
The HOM problem is decidable

Guillem Godoy Omer Gimenez Lander Ramos Carme Alvarez

June 26, 2009

Abstract

We close affirmatively a question which has been open for 35 years:
decidability of the HOM problem. The HOM problem consists in deciding,
given a tree homomorphism H and a regular tree languagle L represented
by a tree automaton, whether H(L) is regular.

For deciding the HOM problem, we develop new constructions and
techniques which are interesting by themselves, and provide several sig-
nificant intermediate results. For example, we prove that the universality
problem is decidable for languages represented by tree automata with
equality constraints, and that the equivalence and inclusion problems are
decidable for images of regular languages through tree homomorphisms.

Our contributions are based on the following new results. We describe
a simple transformation for converting a tree automaton with equality
constraints into a tree automaton with disequality constraints recognizing
the complementary language. We also define a new class of automaton
with arbitrary disequality constraints and a particular kind of equality
constraints. This new class essentially recognizes the intersection of a
tree automaton with disequality constraints and the image of a regular
language through a tree homomorphism. We prove decidability of empti-
ness and finiteness for this class by a pumping mechanism. The above
constructions are combined adequately to provide an algorithm deciding
the HOM problem.

1 Introduction

Finite-state tree automata (TA) [5] were introduced by Thatcher and Wright [17]
in the context of circuit verification. Many famous researchers contributed to
this school in the late 60’s and the early 70’s, establishing connections between
automata and logic. In the 70’s many new results were established concerning
TA, which lose a bit their connections with the applications and were studied
for their own. Applications of TA to program verification revived in the 80’s,
after the relative failure of automated deduction in this field. Automata, and in
particular TA, also appeared as an approximation of programs on which fully
automated tools can be used. New results were obtained connecting properties
of programs or type systems or rewrite systems with automata. These applica-
tions are widely used nowadays and an extended matter of research.

1

TA are a well studied formalism for representing term languages, due to their
good computational and expressiveness properties. They characterize the “reg-
ular term languages”, a classical concept used, e.g., to describe the parse trees of
a context-free grammar or the well-formed terms over a sorted signature, and to
naturally capture type formalisms for tree-structured XML data [15, 2]. Similar
as in the case of regular sets of words, regular term languages have numer-
ous convenient properties such as closure under Boolean operations (intersec-
tion, union, negation), decidable properties such as inclusion and equivalence,
and they are characterized by many different formalisms such as regular gram-
mars, regular term expressions, congruence classes of finite index, deterministic
bottom-up TA, nondeterministic top-down TA, or sentences of monadic second-
order logic [5]. Deterministic TA, for instance, can be effectively minimized and
give rise to efficient parsing.

When the used formalism for representing an infinite set of terms is not a TA,
it is often expedient to decide whether the represented set is in fact regular, or
when a given transformation preserves regularity. For example, when the set is
described as the reachable configurations of a program/system from a starting
configuration, regularity of such set allows checking interesting properties of
reachable configurations, like validity.

1.1 The HOM problem

Tree homomorphisms are the natural extension of word homomorphisms to
trees. They were defined in 1973 as a special case of tree transducers by Thatcher
in [16]. From the beginning, it was noted that, the classical property stating
that a word homomorphism preserves regularity, is no longer true when one
deals with tree languages. For example, the tree language {gn(a)|n ≥ 0} is reg-
ular since it is recognized by the tree automaton {a→ q, g(q)→ q}, where q is
an accepting state. But its image through the tree homomorphism H defined by
H(a) = a and H(g(x)) = f(H(x), H(x)) is the set of complete trees over binary
f and constant a, which is well-known to be non-regular. Since then, it has
been a long-standing open question the decidability of the the HOM problem:
given a regular tree language L and a tree homomorphism H, is H(L) regular?

This problem is not only a fundamental theoretical question. Tree homo-
morphisms are a powerful representation system. Several representation mech-
anisms based on tree patterns are just particular cases of images of regular lan-
guages through three homomorphisms, and the set of reducible instances of any
term rewrite system also can be represented in this way. Hence, it is not surpris-
ing that particular cases and variants of this problem have been studied along
the past 35 years. For example, the connection between tree homomorphisms
and tree transducers is widely studied in the handbook [10]. In particular, it
is noted that the image of a regular language through a tree homomorphism
can be represented as the rank of a bottom-up tree transducer. Regularity of
the set of reducible terms by a given term rewrite system was proved decidable
independently in [18, 14]. Regularity of the rank of a top-down tree transducer
is shown undecidable in [9]. This kind of representation generalizes the one

2

of ranks of bottom-up tree transducers. The HOM problem restricted to shal-
low homomorphisms was proved decidable in [3]. The HOM problem restricted
to monadic signatures or to top-copying homomorphisms was proved decidable
in [13].

In this work, we prove decidability of the entire HOM problem, without any
further restriction. To this end, we develop new constructions and techniques,
which are interesting by themselves, and provide several significant intermediate
results. We detail them in the following subsections.

1.2 Tree Automata with constraints

In order to prove decidability of HOM, we make use of several ideas, techniques
and results related to tree automata with disequality and equality constraints,
TA6=,= for short, developed along the last 15 years. For this reason, we dedicate
this specialized subsection of the introduction to these remarkable results. As
an example of tree automaton with equality constraints consider the following:
a → q, f(q, q) 1=2→ q. The constraint 1 = 2 imposes that the first and second
child must coincide for the application of the rule. Thus, the above automaton
recognizes the set of complete trees over binary f and constant a.

Tree automata with equality constraints, TA= for short, have been studied
in the early 80s by M. Dauchet and J. Mongy. If we consider its closure by
boolean operations, we get the class of automata with equality and disequality
constraints. Unfortunately, properties like emptiness, finiteness, and regularity
of the represented language are undecidable, even for the restriced class of TA=.

Emptiness of tree automata having only disequality constraints, TA 6= for
short, was proved decidable in [7]. Exptime-completeness of this problem was
proved in [6]. This result was developed in order to prove exptime-completeness
of the ground reducibility problem. The decidability result in [7] was extended
in [8] to the so-called class of reduction automata, which allow for arbitrary
disequalities and a limited amount of equalities. Roughtly speaking, a fixed
number of equalities are permitted at each path of a run. This result was
used to prove decidability of the first order theory of reduction. Emptiness and
finiteness of tree automata with disequality and equality constraints between
brothers (direct childs) was proved decidable in [4]. Regularity for this class
was proved decidable in [3]. As a consequence, the HOM problem was proved
decidable for the particular case of shallow homomorphisms. But also, these
results were key for proving decidability of preservation of regularity for shallow
term rewrite systems and innermost rewriting in [12]. Several other variants
of tree automata with constraints have been developed, providing decidability
results in logic and term rewriting. We do not mention them since there are
lots, and the provided techniques have not been used in this paper.

1.3 Our contributions

In the path of solving the HOM problem, we develop several ideas and tech-
niques which are interesting by themselves, and produce significant intermediate

3

results.
Our first contribution consists in a construction for converting a TA= into

a TA 6= recognizing the complement language of the first one. This construc-
tion is rather easy, but up to our knowledge, it has not been stated before,
although similar arguments are used in [7] to construct a TA6= recognizing the
set of normal forms of a term rewrite system. The complement construction
has significant consequences, like decidability of the universality problem for
tree automata with equality constraints, and more generally, decidability of the
inclusion of a regular language into the represented language by a TA=. More-
over, it gives a simple proof of undecidability of regularity test for TA 6=, and
hence, for reduction tree automata (this question was left open in [3]).

In a second step, we define a new class of automata with constraints called
tree automata with disequality and HOM equality constraints, TA 6=,hom for
short. Essentially, they recognize the intersection language between a TA6= and
the image of a regular language through a tree homomorphism. We also define
the particular subclass of TAhom which recognize images of regular languages
through tree homomorphisms.

This new class of tree automata with constraints is interesting by itself. It is
essentially a particular subclass of TA6=,=, subsumes the class of tree automata
with disequality and equality constraints between brothers, and is independent
from the class of reduction automata. In contraposition to reduction automata,
TA6=,= permit an unbounded number of equalities at each path of a run. As we
will see, emptiness and finiteness are decidable for TA6=,hom. Moreover, we will
show how to construct a TA6=,hom recognizing the intersection of the represented
languages by a TA6= and a TAhom.

The above constructions and results allow to derive new significant conse-
quences. Since two TAhom A and B represent the images of regular languages
through tree homomorphisms, by complementing A and intersecting with B we
obtain a TA 6=,hom whose emptiness is equivalent to the inclusion L(A) ⊇ L(B).
Therefore, we are able to prove decidability of inclusion and equivalence prob-
lems for images of regular languages through tree homomorphisms.

Our decision algorithm for the HOM problem has a very simple description.
First, it generates a TAhom A recognizing the language H(L). Second, it lin-
earizes A into a TA B by removing all equality constraints and replacing the
involved positions in the constraints by all possible valid terms up to a certain
height. Third, it checks L(A) = L(B), concludes “regularity” in the affirmative
case, and concludes “non-regularity” in the negative case.

Nevertheless, proving that this algorithm decides HOM is more complicated,
and requires to argue using all the above constructions.

1.4 Organization of the paper

In Section 2 we introduce basic concepts on terms and tree automata. In Sec-
tion 3 we present the construction transforming a TA= into a TA 6=. In Section 4
we define TA 6=,hom and TAhom and their runs, show that the image of a regular
language through a tree homomorphism can be recognized by a TAhom, define

4

the intersection of a TAhomand a TA6=, the intersection of two runs, and the
respective projections to recover the original runs from a run of the intersection.
In Section 5, we define the concept of pumping of a run of a TA 6=,hom. Also we
prove that for a big enough run there exists a pumping providing a smaller run,
thus concluding decidability of the emptiness problem for TA6=,hom. Moreover,
we prove that for a big enough run there exists a pumping providing a bigger
run, thus concluding decidability of the finiteness problem for TA6=,hom. In
Section 6 we show all the significant intermediate consequences of our construc-
tions. In Section 7 we use all the developed techniques to prove decidability of
the HOM problem.

2 Preliminaries

2.1 Terms

The size of a set S is denoted by |S|, and the powerset of S is denoted by 2S .
We assume that the reader is familiarized with terms, positions, substitutions
and replacements. For more detailed explanations see [1].

A signature consists of an alphabet Σ, i.e., a finite set of symbols, together
with a mapping that assigns to each symbol in Σ a natural number, its ar-
ity. We write Σ(m) to denote the subset of symbols in Σ that are of arity
m, and we write f (m) to denote that f is a symbol of arity m. The set of
all terms over Σ is denoted T (Σ) and is inductively defined as the smallest
set T such that for every f ∈ Σ(m), m ≥ 0, and t1, . . . , tm ∈ T , the term
f(t1, . . . , tm) is in T . For a term of the form a() we simply write a. For in-
stance, if Σ = {f (2), a(0)} then T (Σ) is the set of all terms that represent
binary trees with internal nodes labeled f and leaves labeled a. We fix the set
X = {x1, x2, . . .} of variables, i.e., any set V of variables is always assumed
to be a subset of X . The set of terms over Σ with variables in X , denoted
T (Σ ∪ X), is the set of terms over Σ ∪ X where every symbol in X has arity
zero. By |t| we denote the size of t, defined recursively as |f(t1, . . . , tm)| =
1 + |t1| + . . . + |tm| for each f ∈ Σ(m), m ≥ 0 and t1, . . . , tm ∈ T (Σ), and
|x| = 1 for each x in X . By height(t) we denote the height of t, defined re-
cursively as height(f(t1, . . . , tm)) = 1 + max(height(t1), . . . , height(tm)) for
each f ∈ Σ(m), k ≥ 1 and t1, . . . , tm ∈ T (Σ), height(a) = 0 for each a ∈ Σ(0),
and height(x) = 0 for each x ∈ X . Positions in terms are sequences of nat-
ural numbers. Given a term f(t1, . . . , tm) ∈ T (Σ), its set of positions Pos(t)
is defined recursively as {λ} ∪1≤i≤m {i.p | p ∈ Pos(ti)}. Here, λ denotes the
empty sequence (position of the root node), and . denotes concatenation. The
subterm of t at position p is denoted by t|p, and is formally defined as t|λ = t,
and f(t1, . . . , tm)|i.p = ti|p. root(f(t1, . . . , tm)) is f for any symbol f . Thus,
the symbol of t occurring at position p is denoted by root(t|p), and we say that
t at position p is labeled by root(t|p). For instance, for s = g(f(a, b), c), s|1
equals f(a, b) and root(t|1.2) is b. For a set Γ, we use PosΓ(t) to denote the
set of positions of t that are labeled by symbols in Γ. When a position p is of

5

the form p1.p2, we say that p1 is a prefix of p and p2 is a suffix of p. Moreover,
p − p1 is p2. For terms s, t and p ∈ Pos(s), we denote by s[t]p the result of
replacing the subterm at position p in s by the term t. More formally, s[t]λ
is t, and f(s1, . . . , sm)[t]i.p is f(s1, . . . , si−1, si[t]p, si+1, . . . , sm). For instance,
f(f(a, a), a)[a]1 = f(a, a). A substitution σ is a mapping from variables to
terms. It can be homomorphically extended to a function from terms to terms:
σ(t) denotes the result of simultaneously replacing in t every x ∈ Dom(σ) by
σ(x). For example, if σ is {x 7→ f(b, y), y 7→ a}, then σ(g(x, y)) is g(f(b, y), a).
A rewrite rule is a pair of terms l → r. Application of a rewrite rule l → r to
a term s[σ(l)]p at position p produces the term s[σ(r)]p. If R is a set of rules,
application of a rule of R to a term s resulting into a term t is denoted by
s→R t, and the reflexive-transitive closure of this relation is denoted by →∗R.

Along paper, unless the opposite is stated, by t|p1 = t|p2 we mean that p1

and p2 are positions in Pos(t) and the subterms of t at positions p1 and p2

coincide. On the the other side, by t|p1 6= t|p2 we mean that either p1 or p2 is
not in Pos(t), or that the subterms t|p1 and t|p2 are different. Note that, with
this semantics, t|p1 6= t|p2 is the negation of t|p1 = t|p2 .

2.2 Tree automata with constraints

Tree automata and regular languages are well-known concepts of theoretical
computer science[10, 11, 5] We assume that the reader knows the Boolean closure
properties of regular tree languages and the decidability results on regular tree
languages. Here we only recall the notion of tree automata with constraints.

The subsequent presentation is not the most usual one for tree automata
with constraints, but it is an equivalent one. We use this presentation in order
to make it more similar to other definitions of automata appearing in the rest
of the article, thus preparing the reader for further definitions.

Definition 2.1 (automata with constraints) A tree automaton with disequality
and equality constraints, TA6=,= for short, is a tuple A = 〈Q,Σ, F,∆〉, where Q
is a set of states, Σ is a signature, F ⊆ Q is the subset of final states, and ∆ is
a set of rules of the form f(q1, . . . , qm) c→ q, where q1, . . . , qn, q are in Q, f is
in Σ(m) and c is a conjunction/set of atoms of the form p1 6= p2 and p1 = p2 for
arbitrary positions p1, p2. When all constraints in ∆ contain only disequalities
(respectively, equalities) we say that A is a TA 6= (respectively, a TA=). When
all the constraints are empty, we say that A is a TA.

In order to define the concept of run of a TA 6=,= we define the alphabet for
describing runs on terms, which are just terms with labels indicating which rule
has been applied at each node.

Definition 2.2 (alphabet of a run) Let A = 〈Q,Σ, F,∆〉 be a TA6=,=. The
alphabet of a run of A is ∆, where each symbol of the form (f(q1, . . . , qm) c→ q)
has the same arity as this f .

The resulting state of a term r in T (∆) is q if r is of the form
(f(q1, . . . , qm) c→ q)(t1, . . . , tm).

6

The projection πΣ : T (∆) → T (Σ) is recursively defined as
(πΣ(f(q1, . . . , qm) c→ q)(t1, . . . , tm)) = f(πΣ(t1), . . . , πΣ(tm)).

Definition 2.3 (run) Let A = 〈Q,Σ, F,∆〉 be a TA6=,=. We define the concept
of run of A as a term in T (∆) satisfying certain conditions recursively as fol-
lows. Let f(q1, . . . , qm) c→ q be a rule of ∆. Let r1, . . . , rm be runs of A with
resulting states q1, . . . , qm, respectively. Let t be πΣ(f(r1, . . . , rm)). Suppose
t|p1 6= t|p2 for each (p1 6= p2) ∈ c, and t|p1 = t|p2 for each (p1 = p2) ∈ c. Then,
(f(q1, . . . , qm) c→ q)(r1, . . . , rm) is a run of A on the term t.

By L(A, q) we denote the set of terms t for which there exists a run r of A
with resulting state q such that πΣ(r) = t. The language accepted by A, denoted
L(A), is

⋃
q∈F L(A, q). A language L is regular if there exists a TA A such that

L(A) = L holds.

Definition 2.4 (tree homomorphisms) Let Σ1,Σ2 be two signatures. A tree
homomorphism is a function H : T (Σ1) → T (Σ2) which can be defined as
follows.

Let Xm represent the set of variables {x1, . . . , xm}, for each natural num-
ber m. The definition of a tree homomorphism H : T (Σ1) → T (Σ2) requires
to define H(f(x1, . . . , xm)) for each function symbol f ∈ Σ1 of arity m as a
term tf in T (Σ2 ∪Xm). After that, H(f(t1, . . . , tm)) is defined, for each term
f(t1, . . . , tm) ∈ T (Σ1) as {x1 7→ H(t1), . . . , xm 7→ H(tm)}(tf).

Alternatively, tree homomorphisms can be defined in the following way as
a function H : T (Σ1) → T (Σ2) satisfying the following condition. For any
arbitrary set of variables X , there exists an extension H : T (Σ1 ∪X)→ T (Σ2 ∪
X) of H such that, H(x) = x for each x in X , and for each term t ∈ T (Σ1∪X)
and each substitution σ : X → T (Σ2 ∪ X), H(σ(t)) is (H(σ))(H(t)), where
(H(σ))(x) is interpreted in the natural way as H(σ(x)).

Definition 2.5 The HOM problem is defined as follows:
Input: A TA A and a tree homomorphism H.
Question: Is H(A) regular?

3 The complement of a TA=

For a given TA= A = 〈Q,Σ, F,∆〉 we want to construct a TA6= B recognizing
the complement of L(A). This construction is rather easy. We just need to
consider 2Q as the set of states of B. The intuitive meaning of each state S ⊆ Q
is that there exists a run with B of a term t with resulting state S if and only
if, for each q in S, there is no run with A of t with resulting state q. In other
words, using B we are computing sets of states wich cannot be reached using
A. The rules f(S1, . . . , Sm) D→ S of B are constructed to ensure that, for those
states q in S, no rule of A with right-hand side q can be applied.

Definition 3.1 (Complement of a TA=) Let A = 〈Q,Σ, F,∆〉 be a TA=. Then,
the complement TA 6= B of A is defined as the tuple 〈2Q,Σ, {F ′| F ⊆ F ′ ⊆
Q},∆′〉 where ∆′ is the set of rules f(S1, . . . , Sm) D→ S satisfying the following:

7

• S1, . . . , Sm, S ⊆ Q.

• D is a conjunction of disequalities p 6= q such that p = q occurs in the
constraint of some rule in ∆.

• For each q in S and each rule of the form f(q1, . . . , qm) c→ q in ∆ either
there exists some i in {1, . . . ,m} satisfying qi ∈ Si, or there exist positions
p1, p2 such that p1 = p2 occurs in c and p1 6= p2 occurs in D.

Example 3.2 Let A = 〈Q,Σ, F,∆〉 be a TA= with Q = {q}, Σ = {f (2), a(0)},
F = {q}, and where ∆ contains the two rules a → q and f(q, q) 1=2−→ q. This
TA= recognizes the language of the completes trees. We can construct the com-
plement TA6= as follows. The set of states is 2Q = {∅, {q}}, the signature is the
same Σ, the set of accepting states is F ′ = {{q}} and some of the rules in ∆′

are:

• a→ ∅

• f(∅, ∅)→ ∅

• f(∅, ∅) 1 6=2−→ {q}

• f({q}, ∅)→ {q}

• f(∅, {q})→ {q}

• f({q}, {q})→ {q}

This automaton clearly recognizes the language of the uncomplete trees (be-
cause at each position we can non-deterministically check that either at least
one child is uncomplete, or both childs are not equal). According to the
definition of the complement of a TA=, there exist more rules in ∆′ (like

f({q}, {q}) 16=2−→ {q}), but they are unnecessary or useless.

The following lemma establishes one of the directions of the statement men-
tioned above: whenever a state S is the result of a run of B on a term t, no
state q in S can be the result of a run of A on t.

Lemma 3.3 Let A = 〈Q,Σ, F,∆〉 be a TA=, and B = 〈2Q,Σ, {F ′| F ⊆ F ′ ⊆
Q},∆′〉 be its complement TA6=. Let q be a state in Q and let S be a state of B
containing q. Let t be a term in L(B,S).

Then, t is not in L(A, q).

Proof. We prove it by contradiction. Let t be a minimum term in size contra-
dicting the statement, i.e. there exists S ⊆ Q, a run r′ of B satisfying πB(r′) = t
with resulting state S, a state q in S and a run r of A satisfying πΣ(r) = t with
resulting state q, and no other term smaller than t acomplishes this statement.

We write t more explicitly as f(t1, . . . , tm), and the above runs r′ and r as
(f(S1, . . . , Sm) D→ S)(r′1, . . . , r

′
m) and (f(q1, . . . , qm) c→ q)(r1, . . . , rm), respec-

tively. Note that S1, . . . , Sm are the resulting states of the runs r′1, . . . , r
′
m of

8

B on t1, . . . , tm, respectively, and q1, . . . , qm are the resulting states of the runs
r1, . . . , rm of A on t1, . . . , tm, respectively.

By the definition of ∆′, since q belongs to S, for the rule f(q1, . . . , qm) c→ q
it holds that either (i) there exists some i in {1, . . . ,m} satisfying qi ∈ Si, or
(ii) there exist positions p1, p2 such that p1 = p2 occurs in c and p1 6= p2 occurs
in D.

In case (i), ti, Si, r′i, qi, and ri satisfy the assumed conditions for t, S, r′, q
and r, but also |ti| < |t| holds. This is in contradiction with the minimality of
t.

In case (ii), by the definition of run applied on r, it holds t|p1 = t|p2 . But,
similarly, by the definition of run applied on r′, it holds t|p1 6= t|p2 , which is a
contradiction again. �

The following lemma establishes the other direction of the above statement,
but for maximal S’s, that is, given a term t, there exists a run r with B of t
whose resulting state S is just the set of states q which cannot be the result of
a run with A of t. Moreover, this is also the case for each subrun (subterm) of
r.

Lemma 3.4 Let A = 〈Q,Σ, F,∆〉 be a TA=, and B = 〈2Q,Σ, {F ′| F ⊆ F ′ ⊆
Q},∆′〉 be its complement TA 6=. Let t be a term.

Then, there exists a run r of B satisfying πB(r) = t and such that, for each
p ∈ Pos(r) it holds that r|p is a run with resulting state {q ∈ Q| t|p 6∈ L(A, q)}.

Proof. We prove it by induction on |t|. We write t more explicitly as
f(t1, . . . , tm). By induction hypothesis, for each ti there exists a run ri of
B satisfying πB(ri) = ti and such that, for each p ∈ Pos(ri) it holds that ri|p is
a run with resulting state {q ∈ Q| ti|p 6∈ L(A, q)}. In particular, the resulting
state Si of ri is {q ∈ Q| ti 6∈ L(A, q)}.

Let D be the constraint defined as the conjunction of disequalities p1 6= p2

such that p1 = p2 occurs in the constraint of some rule of A and t|p1 6= t|p2
holds (recall that, by t|p1 6= t|p2 , we understand that either p1 or p2 is not in
Pos(t), or that the subterms t|p1 and t|p2 are different). In order to conclude,

it suffices to prove that f(S1, . . . , Sm) D→ S for S = {q ∈ Q| t|p 6∈ L(A, q)} is
a rule of B. To this end, we must show, for each q in S and each rule of the
form f(q1, . . . , qm) c→ q in ∆, that either some i in {1, . . . ,m} satisfies qi ∈ Si,
or there exist positions p1, p2 such that p1 = p2 occurs in c and p1 6= p2 occurs
in D. Thus, consider any of such q and f(q1, . . . , qm) c→ q and suppose that all
i in {1, . . . ,m} satisfy qi 6∈ Si. Then, by the definition of each of such Si, there
exists a run r′i of A satisfying πΣ(r′i) = ti and with resulting state qi. Since q is
in S, by the definition of S it holds that there is no run r′ with resulting state
q such that πΣ(r′) = t. Hence, (f(q1, . . . , qm) c→ q)(r′1, . . . , r

′
m) is not a run.

Thus, some p1 = p2 occurring in the constraint c must be unsatisfied on t, i.e.
t|p1 6= t|p2 for some p1 = p2 in c. By the election of D, p1 6= p2 occurs in D.
Thus, the existence of such p1, p2 concludes the proof. �

Theorem 3.5 Let A = 〈Q,Σ, F,∆〉 be a TA=, and B = 〈2Q,Σ, {F ′| F ⊆ F ′ ⊆
Q},∆′〉 be its complement TA 6=. Then, L(A) = L(B).

9

Proof.

• We first prove L(A) ⊇ L(B). Let t be a term in L(B). Then, there exists
a run r′ of B with resulting state S such that πB(r′) = t and F ⊆ S ⊆ Q
hold. Hence, for each q in F , by Lemma 3.3 it follows that t is not in
L(A, q). Thus, t is not in L(A).

• Now, we prove L(A) ⊆ L(B). Let t be a term which is not accepted by
A. Then, for each state q of F , t 6∈ L(A, q) holds. By Lemma 3.4, t is in
L(B,S) where S is {q ∈ Q| t|p 6∈ L(A, q)}, and since F ⊆ S ⊆ Q holds, it
follows that t is in L(B).

�
Proceeding analogously we could transform a TA6= into a TA= recognizing

the complement of the first. We do not develop this transformation since it is
very similar and we do not use it for the proof of the HOM problem, but state
the analogous consequence as follows.

Theorem 3.6 Let A = 〈Q,Σ, F,∆〉 be a TA 6=. Then, it can be computed a
TA= B = 〈2Q,Σ, {F ′| F ⊆ F ′ ⊆ Q},∆′〉, called the complement TA= of A,
such that. L(A) = L(B).

4 Tree automata with disequality and HOM
equality constraints

Our aim is to define a new class of automata, with a certain kind of equal-
ity constraints, recognizing images of tree homomorphisms applied to regular
languages. These will be the tree automata with HOM constraints, denoted
TAhom, and they, essentially recognize the rank of a bottom up tree transducer.
But we will define a more general class including also arbitrary disequality con-
straints, denoted TA 6=,hom. The reason is that we will need to argue about the
intersection language of the languages represented by a TAhomand a TA 6=.

The definition of TA6=,hom has differences from the definition of TA6=,=. The
left-hand side of rules are not necessarily flat. Thus, they directly use informa-
tion of states computed at relative positions deeper than 1. The disequality con-
straints are arbitrary, but the equality constraints are restricted. They always
refer to positions with identical computed states. The rules are also labelled.
The labels are not relevant at all for further definitions of run, pumping, etc. We
will use them later, when intersecting two automata, for keeping the necessary
information to recover the runs of the two original automata from a run of their
intersection automaton.

Definition 4.1 (new automata) A tree automaton with disequality and HOM
equality constraints, TA 6=,hom for short, is a tuple A = 〈Q,Σ, F,∆〉, where Q
is a set of states, Σ is a signature, F ⊆ Q is the subset of final states, and
∆ is a set of labelled rules of the form I : s c→ q, where I is the label, s is

10

a term over T (Σ ∪ Q) − Q, interpreting the states of Q as 0-ary symbols, and
c is a conjunction/set of atoms of the form p1 6= p2 for arbitrary positions
p1, p2, and atoms of the form p̂1 = p̂2, where p̂1 and p̂2 are positions satisfying
s|p̂1 = s|p̂2 ∈ Q. Moreover, for all positions p̂1, p̂2, p̂3, if (p̂1 = p̂2) and (p̂2 = p̂3)
occur in c, then (p̂1 = p̂3) also occurs in c. By h(A) we denote the maximum
among the heights of left-hand sides of rules in ∆ and the lengths of positions
occurring in the constraints of ∆, and write h when A is clear from the context.
When no constraint in ∆ contains a disequality, we say that A is a TAhom.

Example 4.2 As an example of TAhom consider Aex = 〈Q,Σ, F,∆〉, where
Q = F = {q}, Σ = {f (3), h(1), a(0)}, and ∆ is the set of rules {ρ1 = I1 : a →
q, ρ2 = I2 : h(a) → q, ρ3 = I3 : h(f(q, q, q)) 1.1=1.2−→ q}. Note that the equality
constraint refers to positions with the same state, which is mandatory for this
kind of automata.

As in the case of tree automata with constraints, in order to define the
concept of run of a TA6=,hom we define the alphabet for describing runs on
terms, which are just terms with additional labels indicating which rule has
been applied at each node. The difference with respect to the case of plain tree
automata with constraints is that now we may also use function symbols in Σ
for defining runs, but not only rules. Roughly speaking, this is because the rules
are not applied at all the positions of a term. The projection πΣ is overloaded
to this alphabet.

Definition 4.3 (alphabet of a run) Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. The
alphabet of a run of A is Σ∪∆, where each rule (I : s c→ q) has the same arity
as the symbol root(s).

The resulting state of a term r in T (Σ∪∆) is q if r is of the form (I : s c→
q)(t1, . . . , tm).

The projection πΣ : T (Σ ∪ ∆) → T (Σ) is recursively defined as
πΣ(f(t1, . . . , tm)) = f(πΣ(t1), . . . , πΣ(tm)) and as πΣ((I : s c→ q)(t1, . . . , tm)) =
(root(s))(πΣ(t1), . . . , πΣ(tm)) for each rule (I : s c→ q) in ∆.

For a term t in T (Σ ∪∆) and a position p in Pos(t), we say that p is a ∆
position (of t) if root(t|p) is in ∆. And in the case where p is not λ and the
only proper prefix of p being a ∆ position is λ, we say that p is a first ∆ position
(of t). We will usually denote with a hat (p̂) the first ∆ positions.

Runs of TA6=,hom are defined similarly to runs of TA6=,=. One of the differ-
ences is that, for a given equality p1 = p2, while a TA 6=,= checks for equality of
the projected terms at the relative positions p1 and p2, a TA6=,hom checks for
equality of the subruns at the relative positions p1 and p2, before projecting.
This difference is not relevant, since by interpreting equalities in the usual way
we would have the same expressiveness, as can be seen in the proof of Lemma 4.8.
We have chosen it for presentation purposes, thus making the proofs easier.

Definition 4.4 (run) Let A = 〈Q,Σ, F,∆〉 be a TA6=,hom. We define the con-
cept of a run of A as a term in T (Σ∪∆) satisfying certain conditions recursively

11

as follows. Let (I : s c→ q) be a rule of ∆, where s is of the form f(s1, . . . , sm).
Let P = {p̂1, . . . , p̂n} be the set of positions of s such that (p̂ ∈ P ⇔ s|p̂ ∈ Q)
holds. Let q1, . . . , qn be s|p̂1 , . . . , s|p̂n

, respectively. Let r1, . . . , rn be runs of A
with resulting states q1, . . . , qn, respectively. Let s′ be πΣ(s[r1]p̂1 . . . [rn]p̂n

). Sup-
pose ri = rj for each (p̂i = p̂j) ∈ c, and s′|p1 6= s′|p2 for each (p1 6= p2) ∈ c.
Then, (I : s c→ q)(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n is a run of A. Note that P is the
set of first ∆ positions of r.

By L(A, q) we denote the set of terms t for which there exists a run r of A
with resulting state q such that πΣ(r) = t. The language accepted by A, denoted
L(A), is

⋃
q∈F L(A, q).

Example 4.5 (Following example 4.2) The term rex = ρ3(f(ρ1, ρ1, ρ2(a))) is a
run of Aex with projection πΣ(rex) = h(f(a, a, h(a))).

The following lemma establishes that TAhom can be used to represent images
of regular languages through tree homomorphisms.

Proposition 4.6 Let B = 〈Q,Σ1, F,∆〉 be a TA. Let H : T (Σ1)→ T (Σ2) be a
tree homomorphism. Then, it can be computed a TAhom A satisfying H(L(B)) =
L(A).

Proof. We define A as 〈Q,Σ2, F,∆′〉 where ∆′ is defined as follows. Let ∆′′ be
the set of rules of the form σ(tf) c→ q, for substitutions σ and terms tf satisfying
the following conditions:

• There exists a rule f(q1, . . . , qm)→ q in ∆ for a function symbol f of arity
m such that H(f(x1, . . . , xm)) = tf .

• Moreover, c is the conjunction of equalities (p̂1 = p̂2) such that tf |p̂1 and
tf |p̂2 are the same variable.

• The substitution σ is {x1 7→ q1, . . . , xm 7→ qm}.

Now, we define ∆′ as the set obtained by closing ∆′′ by the fixpoint computation
∆′′ := ∆′′ ∪ {s c→ q|∃(s c→ q′), (q′ → q) ∈ ∆′′ : (s 6∈ Q)}, and afterwards by
removing from ∆′′ all rules of the form q′ → q. It is straightforward to see that
H(L(B)) equals L(A) by induction of the size of the involved terms. �

Example 4.7 Let Ar = 〈Q,Σ, F,∆〉 be a TA satisfying Q = F = {q}, Σ =
{a(0), b(0), g(2)} and ∆ = {a→ q, b→ q, g(q, q)→ q}. That is, a TA recognizing
the set of all trees with a binary symbol g and leaves a and b. Let Σex be the
signature of the TAhom Aex of example 4.2. Let H : T (Σ)→ T (Σex) be the tree
homomorphism defined as follows:

• H(a) = a

• H(b) = h(a)

• H(g(x1, x2)) = h(f(x2, x2, x1))

12

The construction of Proposition 4.6 produces Aex, and it is easy to prove that
H(L(Ar)) = L(Aex) holds.

The following lemma establishes that a TAhom is essentially a particular case
of a TA=, that is, for each TAhom we can construct a TA= recognizing the same
language. It will be useful to obtain a TA 6= recognizing the complement of a
TAhom. The difficult point to prove this inclusion is the fact that equalities of
a TAhom ask for identical runs, while equalities of a TA= ask just for identical
projected runs. But this is easy to solve by transforming a run of the constructed
TA= in order to make that projected runs also identical as runs.

Lemma 4.8 Given a TAhom Ahom = 〈Q,Σ, F,∆〉, a TA= A= can be computed
satisfying L(Ahom) = L(A=). Moreover, the set of states Q′ of A= includes Q,
and for each q in Q, L(Ahom, q) = L(A=, q) holds.

Proof. For making the proof easier to read, the Q′ we will define does not
include Q, but it includes a set {qq|q ∈ Q}, and by renaming each qq to q the
result holds.

We define A= as 〈Q′,Σ, F ′,∆′〉, where Q′ is
{qt|t is a proper subterm of a left-hand side of a rule in ∆} ∪ {qq|q ∈ Q},
F ′ is {qq|q ∈ F} and ∆′ is {f(qt1 , . . . ,qtm) → qf(t1,...,tm)|qf(t1,...,tm) ∈
Q′} ∪ {f(qt1 , . . . ,qtm) c→ qq|(f(t1, . . . , tm) c→ q) ∈ ∆}. It remains to prove
L(Ahom) = L(A=), and, more in general, L(Ahom, q) = L(A=,qq) for each q in
Q.

• We prove L(Ahom, q) ⊆ L(A=,qq) by induction on the size of the
terms. Let t be a term in L(Ahom, q). Let r be a run of Ahom
with resulting state q such that πΣ(r) = t. Let r be of the form
(f(s1, . . . , sm) c→ q)(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n

. Let t1, . . . , tn be the terms
πΣ(r1), . . . , πΣ(rn), respectively. Let q1, . . . , qn be the resulting states
of r1, . . . , rn. Note that each ti is in its corresponding L(Ahom, qi).
Thus, by induction hypothesis, each ti is also in its corresponding
L(A=,qqi

). Therefore, there exist runs r′1, . . . , r
′
n of A= with resulting

states qq1 , . . . ,qqn
, respectively, and such that πΣ(r′1) = t1, . . . , πΣ(r′n) =

tn hold. For each i in {1, . . . ,m} we define s′i as the term satisfying
Pos(s′i) = Pos(si), and for each p in Pos(si), either si|p is in Q and
root(s′i|p) is qsi|p , or root(si|p) is a symbol g in Σ of a certain arity
k and root(s′i|p) is g(qsi|p.1 , . . . ,qsi|p.k

) → qsi|p . It is straightforward to
check that r′ = (f(qs1 , . . . ,qsm

) c→ qq)(s′1, . . . , s
′
m)[r′1]p̂1 . . . [r

′
n]p̂n

is a run
of A= satisfying πΣ(r′) = t.

• We prove L(Ahom, q) ⊇ L(A=,qq) by induction on the size of the in-
volved terms. Let t be a term in L(A=,qq). Let r be a run of A=

with resulting state qq such that πΣ(r) = t. Let root(r) be of the
form f(qs1 , . . . ,qsm

) c→ qq. By the definition of A=, the existence
of this rule in ∆′ implies the existence of the rule f(s1, . . . , sm) c→ q

13

in ∆. Let p̂1, . . . , p̂n be the positions p̂i satisfying f(s1, . . . , sm)|p̂i
∈

Q. Again by the definition of A=, r is necessarily of the form
(f(qs1 , . . . ,qsm

) c→ qq)(s′1, . . . , s
′
m)[r1]p̂1 . . . [rn]p̂n

, where each s′i is the
term satisfying Pos(s′i) = Pos(si), and for each p in Pos(si), either si|p
is in Q and root(s′i|p) is qsi|p , or root(si|p) is a symbol g in Σ of a
certain arity k and root(s′i|p) is g(qsi|p.1 , . . . ,qsi|p.k

) → qsi|p . Moreover,
r1, . . . , rn are runs of A= with resulting states qs|p̂1

, . . . ,qs|p̂n
, respectively,

where s is f(s1, . . . , sm), and such that πΣ(r1) = t|p̂1 , . . . , πΣ(rn) = t|p̂n

hold. By induction hypothesis, there exist runs r′1, . . . , r
′
n of Ahom

with resulting states s|p̂1 , . . . , sp̂n , respectively, such that πΣ(r′1) =
t|p̂1 , . . . , πΣ(r′n) = t|p̂n hold. Note that, it could be the case that,
for some 1 ≤ i < j ≤ n, a constraint (p̂i = p̂j) occurs in c, thus
t|p̂i

= t|p̂j
holds, but the runs r′i and r′j are different. For this reason,

(f(s1, . . . , sm) c→ q)(s1, . . . , sm)[r′1]p̂1 . . . [r
′
n]p̂n

is not necessarily a run.
Let r′′1 , . . . , r

′′
n be defined inductively as follows for each j in {1, . . . , n}.

If, for some i < j, a constraint (p̂i = p̂j) occurs in c, then r′′j is defined
as r′′i . Otherwise r′′j is defined as r′j . It is straightforward to check that
r′′ = (f(s1, . . . , sm) c→ q)(s1, . . . , sm)[r′′1]p̂1 . . . [r

′′
n]p̂n is a run of Ahom with

resulting state q and such that πΣ(r′′) is t. �

�
From Lemmas 4.8, 3.3 and 3.4, the following corollary follows.

Corollary 4.9 Given a TAhom Ahom = 〈Q,Σ, F,∆〉, a TA 6= A 6= can be com-
puted satisfying the following conditions.

• The set of states of A 6= is 2Q
′
, where Q′ is a set including Q.

• For each state q in Q, and each state S in 2Q
′

containing q and each term
t in L(A 6=, S), t is not in L(Ahom, q).

• For each term t in T (Σ), there exists a run r of A 6= satisfying πΣ(r) = t
and such that, for each p ∈ Pos(r), r|p is a run of A 6= with a resulting
state S satisfying S ∩Q = {q ∈ Q| t|p 6∈ L(Ahom, q)}.

Definition 4.10 Given a TAhom Ahom, by Ahom we define the TA 6= provided
by Corollary 4.9.

Now, we provide the necessary definitions and lemmas to intersect a TA6= and
a TAhom producing a TA6=,hom, and to intersect the corresponding runs. Here is
when the labels play an important role, keeping the necessary information of the
original runs in order to be able to recover the original runs by projection from
a run of the produced TA6=,hom. We do not give the proofs of these lemmas,
since they are rather straightforward. We do not mind about the labels of the
initial TAhom, and obviate them.

14

Definition 4.11 (Intersection of a TAhom and a TA 6=) Let A =
〈QA,Σ, FA,∆A〉 be a TAhom. Let B = 〈QB ,Σ, FB ,∆B〉 be a TA 6=. We de-
fine the TA 6=,hom A ∩ B as 〈QA × QB ,Σ, FA × FB ,∆〉, where ∆ is the set of
rules (I : s c→ 〈q, q′〉) satisfying the following conditions.

• s is a term in T (Σ ∪ (QA ×QB)).

• there exists a rule s′
c′→ q in ∆A satisfying PosΣ(s′) = PosΣ(s) and for

each p ∈ PosΣ(s′), root(s′|p) = root(s|p) holds.

• For each p̂ ∈ Pos(s) such that s|p is of the form 〈q′, q′′〉, s′|p is q′.

• I is a mapping I : PosΣ(s) → ∆B satisfying the following conditions for

each p in PosΣ(s): If I(p) is of the form f(q1, . . . , qm) c
′′

→ q, then root(s|p)
is f , and for each i in {1, . . . ,m}, either s|p.i is a state of the form 〈 , qi〉,
or I(p.i) is defined as a rule with right-hand side qi.

• c is the set c′ ∪ {p.p1 6= p.p2|p ∈ PosΣ(s) ∧ ∃t, c′′, q′ : (I(p) = (t c′′→
q′) ∧ (p1 6= p2) ∈ c′′)}.

Example 4.12 Let Ad = 〈Q′Σ, F ′,∆′〉 be a TA6= with Q′ = F ′ = {q′}, Σ = Σex

(the signature of the TAhom Aex of example4.2), and where ∆′ contains the rules:

• ρ̄1 = a→ q′

• ρ̄2 = f(q′, q′, q′)
26=3−→ q′

• ρ̄3 = h(q′)
1.16=1.3−→ q′

• ρ̄4 = h(q′)
1.16=1.2−→ q′

We can compute the TA 6=,hom Â = Aex∩Ad obtaining 〈Q×Q′,Σ, F×F ′,∆〉,
where ∆ contains the following rules:

• ρ̂1 = a→ 〈q, q′〉, with label I(λ) = ρ̄1.

• ρ̂2 = h(a)
1.16=1.3−→ 〈q, q′〉, with label I(λ) = ρ̄3, I(1) = ρ̄1. (Note that the

constraint is always satisfied.)

• ρ̂3 = h(a)
1.16=1.2−→ 〈q, q′〉, with label I(λ) = ρ̄4, I(1) = ρ̄1. (Note that the

constraint is always satisfied.)

• ρ̂4 = h(f(〈q, q′〉, 〈q, q′〉, 〈q, q′〉))

1.1 = 1.2
1.2 6= 1.3
1.1 6= 1.3−→ 〈q, q′〉, with label I(λ) = ρ̄3,

I(1) = ρ̄2.

• ρ̂5 = h(f(〈q, q′〉, 〈q, q′〉, 〈q, q′〉))

1.1 = 1.2
1.2 6= 1.3
1.1 6= 1.2−→ 〈q, q′〉, with label I(λ) = ρ̄4,

I(1) = ρ̄2, which is useless because the constraint is unsatisfiable.

15

Proposition 4.13 Let A be a TAhom. Let B be a TA6=. Then, L(A ∩ B) =
L(A) ∩ L(B).

Definition 4.14 Let A = 〈QA,Σ, FA,∆A〉 be a TAhom. Let B =
〈QB ,Σ, FB ,∆B〉 be a TA6=. Let r = (I : s c→ 〈q, q′〉)(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n

be a run of A ∩B.
The projected run πhom(r) is defined rescursively as (I : s

c→
q)(s1, . . . , sm)[πhom(r1)]p̂1 . . . [πhom(rn)]p̂n .

The projected run r′ = π 6=(r) is defined recursively as follows. Let r′1, . . . , r
′
n

be π 6=(r1), . . . , π 6=(rn), respectively. Let s′ be any term satisfying Pos(s′) =
Pos(s), and for each p ∈ PosΣ(s) it holds that root(s′|p) is I(p). Then, π 6=(r)
is defined as s′[r′1]p̂1 . . . [r

′
n]p̂n .

Proposition 4.15 Let A = 〈QA,Σ, FA,∆A〉 be a TAhom. Let B =
〈QB ,Σ, FB ,∆B〉 be a TA 6=. Let r be a run of A ∩ B. Then, πhom(r) is a
run of A, and π 6=(r) is a run of B.

Lemma 4.16 Let A = 〈QA,Σ, FA,∆A〉 be a TAhom. Let B = 〈QB ,Σ, FB ,∆B〉
be a TA6=. Let r1, r2 be runs of A ∩B. Let p be a position in Pos(r1) ∩ Pos(r2)
such that root(r1|p) = root(r2|p) holds.

Then, (πhom(r1))|p = (πhom(r2))|p holds. Moreover, if for all prefix p′ of p,
root(r1|p′) = root(r2|p′) holds, then (π 6=(r1))|p = (π 6=(r2))|p holds.

Definition 4.17 (intersection of runs of a TAhom and a TA6=) Let t be a term
in T (Σ), and let rA = (s c→ q)[r1]p̂1 . . . [rn]p̂n

and rB be runs of A and B such
that πΣ(rA) = πΣ(rB) = t. The intersected run r = rA∩rB is defined recursively
to satisfy the following conditions:

• Pos(r) = Pos(rA) = Pos(rB).

• For each i in {1, . . . , n}, r|p̂i
= (ri ∩ (rB |p̂i

)) holds.

• For each p in PosΣ(s)− {λ}, root(r|p) = root(rA|p).

• root(r) is (I : s c→ 〈q, q′〉), where q′ is the resulting state of rB, and for
each p in PosΣ(s), I(p) = rB |p holds.

Example 4.18 (Continues example 4.12) The following run r̂ is a run of Â:
r̂ = ρ̂4(f(ρ̂1, ρ̂1, ρ̂2(a))), with projection πΣ(r̂) = h(f(a, a, h(a))), and it is the
intersection of the runs πhom(r̂) = ρ3(f(ρ1, ρ1, ρ2(a))) (but without labels) and
π 6=(r̂) = ρ̄3(ρ̄2(ρ̄1, ρ̄1, ρ̄3(ρ̄1))).

Proposition 4.19 Let A be a TAhom. Let B be a TA6=. Let rA, rB be runs of
A and B, respectively. Then, π 6=(rA ∩ rB) = rB and πhom(rA ∩ rB) = rA hold.

16

5 Pumpings

Pumping is a traditional concept in automata theory, and in particular, they are
very useful to reason about tree automata. The basic idea is to convert a given
run r into another run by replacing a subterm at a certain position p in r by a
run r′, thus obtaining a run r[r′]p. For plain tree automata, the necessary and
sufficient condition to ensure that r[r′]p is a run is that the resulting states of r|p
and r′ coincide, since application of a rule at a certain position depends only on
the resulting states of the subruns of the direct childs. When the tree automata
has equality and disequality constraints, the constraints may be falsified when
replacing a subrun by a new run. For TA6=,hom, we will define a notion of
pumping ensuring that the equality constraints are satisfied, while nothing is
guaranteed for the disequality constraints.

Definition 5.1 (pumping of a run) Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. Let
r, r′ be runs of A, and let p̄ be a position such that r|p̄ is a run of A and
root(r|p̄) = root(r′) holds. The pumping of r′ into r at position p̄, denoted
r[[r′]]p̄, is a term in T (Σ ∪ ∆) defined recursively as follows. Let r be of the
form 〈f, I : s c→ q〉(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n .

Suppose first that p̄ is λ. Then, r[[r′]]p̄ is r′.
Otherwise, suppose that p̄ is of the form p̂i.p̄

′ for some i in {1, . . . , n}, and
let r′i be ri[[r′]]p̄′ . Then, r[[r′]]p̄ is r[r′1]p̂1 . . . [r

′
n]p̂n

, where each r′j is defined as
r′i in the case where j is i or (p̂i = p̂j) occurs in c, and r′j is defined as rj
otherwise.

The case where p̄ is not λ and no p̂i is a prefix of p̄ is not possible, by the
condition that r|p̄ is a run.

Note that r[[r′]]p̄ is just a new term in T (Σ ∪ ∆). Nevertheless, by abuse
of notation, when we write r[[r′]]p̄ we sometimes consider it as the action of
constructing a pumping by assumming that r, r′ and p̄ are still explicit.

While the definition above preserves satisfaction of equalities in the con-
straints, nothing is guaranteed for disequalities. The following basic lemma is
independent from the definition of pumping, but it will be very useful to reason
about pumpings. It intuitively says that, when a concrete disequality is falsi-
fied as a consequence of a multiple replacement of occurrences of one term by
another new term, the new term is uniquely determined.

Lemma 5.2 Let s and t be terms in T (Σ) such that s 6= t. Let P = {p1, . . . , pn}
be a set of positions in Pos(s). Let P ′ = {p′1, . . . , p′k} be a set of positions in
Pos(t). Suppose that s|p1 = . . . = s|pn

= t|p′1 = . . . = t|p′k holds.
Then, there exists at most one term u satisfying s[u]p1 . . . [u]pn =

t[u]p′1 . . . [u]p′k

Proof. We prove it by induction on |s|+ |t|, and distinguishing cases depending
on whether some pi or p′i is λ or not.

If some pi or p′i is λ, say p1, then n is 1 and since s 6= t and s|p1 coincides
with all t|p′j , it follows that no p′j is λ. Therefore, either k is 0 and hence

17

t[u]p′1 . . . [u]p′k is t for any term u, or k is not 0 and hence u is a proper subterm
of t[u]p′1 . . . [u]p′k for any term u. In the first case, only u = t makes the equality
s[u]p1 . . . [u]pn

= u = t = t[u]p′1 . . . [u]p′k true, and we are done. In the second
case, no u satisfies the equality s[u]p1 . . . [u]pn

= t[u]p′1 . . . [u]p′k , and we are done.
Otherwise, suppose that none of the pi’s and p′i’s is λ. Since s and

t are different, either root(s) 6= root(t), or s and t are of the form
f(s1, . . . , sm), f(t1, . . . , tm), respectively, and there exists some i in {1, . . . ,m}
such that si and ti are different. In the first case it is obvious that no u satisfies
s[u]p1 . . . [u]pn

= t[u]p′1 . . . [u]p′k , and we are done. Thus, assume that the second
case holds for a certain i, and let Pi and P ′i be {p|i.p ∈ P} and {p|i.p ∈ P ′},
respectively. The terms si, ti, and sets of positions Pi and P ′i satisfy the condi-
tions of the lemma, and |si|+ |ti| < |s|+ |t|. Hence, induction hypothesis apply
for them, and it follows also for s and t that there exists at most one term u
such that s[u]p1 . . . [u]pn

= t[u]p′1 . . . [u]p′k holds. �
The following lemma connects with the previous one because it argues that

a pumping is just a multiple replacement of occurrences of one term by another
new term.

Lemma 5.3 Let A = 〈Q,Σ, F,∆〉 be a TA6=,hom. Let r be a run of A, and let
p̄ be a position such that r|p̄ is a run of A.

Then, there exist parallel positions p̄1, . . . , p̄k including p̄ such that, for
all run r′ satisfying root(r′) = root(r|p̄), r|p̄1 = . . . = r|p̄k

and r[[r′]]p̄ =
r[r′]p̄1 . . . [r

′]p̄k
hold.

Moreover, if a prefix p of p̄ satisfies that r|p is a run and for some i in
{1, . . . , k}, p is a prefix of p̄i and |p̄i − p| ≤ h(A), then, |{p′|p ≤ p′ < p̄ ∧
r|p′ is a run}| is bounded by h(A).

Proof. It is easy to verify that the set of positions reppos(r, p̄), defined
recursively as follows for a given run r and a position p̄ under the above
assumptions, satisfies the statement. reppos(r, λ) is defined as {λ}, and
reppos((I : s c→ q)(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n

, p̂i.p̃) is defined as {p̂j .p̃′|(j =
i ∨ (p̂i = p̂j) ∈ c) ∧ p̃′ ∈ reppos(ri, p̃)} �

When a pumping does not produce a run, there must exists at least one
falsified disequality, and one of them must be a prefix of the position p̄ of the
pumping.

Lemma 5.4 Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. Let r, r′ be runs of A, and
let p̄ be a position such that r|p̄ is a run of A and root(r|p̄) = root(r′) holds.
Suppose that r[[r′]]p̄ is not a run.

Then, there exists a position p such that root((r[[r′]]p̄)|p) is of the form
(I : s c→ q), and there exists (p1 6= p2) in c satisfying πΣ(r[[r′]]p̄)|p.p1 =
πΣ(r[[r′]]p̄)|p.p2 . Moreover, p can be chosen to be a prefix of p̄.

Proof. We prove it by induction on height(r). If p̄ is λ, then, r[[r′]]p̄ is r′, which
is a run, thus contradicting the statement. Hence, without loss of generality, r
is of the form (I : s c→ q)(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n and p̄ is of the form p1.p̃.

18

If r1[[r′]]p̃ is not a run, then, by induction hypothesis, there exists a prefix p′

of p̃ such that root((r1[[r′]]p̃)|p′) is of the form (I ′ : s′ c
′

→ q′), and there exists
(p1 6= p2) in c′ satisfying πΣ(r1[[r′]]p̃)|p′.p1 = πΣ(r1[[r′]]p̃)|p′.p2 . By defining p as
p1.p

′ the lemma follows.
Otherwise, assume that r1[[r′]]p̃ is a run. Since r[[r′]]p̄ is not a run, this

can only be due to the existence of a disequality (p1 6= p2) in c satisfying
πΣ(r[[r′]]p̄)|p1 = πΣ(r[[r′]]p̄)|p2 . By defining p as λ the lemma follows. �

Definition 5.5 (replaced positions and falsified disequalities) Let A =
〈Q,Σ, F,∆〉 be a TA6=,hom. Let r be a run of A, and let p̄ be a position such
that r|p̄ is a run of A.

According to Lemma 5.3, there exist parallel positions p̄1 = p̄, . . . , p̄k such
that r[[r′]]p̄ = r[r′]p̄1 . . . [r

′]p̄k
for any run r′ satisfying root(r|p̄) = root(r′). We

call the replaced positions of any of such pumpings r[[r′]]p̄ to these positions.
We will usually denote them with a bar (p̄i), or with a tilde (p̃i).

Let r′ be a run such that root(r|p̄) = root(r′) but r[[r′]]p̄ is not a run.
According to Lemma 5.4, there exists a position p such that root((r[[r′]]p̄)|p)
is of the form (I : s

c→ q), and there exists (p1 6= p2) in c satisfying
πΣ(r[[r′]]p̄)|p.p1 = πΣ(r[[r′]]p̄)|p.p2 . In such a case, we say that the pumping
r[[r′]]p̄ falsifies (p1 6= p2) at p. Moreover, if some p̄i is a proper prefix of p.p1

(p.p2) we say that the pumping r[[r′]]p̄ close-falsifies (p1 6= p2) at 〈p, p̄i, p.p1〉
(at 〈p, p̄i, p.p2〉). Note that, it may happen that r[[r′]]p̄ close-falsifies (p1 6= p2)
at 〈p, p̄i, p.p1〉 and at 〈p, p̄i, p.p2〉. In the case where r[[r′]]p̄ falsifies (p1 6= p2)
at p but no p̄i is a proper prefix of p1 or of p2, we say that r[[r′]]p̄ far-falsifies
(p1 6= p2) at p.

Example 5.6 (Continues Example 4.18) Let rp be a run of Â, defined as rp =
ρ̂2(ρ̂1). Then, the pumping r̂[[rp]]1.1 is the run r̂ = ρ̂4(f(ρ̂2(a), ρ̂2(a), ρ̂2(a))),
which far-falsifies the disequalities 1.1 6= 1.3 and 1.2 6= 1.3 at position λ.

In order to give an example of a close-falsified disequality we define another
example. Let Aex2 = 〈Q,Σ, F,∆〉 be a TA6=,hom where Q = F = {q} holds,
Σ = {f (2), h(1), a(0)} holds, and ∆ is the following conjunction of rules:

• ρ1 = a→ q

• ρ2 = h(q)
1.1 6=1.2−→ q

• ρ3 = f(q, q) 1=2−→ q

Let rex2 be the following run of Aex2: ρ3(ρ2(ρ2(ρ1)), ρ2(ρ2(ρ1))), with projec-
tion πΣ(rex2) = f(h(h(a)), h(h(a))), and let rp be ρ3(ρ1, ρ1). Then, the pump-
ing rex2[[rp]]1.1 is: ρ3(ρ2(ρ3(ρ1, ρ1)), ρ2(ρ3(ρ1, ρ1))) which is not a run, because
it close-falsifies (1.1 6= 1.2) at 〈1, 1.1, 1.1.1〉 (or at 〈1, 1.1, 1.1.2〉), and it close-
falsifies (1.1 6= 1.2) at 〈2, 2.1, 2.1.1〉 (or at 〈2, 2.1, 2.1.2〉).

The following technical definitions and lemmas are used to argue for the
existence of certain pumpings when a term is big enough. These proofs are
developed in the following two subsections.

19

Lemma 5.7 Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. Let r, r′ be runs of A, and let
p̄ be a position such that r|p̄ is a run of A and root(r|p̄) = root(r′) holds.

If r[[r′]]p̄ close-falsifies some disequality, then r[[r′]]p̄ close-falsifies a dise-
quality (p1 6= p2) at a tuple 〈p, p̄i, p.p1〉 where p is a prefix of p̄.

Proof. We prove it by induction on height(r). If p̄ is λ, then, r[[r′]]p̄ is r′, which
is a run, thus contradicting the statement. Hence, without loss of generality,
assume that r is of the form (I : s c→ q)(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n and p̄ is of
the form p̂1.p̃.

If r1[[r′]]p̃ close-falsifies some disequality, then, by induction hypothesis,
r1[[r′]]p̃ close-falsifies a disequality (p1 6= p2) at a tuple 〈p′, p̃i, p′.p1〉 where p′ is
a prefix of p̃. By defining p as p̂1.p

′ and p̄i as p̂1.p̃i the lemma follows.
Otherwise, assume that r1[[r′]]p̃ does not close-falsify any disequality. Since

r[[r′]]p̄ close-falsifies some disequality, it must be a disequality (p1 6= p2) close-
falsified at a tuple of the form 〈λ, p̄i, λ.p1〉. By defining p as λ the lemma follows.
�

Definition 5.8 (h-similar terms) Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. We de-
note as h(A) to the maximum between the maximum length of positions occurring
in the constraints of the rules of ∆, and the maximum height of a left-hand side
of a rule in ∆. We write h when A is clear from the context.

Let s and t be terms in T (Σ). By s =h t we denote that the following
conditions hold:

• For each position p with |p| ≤ h, (p ∈ Pos(s)⇔ p ∈ Pos(t)) holds.

• For each p ∈ Pos(s) with |p| ≤ h, (root(s|p) = root(t|p)) holds.

• For each positions p1, p2 ∈ Pos(s) with |p1|, |p2| ≤ h, ((s|p1 = s|p2) ⇔
(t|p1 = t|p2)) holds.

Note that =h is an equivalence relation with a finite number of classes de-
pending on ∆. By H(A), or H when A is clear from the context, we denote such
a number of classes.

Lemma 5.9 Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. Let r, r1, r2 be runs of A,
and let p̄ be a position such that r|p̄ is a run of A and root(r|p̄) = root(r1) =
root(r2). Suppose that r[[r1]]p̄ and r[[r2]]p̄ are not runs. Let p̄1, . . . , p̄k be the
replaced positions of both r[[r1]]p̄ and r[[r2]]p̄.

• If both r[[r1]]p̄ and r[[r2]]p̄ far-falsify the same (p1 6= p2) at the same p,
then, πΣ(r1) = πΣ(r2).

• If πΣ(r|p̄) =h πΣ(r1) =h πΣ(r2) and both r[[r1]]p̄ and r[[r2]]p̄ close-falsify
the same (p1 6= p2) at the same 〈p, p̄i, p.p1〉, then πΣ(r)|p̄.((p.p1)−p̄i) 6=
πΣ(r1)|(p.p1)−p̄i

= πΣ(r2)|(p.p1)−p̄i
.

20

Proof. The first item is a direct consequence of previous definitions and
Lemma 5.2.

For the second item, we first prove that no position in {p̄1, . . . , p̄k} can be a
proper prefix of p.p2 by contradiction. Thus, assume that, for some position in
{p̄1, . . . , p̄k}, say p̄j , p̄j is a proper prefix of p.p2. Note that r|p̄ = r|p̄i = r|p̄j .
Thus, πΣ(r|p̄)|(p.p1)−p̄i

= πΣ(r)|p̄.((p.p1)−p̄i) = πΣ(r)|p̄i.((p.p1)−p̄i) = πΣ(r)|p.p1 6=
πΣ(r)|p.p2 = πΣ(r)|p̄j .((p.p2)−p̄j) = πΣ(r)|p̄.((p.p2)−p̄j) = πΣ(r|p̄)|(p.p2)−p̄j

holds,
and since πΣ(r|p̄) =h πΣ(r1), then πΣ(r1)|(p.p1)−p̄i

6= πΣ(r1)|(p.p2)−p̄j
holds.

But this is in contradiction with the fact that r[[r1]]p̄ close-falsifies (p1 6= p2) at
〈p, p̄i, p.p1〉.

Second, we show that p.p2 is not a prefix of any position in {p̄1, . . . , p̄k},
again by contradiction. Thus, assume that, for some position in {p̄1, . . . , p̄k},
say p̄j , p.p2 is a prefix of p̄j . Then, r1 is a subterm of r[[r1]]p̄|p.p2 . On the other
side, since p̄i is a proper prefix of p.p1, it holds that r[[r1]]p̄|p.p1 is a proper
subterm of r1. Thus, r[[r1]]p̄|p.p1 = r[[r1]]p̄|p.p2 is not possible, contradicting the
fact that r[[r1]]p̄ close-falsifies (p1 6= p2) at 〈p, p̄i, p.p1〉.

From the two above previous facts, we conclude that p.p2 is parallel with
all replaced positions p̄1, . . . , p̄n. Thus, r|p.p2 = r[[r1]]p̄|p.p2 = r[[r2]]p̄|p.p2 holds.
Moreover, recall that πΣ(r)|p̄.((p.p1)−p̄i) = πΣ(r)|p.p1 6= πΣ(r)|p.p2 = πΣ(r|p.p2)
holds, and note that πΣ(r1)|(p.p1)−p̄i

= πΣ(r[[r1]]p̄)|p.p1 = πΣ(r[[r1]]p̄)|p.p2 =
πΣ(r[[r1]]p̄|p.p2), and πΣ(r2)|(p.p1)−p̄i

= πΣ(r[[r2]]p̄)|p.p1 = πΣ(r[[r2]]p̄)|p.p2 =
πΣ(r[[r2]]p̄|p.p2) hold. Therefore, πΣ(r)|p̄.((p.p1)−p̄i) 6= πΣ(r1)|(p.p1)−p̄i

=
πΣ(r2)|(p.p1)−p̄i

also hold, and we are done. �

5.1 decreasing pumpings

When a term is big enough, it can be argued the existence of a pumping de-
creasing the size and producing a correct run. This allows to prove decidability
of emptiness. The proof of this fact follows the ideas presented in [8].

In the following bounds, let N∆ be the number of different disequalities in
the rules of ∆. We write N when ∆ is clear from the context.

Lemma 5.10 Let A = 〈Q,Σ, F,∆〉 be a TA6=,hom. Let s be a term of minimal
size among all the terms accepted by A. Let M be H· |∆| · (2Nh)(2Nh+1). Then,
height(s) ≤ h

[
((N + 1)M − 1)(N + 1)/N

]M .

Proof. Let r be a run of A with an accepting resulting state and such that
πΣ(r) = s. Let p̌ be a position of r. In order to conclude, it suffices to bound
|p̌| by h

[
((N + 1)M − 1)(N + 1)/N

]M .
We will apply a conceptual process dealing with a data structure of the form

〈S, {〈E1, P1〉, . . . , 〈Ek, Pk〉}〉, where all S,E1, P1, . . . , Ek, Pk are sets of positions
satisfying the following invariants:

• S ∪E1 ∪ . . .∪Ek is the set of all positions p such that p ≤ p̌ holds and r|p
is a run.

• The sets S,E1, . . . , Ek are pairwise disjoint.

21

• For each i in {1, . . . , k} and each two positions p̄, p ∈ Ei, s|p̄ =h s|p and
root(r|p̄) = root(r|p) hold.

• P1, . . . , Pk contain positions that are suffixes of positions occurring in the
constraint of some rule in ∆.

• For each i in 1, . . . , k, and each p̄, p ∈ Ei, and each p̆ in Pi, s|p̄.p̆ = s|p.p̆
holds.

Starting the process: The first tuple of our process will be
〈∅, {〈E1, ∅〉, . . . , 〈Ek, ∅〉}〉, where {E1, . . . , Ek} is the partition satisfying that
E1∪. . .∪Ek is the set of all positions p such that p ≤ p̌ holds, r|p is a run, and two
positions p̄, p are in the same Ei if and only if (s|p̄ =h s|p∧root(r|p̄) = root(r|p))
holds. It is clear that the first tuple satisfies the invariant.

A step of the process: Now, at each step of the process with a current
tuple 〈S, {〈E1, P1〉, . . . , 〈Ek, Pk〉}〉, it is chosen the minimum position p̄ in E1 ∪
. . . ∪ Ek. Without loss of generality, suppose that p̄ is in E1. Note that p̄ is a
proper prefix of all positions p in E1 − {p̄}, and that r|p̄ and all r|p for each of
such p are runs. Moreover, by the minimality of s, no r[[r|p]]p̄ for each of such p
is a run. By Lemma 5.4, each of such r[[r|p]]p̄ falsifies some disequality (p1 6= p2)
at some p′. Moreover, by Lemma 5.7, in the case where r[[r|p]]p̄ close-falsifies a
disequality (p1 6= p2) at some 〈p′, p̄′, p′.p1〉, this p′ can be chosen to be a prefix
of p̄. Now, the process considers the set S′ of all positions p in E1 − {p̄} such
that r[[r|p]]p̄ far-falsifies some disequality. Note that, by the minimality of p̄, on
the one side |p̄| ≤ |S|+ 1, and on the other side, by the first item of Lemma 5.9,
|S′| ≤ N |p̄|. Thus, |S′| is bounded by N(|S| + 1). Now note that, for each p
in E1 − ({p̄} ∪ S′), r[[r|p]]p̄ close-falsifies some disequality (p1 6= p2) at some
〈p′, p̄′, p′.p1〉. Moreover, by Lemma 5.7, for each of such p we can assume that
the corresponding p′ is a prefix of p̄. Note also that, by the last part of the
statement in Lemma 5.3, such a p′ can be chosen only among h(A) possibilities.
The process constructs a partition {E′1, . . . , E′n} of E1−({p̄}∪S′) and satisfying
the following condition: for each i in {1, . . . , n}, there exists a position p̆i, a
disequality (p1 6= p2), and a tuple 〈p′, p̄′, p′.p1〉, such that, for each position p in
Ei, the pumping r[[r|p]]p̄ close-falsifies (p1 6= p2) at 〈p′, p̄′, p′.p1〉, p′ is a prefix of p̄
and p′.p1−p̄′ equals p̆i (note that there could be several different elections for the
partition {E′1, . . . , E′n} if some r[[r|p]]p̄ close-falsifies several disequalities). For
each of such i’s, disequalities (p1 6= p2), and tuples 〈p′, p̄′, p′.p1〉, by the second
item of Lemma 5.9, πΣ(r)|p̄.((p′.p1)−p̄′) is different from πΣ(r|p)|(p′.p1)−p̄′ for each
p in E′i, and all of such πΣ(r|p)|(p′.p1)−p̄′ are identical. It follows πΣ(r)|p̄.p̆i

6=
πΣ(r)|p.p̆i for each p in E′i, and all πΣ(r)|p.p̆i are identical for all p in E′i. Thus, by
the invariants of the process, p̆i is not in P1 (note that this consequence is valid
for p̆1, . . . , p̆n). The tuple constructed for the next step is 〈S∪{p̄}∪S′, {〈E′1, P1∪
{p̆1}〉, . . . , 〈E′n, P1∪{p̆n}〉, 〈E2, P2〉, . . . , 〈Ek, Pk〉}〉. From the above observations
it follows that the new tuple satisfies the invariants, too.

Recall that, at each step, 〈E1, P1〉 is removed and new 〈E′1, P1 ∪
{p̆1}〉, . . . , 〈E′n, P1 ∪ {p̆n} are added, where each of such P1 ∪ {p̆i} satisfy that
p̆i is not in P1. Also recall that, by the invariants, the sets Pj contain suffixes

22

of positions occurring at disequalities in the constraints of rules in ∆. There
are at most 2Nh different suffixes of this kind. Moreover, by the last part of
the statement in Lemma 5.3, the triples 〈p′, p̄′, p′.p1〉 are constructed by choos-
ing p′ among h possibilities, and p1 among 2N possibilities, from which p̄′ is
uniquely determined. Hence, there are at most 2Nh possible triples. Thus,
when 〈E1, P1〉 is replaced by 〈E′1, P1 ∪ {p̆1}〉, . . . , 〈E′n, P1 ∪ {p̆n}〉, such an n is
bounded by 2Nh. Therefore, the number of execution steps of the process is
bounded by M = H · |∆| · (2Nh)(2Nh+1). It follows that the process termi-
nates, and S contains all prefixes p′ of p such that r|p′ is a run when it halts.
Let Si represent the set S at the i’th execution step. By the above remarks
|Si+1| ≤ |Si| + N(|Si| + 1) + 1. By solving this serie for |S0| = 0 we conclude
|Si| ≤ ((N + 1)i− 1)(N + 1)/N , and hence, the number of prefixes p′ of |p| such
that r|p′ is a run is bounded by |SM | ≤

[
((N + 1)M − 1)(N + 1)/N

]M , and this
concludes the proof since, as a consequence, h times this number bounds |p|. �

Corollary 5.11 The emptiness problem is decidable for TA 6=,hom.

5.2 Increasing pumpings

When a term is big enough, it can be argued the existence of infinite pumpings
increasing the size and producing correct runs. This allows to prove decidability
of finiteness, but also, it will be a key point for the decidability of the HOM
problem.

Definition 5.12 Let A be a TA6=,hom. We define ȟ(A) as H · |∆| · (h(A)2 +
h(A)) · ((2Nh(A) + 1)(2Nh(A)+1)).

The key lemma of this subsection is Lemma 5.19. For its proof, we need to
develop several intermediate technical results related to falsified disequalities.

Lemma 5.13 Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. Let r be a run of A satisfying
height(r) > ȟ(A). Let p̌ be a position in Pos(r) satisfying |p̌| = height(r).
Then, there are two positions p, p̄ of Pos(r) satisfying the following conditions:

• p < p̄ ≤ p̌ and |p|+ h(A)2 < |p̄|.

• r|p and r|p̄ are runs such that root(r|p) = root(r|p̄).

• r[[r|p]]p̄ does not close-falsify any disequality.

Proof. We proceed by contradiction by assuming that such two positions do not
exist. Thus, for any two positions p, p̄ satisfying p < p̄ ≤ p̌, |p| + h2 < |p̄|, r|p
and r|p̄ are runs, and root(r|p) = root(r|p̄), it holds that the pumping r[[r|p]]p̄
close-falsifies some disequality.

Since |p̌| = height(r) holds, in particular, |p̌| > ȟ(A) holds. From the
prefixes of p̌ we can choose a set E with |E| ≥ ȟ(A)/(H · |∆| · (h2 + h)) =
(2Nh+ 1)(2Nh+1) and satisfying the following conditions.

23

• For each position p in E, r|p is a run.

• For each two positions p, p̄ in E, πΣ(r|p) =h πΣ(r|p̄) and root(r|p) =
root(r|p̄) hold.

• For each two positions p, p̄ in E, satisfying p < p̄, |p|+ h2 < |p̄| holds.

By our assumptions, for any two positions p < p̄ in E, the pumping r[[r|p]]p̄
close-falsifies some disequality.

We will proceed by modifying E and a set of positions P as follows by
preserving the above conditions, and also by preserving the following invariant:
P contains suffixes of positions occurring at disequalities in the constraints of
rules in ∆, and for each position p̆ in P and each two positions p < p̄ in E,
πΣ(r|p.p̆) = πΣ(r|p̄.p̆) holds.

Initially, P is ∅ and E is defined as above. At each step, we consider the
maximum position p̄ of E in size. Note that, for each position p < p̄ in E the
pumping r[[r|p]]p̄ close-falsifies some disequality (p1 6= p2) at some 〈p′, p̄′, p′.p1〉.
Moreover, by Lemma 5.7, for each of such p we can assume that the corre-
sponding p′ is a prefix of p̄. Note also that, by the last part of the statement in
Lemma 5.3, such a p′ can be chosen only among h possibilities.

Let {E1, . . . , En} be a partition of E−{p̄} satisfying the following condition:
for each i in {1, . . . , n}, there exists a position p̆i, a disequality (p1 6= p2),
and a tuple 〈p′, p̄′, p′.p1〉, such that, for each position p in Ei, the pumping
r[[r|p]]p̄ close-falsifies (p1 6= p2) at 〈p′, p̄′, p′.p1〉, p′ is a prefix of p̄ and p′.p1 − p̄′
equals p̆i (note that there could be several different elections for the partition
{E1, . . . , En} if some r[[r|p]]p̄ close-falsifies several disequalities). For each of
such i’s, disequalities (p1 6= p2), and tuples 〈p′, p̄′, p′.p1〉, by the second item of
Lemma 5.9, πΣ(r)|p̄.((p′.p1)−p̄′) is different from πΣ(r|p)|(p′.p1)−p̄′ for each p in Ei,
and all of such πΣ(r|p)|(p′.p1)−p̄′ are identical. It follows πΣ(r)|p̄.p̆i

6= πΣ(r)|p.p̆i

for each p in Ei, and all πΣ(r)|p.p̆i
are identical for all p in Ei. Thus, by the

invariant, p̆i is not in P (note that this consequence is valid for p̆1, . . . , p̆n). For
the next step, we choose E as the Ei with maximum cardinality |Ei|, and choose
P as P ∪{p̆i}. From the above observations it follows that the new E,P satisfy
the invariants, too.

Note that, at each step, P increases its cardinality by 1. Also recall that the
set P contains suffixes of positions occurring at disequalities in the constraints
of rules in ∆. There are at most 2Nh different suffixes of this kind. It follows
that the number of execution steps is bounded by 2Nh. Moreover, by the last
part of the statement in Lemma 5.3, the triples 〈p′, p̄′, p′.p1〉 are constructed by
choosing p′ among h possibilities, and p1 among 2N possibilities, from which p̄′

is uniquely determined. Hence, there are at most 2Nh possible triples. Thus,
the partition E1, . . . , En has at most 2Nh parts. Hence, the cardinal of E is
substracted by 1 and then divided by at most 2Nh at each execution step,
i.e. |Ej+1| ≥ d(|Ej | − 1)/(2Nh)e. Note that, according to the assumptions, E
must be empty at the last execution step. Thus, the starting E satisfies |E| <
((2Nh+ 1)(2Nh+1)), and this is in contradiction with |E| ≥ (2Nh+ 1)(2Nh+1).�

24

Lemma 5.14 Let A = 〈Q,Σ, F,∆〉 be a TA6=,hom. Let r, r′ be runs of A, and
let p̄ be a position such that root(r|p̄) = root(r′). Let p1, p2 be two positions
such that r|p1 is a run, r|p1 6= r|p2 holds, and both p1, p2 are prefixes of replaced
positions in r[[r′]]p̄. Then, either r[[r′]]p̄|p1 is a proper subterm of r[[r′]]p̄|p2 , or
r[[r′]]p̄|p2 is a proper subterm of r[[r′]]p̄|p1 .

Proof. We prove it by induction on |p̄|. We write r more explicitly as (I : s c→
q)(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n

. If p1 or p2 is λ, the result follows trivially. Thus,
assume that none of them is λ. If p2 is a position in PosΣ(s), then, since both
p1 and p2 are prefixes of replaced positions and r|p1 is a run, it follows that
p1 is of the form p̂i.p

′
1, and p2 is a proper prefix of a certain p̂j satisfying that

(p̂i = p̂j) occurs in c. The result follows trivially by the definition of pumping.
Thus, assume that p2 is not in PosΣ(s). In this case, p1 is of the form p̂i.p

′
1,

and p2 is of the form p̂j .p
′
2 where (p̂i = p̂j) occurs in c. Let p̂k be the prefix of

p̄ among the positions p̂1, . . . , p̂n. Note that either p̂i is p̂k or (p̂i = p̂k) occurs
in c, and either p̂j is p̂k or (p̂j = p̂k) occurs in c. Now, observe that the runs
r|p̂k

, r′, the position p̄ − p̂k, and the two positions p̂k.p′1 and p̂k.p
′
2 satisfy the

assumptions of the lemma and |p̄ − p̂k| < |p̄| holds. Therefore, by induction
hypothesis, either (r|p̂k

)[[r′]]p̄−p̂k
|p′1 is a proper subterm of (r|p̂k

)[[r′]]p̄−p̂k
|p′2 , or

(r|p̂k
)[[r′]]p̄−p̂k

|p′2 is a proper subterm of (r|p̂k
)[[r′]]p̄−p̂k

|p′1 . Finally, since either
p̂i is p̂k or (p̂i = p̂k) occurs in c, and either p̂j is p̂k or (p̂j = p̂k) occurs in c,
then (r|p̂k

)[[r′]]p̄−p̂k
|p′1 = r[[r′]]p̄|p1 and (r|p̂k

)[[r′]]p̄−p̂k
|p′2 = r[[r′]]p̄|p2 hold, and

hence, the result follows. �

Lemma 5.15 Let A = 〈Q,Σ, F,∆〉 be a TA6=,hom. Let r, r′ be runs of A, and
let p̄ be a position such that root(r|p̄) = root(r′). Let p be a prefix of p̄ such
that height(r|p) = |(p̄ − p)| + height(r|p̄) holds. Let p1 be a position such
that p.p1 is a prefix of a replaced position in r[[r′]]p̄. Let k be |{p′|p ≤ p′ <
p.p1 ∧ r|p′ is a run}|.

Then, height(r[[r′]]p̄|p.p1) ≥ |p̄− p|+ height(r′)− k · h(A).

Proof. We prove it by induction on |p1|. If r|p.p1 is not a run, then, since p1 is
a prefix of a replaced position, p1 can be enlarged to satisfy that r|p.p1 is a run,
by preserving the rest of assumptions and the value for k. Thus, assume that
r|p.p1 is a run.

Assume that p1 is λ. Then k is 0, height(r[[r′]]p̄|p.p1) = height(r[[r′]]p̄|p) ≥
|(p̄ − p)| + height(r′) holds, and hence, height(r[[r′]]p̄|p.p1) ≥ |p̄ − p| +
height(r′)− k · h follows.

Otherwise, assume that p1 is not λ. We write r more explicitly as (I :
s
c→ q)(s1, . . . , sm)[r1]p̂1 . . . [rn]p̂n . Let p̂j be the prefix of p̄ among the positions

p̂1, . . . , p̂n. Since r|p.p1 is a run, p.p1 is of the form p.p̂i.p
′
1 for some p̂i such that

either p̂i is p̂j , or (p̂i = p̂j) occurs in c. Now, note that the runs r, r′, the position
p̄, and the positions p.p̂j and p′1 satisfy the assumptions of the lemma for k− 1,
and |p′1| < |p1| holds. Thus, by induction hypothesis, height(r[[r′]]p̄|p.p̂j .p′1

) ≥
|p̄− (p.p̂j)|+ height(r′)− (k − 1) · h holds.

25

Since either p̂i is p̂j or (p̂i = p̂j) occurs in c, it follows that r[[r′]]p̄|p.p1
coincides with r[[r′]]p̄|p.pj .p′1

. Since |p̄ − p| ≤ |p̄ − (p.p̂j)| + h holds, it follows
height(r[[r′]]p̄|p.p1) ≥ |p̄− p|+ height(r′)− k · h and we are done. �

Corollary 5.16 Suppose the hypothesis of the previous lemma and
height(r′) > height(r|p̄) + k · h(A),

Then, height(r[[r′]]p̄|p.p1) > height(r|p).

Lemma 5.17 Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. Let r be a run of A satisfying
height(r) > ȟ(A). Let p̌ be a position in Pos(r) satisfying |p̌| = height(r).
Then, there exist two positions p, p̄ of Pos(r) satisfying the following conditions:

• p < p̄ ≤ p̌ and |p|+ h(A)2 < |p̄|.

• r|p and r|p̄ are runs such that root(r|p) = root(r|p̄).

• r[[r|p]]p̄ is a run.

Proof. We consider p, p̄ to be the two positions given by Lemma 5.13. In order to
conclude, it suffices to prove that r[[r|p]]p̄ does not far-falsify any disequality. We
proceed by contradiction by assumming that it far-falsifies a disequality (p1 6=
p2) at a position p′. Thus, πΣ(r|p′.p1) 6= πΣ(r|p′.p2) and πΣ(r[[r|p]]p̄|p′.p1) =
πΣ(r[[r|p]]p̄|p′.p2) hold. By Lemma 5.4, p′ can be assumed to be a prefix of p̄.
Note that, by the definition of far-falsification, no replaced position in r[[r|p]]p̄
is a proper prefix of p′.p1 nor p′.p2. Since πΣ(r|p′.p1) 6= πΣ(r|p′.p2) holds, there
exists a position p′′ satisfying the following conditions:

• |p′′| ≤ h.

• no replaced position in r[[r|p]]p̄ is a proper prefix of p′.p1.p
′′ nor p′.p2.p

′′.

• πΣ(r|p′.p1.p′′) 6= πΣ(r|p′.p2.p′′).

• either (i) the roots of πΣ(r|p′.p1.p′′) and πΣ(r|p′.p2.p′′) differ, or (ii) some
of r|p′.p1.p′′ or r|p′.p2.p′′ is a run.

We choose p′′ to be minimal in size satisfying the above conditions. Note
that, since πΣ(r[[r|p]]p̄|p′.p1) = πΣ(r[[r|p]]p̄|p′.p2) holds, πΣ(r[[r|p]]p̄|p′.p1.p′′) =
πΣ(r[[r|p]]p̄|p′.p2.p′′) also holds.

In case (i), it follows πΣ(r[[r|p]]p̄|p′.p1.p′′) 6= πΣ(r[[r|p]]p̄|p′.p2.p′′), a contra-
diction. Thus, assume that case (ii) holds. At this point, we distinguish the
following cases:

• Assume that both p′.p1.p
′′ and p′.p2.p

′′ are prefixes of replaced positions in
r[[r|p]]p̄. Since either r|p′.p1.p′′ or r|p′.p2.p′′ is a run, by Lemma 5.14, either
r[[r|p]]p̄|p′.p1.p′′ is a proper subterm of r[[r|p]]p̄|p′.p2.p′′ or r[[r|p]]p̄|p′.p2.p′′ is
a proper subterm of r[[r|p]]p̄|p′.p1.p′′ . In any case, πΣ(r[[r|p]]p̄|p′.p1.p′′) 6=
πΣ(r[[r|p]]p̄|p′.p2.p′′) follows, a contradiction.

26

• Assume that none of p′.p1.p
′′ and p′.p2.p

′′ is a prefix of a replaced position
in r[[r|p]]p̄. In this case, πΣ(r[[r|p]]p̄|p′.p1.p′′) coincides with πΣ(r|p′.p1.p′′),
and πΣ(r[[r|p]]p̄|p′.p2.p′′) coincides with πΣ(r|p′.p2.p′′). This is in con-
tradiction with πΣ(r|p′.p1.p′′) 6= πΣ(r|p′.p2.p′′) and πΣ(r[[r|p]]p̄|p′.p1.p′′) =
πΣ(r[[r|p]]p̄|p′.p2.p′′).

• Finally, assume that only one of p′.p1.p
′′ and p′.p2.p

′′ is a prefix of a
replaced position in r[[r|p]]p̄. We assume that it is p′.p1.p

′′ (the other
case reaches a contradiction analogously). Thus, πΣ(r[[r|p]]p̄|p′.p2.p′′) co-
incides with πΣ(r|p′.p2.p′′). Note that height(r|p′.p2.p′′) < height(r|p′).
By the minimality election for p′′, it holds that k = |{p′′′| p′ ≤ p′′′ <
p′.p1.p

′′ ∧ r|p′′′ is a run}| is smaller than or equal to h. Recall that p′ is a
prefix of p̄, p′.p1.p

′′ is a prefix of a replaced position in r[[r|p]]p̄, and since
p̄ is a prefix of p̌, height(r|p′) = |(p̄ − p′)| + height(r|p̄) holds. Recall
also that |p̄ − p| > h2 holds, and hence, height(r|p) > height(r|p̄) + h2

holds. Thus, by Corollary 5.16, height(r[[r|p]]p̄|p′.p1.p′′) ≥ height(r|p′)
holds. It follows height(r[[r|p]]p̄|p′.p1.p′′) > height(r|p′.p2.p′′) =
height(πΣ(r|p′.p2.p′′)) = height(πΣ(r[[r|p]]p̄|p′.p2.p′′)). Therefore,
πΣ(r[[r|p]]p̄|p′.p1.p′′) 6= πΣ(r[[r|p]]p̄|p′.p2.p′′)) holds, a contradiction.

�

Corollary 5.18 Let A = 〈Q,Σ, F,∆〉 be a TA 6=,hom. Let r be a run of A
satisfying height(r) > ȟ(A). Let p̌ be a position in Pos(r) satisfying |p̌| =
height(r). Let p̄ be the minimum prefix of p̌ in size satisfying that r|p̄ is a run
and |p̄| > h(A)2.

Then, there exists a run r′ satisfying that r[[r′]]p̄ is a run and height(r′) >
height(r|p̄).

Proof. Let p, p̃ be the positions given by Lemma 5.17. Thus, they satisfy the
following conditions:

• p < p̃ ≤ p̌ and |p|+ h2 < |p̃|.

• r|p and r|p̃ are runs such that root(r|p̃) = root(r|p).

• r[[r|p]]p̃ is a run.

In order to conclude, it suffices to observe that the pumping r[[r|p]]p̃ at p̃ can
be seen as a pumping at p̄, since r[[r|p]]p̃ equals r[[((r|p̄)[[r|p]]p̃−p̄)]]p̄. �

Lemma 5.19 Let A be a TA 6=,hom. Let r be a run of A such that height(r) >
ȟ(A). Then, there exists a position p̄ in r and infinitely many different runs
r1, r2, . . . of A such that:

• |p̄| > h(A)2 and r|p̄ is a run.

• all root(r|p̄), root(r1), root(r2), . . . coincide.

• all pumpings r[[r1]]p̄, r[[r2]]p̄, . . . are runs.

27

Proof. Let p̌ be any position in Pos(r) satisfying |p̌| = height(r). We choose p̄
as the minimum prefix of p̌ in size satisfying that r|p̄ is a run and |p̄| > h2. By
Corollary 5.18, there exists a run r1 satisfying that r′1 := r[[r1]]p̄ is a run and
height(r1) > height(r|p̄). Note that p̄ is also the minimum prefix of a position
in Pos(r′1) with length height(r′1). Thus, Corollary 5.18 can be applied again,
concluding the existence of a run r2 satisfying that r′2 := r′1[[r2]]p̄ = r[[r2]]p̄ is a
run and height(r2) > height(r′2|p̄) = height(r1). We conclude by noting that
this inference can be iterated again and again. �

Corollary 5.20 The finiteness problem is decidable for TA 6=,hom.

Proof. By Lemma 5.19, in order to decide this problem for a given a
TA6=,homA = 〈Q,Σ, F,∆〉, it suffices to check whether there is a run r of A with
an accepting resulting state and satisfying height(r) > ȟ(A). This question
can be easily reduced to the emptiness problem, which is decidable, according
to Corollary 5.11. To this end, it suffices to straightforwardly construct a new
TA6=,hom A′ accepting the same language as L(A) minus the terms with height
smaller than or equal to ȟ(A), and then decide emptiness of L(A′). �

6 Consequences

Theorem 6.1 The inclusion problem L(A) ⊇ L(B) is decidable for a TA= A
and a TA B given as input.

Proof. By Theorem 3.5, the complement TA 6= Ā of A recognizes L(A). It is well-
known how to compute a new TA6= recognizing the intersection of the languages
represented by a TA 6= and a TA (in fact, our Definition 4.11 subsumes this
construction). Thus, a TA6= Ā ∩B recognizing L(A) ∩ L(B) can be computed.
It is well-known (see [7, 6]) that emptiness of a TA6= is decidable (in fact, our
Corollary 5.11 subsumes this result). Thus, we conclude by noting that deciding
emptiness of L(A) ∩ L(B) is equivalent to deciding L(A) ⊇ L(B). �

Corollary 6.2 The universality problem is decidable for TA=.

Proof. Deciding L(A) = T (Σ) is equivalent to deciding L(A) ⊇ T (Σ), and since
T (Σ) is regular, from Theorem 6.1 it follows that universality is decidable. �

Corollary 6.3 The finiteness problem of L(B)− L(A) is decidable for a TA=

A and a TA B given as input.

Proof. As in the proof of Theorem 6.1, we can construct a TA6= recognizing
L(A)∩L(B). In order to conclude, we mention that it is well-known that finite-
ness of a TA6= is decidable (in fact, our Corollary 5.20 subsumes this result).

Corollary 6.4 The regularity test is undecidable for TA6=, and thus, for reduc-
tion tree automata.

28

Proof. Since regularity is undecidable for TA=, our transformation of a TA=

into a TA6= recognizing the complement is a reduction from this problem into
regularity of a TA6=. Since TA6= are a particular case of reduction automata,
the second part of the statement follows, too.

Theorem 6.5 The inclusion problem is decidable for images of tree homomor-
phisms, that is, L(HA(A)) ⊇ L(HB(B)) is decidable for a TA A, a TA B, and
tree homomorphisms HA and HB given as input.

Proof. By Proposition 4.6, two TA= A′ and B′ recognizing L(HA(A)) and
L(HB(B)), respectively, can be computed. By Lemma 4.8 and Theorem 3.5,
the complement TA 6= Ā′ of A′ recognizes L(A′). By Proposition 4.13, Ā′ ∩ B′
recognizes L(A′) ∩ L(B′). By Corollary 5.11, emptiness of L(A′) ∩ L(B′) is
decidable. Thus, we conclude by noting that deciding emptiness of L(A′)∩L(B′)
is equivalent to deciding L(HA(A)) ⊇ L(HB(B)). �

Corollary 6.6 The equivalence problem is decidable for images of tree homo-
morphisms, that is, L(HA(A)) = L(HB(B)) is decidable for a TA= A, a TA B,
and tree homomorphisms HA and HB given as input.

Corollary 6.7 The inclusion and equivalence problems are decidable for ranks
of bottom up tree transducers.

Corollary 6.8 The finiteness problem of L(HA(A)) − L(HB(B)) is decidable
for a TA A, a TA B, and tree homomorphisms HA and HB given as input.

Proof. As in the proof of Theorem 6.5, we can construct a TA6= recognizing
L(HA(A)) ∩ L(HB(B)). In order to conclude, we note that, by Corollary 5.20,
finiteness of L(HA(A)) ∩ L(HB(B)) is decidable. �

7 Decision of the HOM problem

In a first subsection we present a simple algorithm deciding the HOM problem.
In two next subsections we argue the correctness of the algorithm.

7.1 The algorithm deciding the HOM problem

Definition 7.1 (linearization of a TAhom) Let Ahom = 〈Q,Σ, F,∆〉 be a
TAhom. Let h be a natural number. The linearization of Ahom by h is the
TAhom 〈Q,Σ, F,∆′〉, denoted linearize(Ahom, h), where ∆′ is the set of all
rules of the form s[s1]p1 . . . [sn]pn → q such that:

• A rule of the form s
c→ q occurs in ∆.

• p1, . . . , pn are the positions ocurring in c.

• For each i in {1, . . . , n}, si is a term in L(Ahom, s|pi
) such that

height(si) ≤ h.

29

• For each i, j in {1, . . . , n} such that pi is different from pj and (pi = pj)
occurs in c, si = sj holds.

It is straightforward that a linearization of any TAhom is computable and
recognizes a regular language, since no equality constraints appear. It is also
clear that L(Ahom) includes the language of any of its linearizations. Moreover,
in the case where L(Ahom) is included in some of its linearizations, we can
conclude that L(Ahom) is regular.

Example 7.2 Let Aex3 = 〈Q,Σ, F,∆〉 be a TAhom such that Q = F = {q}
holds, Σ = {f (2), a(0)} holds, and the rules of ∆ are:

• ρ1 = a→ q

• ρ2 = f(q, q) 1=2−→ q

• ρ3 = f(f(q, q), q)→ q

• ρ4 = f(q, f(q, q))→ q

Then, the linearization linearize(Aex3, 0) is 〈Q,Σ, F,∆′〉, where ∆′ is the
set of rules {ρ′1, ρ2, ρ3, ρ4} such that ρ′1 is the rule f(a, a) → q. It is easy to
see that the language of the linearization contains the original language of Aex3,
and it follows that L(Aex3) is regular.

But if we consider a TA 6=,hom Aex4 = 〈Q,Σ, F,∆′′〉, where ∆′′ is ∆− {ρ3},
it can be proved that no linearization of Aex4 contains the original language.

The key point for deciding the HOM problem using linearization is stated
by the following lemma.

Lemma 7.3 Let Ahom be a TAhom. Let ȟ be ȟ(Ahom ∩ Ahom). Suppose that
L(Ahom) is not included in L(linearize(Ahom, ȟ)). Then, L(Ahom) is not
regular.

The proof of this lemma is done along the next subsections. It provides a
simple decision algorithm for the HOM problem, described as follows.

• Input: A tree automaton A and a tree homomorphism H.

• Construct a TAhom Ahom recognizing H(A).

• Construct the linearization B of Ahom by ȟ(Ahom ∩Ahom).

• If L(linearize(Ahom, ȟ(Ahom∩Ahom))) includes L(Ahom) then halt with
output “REGULAR”.

• Otherwise, halt with output “NON-REGULAR”.

Theorem 7.4 The HOM problem is decidable.

To conclude, it remains to prove Lemma 7.3.

30

7.2 A non-terminating process detecting non-regularity

In order to prove Lemma 7.3, we describe a non-terminating process. We empha-
size that this process is not executed in order to decide regularity (the algorithm
has already been presented in previous section). It will just help us to argue
about the certainness of Lemma 7.3.

The process deals with sets of terms with equality constraints. They repre-
sent an infinite set of ground terms: the ones obtained by applying substitutions
holding the constraints.

Definition 7.5 (constrained terms) Let Ahom = 〈Q,Σ, F,∆〉 be a TAhom. A
constrained term with respect to Ahom is a pair t|c, where t is a term in
T (Σ ∪ Q), and c is a conjunction/set of equalities of positions (p1 = p2) sat-
isfying that t|p1 = t|p2 ∈ Q holds and p1 and p2 are different. Moreover, if
(p1 = p2), (p2 = p3) occur in c, then (p1 = p3) also occurs in c, for arbitrary
positions p1, p2, p3. We identify a term t with a constrained term t|∅, that is,
with an empty conjunction of equalities. We define also the replacement of a
subterm t|p in a term t at position p by a constrained term s|c, denoted t[s|c]p,
as t[s]|

∧
(p1=p2)∈c(p.p1 = p.p2).

An instance of t|c is a ground term of the form t[s1]p1 . . . [sn]pn
, where

{p1, . . . , pn} are the positions pi satisfying t|pi
∈ Q, {s1, . . . , sn} are ground

terms satisfying si ∈ L(Ahom, t|pi
) such that, for each (pi = pj) occurring in

c, si = sj holds. The set of instances of a constrained term t|c with respect to
Ahom is denoted instances(t|c, Ahom), or instances(t|c) when Ahom is clear
from the context. The set of instances of a set S of constrained terms with re-
spect to a TAhom Ahom, denoted instances(S,Ahom) or instances(S) when
Ahom is clear from the context, is

⋃
(t|c)∈S(instances(t|c)).

Definition 7.6 (linearization of constrained terms) Let Ahom = 〈Q,Σ, F,∆〉
be a TAhom. Let h be a natural number. Let t|c be a constrained term with
respect to Ahom. The linearization of t|c by h, denoted linearize(t|c, h), is the
set of terms t[s1]p1 . . . [sn]pn

, where {p1, . . . , pn} are the positions occurring in
c, {s1, . . . , sn} are ground terms satisfying si ∈ L(Ahom, t|pi

), each height(si)
is smaller than or equal to h, and for each (pi = pj) occurring in c, si = sj
holds.

The process has a TAhom Ahom = 〈Q,Σ, F,∆〉 as input, constructs a set
S of constrained terms with respect to Ahom, and proceeds by modifying S
until it (eventually) detects a condition implying non-regularity. The following
invariants are satisfied at the beginning of each step of the process:

I1. Each t|c in S satisfies that c is ∅.

I2. instances(S) is equal to L(Ahom).

I3. For each two terms t1, t2 in S and each two positions p1, p2 satisfying that
t1|p1 and t2|p2 are in Q, ||p2| − |p1|| ≤ h(Ahom).

31

The description of the process is as follows

1. Input: A TAhom Ahom = 〈Q,Σ, F,∆〉.

2. Assign S := F .

3. If all terms in S are in T (Σ), i.e. no state in Q occurs in S, then halt with
output “REGULAR”.

4. Otherwise, let p be a position minimal in size among {p′| ∃t ∈ S : t|p′ ∈
Q}. Let t be a term of S satisfying t|p ∈ Q. Let q be t|p. Assign
S := (S − {t}) ∪ {t[s|c]p | (s c→ q) ∈ ∆}. (Note that, at this point, S
satisfies all the invariants except I1).

5. While S does not satisfy I1 do:

a. Let t′|c′ be a constrained term in S where c′ is not empty.

b. If there exists a position p′ in c′ and a term t′′ in instances(t′|c′)−
instances(S − {t′|c′}) such that height(t′′|p′) > ȟ(Ahom ∩ Ahom),
then halt with output “NON-REGULAR”.

c. Otherwise, assign S := (S − {t′|c′}) ∪ linearize(t′|c′, ȟ(Ahom ∩
Ahom)).

6. Go to 3.

It is clear that the above process satisfies all the invariants when it passes
throught item 3. We insists again that this process is not executed. Thus, it
does not matter if the used instructions are computable (nevertheless they are).

Lemma 7.7 If the process does not halt with output “NON-REGULAR”, then
L(Ahom) ⊆ L(linearize(Ahom, ȟ(Ahom ∩Ahom))).

Proof. Let ∆′ the set of rules of linearize(Ahom, ȟ(Ahom∩Ahom)). Note that,
when step 3 is executed, any term u inside S satisfies u→∗∆′ q′ for some q′ ∈ F .
Thus, in order to conclude, it suffices to prove that any term u in L(Ahom)
is included in S at some point of the execution, under the assumptions of the
lemma.

Assume that the process does not halt with output “NON-REGULAR”.
Let u be a term in L(Ahom). Note that, either the process halts with output
“REGULAR” at step 3, or it does not halt. In the first case, by Invariant I2, u
belongs to S when the process halts. In the second case, at some point of the
execution in step 3, the minimal position p in size among {p′| ∃t ∈ S : t|p′ ∈ Q}
satisfies |p| > height(u). Thus, by Invariant I2, at this point of the execution,
u is also in S, and we are done. �

Hence, in order to prove Lemma 7.3, it rests to see that, when the process
halts with output “NON-REGULAR”, L(Ahom) is not regular. This reduces to
check that, when the condition in step 5b of the process is satisfied, it follows
that L(Ahom) is not regular. This is done in the following subsection.

32

7.3 Correctness of the process

We will use the following lemma, which characterizes when a term is not an
instance of a constrained term.

Lemma 7.8 Let Ahom = 〈Q,Σ, F,∆〉 be a TAhom. Let s|d be a constrained
term. Let t be a term in T (Σ)− instances({s|d}). Then, one of the following
conditions hold:

• There is a position p in PosΣ(s) ∩ Pos(t) such that root(s|p) is different
from root(t|p).

• There is a position p in PosQ(s) such that t|p is not in L(A, s|p).

• There is an equality (p1 = p2) in d such that t|p1 is different from t|p2 .

The following two lemmas allow to conclude that, when condition in step 5b
of the process is satisfied, it follows that L(Ahom) is not regular.

Lemma 7.9 Let Ahom = 〈Q,Σ, F,∆〉 be a TAhom. Let S be a set of constrained
terms satisfying I2 and I3. Let t|c be a constrained term in S. Let p̆1, . . . , p̆n
be the positions p̆i satisfying t|p̆i ∈ Q. Suppose that p̆1 occurs in c, and that,
without loss of generality, p̆2, . . . , p̆k are all positions p̆j such that (p̆1 = p̆j)
occurs in c. Suppose that t′ = t[t1]p̆1 . . . [t1]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
is a term in

instances(t|c)−instances(S−{t|c}) such that height(t1) > ȟ(Ahom∩Ahom)
holds.

Then, there exist infinitely many terms t1,1, t1,2, . . . such that all
t[t1,j]p̆1 . . . [t1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n are also terms in instances(t|c) −
instances(S − {t|c}).

Proof. By the definition of instance, there exists a run r1 of Ahom such that
πΣ(r1) = t1 and the resulting state of r1 is t|p1 . Let r̄ be a run of Ahom
satisfying πΣ(r̄) = t′ and all conditions given by Corollary 4.9. In particular,
for each p ∈ Pos(r̄) it holds that r̄|p is a run with a resulting state including
{q ∈ Q| t′|p 6∈ L(Ahom, q)}. Let r̂1 be the run r1 ∩ r̄|p1 of Ahom ∩ Ahom. By
Lemma 5.19, there exist a position p̄ in r̂1 and infinitely many different runs
r̂1,1, r̂1,2, . . . of Ahom ∩Ahom such that:

• |p̄| > h(Ahom ∩Ahom)2 and r̂1|p̄ is a run.

• All root(r̂1|p̄), root(r̂1,1), root(r̂1,2), . . . coincide.

• All pumpings r̂1[[r̂1,1]]p̄, r̂1[[r̂1,2]]p̄, . . . are runs.

We define t̂1,1 := πΣ(r̂1[[r̂1,1]]p̄), t̂1,2 := πΣ(r̂1[[r̂1,2]]p̄),. . . .
Now, consider p as any position in Pos(r̂1) satisfying |p| ≤ h(Ahom ∩Ahom).

Since |p̄| > h(Ahom ∩ Ahom)2, by the last part of the statement in Lemma 5.3,
no replaced position in r̂1[[r̂1,1]]p̄ is a proper prefix of p. Thus, for each of
such positions p and each j ≥ 1, root(r̂1[[r̂1,j]]p̄|p) coincides with root(r̂1|p).

33

By Lemma 4.19, π 6=(r̂1) = r̄|p̆1 and πhom(r̂1) = r1 hold, and by Lemma 4.16,
for each of such positions p and each j ≥ 1, the resulting states of r̄|p̆1 |p and
(π 6=(r̂1[[r̂1,j]]p̄))|p coincide. Moreover, again by Lemma 4.16, the resulting states
of r1 and πhom(r̂1[[r̂1,j]]p̄) coincide, i.e. they are t|p̆1 .

One of the particular implications of the above comments is that each
t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n is an instance of t|c. Thus, at first
look, we could try to define the desired terms t1,1, t1,2, . . . of the state-
ment of the lemma as t̂1,1, t̂1,2, . . ., respectively. The problem is that some
t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
could also be in instances(S − {t|c}). In

order to conclude, it suffices to see that only a finite number of them satisfy this
condition. To this end, we show that, for each s|d in S − {t|c}, at most a finite
number of terms t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n are instances of s|d.
Consider any constrained term s|d in S − {t|c}. Since t′ is not an instance

of s|d, according to Lemma 7.8, we can distinguish the following cases:

• Assume that there is a position p in PosΣ(s)∩ Pos(t′) such that root(s|p)
is different from root(t′|p). We distinguish the following cases:

– Suppose first that p is of the form p̆i.p
′.p′′ for some i in {1, . . . , k}

and some positions p′, p′′ such that |p′| = h(Ahom ∩ Ahom). By
Invariant I3, it holds that s|p̆i.p′ is a term in T (Σ), i.e. without
any symbol in Q. Note that t′|p̆i.p′ is a term different from s|p̆i.p′

because they differ at the symbol located at their relative posi-
tion p′′. Recall that no replaced position in r̂1[[r̂1,1]]p̄ is a proper
prefix of p′. Thus, by Lemma 5.2, at most one term t̂1,j makes
(t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
)|p̆i.p′ equal to s|p̆i.p′ , and we are

done.

– Second, suppose p is not of the form p̆i.p
′.p′′ for some

i in {1, . . . , k} and some positions p′, p′′ such that |p′| =
h(Ahom ∩ Ahom). In this case, root(t′|p) coincides with all
root((t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
)|p), and thus, it differs

from root(s|p). Hence, none of these terms is an instance of s|d,
and we are done.

• Assume that there is a position p in PosQ(s) such that t′|p is not in
L(A, s|p). Let q be s|p and let Sp be the resulting state of r̄|p. By the
election of r̄, it holds that q is in Sp.

