UNION CIENTIFICA
INTERNACIONAL DE RADIO

IX SIMPOSIO NACIONAL
TOMO I

Las Palmas de Gran Canaria
21 - 23 de Septiembre de 1994

Organizado por:

Departamento de Electrónica y Telecomunicación
E.T.S. Ingenieros de Telecomunicación
Universidad de Las Palmas de Gran Canaria
Banco Automatizado para la Medida de Parámetros S, de Ruido y Características DC de Transistores en Oblea

L. Pradell, F. Purroy, M. Subirats, A. Ballester, F. Torres, J. O'Callaghan, I. Corbella

ETSET, Dept. TSC, Grupo AMR.
Campus Nord de la UPC. C/ Gran Capitá s/n. - 08034 Barcelona
Tel: 93-4016834/49. Fax: 93-4017232. E-mail: pradell@voltor.upc.es

Abstract.- The AMR Group has an automated bench for the measurement of DC-characteristics, [S] parameters (45 MHz - 40 GHz) and noise parameters (2-26.5 GHz) of microwave on-wafer transistors. The hardware configuration is described, as well as the software applications developed. The measurement procedures are commented in detail, in particular those concerning the noise-parameters extraction techniques. Experimental results show the bench performances.

1.- Introducción

El Grupo AMR dispone de un banco automatizado para la obtención de las siguientes características de transistores en oblea:

- Características DC (V_{ds}-I$_d$, con V_{gs} variable, V_{gs}-I$_d$, y V_{gs}-I$_s$ con V_{gs} variable)
- Resistencias extrínsecas del modelo circuital (a partir de las características DC)
- Parámetros [S] en pequeña señal (45 MHz - 40 GHz)
- Parámetros de ruido (F_{max}, R_{in}, Γ_{opt}) en el margen 2-26.5 GHz

2.- Obtención de las características en DC y parámetros [S]

Continuando con el trabajo presentado el año anterior [3], se ha mejorado el sistema de medidas en DC con el fin de conseguir una mayor precisión de medida, y un alto grado de automatización. El diagrama de bloques del subsistema de medida en continua es el siguiente:

![Diagrama de Bloques](image)

Este sistema permite la obtención de las curvas características: $I_{ds}(V_{gs},V_{ds})$, así como las curvas de los diodos de puerta: I_p (fuente a masa), I_{pu} (drenador a masa), I_{ph} (fuente y drenador a masa), sin
tener que modificar el esquema de conexiones externo. Se trata pues de un sistema autoreconfigurable controlado por ordenador (PC) via bus GPIB. La autoreconfiguración del sistema de medidas se consigue utilizando la matriz de conmutación HP 3488A, en conjunción con un circuito basado en relés electromecánicos incluidos en la caja de control.

La instrumentación utilizada es la siguiente:

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>FUNCIÓN</th>
<th>RESOLUCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 3478 A</td>
<td>Medida de: I_{ds}, V_{gs}, V_{ds}, V_{so}</td>
<td>100 nV - 100 V 1 mA</td>
</tr>
<tr>
<td>HP 3457 A</td>
<td>Medida de: I_{ds}, I_{gs}, I_{gds}, I_{gds}</td>
<td>100 pA - 100 nA</td>
</tr>
<tr>
<td>HP 3488 A</td>
<td>Reconfigurar el sistema.</td>
<td></td>
</tr>
<tr>
<td>HP 6629 A</td>
<td>Alimentación: V_{dc}, V_{gs}</td>
<td>1 mV - 3.2 mV</td>
</tr>
</tbody>
</table>

La conexión del subsistema de medida en continua al dispositivo se realiza de dos maneras posibles según se trate de un transistor en Chip o en Onblea. Para la medida de transistores en Chip se han acoplado dos T's de polarización (HP 11612B, DC-50GHz) al Test-Fixture de transición coaxial-microstrip desarrollado en el Departamento y, recientemente, se ha mejorado para facilitar su utilización. Para la medida de transistores en oblea se utilizan las T's de polarización del sistema de medida de parámetros de ruido que, igualmente, permiten alcanzar los 40 GHz.

La Figura 1 muestra la medida en continua del diodo de puerta con los terminales de fuente y drenador conectados a masa, para un transistor on-wafer (Library F-20 de GEC-Marconi, 2x175 μm, Lg = 0.5 μm). En la misma figura se puede ver un detalle de la medida para corrientes inferiores a 5 A. En la Figura 2 se muestra las curvas características del mismo transistor I_{ds} (V_{gs}, V_{ds}).

La medida de parámetros [S] se realiza utilizando un analizador de redes vectorial HP 8510B, también controlado desde un PC. El proceso de autocalibración del analizador [1] se realiza externamente mediante algoritmos desarrollados en el Grupo. La Figura 3 muestra la medida de los parámetros [S] para el mismo transistor en un punto de polarización.

