes
drift. An example of negative Stokes drift would be the yellow
trajectory, while an example of positive Stokes drift would be the
red trajectory

we obviously �nd that it is dependent upon the position of the particle in its Y Z
coordinates.

If the river 
ow into the estuary is R = 0 (see �gure 8) then there is no particular
preference for which end of the estuary a particle exits from. A value of the river

ow as low as R = 0 could be justi�ed in our model if the estuary was fed by a
very small, insigni�cant, stream.

If we consider the case when R 6= 0 (eg. R = 0:01), we �nd that there is de�nitely
a preference as to which end the particles exit from. As can be seen in �gure 9
which is typical for R 6= 0 most of the particles exit out of the sea end of the
estuary now and they do so in much less time than for R = 0. However we �nd we
can still get a negative, though reduced, Stokes drift for suÆciently small values of
R. For larger values of R the Stokes drift due to the 
ow of the river is such that
it overrides any negative Stokes drift due to time periodic estuarine 
ow. What
we would get though is a reduced positive drift in the region of the estuary where
previously for a smaller value of R, there had been negative Stokes drift.

For a value of R = 0:01 we �nd that the elliptical �xed point region, ( ie. region
1A, �gure 7), found in the negative half of the cross section (ie. Y < 0), is a region
of negative Stokes drift. In our estuary this would correspond to a region found on
the outside of the bend, as we can see from the fact that circulation in the single
bend driven cell is towards Y = �1 (ie. the outside of the bend).
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Figure 9. The Poincar�e map in the full XY Z space, R = 0:01,
with di�erent colours representing di�erent initial conditions. Note
for R 6= 0 trajectories stay within the con�nes of the estuary for
much shorter time periods.

4.2. Flows, regions and barriers in 3 dimensions. Here we concentrate on the
structures (ie. trapping regions, patches etc.) seen in the vertical Y Z cross section
and show how they would look in 3 dimensions. We study these structures for one
value of X which we shall label X0. It has to be remembered that due to the lack
of an X dependency then other values of X0 will also have the same structures
but these structures will be curtailed or extended depending on their value of X0.
This is because no matter what the value of X0 all trajectories with jXnj > 1,
are considered to have left the estuary. Xn is the X coordinate of a particle after
evolution under the 
ow for n tidal periods,

If all the Y Z Poincar�emaps are stacked together to obtain the whole 3-dimensional
map of the 
ow in the estuary (ie. when cards are collected together to make the
full deck of cards), what we see at an arbitrary time are tubes. See �gure 10.

To de�ne tube-like barriers in 3-dimensional space we have to de�ne a barrier
in the 
ow. This is more complex than it seems as when we look at the barriers
made as a result of the stable and unstable manifolds of hyperbolic periodic orbits
in the map, we see that the barrier is not dynamically de�ned (ie. the barrier is a
structure in the 
ow, it is not dynamically evolved). What this means is, for the
map, after every period the primary intersection point where the segments of stable
and unstable manifolds constituting the barrier meet, is dynamically rede�ned.
After one period the segments of unstable and stable manifolds de�ning the barrier
meet at the primary intersection point p�1, where this is the t = �1 iterate, or
pre-image, of the original primary intersection point p0, at time t0. See �gure 11.
Therefore some time during the time step n to n+1, we have to rede�ne our barrier.
This makes our barrier discontinuous, though we choose the time to rede�ne the
barrier in such a manner so as to reduce the size of the discontinuity. A suitable
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Figure 10. Tubes formed as a result of the evolution of the partial
and complete barriers observed in the Y Z map.

Figure 11. The turnstile lobe and the partial barrier, as viewed
in the 
ow for one tidal period, (t0 to t0 + 2), with P0 being the
primary intersection point, at time t0 and P�1 being the pre-image
of P0

time for our case would be t = n + 1
2
, however the time we pick to rede�ne our

barrier makes no di�erence to the volume of material which escapes the region.
This is just the area of the turnstile lobe in the vertical cross section multiplied by
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the distance travelled in the horizontal X direction in one tidal period. See �gure
11.

5. Predicted 
uxes and exit times. Here we make predictions in Y Z space for
the vertical 
uxes and the exit times (ie. the time for a trajectory to leave the
estuary) for both our model and then scaled up values for our estuary.

5.1. Theoretical 
ux or transport rates, for each region in Y Z space. We
start by de�ning the area of a turnstile lobe (ie. the amount of material leaving
or entering a speci�c region per tidal period) to be a local measurement of 
ux, �,
see Rom-Kedar and Wiggins [21], Wiggins [31] and Meiss [14]. We term the value
of 
ux for our model, �m, and the predicted value for our estuary �e. As the area
of our cross section in the model is 2, this gives a 
ux per unit area for our model,
�muc =

�m
2
. This links in with the predicted estuarine 
ux, �e as follows

predicted 
ux =
width (m) . depth (m) of estuary

tidal period (s)
:�muc

�e =
Be:He

Te
:
AY Z
tl

2
(11)

which for our particular estuaries dimensions, (see equation 10), gives

�e =
1000

43200
:20:

AY Z
tl

2
(ms�1)

=
25

108
:AY Z

tl (ms�1): (12)

We found the area AY Z
tl of the turnstile lobes in the Y Z map to be 1:5� 10�4

for the turnstile of the homoclinic tangle of the hyperbolic �xed point and 5�10�4

for turnstile of the period 21 approximation to the cantori. If we now scale these
values, using equation (12), to our particular estuaries dimensions we get 
uxes �e
of 3:5 � 10�5(m2s�1) and 1:2 � 10�4(m2s�1) for the turnstile lobe of the tangle
and period 21 orbits respectively.

The 
uxes, �e for the complete barriers (ie. those bounding the elliptical regions
(ie. region 1A and 1B, see �gure 7) and the large KAM curve separating regions 4
and 5, see �gure 7 ), will obviously be zero due to the nature of the barrier.

5.2. Exit times. The question we ask here is, how many periods does it take, for a

particle starting at X = 0, Z0, Y0 and t = 0, to leave the X bounds of the estuary?

We do this by setting up a grid of 2m by m points in Y Z space and evolving
the trajectories under the 
ow until jXnj > 1. We then record n the number of
periods (not necessarily integer), with this being de�ned to be the exit time for
speci�c space time coordinates. (There is no ambiguity with the notation Xn.) It
is important that we make the distinction between a trajectory leaving the estuary
under the 
ow, and one doing so under the mapping. As said before we consider
a trajectory to have left the estuary if during the evolution of its trajectory in the

ow jXnj > 1. At the sea end, X = 1, we consider this to mean the particle has
left for ever, while at the river end, X = �1, we assume the particle is re-injected
back into the estuary. The exit times are then plotted against Y Z for R = 0:01,
see �gures 12, and 13. Exit times for the Y Z cross section for R = 0 were not
calculated because they are computationally massive to compute due to the length
of the time particles remain within the bounds of the estuary.
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(a.) Exit times, n, for X = 0 and R = 0:01, seen in projection in Y Z
space, and color contoured in n. Negative values of n correspond
to regions of negative Stokes drift. All positive values of n greater

than 400 are colored brown.

(b.) Exit times, n, for X = 0 and R = 0:01, focusing in particular on
the structure in regions 3 and 4, (see �gure 7), by only

considering and coloring values of 90 < n < 180.

Figure 12. (a) and (b)
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If we look at �gures 12, and 13 these show some important results. One of the
most startling features of these �gures is the steps in exit times (ie. the bands of
di�erent color). The position of the steps correspond to that of the partial and
complete barriers. This means that

the complete and partial barriers do not only separate regions of

di�erent mixing, they also separate regions of di�erent Stokes drift

and hence di�erent exit times.

These three concepts: mixing, Stokes drift and exit times, as we shall discuss next,
are closely connected. In �gures 12 and 13 negative values of n correspond to
regions where the particle exited out of the river end of the estuary in n periods.
Such regions correspond to regions of negative Stokes drift, which exist for R = 0
and can also exist even for R 6= 0. The boundary to this region is the partial
barrier formed from the unstable and stable manifolds of the hyperbolic �xed point.
Positive Stokes drift refers to regions where n is positive and particles exit the
estuary at the sea end.

The most important result we obtain from �gures 12 and 13 is that,

regions in which the mixing is good and who's boundaries extend

close to those of the 
uid are regions of long exit time, for 
ows

with non slip boundary conditions.

In practice such mixing regions are common. They also often the regions where
the mixing is best as a result of large velocity di�erences resulting from the e�ects
of friction at the boundaries of the 
uid. We expect this result holds in general
for 3-dimensional steady or unsteady, coupled or uncoupled 
ows (with non-slip
boundary conditions) where the third dimension's velocity �eld is dependent on
the other two dimensions. This is because additional couplings or additional t and
X dependencies would not e�ect the fact that for non slip boundary conditions the

ow goes to zero as it approaches the boundary and the resulting large velocity
di�erences generically produce regions of good mixing, but large exit time.

As can be seen from �gures 12 and 13, the regions with the smallest exit times
are the elliptical �xed point regions. Therefore, if the mixing is good and the
regions boundaries extend towards those of the 
uid, a particle will experience a
wide range of Y and Z values before it leaves the estuary, some of which may result
in a large value of the Stokes drift and some of which may result in a small or even
a negative value of the Stokes drift, hence resulting in a reduced overall drift. If
the mixing is poor and the region does not extend close to the boundaries, as is
the case for particles trapped in the elliptical �xed point regions, the particle will
experience a much smaller range of Y and Z coordinates, and as it remains far
from the boundaries a much more constant positive or negative drift, resulting in
smaller exit times, (ie. the converse of our second result is also true).

What can also be seen from �gures 12 and 13 if one looks closely is that there are
also regions (ie. the high order periodic islands, on either side of the KAM curve)
in we have poor mixing and due to the proximity of the 
uids boundary we have
large exit times. One can also see that there is an asymmetry for exit times for the
two elliptical �xed point regions. The region which exits out into the river (ie. the
region of negative n) does so slower than the region exits out into the sea. This is
due to fact that the 
ow exiting out of the river end has to drift against the river's
component of the estuarine 
ow.

If we consider how the exit times picture would look for the full XY Z space,
we �nd that di�erences in X0, the initial value of X , would not lead to simple
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(a.) Exit times, n, for X = 0 and R = 0:01,
focusing in particular on the structure in regions 1B and 2B, (see �gure

7), by only considering values of 20 < n < 40.

(b.) Exit times, n, for X = 0 and R = 0:01,
focusing in particular on the structure in regions of negative Stokes drift 1A

and 2A, (see �gure 7), by only considering values of �90 < n < �10.

Figure 13. (a) and (b)
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proportional di�erences in n. This is due to the Y Z dependency of X directional
component of the full 3-dimensional velocity �eld. We would therefore have to build
an exit-time map for the full XY Z space or at least the speci�c X coordinates of
interest to fully understand the problem.

6. Summary including practical implications: Optimal discharge sites,

patchiness and di�usion. In this section we summerise our results for the pre-
dicted 
uxes and exit times and then use them to make predictions as to what we
expect to see in an estuary which �ts our assumptions. We then go onto discuss
exit times and what they mean for the material being 
ushed out of an estuary.
We �nish by making recommendations for the optimal discharge coordinates for a
pollution outfall site, and suggesting policies to insure the discharge of pollution
remains optimal over the tidal period.

6.1. Fluxes and barriers. Our analysis gives a lower bound for the 
uxes within
a cloud of pollution. This is because the curves we have used to �nd these 
uxes
are curves of minimal 
ux. See MacKay, Meiss and Percival [11], MacKay [12]
and Meiss [14]. In other words we have picked out the main barriers, partial or
complete, to transport. As can be seen from the Poincar�e maps, �gures 5, 6 and
the schematic, �gure 7, these barriers create trapping regions. We equate these
trapping regions to regions or patches of higher concentration within a cloud of
pollution. In our analysis so far we have omitted the e�ects of molecular di�usion
and higher dimensional turbulent 
uctuations. This is also another reason why our
results are a lower bound.

What we expect to see in a 
ow in the type of estuary we are modelling (ie. a
partially strati�ed estuary and not a well mixed one) is the presence of tube-like
structures of a higher or lower concentration than the mean for a particular cloud of
pollution. See �gures 10 and 11. The barriers to these tube-like structures would be
the partial and complete barriers we observe in our model. However, when we add
the e�ect due to high dimensional turbulent 
uctuations and molecular di�usion
we will �nd that the transport across these barriers has increased, and therefore we
no longer get complete barriers.

As we stated in the previous section, the 
uxes associated with di�erent barriers
in the template of the turbulent 
ow are either very low (ie. of the order 10�4

and 10�5(m2s�1)), or zero, for the complete barriers. In the short time scale this
means that the main means of crossing these barriers, be they partial or not, must
come from either the random or higher dimensional e�ects of turbulence or the
e�ects of molecular di�usion. However the transport due to molecular di�usion is
insigni�cant, being only of the order 10�9(ms�2), (Batchelor [3]).

It can be shown (see Fischer [6], Smith [25] and re�erences there in) that for
the types of estuaries we consider the di�usivities due to the higher dimensional
e�ects of turbulence are approximately 100 to 1000 times bigger than the 
uxes
we predict for the barriers observed in the template (this is not the case in Stirling
[27, 28]), therefore the means of escape from the regions enclosed by our partial and
complete barriers is essentially due to the higher dimensional e�ects of turbulence.
This di�usivity adds a fuzziness to the Poincar�e maps we generate. However the
structures which are observed in the Poincar�e map of our template still underly the
dynamics in the map of the full estuarine 
ow V . We would therefore expect in the
short time scale to see a fuzzy version of the tubes and barriers that we observed
in the cartoon in the turbulent 
ow.
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6.2. Optimal discharge regions in the Y Z plane. As we described earlier, and
as can be seen from �gures 12 and 13, the exit times are smallest in regions 1A and
1B. (See �gure 7.) Region 1A is on the outside of the bend and discharges out of
the river end and region 1B is on the inside of the bend and discharges out of the
sea end of the estuary. The other four regions can be ordered from 2 through to
5 consecutively in order of increasing exit times. The problem is however, as we
concluded in section 6, that the regions where the exit time is smallest are regions of
poor mixing. In such regions the mixing is essentially due to the random e�ects of
turbulent di�usion. The regions where the mixing is better have larger exit times.

To propose an optimal site for the discharge of pollutants we have to optimise the
exit time and the mixing. We have to decide whether we want either good mixing
and poor exit times or poor mixing and good exit times, or indeed somewhere in
between. We also have to understand the following two questions for our 
ow.
First, what e�ect would turbulent di�usion have on the exit times? Second, what
e�ect would gravity have on the exit time, if the density of the pollution was not

equal to that of the water in the estuary?

We now consider the �rst question. Addition of a turbulent di�usion to the 
ow
has the e�ect of increasing the e�ective mixing for a speci�c region of the cross
section. This means that particles could escape regions more easily and therefore
the likelihood of their trajectories encountering regions where the drift was very
slow would increase. The end result is, in general, an increase in the exit times,
with the stronger the turbulent di�usion the greater, in general, the increase in the
exit time.

We now consider the second question. If the density of the pollution in a cloud
were greater than that of the water in the estuary, then the overall e�ect would
be for the cloud to sink towards the bed of the estuary. This means that the
cloud would sink into a region where the exit times are greater, and ultimately the
cloud will sink to the bed of the estuary where the exit time is e�ectively in�nite.
Therefore the e�ect of a pollution cloud containing particles with a density greater
than the water in the estuary is to increase the exit time. The greater the density
di�erence the greater the increase in the exit time. The e�ect of a pollution cloud
being less dense than that of the estuary's water would be to make the cloud rise
in the 
ow. This would therefore, in general, result in a decrease in the time taken
to exit, hence giving a smaller exit time, in general. As can be seen from �gures 12
and 13 in general the higher up we are in the 
ow the quicker the exit time.

The most important use of these results is in indicating where and when and

also, where not and when not, to discharge pollution in to our estuary. We start
by indicating the black spots, ie. the places where it is de�nitely not a good idea
to discharge pollution. As can be seen from �gures 12 and 13, three regions have
either a negative Stokes drift and hence result in a drift of pollution back up the
estuary (regions 1A and 2A) or have potential for such a slow exit, so that in
e�ect the pollution may never leave the estuary (region 5). These are obviously the
regions where the discharge of pollution should de�nitely be avoided. This leaves
regions 1B, 2B, 3 and 4. Of these four regions region 1B is elliptical and hence
the mixing in this region is due to the e�ects of turbulent di�usion alone. This
region has the smallest exit times, but the discharge of pollution into such regions
would be undesirable due to the fact that the pollution would dilute at such a
slow rate, depending on the strength of the turbulent di�usion. E�ectively all that
would be happening in such a region, in the short time scale, is that the pollution
would be transported down the estuary to another place at approximately the same
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concentration it was discharged into the estuary at. Region 2B is the region with
the second smallest exit time, this region is a chaotic region and hence a region
where the mixing will be better than in region 1B. The problem with this region
however is that the di�usion across the barriers surrounding it is essentially due only
to turbulent di�usion due to the fact the area of the turnstile lobe is so small. Also
the size of region 2B is quite small in comparison to regions 3 and 4, therefore the
dilution of the pollutant will not be large and the chance of actually discharging into
it and not one of its neighbours is small (at least for an estuary with a vertical cross
section shaped similar to that in our model). This therefore leaves regions 3 and
4 for regions in which to place the optimal discharge site. Of these we recommend
region 4 as the exit times for both regions are about the same and region 4 is the
furthest away from potential sources of trouble, such as the negative Stokes drift
in region 2A.

These recommendations could change if we were to scale our model to a much dif-
ferent shaped estuary. The choice of optimal region however would still be between
regions 2B, 3 and 4.

6.3. Optimal discharge coordinates in space and time. Having in the previ-
ous subsection just picked region 4 as the optimal discharge region we have to now
give coordinates in space and time for our discharge site. If we are wanting to 
ush
pollution out of the estuary and we are in a place of positive Stokes drift then the
closer the discharge site is to the sea end X = 1, the better. If we were instead to
hit a region of negative Stokes drift however, then near the sea end barrier would
be one of the worst places. This would result in the pollution travelling all the way
back up the estuary and if the region was elliptical, it would do so in a relatively
undiluted manner.

The �nal coordinate we need to account for is time. This is important as can
be seen from �gures 14 a, b, and c, the actual position in the vertical cross section
of the regions 1 to 5 changes during one tidal period. This means what could be
an optimal site for discharge at one time could periodically be a very poor site at
another time within the same tidal period.

We can deal with the problem of the moving regions in a few ways. The �rst
way would be to �nd an outfall site that remained in the desired region for the
whole period. This appears to be unlikely from the Poincar�e maps (�gures 14).
Another simple way could be to not discharge pollution when the outfall site is not
in the optimal region. This would involve the use of small holding tanks to hold
the pollution for a time until it was safe to discharge it again. The �nal solution
would be to develop a strategy for releasing the pollution which kept the e�ective
discharge site in the optimum region. By e�ective discharge site we mean the site at
which the pollution behaves as though it has been discharged from. In other words
we mean that we discharged the pollution at a particular site, not the optimum one,
but we do so at a velocity, or even density, which causes the pollution to behave
as though it were discharged from the optimum site. We could then control the
release of pollution from our non optimum outfall site in such a manner so as to
cause the e�ective discharge site to always be in the optimum region (ie. region
4). Such a policy may well be diÆcult though not impossible to execute. It may
also be the only solution for the minimisation of the environmental impact of an
existing non optimal discharge site.
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(a)Y Z Poincar�e map, t0 = 0:

(b)Y Z Poincar�e map, t0 = T=4:

(c)Y Z Poincar�e map, t0 = T=2:

Figure 14. Y Z Poincar�e maps, (a), (b) and (c) for t0 = 0; T=4,
and T=2: respectively, where T is the tidal period and K = 11.
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