Let us fix a j ≥ 1 and suppose that r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 . . . [π 6=(r̂1[[r̂1,j]]p̄)]p̆k

is a run of Ahom. Note that, by Invariant I3, either no position in
p̆1, . . . , p̆k is a prefix of p, or p is of the form p̆i.p

′ for some i in
{1, . . . , k} and some p′ satisfying |p′| ≤ h(Ahom) ≤ h(Ahom ∩ Ahom). In
the second case, recall that, for such a position p′ , root(r̂1[[r̂1,j]]p̄|p′)
coincides with root(r̂1|p′). Thus, in any case, the resulting state of
(r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 . . . [π 6=(r̂1[[r̂1,j]]p̄)]p̆k

)|p is Sp. By Lemma 4.9, it fol-
lows that t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
is not an instance of s|d.

34

Hence, in order to conclude, it suffices to argue that the terms
r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 . . . [π 6=(r̂1[[r̂1,j]]p̄)]p̆k

are runs of Ahom except for a fi-
nite number of j’s.

Note that r̄ and each term π 6=(r̂1[[r̂1,j]]p̄) is a run of Ahom. Thus, if, for
a concrete j, r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 . . . [π 6=(r̂1[[r̂1,j]]p̄)]p̆k

is not a run of Ahom,
there must exist a position p′′ satisfying the following assumptions:

– p′′ < p̆i for some i in {1, . . . , k}.
– root(r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 . . . [π 6=(r̂1[[r̂1,j]]p̄)]p̆k

)|p′′ is a rule
f(q1, . . . , qm) e→ q′ where e contains a disequality p1 6= p2

such that (t[t̂1,j]p̆1 . . . [t̂1,j]p̆k
[tk+1]p̆k+1 . . . [tn]p̆n

)|p′′.p1 is equal to
(t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
)|p′′.p2 .

Since r̄ is a run of Ahom, t′|p′′.p1 is different from t′|p′′.p2 . Re-
call that, all replaced positions in r̂1[[r̂1,j]]p̄ have length greater than
h(Ahom ∩ Ahom). Thus, (t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
)|p′′.p1 and

(t[t̂1,j]p̆1 . . . [t̂1,j]p̆k
[tk+1]p̆k+1 . . . [tn]p̆n

)|p′′.p2 can be obtained from t′|p′′.p1
and t′|p′′.p2 , respectively, by replacing t′|p̆1.p̄ by πΣ(r̂1,j)) at some positions
which are independent from j. By Lemma 5.2, only one term can satisfy
this statement for such p′′ and p1 6= p2.

The elections for p′′ and p1 6= p2 are finitely bounded. Thus, at most for a
finite number of j’s, r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 . . . [π 6=(r̂1[[r̂1,j]]p̄)]p̆k

is not a run,
and we are done.

• Finally, assume that there is an equality (p1 = p2) in d such that t′|p1
is different from t′|p2 . Note that both s|p1 and s|p2 are identical and in
Q. Hence, by Invariant I3, p1 and p2 are not of the form p̆i.p

′.p′′ for
some i in {1, . . . , k} and some positions p′, p′′ such that |p′| = h(Ahom) ≤
h(Ahom ∩ Ahom). Note also that, in the case where some p̆i for i in
{1, . . . , k} is a prefix of p1 (p2), no replaced position in r̂1[[r̂1,1]]p̄ is a proper
prefix of p1 − p̆i (p2 − p̆i). Thus, (t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n)|p1
and (t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n)|p2 can be obtained from t′|p1
and t′|p2 , respectively, by replacing t′|p̆1.p̄ by πΣ(r̂1,j) at some po-
sitions which are independent from j. By Lemma 5.2, at most
one term t̂1,j makes (t[t̂1,j]p̆1 . . . [t̂1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
)|p1 equal to

(t[t̂1,j]p̆1 . . . [t̂1,j]p̆k
[tk+1]p̆k+1 . . . [tn]p̆n

)|p2 . Hence, for all the remaining j’s,
t[t̂1,j]p̆1 . . . [t

′
1,j]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n
is not an instance of s|d, due to the

same reason as t′, and we are done.

�

Lemma 7.10 Let Ahom = 〈Q,Σ, F,∆〉 be a TAhom. Let S be a set of con-
strained terms satisfying I2 and I3. Let t|c be a constrained term in S. Let
p̆1, . . . , p̆n be the positions p̆i satisfying t|p̆i

∈ Q. Suppose that p̆1 occurs in
c, and that, without loss of generality, p̆2, . . . , p̆k are all positions p̆j such that
(p̆1 = p̆j) occurs in c. Suppose that there exist terms tk+1, . . . , tn and infinitely

35

many terms t1,1, t1,2, . . . such that all t[t1,j]p̆1 . . . [t1,j]p̆k
[tk+1]p̆k+1 . . . [tn]p̆n

are
in instances(t|c)− instances(S − {t|c}).

Then, instances(S) is not regular.

Proof. We proceed by contradiction by assuming that instances(S) is
regular. Note that, in particular, C is a TAhom. Thus, let C be a
TA recognizing instances(S). Among all the terms t1,j we choose one,
called t1, such that height(t1) > ȟ(C ∩ Ahom) holds. Note that t′ =
t[t1]p̆1 . . . [t1]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n is in instances(t|c)− instances(S − {t|c}).
In particular, t′ is in instances(S), and hence, t′ belongs to L(C). Thus, there
exists a run r of C with a resulting accepting state such that πΣ(r) = t′. Let r̄
be a run of Ahom satisfying πΣ(r̄) = t′ and all conditions given by Lemma 4.9.
In particular, for each p ∈ Pos(r̄) it holds that r̄|p is a run with a resulting state
including {q ∈ Q| t′|p 6∈ L(Ahom, q)}. Let r̂1 be the run r|p̆1 ∩ r̄|p̆1 of C ∩Ahom.
By Lemma 5.19, there exist a position p̄ in r̂1 and infinitely many different runs
r̂1,1, r̂1,2, . . . of C ∩Ahom such that:

• |p̄| > h(C ∩Ahom)2 and r̂1|p̄ is a run.

• All root(r̂1|p̄), root(r̂1,1), root(r̂1,2), . . . coincide.

• All pumpings r̂1[[r̂1,1]]p̄, r̂1[[r̂1,2]]p̄, . . . are runs.

We define t̂1,1 := πΣ(r̂1[[r̂1,1]]p̄), t̂1,2 := πΣ(r̂1[[r̂1,2]]p̄),. . . .
Now, consider p as any position in Pos(r̂1) satisfying |p| ≤ h(C ∩ Ahom).

Since |p̄| > h(C ∩ Ahom)2, by the last part of the statement in Lemma 5.3, no
replaced position in r̂1[[r̂1,1]]p̄ is a proper prefix of p. Thus, for each of such
positions p and each j ≥ 1, root(r̂1[[r̂1,j]]p̄|p) coincides with root(r̂1|p). By
Lemma 4.19, π 6=(r̂1) = r̄|p̆1 and πhom(r̂1) = r|p̆1 hold, and by Lemma 4.16,
for each of such positions p and each j ≥ 1, the resulting states of r̄|p̆1 |p and
(π 6=(r̂1[[r̂1,j]]p̄))|p coincide. Moreover, again by Lemma 4.16, the resulting states
of r|p̆1 and πhom(r̂1[[r̂1,j]]p̄) coincide.

One of the particular implications of the above comments is that each t[t̂1,j]p̆1
is in L(C). It is also clear that t′[t̂1,j]p̆1 , for t̂1,j 6= t1, is not an instance of t|c,
since the terms at the positions p̆1 and p̆2 differ. Thus, in order to reach a
contradiction, it suffices to prove that, for some j satisfying t̂1,j 6= t1, t′[t̂1,j]p̆1
is not an instance of S − {t|c}. To conclude we will prove that, only for a
finite number of j’s, the terms t′[t̂1,j]p̆1 are instances of S − {t|c}. To this
end, we show that, for each s|d in S − {t|c}, at most a finite number of terms
t′[t̂1,j]p̆1 = t[t̂1,j]p̆1 [t1]p̆2 . . . [t1]p̆k

[tk+1]p̆k+1 . . . [tn]p̆n are instances of s|d.
Consider any constrained term s|d in S − {t|c}. Since t′ is not an instance

of s|d, according to Lemma 7.8, we can distinguish the following cases:

• Assume that there is a position p in PosΣ(s)∩ Pos(t′) such that root(s|p)
is different from root(t′|p). We distinguish the following cases:

– Suppose first that p is of the form p̆1.p
′.p′′ for some positions p′, p′′

such that |p′| = h(C ∩ Ahom) ≥ h(Ahom). By Invariant I3, it holds

36

that s|p̆1.p′ is a term in T (Σ), i.e. without any symbol in Q. Note
that t′|p̆1.p′ is a term different from s|p̆1.p′ because they differ at the
symbol located at their relative position p′′. Recall that no replaced
position in r̂1[[r̂1,1]]p̄ is a proper prefix of p′. Thus, by Lemma 5.2,
at most one term t̂1,j makes t′[t̂1,j]p̆1 |p̆1.p′ equal to s|p̆1.p′ , and we are
done.

– Second, suppose p is not of the form p̆1.p
′.p′′ for some positions p′, p′′

such that |p′| = h(C ∩Ahom). In this case, root(t′|p) coincides with
all root(t′[t̂1,j]p̆1 |p), and thus, it differs from root(s|p). Hence, none
of these terms is an instance of s|d, and we are done.

• Assume that there is a position p in PosQ(s) such that t′|p is not in
L(A, s|p). Let q be s|p and let Sp be the resulting state of r̄|p. By the
election of r̄, it holds that q is in Sp.

Let us fix a j ≥ 1 and suppose that r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 is a run of Ahom.
Note that, by Invariant I3, either p̆1 is not a prefix of p, or p is of the
form p̆1.p

′ for some p′ satisfying |p′| ≤ h(Ahom) ≤ h(C ∩ Ahom). In the
second case, recall that, for such position p′ , root(r̂1[[r̂1,j]]p̄|p′) coincides
root(r̂1|p′). Thus, in any case, the resulting state of (r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 |p
is Sp. By Lemma 4.9, it follows that t′[t̂1,j]p̆1 is not an instance of s|d.

Hence, in order to conclude, it suffices to argue that the terms
r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 are runs of Ahom except for a finite number j’s.

Note that r̄ and each term π 6=(r̂1[[r̂1,j]]p̄) is a run of Ahom. Thus, if, for
a concrete j, r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 is not a run of Ahom, there must exist a
position p′′ satisfying the following assumptions:

– p′′ < p̆1.

– root(r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1)|p′′ is a rule f(q1, . . . , qm) e→ q′ where e
contains a disequality p1 6= p2 such that t′[t̂1,j]p̆1 |p′′.p1 is equal to
t′[t̂1,j]p̆1 |p′′.p2 .

Since r̄ is a run of Ahom, t′|p′′.p1 is different from t′|p′′.p2 . Recall that,
all replaced positions in r̂1[[r̂1,j]]p̄ have length greater than h(C ∩Ahom).
Thus, t′[t̂1,j]p̆1 |p′′.p1 and t′[t̂1,j]p̆1 |p′′.p2 can be obtained from t′|p′′.p1 and
t′|p′′.p2 , respectively, by replacing t′|p̆1.p̄ by πΣ(r̂1,j)) at some positions
which are independent from j. By Lemma 5.2, only one term can satisfy
this statement for such p′′ and p1 6= p2.

The elections for p′′ and p1 6= p2 are finitely bounded. Thus, at most for
a finite number of j’s, r̄[π 6=(r̂1[[r̂1,j]]p̄)]p̆1 is not a run, and we are done.

• Finally, assume that there is an equality p1 = p2 in d such that t′|p1 is
different from t′|p2 . Note that both s|p1 and s|p2 are identical and in Q.
Hence, by Invariant I3, p1 and p2 are not of the form p̆1.p

′.p′′ for some
positions p′, p′′ such that |p′| = h(Ahom) ≤ h(C ∩ Ahom). Note also that,
in the case where p̆1 is a prefix of p1 (p2), no replaced position in r̂1[[r̂1,1]]p̄

37

is a proper prefix of p1 − p̆1 (p2 − p̆1). Thus, t′[t̂1,j]p̆1 |p1 and t′[t̂1,j]p̆1 |p2
can be obtained from t′|p1 and t′|p2 , respectively, by replacing t′|p̆1.p̄ by
πΣ(r̂1,j) at some positions which are independent from j. By Lemma 5.2,
at most one term t̂1,j makes t′[t̂1,j]p̆1 |p1 equal to t′[t̂1,j]p̆1 |p2 . Hence, for
all the rest j’s, t′[t̂1,j]p̆1 is not an instance of s|d, due to the same reason
as t′, and we are done.

�

8 conclusion

We have closed affirmatively the open question of the decidability of the HOM
problem. It remains to study in detail several aspects related to the complexity
of the problem. In particular, it will be interesting to study the new class
TA6=,hom and their properties. Our constructions also provide new tools to deal
with tree homomorphisms applied to regular languages. It would be interesting
to study further consequences of them.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, New York, 1998.

[2] V. Benzaken, G. Castagna, H. Hosoya, B.C. Pierce, and S. Vansummeren.
The Encyclopedia of Database Systems, chapter “XML Typechecking”.
Springer. To appear.

[3] B. Bogaert, F. Seynhaeve, and S. Tison. The recognizability problem for
tree automata with comparison between brothers. In W. Thomas, edi-
tor, Foundations of Software Science and Computation Structures - FOS-
SACS’99, volume 1578 of LNCS, pages 150–164, Berlin, Germany, 1999.
Springer-Verlag.

[4] B. Bogaert and S. Tison. Equality and disequality constraints on direct
subterms in tree automata. In International Symposium on Theoretical
Aspacts of Computeter Science, pages 161–171, 1992.

[5] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications.
Available at http://www.grappa.univ-lille3.fr/tata, 2007.

[6] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete.
In Logic in Computer Science (LICS), pages 26–34, 1997.

[7] Hubert Comon and Florent Jacquemard. Ground reducibility and au-
tomata with disequality constraints. In STACS, pages 151–162, 1994.

38

[8] M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Automata for reduction
properties solving. Journal of Symbolic Computation, 20(2):215–233, 1995.

[9] Z. Fülöp. Undecidable properties of deterministic top-down tree transduc-
ers. Theoret. Comput. Sci., 134:311–328, 1994.

[10] F. Gécseg and M. Steinby. Tree automata, 1984.

[11] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, Volume 3, chapter 1.
Springer, 1997.

[12] G. Godoy and E. Huntingford. Innermost-reachability and innermost-
joinability are decidable for shallow term rewrite systems. In F. Baader,
editor, Term Rewriting and Applications, 18th International Conference,
RTA, volume 4533 of LNCS, pages 184–199. Springer, June 2007.

[13] G. Godoy, S. Maneth, and S. Tison. Classes of tree homomorphisms with
decidable preservation of regularity. In FoSSaCS, volume 4962 of LNCS,
pages 127–141. Springer, 2008.

[14] G. Kucherov and M. Tajine. Decidability of regularity and related proper-
ties of ground normal form languages. Inf. Comput., 118:91–100, 1995.

[15] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML
schema languages using formal language theory. ACM Trans. Internet
Techn., 5(4):660–704, 2005.

[16] J. W. Thatcher. Tree automata: an informal survey, 1973.

[17] James W. Thatcher and Jesse B. Wright. Generalized finite automata
theory with an application to a decision problem of second-order logic.
Mathematical Systems Theory, 2(1):57–81, 1968.

[18] Sándor Vágvölgyi and Rémi Gilleron. For a rewrite system it is decidable
whether the set of irreducible, ground terms is regognizable. Bulletin of the
EATCS, 48:197–209, 1992.

39