Figura 1 - Medida DC del diodo de puerta
Figura 2 - Medida DC I_{ds}/V_{gs}, V_{ds}
3.- Medida de los parámetros de ruido

La configuración hardware totalmente automática para la medida de parámetros de ruido en oblea está basada en el sistema NPTS-26 de Cascade-Microtech, que consta de un cabezal de entrada para la síntesis de los diferentes coeficientes de reflexión, en un número máximo de 8 (incluyendo el centro de la Carta de Smith), y de un cabezal de salida que incluye un amplificador de bajo ruido. El margen de frecuencias de operación del sintetizador es 2-26.5 GHz, lo cual nos permite una sustancial mejora en el ancho de banda de medida con respecto a una configuración anterior de 8 a 12 GHz [2,6]. El poder disponer en éste de 256 estados de fuente tiene, sin embargo, la ventaja de mayor versatilidad respecto al NPTS-26, en particular por lo que concierne a la cuestión teórica, todavía no resuelta en la bibliografía, de la configuración de estados de fuente "óptima" (menos sensible, en los algoritmos de extracción, a los errores de medida) [2,5,7,8].

El procedimiento de extracción de los parámetros de ruido utilizado por el NPTS-26 [4] requiere la medida de las potencias de ruido producidas por el transistor para 4 (o más) coeficientes de reflexión a la temperatura ambiente T_c (fría), y de una sola medida de potencia de ruido a temperatura caliente. Así se evitan los posibles errores introducidos por el propio medidor de factor de ruido cuando, en el cálculo del factor de ruido del transistor, aplica la fórmula de Friis para las condiciones reales de medida (desadaptación entre etapas) [11]. Todas estas medidas deben realizarse también en la fase de calibración, en la que el transistor se substituye por una conexión directa (Thru), con el fin de saber la contribución en ruido del propio medidor. Las medidas "en frio" utilizan el sintetizador de impedancias en reflexión (idea similar a la propuesta en [9]), mientras que la medida en "caliente" utiliza solamente una fuente de ruido comercial, de banda ancha y adaptada (diodo en avalancha). Con ello se evita el error de medida del factor de ruido debido a la diferencia de impedancias que presenta la fuente entre estado caliente respecto del estado frio [10, 13]. Además, al utilizar el sintetizador en reflexión, no es necesario conocer la contribución en ruido del sintetizador [4], siempre que $T_c = 290$ K. Mediante el método propuesto en [2] ya se corregía la medida (errónea) del medidor de factor de ruido (ventaja b) y se disminuyan notablemente el error de comutación ON/OFF con el uso de un aislador (ventaja a). Sin embargo, el sintetizador se utilizaba en transmisión, lo cual suponía la complicación adicional de evaluar la contribución en ruido del mismo. En la figura 4 se presenta la medida, mediante sondas coplanares, de los parámetros de ruido de un dispositivo pasivo (atenuador de 10 dB) obtenidos con el sistema NPTS-26, y se comparan con los parámetros de ruido calculados a partir de la medida de los parámetros [S]. En la referencia [12] pueden encontrarse las relaciones que permiten calcular los parámetros de ruido a partir de los [S] para un dispositivo pasivo. Los resultados de la medida utilizando ambos sistemas muestran una buena concordancia, especialmente por lo que se refiere al coeficiente de reflexión óptimo de ruido.
(Γ_{opt}). Ello parece debido a que, en el sistema de medida empleado [4], la obtención de Γ_{opt} requiere únicamente medidas de coeficientes de reflexión de fuente y de carga vistos por el dispositivo, y de potencias de ruido para la temperatura fría, sin que intervenga la fuente de ruido, con su correspondiente error en la especificación de la temperatura caliente (error de ENR). Así se evita una de las causas de error que intervienen en la medida de parámetros de ruido [13], que para el caso de la fuente empleada, sería de ± 0.15 dB. Para la extracción de los restantes parámetros de ruido (F_{min} y R_{n}) se requiere una medida de la potencia entregada por el transistor cuando a su entrada conectamos la fuente de ruido a la temperatura caliente, por lo que ya intervenio la incertidumbre en el conocimiento del ENR. El error de medida de F_{min} puede evaluarse (por comparación a la medida basada en los parámetros S) en ± 0.5 dB hasta 23 GHz, que se reduce a ± 0.25 dB si no se tiene en cuenta la medida a 16 GHz.

![Figura 4 - Medida de los parámetros de ruido de un atenuador 10 dB](image)

4.- Conclusiones

El banco de medidas curvas DC, parámetros S y de ruido, permite la extracción rápida y automatizada de estas características para transistores en oblea (también las curvas DC y los parámetros S de transistores chip). Los algoritmos de medida y cálculo desarrollados permiten una gran versatilidad para la comparación de diversos métodos de medida existentes. En la actualidad se trabaja en la comparación de los métodos presentados con métodos alternativos de medida de los elementos extrínsecos del circuito equivalente lineal del transistor [14,15] y de los parámetros de ruido [16].
Agradecimientos:

Los autores agradecen muy sinceramente la gentileza del Dept. de Electrónica, Universidad de Cantabria, que ha suministrado los transistores en oblea cuyas medidas se presentan en este artículo.

Referencias:

