GRADO EN ARQUITECTURA TÉCNICA Y EDIFICACIÓN

PROYECTO FINAL DE GRADO

PRACTICUM EN LA EMPRESA DE REHABILITACIÓN, CONSTRUCCIÓN Y MANTENIMIENTO COREMA ARQUITECTURA S.L.

Proyectista: Sergi López Bolart
Director: Gustavo Gispert
Convocatoria: Abril / Mayo 2016
RESUMEN

En el siguiente proyecto se expone la experiencia profesional que ha tenido el estudiante en prácticas en la empresa Corema Arquitectura S.L. entre los meses de julio del 2015 y febrero del 2016.

Primeramente se hará una breve descripción de la empresa, su composición así como los sectores en los que desarrolla sus actividades.

Posteriormente se explicarán las tareas que ha llevado a cabo el alumno así como su rol dentro de la empresa.

Finalmente se redactarán unas conclusiones para exponer de forma directa los puntos más importantes del trabajo así como de la experiencia profesional dentro de la empresa.
ÍNDICE

1 INTRODUCCIÓN .. 4

2 NÚCLEO DE LA MEMORIA ... 5
 2.1 PRESENTACIÓN DE LA EMPRESA .. 5
 2.1.1 INTRODUCCIÓN .. 5
 2.1.2 ORGANIZACIÓN DE LA EMPRESA .. 5
 2.1.3 ÁREA DE INFLUENCIA ... 6
 2.2 TAREAS DEL ALUMNO EN LA OBRA ... 8
 2.2.1 EXPLICACIÓN DE LAS OBRAS ... 8
 2.2.2 PEDIDOS Y CONTROL DE MATERIALES .. 37
 2.2.3 PLANNING DE OBRA .. 40
 2.2.4 DIARIO DE OBRA Y FOTOGRAFÍAS ... 41
 2.2.5 CONTROL DE COSTES ALMOGÁVARES .. 42
 2.3 TAREAS DEL ALUMNO EN EL DESPACHO .. 46
 2.3.1 PREVENCIÓN DE RIESGOS LABORALES .. 46
 2.3.2 INSPECCIÓN TÉCNICA DE EDIFICIOS ... 49
 2.3.3 DELINEACIÓN DE PLANOS ... 53
 2.3.4 DIAGNÓSTICO Y ETIOLOGIA DE LESIONES .. 54

3 CONCLUSIONES ... 56

4 BIBLIOGRAFÍA ... 57
 4.1 NORMATIVA .. 57
 4.2 LIBROS .. 57
 4.3 PÁGINAS WEB .. 57

5 AGRADECIMIENTOS ... 58

6 CARTA DE VALORACIÓN DE ALUMNO ... 59
7 ANEXOS .. 60
7.1 DIARIO DE SEGUIMIENTO DE OBRA 22/07/2015 – 4/02/2015 ... 60
7.2 CATÁLOGOS DE MATERIALES ... 108
 7.2.1 Adhesivo BA-007, casa Giscosa ... 108
 7.2.2 Biocalce piedra, casa Kerakoll .. 110
 7.2.3 Geolite, casa Kerakoll ... 113
 7.2.4 Biocalce Revoco fino, casa Kerakoll .. 117
 7.2.5 Biocalce Revoco Tipo 0,0, casa kerakoll .. 120
 7.2.6 Biocalce Silicato Consolidante, casa kerakoll ... 123
 7.2.7 Giscolene, casa Giscosa .. 126
 7.2.8 Sikaflex-11 FC+, casa sika .. 128
 7.2.9 Sika Anchorfix -3, casa sika .. 133
 7.2.10 Arlita Leca dur, casa Weber .. 139
7.3 REHABILITACIÓN DE CUBIERTAS .. 141
7.4 REDACCIÓN DE ITE .. 148
 7.4.1 INFORME DE ITE ... 148
 7.4.2 TABLA RESUMEN ITE .. 192
7.5 PLANNING OBRA CALLE ROSELLÓN Nº 297 ... 194
8 DOSSIER DE PLANOS .. 195
1 INTRODUCCIÓN

En este proyecto de final de grado se explicarán las distintas tareas, tanto de obra como de despacho, más relevantes que ha llevado a cabo el alumno, ejemplificando las explicaciones con trabajos reales que se le han encargado durante el período de prácticas.

En lo referente a las tareas de obra el alumno ha realizado un diario de obra personal, en donde se recoge cronológicamente el proceso de ejecución de las distintas obras, planificaciones de procesos ejecutivos, control de costes, pedidos y control de materiales.

En lo referente a las tareas de despacho podemos encontrar la delineación de planos, planteamiento de distribuciones de mobiliario, inspecciones técnicas, diagnóstico de lesiones y formación en materia de prevención de riesgos laborales de la cual se adquirieron conocimientos para el beneficio de la propia empresa.

Como objetivo, se quiere determinar si al tratarse de una empresa pequeña los conocimientos aprendidos durante la carrera pueden ser aplicados de la misma forma en que se enseñaron e intentar hacer distinción entre la experiencia de las prácticas en ésta empresa y las prácticas en una hipotética empresa de mayor tamaño.
2 NÚCLEO DE LA MEMORIA

2.1 PRESENTACIÓN DE LA EMPRESA

2.1.1 INTRODUCCIÓN

La empresa Corema Arquitectura S.L. es una empresa constructora especializada en el sector de la rehabilitación situada en Barcelona. Fue constituida el 22 de septiembre de 2005 por un único socio, Jorge Sobrino, graduado en Arquitectura Técnica, quien después de adquirir una amplia experiencia colaborando con otras empresas decidió fundar la suya.

La sede actual de la empresa está registrada en Barcelona, España, concretamente en la calle Rosellón número 370 Local 2 y desde este sitio se llevan a cabo gran parte de las tareas administrativas (ver imagen Localización sede actual de la empresa).

![Localización sede actual de la empresa (fuente: Google maps)](image)

2.1.2 ORGANIZACIÓN DE LA EMPRESA

La empresa está conformada por una plantilla de 10 trabajadores de media que trabajan bajo las órdenes directas del gerente general. En la empresa se encuentran distintos tipos de trabajadores:

- El gerente general: se trata del fundador de la empresa, el arquitecto técnico Jorge Sobrino. Su función es la de decidir las políticas de gestión y contratación de la empresa. También se encarga, juntamente con el encargado general, de coordinar los trabajadores en las distintas obras.
Una de sus funciones más importantes es la de representar la parte comercial de la empresa, realizando los presupuestos y presentándolos a clientes potenciales para conseguir nuevas obras.

- **Departamento administrativo:** se encarga de las tareas de administración de cualquier naturaleza, desde la confección de presupuestos, hasta los pagos de las nóminas a los trabajadores así como la coordinación de otras actividades necesarias para la producción.

- **Encargado general:** se trata del responsable de coordinar todas las obras que se estén llevando a cabo por la empresa simultáneamente y distribuir la plantilla de trabajadores. Esta función es compartida con el gerente general.

- **Oficiales:** se encargan de llevar a cabo únicamente las tareas directamente productivas de las obras.

- **Peones:** Se encargan de proporcionar la ayuda necesaria a los oficiales para que éstos no rompan con la cadena de productividad, pero hacen otras tareas propias, como la limpieza general de la obra y la organización del material de la obra una vez que éste llega a la zona de trabajo.

- **Becario:** Este es el puesto de trabajo que ocupó el alumno durante las prácticas. En él se desarrollan tareas generales ya sean tanto de obra como administrativas.

- Aparte de esta plantilla fija (exceptuando el becario) la empresa subcontrata a otras empresas o autónomos cuando se han de ejecutar trabajos especializados tales como trabajos en altura, montaje y desmontaje de andamios, trabajos de cerrajería, herrería y pintura.

2.1.3 ÁREA DE INFLUENCIA

La empresa desarrolla sus actividades de forma general dentro de la ciudad de Barcelona aunque también ha realizado sus actividades a localidades cercanas a esta ciudad.

A continuación se muestra un mapa con la localización de todos los sitios en donde la empresa Corema Arquitectura S.L. desarrolló sus actividades de cualquier naturaleza y en las que el alumno participó. El color amarillo corresponde a la sede actual de la empresa, el color morado indica los sitios en donde se ejecutaron obras de la empresa con personal propio y subcontratado y el color marrón corresponde a otras actividades de despacho tales como visitas, ITEs o toma de mediciones de las fincas (ver Imagen área de influencia).
Área de influencia (fuente: ayuntamiento de Barcelona)
2.2 TAREAS DEL ALUMNO EN LA OBRA

2.2.1 EXPLICACIÓN DE LAS OBRAS

A lo largo de las prácticas el estudiante ha estado realizando tareas principalmente en tres obras distintas. En dichas obras iba controlando diariamente los distintos procesos ejecutivos que se llevaban a cabo y a la vez ayudando en las tareas de obras o de administración que se le encomendaban.

En esta sección se ha organizado la información recopilada por el alumno de las principales obras que ha visitado de forma rutinaria.

Cabe destacar que todas las fotografías que se encuentran en la sección 2.2 así como el resto de fotografías que se encuentran en todo el proyecto a excepción de las de los anexos 7.2 y 7.4 fueron realizadas por el alumno mediante su cámara de fotografía.

2.2.1.1 Obra calle Lauria número 51, Barcelona

Durante la estancia en la empresa pudo hacer el seguimiento de distintas fases de obra en esta finca. Entre estos procesos destacan:

1. Ejecución de los balcones
2. Ejecución de las tribunas
3. Reparación de la cubierta
4. Reparación de grietas

1. Ejecución de los balcones

Para los balcones el orden de los procesos de ejecución a seguir fueron los siguientes:

1.1 Repicado del entrevigado de los balcones. Esta fase ya se había llevado a cabo cuando el alumno empezó las prácticas. Consistió en repicar tanto el material que se encontraba entre las vigas de los balcones como el pavimento de éste para dejar las vigas al descubierto.

1.2 Extracción de las viguetas metálicas antiguas. Éstas fueron extraídas debido a un avanzado estado de corrosión, el cual hizo que las viguetas antiguas aumentaran de volumen y provocó que el balcón se agrietasara. En la siguiente imagen se puede observar el estado inicial en que se encontraban las viguetas (Imagen 1).
1.3 Sustitución de las viguetas antiguas por viguetas nuevas, de un perfil similar. Las nuevas viguetas irán intercaladas entre dos pletinas soldadas a ellas para mejorar el empotramiento, aumentando así su resistencia al vuelco. Cabe destacar que las viguetas vienen pintadas para prolongar su oxidación y su posterior corrosión así como su vida útil.

Se trabaja en dos balcones simultáneos. A la hora de sacar las viguetas nunca se sacan una vigueta de uno de los balcones y otra del otro balcón que se encuentren alineadas verticalmente, sino que se saltean para que no queden nunca dos huecos alineados verticalmente en la pared de carga de fachada. Seguidamente se colocará un encofrado entre vigueta y vigueta el cual consistirá en la colocación de un ladrillo pastelero de 3 cm de espesor que irá intercalado las almas de las viguetas como se muestra en la siguiente imagen (ver Imagen 2).
1.4 Se rellena una primera capa con Arlita Leca Dur de la casa Weber (ver anexo 7.2.10), material más ligero que el hormigón y que hará que el peso del balcón sea inferior que si hubiese sido rellenado con hormigón macizo, reduciendo así los esfuerzos provocados por el peso propio del balcón. Se coloca una tira de porespan de un grosor aproximado de 3 cm en la zona del alma de la vigueta para así evitar que la arlita se meta dentro del ladrillo pastelero, en este espacio irá posteriormente el hormigón estructural. Una vez ha fraguado la arlita se quita el porespan y quedan los bloques sólidos desencofrados (ver Imagen 3).

Imagen 3

1.5 Se preparan las armaduras del balcón. Perimetralmente irá un zuncho formado por una estructura de cuatro varillas y estribos cada 20 cm. Desde la pared se taladrarán agujeros y se limpiarán mediante el uso de un soplador y se fijarán mediante la ayuda de taco químico de la casa sika (ver anexo 7.2.9) armaduras de refuerzo a negativo. Encima del todo se colocará un mallado de reparto soldado para distribuir las cargas aplicadas en la parte superior del balcón (ver Imagen 4).

Imagen 4
1.6 Se coloca el encofrado del canto del balcón. Se utilizarán tableros de madera sujetados mediante sargentos a las viguetas y a los regles auxiliares colocados (ver imagen 5).

Imagen 5

1.7 Se procede al hormigonado final del balcón con un hormigón pre dosificado H-25, el cual se pasta in situ con medios manuales. Primero se forma una maestra en la parte interior del balcón (ver Imagen 6), posteriormente se va echando el hormigón y mediante el uso de una varilla se va asegurando que el hormigón va llegando a todos los puntos del balcón. Con el uso del remolineador y el regle se va aplanando bien el hormigón hasta que la capa superficial queda bien uniforme y lisa.

Imagen 6
1.8 Se deja fraguar bien el hormigón y posteriormente se procede al desencofrado de éste (ver Imágenes 7 y 8).

Imagen 7

Imagen 8

1.9 Una vez desencofrado se montarán una serie de regles dispuestos de tal forma que nos ayudarán en la ejecución de la cornisa (ver imagen 9).
1.10 Se cortará un molde de metacrilato con la forma de la cornisa. El metacrilato es el material más idóneo para esta función pues se trata de un material resistente, duro y que no se desgasta con facilidad. Mediante el uso del molde y el material Biocalce de Piedra (ver Anexo 7.2.2) se irá dando forma a las cornisas (ver Imagen 10).
2 Ejecución de tribunas

Una vez ejecutado todos los balcones que se encuentran alineados verticalmente se procederá a la colocación de las carpinterías metálicas. Para ello se cuenta con la ayuda del industrial ferrallista que previamente ha montado en el taller las carpinterías por módulos.

El día escogido para la colocación de las carpinterías, viene la grúa articulada sobre camión con el gruísta y se ubica la grúa en el sitio más conveniente, teniendo en cuenta el tránsito, los árboles y las carpinterías a colocar. Si la grúa invade parte de la calzada por donde circulan el resto de los vehículos se colocarán una serie de conos en forma de cuña para avisar a los vehículos que circulen por el carril en donde está estacionada la grúa que hay un obstáculo.

Previamente ya se han colocado una serie de cuerdas fijadas en puntos del edificio que servirán para que los operarios que vayan a trabajar en altura puedan asegurar el arnés.

En el volquete del camión es donde se llevan las carpinterías. Las carpinterías ya vienen cargadas desde el taller de tal forma que la de arriba del todo sea la primera en colocarse y la de abajo del todo sea la última para evitar tener que sacarlas. Aunque en una ocasión hubo un error de planificación debido a la ausencia de uno de los propietarios y se tuvieron que sacar del camión las de arriba del todo para coger las de abajo (ver Imagen 11).

Imagen 11

El gruísta se coloca en un punto en donde tenga buena visibilidad del camión, los obstáculos y el sitio en donde ha de llevar la carga.

Se delimitan las zonas de trabajo de la calle si las hay y las zonas de seguridad pues los trabajadores van a estar trabajando encima de la acera y hay que delimitar una zona para evitar que a los transeúntes les pueda caer material o herramientas encima. Para eso se utiliza la cinta balizadora, conos y vallas (ver Imagen 12).
Primero se saca la jaula de subida de los trabajadores la cual se utilizará para llevar a los trabajadores de la calle hasta el balcón en donde se colocaran las carpinterías. Dentro de la jaula suben los trabajadores y se carga el material que van a utilizar para la colocación de las carpinterías (taladro, soldadora, metro…). Uno de los trabajadores coloca el gancho de la grúa en el gancho de la jaula y una vez se comprueba que la jaula está bien asegurada se empieza con el ascenso hasta la plataforma de trabajo (ver Imagen 13).
La jaula se lleva hasta una de las cuerdas para que el trabajador que está cerca de la salida pueda atar su arnés con anti caída antes de salir de ella.

Una vez la jaula está a nivel de suelo de balcón, el trabajador que está más cerca de la salida que da al balcón ata su arnés con anti caída a la cuerda y sale mientras el otro, des del interior y atado a la jaula le va pasando el material y el otro trabajador lo va descargando, dejándolo pegado a la pared de fachada para evitar ser golpeado y que caiga, aun habiendo dejado un perímetro de seguridad debajo para la seguridad de los transeúntes y trabajadores.

Una vez descargado, el trabajador atado le acerca la cuerda al que está en el interior de la jaula y pasa de estar atado a la jaula a estar atado a la cuerda y sale de la jaula para ir al balcón. Se baja la jaula de subida de trabajadores y se deja en el camión.

Un trabajador ata una braga al gancho de la grúa a una de las carpinterías y el gruista empieza la subida de la carpintería hasta la zona de trabajo. Se coloca primero una de las carpinterías de los extremos laterales y posteriormente se van colocando las demás una al lado de otra (ver Imagen 14).

Las carpinterías van atornilladas en suelo y techo de balcón y soldadas entre ellas. Una vez terminadas de colocar se sube la grúa nuevamente para que puedan cargar el material en ella y bajar nuevamente a pie de calle.

Otro día, se lleva una plataforma elevadora de trabajo a la obra. También viene el equipo de pintores y se pintan las carpinterías mediante brocha con capa de imprimación y capa de acabado (ver Imagen 15).
Al igual que en la fase de colocación de carpinterías, se establecen unos pasos para evitar que los peatones puedan ser golpeados por algún objeto caído así como puedan ser manchados por la pintura.

Finalmente otro día viene a la obra el equipo de cristaleros y se colocan los cristales sellándolos en las juntas.

3 Reparación de cubierta

La cubierta se repara por problemas de humedades por filtración en el piso inferior. Se trata de una cubierta plana transitable con acabado de rasilla tipo Pierre de 14 x 28 cm ventilada. Dispone de unos tabiques conejeros para la formación de pendientes en donde se apoyan unos doblados de rasilla en donde está pegada la tela asfáltica.

La empresa siempre utiliza el mismo sistema de rehabilitación para las cubiertas. Éste se explica en el Anexo 7.3.

4 Reparación de grietas

En esta obra podemos encontrar dos tipologías de grietas diferenciadas por la ubicación de éstas:

4.1 Grieta en la unión entre dos de las paredes de fachada
4.2 Grietas en los dinteles arqueados de la planta baja
A continuación veremos los métodos que se utilizaron para rehabilitar estas grietas, no sin antes describir la naturaleza de dichas lesiones.

4.1 *Grieta en la unión entre dos paredes de fachada*

La causa de esta grieta es la descompensación entre las dos paredes de fachada provocado por asentamientos diferenciales en el terreno.

Si las dos paredes hubiesen estado bien trabadas y por lo tanto hubiesen trabajado conjuntamente esta grieta probablemente no hubiese aparecido. Así que intervención en esta lesión consistirá en conseguir trazar bien las dos paredes.

La reparación consiste en ir repicando los ladrillos antiguos por hiladas en la parte superior mientras que en la parte inferior se va reconstruyendo la pared pero con otro aparejo que favorece la traza entre las dos paredes. Para conseguir este mismo objetivo, se usan unos ladrillos con tres perforaciones en tabla, los cuales tiene un consumo medio de mortero superior al que tendría un gero o un ladrillo macizo pero por contrapartida proporciona una mejor traza al aparejo de estos (ver Imagen 16).

![Imagen 16](image16.png)

También cada dos hiladas de estos ladrillos se coloca una grapa de acero inoxidable galvanizado con la forma del aparejo para que no sobresalga (ver Imagen 17).
Cuando se llega al final de la grieta se extraen las tres viguetas metálicas que estaban en estado avanzado de corrosión y se reconstruye de la misma forma a como se había hecho hasta el nivel inferior en donde se encontraban las viguetas. Cuando se llega a este punto se coloca una pletina metálica en donde irán soldadas las tres viguetas nuevas (ver Imagen 18).
4.2 Grietas en los dinteles arqueados de la planta baja

La causa de éstas grietas que se encuentran de forma generalizada en buena parte de los dinteles arqueados se trata de un exceso de cargas en los propios dinteles debido a que se encuentran en la parte más baja de la finca son los que reciben más carga de todo el edificio. La intervención sobre esta lesión consistirá en reforzar los dinteles para que puedan soportar las cargas a las cuales están sometidos.

La intervención consiste en un poco por encima del dintel repicar el estucado y abrir dos pequeñas regatas en la obra de una dimensión previamente acordada y perforadas hacia el interior de la pared mediante el uso de un taladro. Luego se comprueba in situ si las grapas que se han traído ya dobladas del taller de ferralla entrarán bien en la regata que se ha abierto. Si la comprobación es positiva, se procede a limpiar bien los agujeros mediante el uso de un soplador y a colocar la resina epoxi sika anchorfix de la casa sika (ver Anexo 7.2.9) en los agujeros.

Posteriormente se aprieta bien la grapa para que quede bien encastada en la regata y se deja secar (ver Imagen 19).

Imagen 19

Se procede a reparar nuevamente el estucado que se había repicado. Para eso se coloca el mallatex en la zona replicada que absorberá algún posible movimiento que pudiese haber en la zona y luego se aplica el revoco de mortero remolineándolo bien para que quede con un acabado bien liso.

Finalmente se tapa la grieta existente en dintel rellenándola con mortero.
2.2.1.2 Obra calle Rosellón número 297

Durante su estancia en la empresa el alumno pudo hacer un seguimiento prácticamente completo de la ejecución de esta obra. Las intervenciones en esta obra se pueden clasificar en:

1. Reparación de fachada
2. Reparación de balcones

1. Reparación de fachada

La fachada del edificio se trata de una pared de ladrillo macizo con un acabado de estuco de mortero de cal. Ésta presentaba suciedad y desgaste de forma generalizada, pero existía en algunas zonas de ella un peligro inminente de desprendimiento del estuco de mortero de cal.

Las actuaciones en la fachada serán por orden cronológico las siguientes:

1. Desinstalar las unidades exteriores de los aires acondicionados, para evitar que estorben mientras se trabaja en la fachada así como evitar que puedan producirse averías en éstos a causa de las obras, aún con la cautela que tienes los propios trabajadores sobre los bienes privados de cada propietario.

2. Repicar las zonas del estuco de la fachada que se encuentren desprendidas de la pared de ladrillo y que presenten un peligro inminente para el trabajador. Aunque no es recomendable hacer este paso como se explicará posteriormente se lleva a cabo por seguridad del propio trabajador para evitar que el estuco se le pueda desprender encima mientras trabaja (ver Imagen 20).

Imagen 20
3. Se taparan las ventanas y puertas de acceso a los balcones mediante lonas de plástico y cinta de carrocería para evitar que cuando se pase la pistola de agua pueda penetrar al interior de la vivienda. Con ese mismo propósito, se dará una forma de media caña en la parte inferior de dos de los ventanales puesto que el agua podría acumularse en la parte inferior de éstos y eso podría provocar que el agua se filtrara al interior en forma de humedades (ver Imagen 21).

![Imagen 21](image1.png)

4. Se pasa la pistola de agua de la casa karcher para limpiar la suciedad y para quitar la pintura más superficial de la fachada (ver Imagen 22).

![Imagen 22](image2.png)

5. Cabe destacar que se considera un día de lluvia como un día óptimo para limpiar la fachada puesto que al limpiarla, debido a la presión parte del agua rebotará en la fachada y cae a la calle en forma de gotitas pequeñas y esto puede provocar molestias a los
transseúntes. Por eso un día de lluvia en que los viandantes pasan por la acera en donde se encuentra el andamio con paraguas hace que el hecho de que se esté pasando la pistola de agua pase desapercibido.

Como hemos comentado anteriormente no es recomendable que se repiquen las zonas que se encuentren desprendidas de la pared de ladrillo del estucado. Esto se debe a que el propio estucado hace de barrera antihumedad ya que el ladrillo que se encuentra debajo del acabado de fachada no está hidrofugado.

6. Se procede a la extracción del resto del estucado desprendido del paramento. Para encontrar estas zonas solo hace falta ir picando la fachada con una maceta de goma y escuchando el sonido que ésta produce. Cuando el paramento está desprendido el impacto de la maceta produce un sonido que resuena más de lo normal.

7. Se procede a la reconstrucción de las zonas desprendidas del estucado. Para ello se forman unas maestras de mortero en el interior de las zonas repicadas con el mismo grueso que tenía la fachada anteriormente (ver Imagen 23).

Imagen 23

Estas maestras permitirán, una vez endurecidas, poder rellenar de material la zona repicada y reglear éste material con el mismo grosor que el resto de la fachada. Cuando el parche repicado es muy pequeño no se opta por hacer maestras sino que se usan los bordes del parche que están en buen estado para reglear el mortero con el mismo grosor que el resto de la fachada.

Cabe destacar que para la reconstrucción del estucado se empezó usando un mortero de cal muy cargado con portland, el cual no es el originario de la fachada. Por eso antes de seguir con éste proceso se rebajó la cantidad de portland que se le estaba aplicando al mortero de cal para evitar incompatibilidades entre el material nuevo y el viejo.
Aprovechando que se están rellenando los parches repicados de la fachada se repica también los empotramientos de las barandillas de los balcones y se pinta el interior con una pintura anti oxido de forma preventiva (ver Imagen 24).

8. Se rellena alguna zona de la fachada que tenga cierta variación de volumen con el revoco fino (ver Anexo 7.2.4) para intentar regularizar la superficie de la fachada al máximo.

9. Se forma la última capa de acabado de la fachada. Para eso se utiliza el revoco 0,0 (ver Anexo 7.2.5). Se trata de un mortero muy fino de color blanco el cual permite usarse en grosores muy pequeños, por este motivo era importante que la fachada ya tuviese un acabado bien liso antes de su aplicación. Este mortero se aplica de forma cuidadosa mediante el palustre en la fachada y posteriormente se remolinea dejando el acabado más liso posible. En los ornamentos también se aplicará, pero debido a la geometría que éstos poseen, se usará una brocha para dejar un acabado liso y uniforme (ver Imagen 25).
10. Una vez el revoco 0,0 está seco se procede a su lijado. Para eso se usa papel de lija enrollado en un taco de madera y se van lijando las pequeñas imperfecciones que hayan podido quedar.

Cabe recordar que el color de la fachada en éste punto es blanco el cual dificulta la localización de las imperfecciones. Un buen momento para ponerse a realizar ésta tarea es cuando la luz solar incide en la fachada con cierto ángulo y provoca que las imperfecciones proyecten una sombra en la fachada.

Hay que tener en cuenta también que el lijado de la fachada produce que parte del material se desprenda de ésta en forma de polvo. El revoco 0,0 es un mortero fabricado mayoritariamente con cal y la inhalación de ésta puede provocar problemas de salud a corto y a largo plazo así que es obligatoria el uso de mascarillas durante la realización de ésta tarea.

11. Se marcan las líneas con la ayuda de un marcador que simbolizarán una traba entre piedras en la fachada.

2. Reparación de balcones

La intervención más importante que se realizó en ésta obra es la que se llevó a cabo en los balcones que sobresalen de la fachada.

Debido a un error producido al principio de la obra se presupuestó los balcones como balcones de viguetas metálicas. Pero justo al inicio de empezar las obras se descubrió que realmente eran losas de piedra natural lo cual cambió totalmente la intervención planteada inicialmente sobre éstos.

La intervención sobre los balcones descrita en orden cronológico fue la siguiente:
1. Repicado de las partes en mal estado de los balcones. Los balcones, como hemos mencionado anteriormente, son de piedra natural, más específicamente se trata de una piedra salina. La problemática viene dada en que estos balcones en el momento en que se iniciaron las obras se encontraron tapados con una capa de mortero, lo cual evitó que la piedra pudiese transpirar y como consecuencia provocó la pudrición de ésta. Con lo cual se ha de repicar toda la piedra que se encuentre podrida y desprendida del balcón para poder conseguir una sección útil sobre la que se pueda empezar a trabajar. Así que los trabajadores mediante la picoleta y poco a poco van repicando las zonas en mal estado (ver Imagen 26).

2. Cepillado y limpiado del balcón. Una vez se tiene una sección del balcón en buen estado se procede a cepillar y a limpiar mediante la pistola de agua Karcher los restos de piedra procedentes de la fase de repicado que hayan podido quedar en el balcón.

3. Cabe destacar que el orden cronológico a la hora de realizar las fases de repicado y limpieza de los balcones será empezando desde el más arriba e ir bajando. Para así evitar ensuciar un balcón que ya se hubiese preparado cayendo runa mientras se trabajase en el de encima.

4. Se aplica el consolidante natural Biocalce Silicato de la casa Kerakoll (ver Anexo 7.2.6). Éste evitará que la sección en buen estado que hemos conseguido después de las tareas de cepillado y limpiado siga con su proceso de disgregación y permanezca en buen estado.

5. Una vez aplicado el consolidante se procede al montar una subestructura de regles que nos ayudará a rehabilitar el balcón, colocándolos de tal forma que el balcón vuelva a tener las dimensiones de las que disponía originalmente. Se dará un grosor de 1 cm en...
la parte más interior del balcón llegando a cota 0 en la parte más exterior. Con lo cual se superará la pendiente mínima del 1%. Los regles se aguantaran mediante sargentos apoyados en las ménsulas de los ornamentos y mediante toques de rasilla que se fijarán con mortero a los balcones o a la fachada (ver Imagen 27).

Imagen 27

Los aspectos más importantes a tener en cuenta durante este proceso es ir comprobando que todo está a nivel y que los regles que se han traído a la obra no tengan abolladuras para evitar cambios dimensionales en toda la longitud del balcón.

6. Se corta en una placa de metacrilato un diseño previamente escogido del perfil que tendrá la cornisa (ver Imagen 28).

Imagen 28
7. Se colocan las varillas en los balcones. Este proceso consiste en fijar varillas roscadas de acero inoxidable galvanizado en el balcón mediante taco químico. Estas varillas formarán parte de la estructura auxiliar que se utilizará para la posterior reconstrucción del balcón con el material biocalce de piedra como se especificará posteriormente.

Se ha determinado que el diámetro de las varillas dependerá de la posición del balcón en la que estén ubicadas. Para las varillas de las esquinas se utilizará varillas de diámetro 10, puesto que es el sitio en donde hay que recrecer más volumen y con lo cual las varillas serán más largas. Para la arista superior del frontal del balcón las varillas serán de diámetro 8 debido a que, por la posición de éstas será uno de los sitios sometidos a más cargas; y para el resto de varillas, el diámetro será de 6 mm (ver Imagen 29).

8. Una vez colocadas todas las varillas se realiza un esqueleto auxiliar mediante alambre de latón siguiendo siempre el mismo patrón. No puede ser un alambre de hierro estándar pues éste se oxidaría (ver Imagen 30).
9. Se va dando grueso al balcón recreciéndolo con el Biocalce de piedra por capas (ver Imagen 31).

![Imagen 30]

![Imagen 31]

Es importante que la primera capa quede bien pegada a la sección inicial del balcón para que trabajen conjuntamente así que se tira de forma enérgica. Cuando se recrece el techo del balcón se forma un goterón no visto.

10. Luego se rellena el suelo y el techo del balcón y se forman las juntas de dilatación (ver Imagen 32).
2.2.1.3 Obra calle Almogávares número 8

Durante la estancia del alumno en la empresa éste pudo realizar el seguimiento de la rehabilitación de la fachada posterior de la obra situada en la calle Almogávares número 8.

En esta obra se realizaron intervenciones principalmente en tres subsistemas distintos:

1. Rehabilitación de fachada
2. Rehabilitación de balcones
3. Rehabilitación de cubierta

1. Rehabilitación de fachada

La fachada de la obra situada en la calle Almogávares número 8, se trata de una fachada de obra vista. La fachada se trata de una pared de carga por donde descienden las cargas transmitidas por agentes externos al edificio y del peso propio del edificio hasta los cimientos.

Debido a que se trata de una fachada de obra vista la intervención en ésta tiene una serie de peculiaridades a fin de evitar provocar defectos estéticos en la fachada que no puedan ser disimulados. Las intervenciones realizadas fueron las siguientes:

Se reparan las grietas visibles de la fachada. Cabe destacar que al tratarse de una fachada con acabado de obra vista hay que ser cuidadoso a la hora de reparar las grietas. Por eso la regata para colocar la grapa se hará en la junta del mortero existente entre ladrillo y ladrillo, primero con la radial y posteriormente se repicará y se dejará preparada con martillo y escarpa. Luego se taladrarán los agujeros en donde irán las grapas (ver Imagen 33).
En las grietas situadas en esquinas exteriores se ha optado para realizar una solución constructiva que consiste en que por el lado en donde es visible la grieta colocar una grapa estándar con varilla del herrero galvanizada de diámetro 6 mm, mientras que por el otro lado perforar con el taladro y colocar una varilla roscada también galvanizada para asegurar la traba. Para fijar las varillas se usará el taco químico sika anchorfix -1 o -3 de la casa sika (ver Anexo 7.2.9). Antes de la aplicación del taco químico recordar que hay que limpiar bien los agujeros y la regata en donde irán las grapas para asegurar la adhesión del taco químico a la pared.

Otra consideración que hay que tener en cuenta es que ya que se realiza la regata y los agujeros en las juntas de mortero para evitar dañar estéticamente la fachada, a la hora de hacer los agujeros intentar entrar con cierto ángulo de inclinación con el taladro para que así la grapa se una con el ladrillo y cumpla con su propósito.

Una vez colocadas las grapas se rellenan las regatas con mortero y si se ha fracturado alguna parte del ladrillo debido a la colocación de las grapas se repara con la borada marrón que se está usando en el suelo.

El equipo de trabajo en vertical se encarga de asegurar la fijación de la piedra ornamental exterior que marca el canto de forjado la pared de fachada. Para eso van perforando agujeros en la piedra con el taladro y van fijando varillas roscadas con taco químico. Posteriormente tapan el agujero con cemento blanco para disimular la colocación de la varilla (ver Imagen 34).
Se pinta la piedra ornamental de canto de forjado con dos manos de pintura y se aplica un acabado consolidante e hidrofugante a todo el ladrillo visto de la fachada. El equipo vertical también se encarga de quitar los empotramientos de las barandillas de los alfeizares de ventana repicando alrededor de los empotramientos hasta que se pueden sacar.

Se limpia la fachada con la pistola de agua a presión de la casa karcher. La tarea la llevan a cabo dos trabajadores, mientras uno va pasando la karcher el otro va rascando con una espátula los restos de mortero o suciedad acumulada que hayan podido quedar pegados a la fachada (ver Imagen 35).
Se colocan los nuevos alféizares de ventana y la nueva unión de las barandillas de ventana que consistirá en la colocación de una pletina metálica en donde irá soldada la barandilla y tornillos galvanizados fijados con taco químico, así se evitará la ruptura del empotramiento por corrosión.

2. Rehabilitación de balcones

Los pasos a seguir para la rehabilitación de los balcones son los siguientes:

1. Repicado del acabado cerámico del pavimento mediante martillo neumático de suelo, así como repicado de la piedra ornamental de canto de forjado de la zona de los balcones.

2. Repicado de las zonas huecas del techo de los balcones para destapar armaduras corrosionadas para poder sanearlas con pintura anti óxido y así evitar que las armaduras corrosionadas sigan perdiendo sección útil (ver Imagen 36).

3. Formación de maestras en balcón para rectificar las pendientes de los balcones. Se dará una altura de 1,5 cm en 1,10 m de ancho de balcón, teniendo en cuenta que algunos balcones el propio hormigón tiene cierta pendiente (ver Imagen 37).
4. Formación de planché de mortero regleando des de la maestra hasta el otro extremo del balcón. Como se ha comentado anteriormente hay algunos balcones que el propio hormigón ya disponía de pendiente así que a la hora de realizar el planché si en éste entra mucho grosor de mortero se rellenará primero un poco con arlita de la casa Weber (ver Anexo 7.2.10) para aligerar el peso del planché y posteriormente se dará el acabado de mortero.

5. Formación de aristas superior e inferior en el canto de los balcones con geolite, de la casa kerakoll (ver Anexo 7.2.3) el cual se trata de un material duro ya que al tratarse de las aristas son propensas a la rotura (ver Imagen 38).
6. Colocación de lámina EPDM butilo de 1,2 mm de espesor. Se coloca sobre el planché de mortero. Se realiza un solape para que la lámina suba un poco por encima del nivel del suelo en la zona en que se encuentra la carpintería de acceso al balcón de la vivienda (ver Imagen 39).

Imagen 39

7. Encima del butilo se colocará directamente un acabado de pavimento de gres porcelánico anti deslizante. Se enlardarán las piezas con cemento cola para asegurar la adherencia entre el gres porcelánico y la lámina EPDM (ver Imagen 40).

Imagen 40
8. Una vez estén colocadas todas las piezas del pavimento y el cemento cola haya fraguado un poco se puede empezar a dar la borada. Se utilizará una borada de color marrón para rellenar las juntas.

3. Rehabilitación de cubierta

Ésta fase se explica de forma genérica en el anexo 7.3 ya que la empresa siempre utiliza el mismo sistema a la hora de rehabilitar las cubiertas planas. Solo mencionar que se trata de la cubierta del ático, se tuvo que hacer la regata perimetral y la media caña antes de colocar la impermeabilización.
2.2.2 PEDIDOS Y CONTROL DE MATERIALES

2.2.2.1 Pedido de material

Durante la estancia en la empresa al alumno se le encomendó en algunas ocasiones realizar pedidos de material de repuesto para poder seguir con el proceso ejecutivo de la obra. Cabe destacar que la prioridad a tener en cuenta consistía en abastecer a los operarios con el material necesario que tuvieran que utilizar en las tareas que estuviesen desarrollando en el presente como en las tareas futuras de tal forma que su trabajo fuese continuo y sin interrupciones debido a la espera de la recepción del material. Por lo tanto era necesario hacer una previsión de material tanto de las tareas que se estaban ejecutando como de las futuras.

El procedimiento a seguir para pedir el material es el siguiente:

Se hace una previsión de los materiales que hacen falta, preguntando a cada trabajador si le falta algún material y la cantidad, verificando que la cantidad que el trabajador ha dicho que necesita es la adecuada, y teniendo en cuenta también la ejecución de lo que se hará posteriormente para poder llevar material que se vayan a utilizar en un futuro.

Una vez se tiene un listado de los materiales que hacen falta se verifica en la obra si dichos materiales se encuentran ya en la obra, para evitar llevar materiales que ya se habían acopiado con anterioridad.

Una vez se ha verificado ésto se llama al encargado, en caso de que no se encuentre en la obra, pues él es quien tiene controlado el material que se encuentra en las obras así como el que hay disponible en el almacén ubicado en Santa Coloma. Con su ayuda junto con el listado de materiales a pedir, se organiza un pedido.

Se llama al transportista, para coordinar el porte, de manera que vaya pasando por los sitios que sean necesarios, juntando los diferentes pedidos de materiales antes de llevarlo a la obra. Cabe tener en cuenta que hay un listado de empresas en donde Corema tiene una cuenta y en las que el transportista solo tiene que ir allí, pedir el material en nombre de Corema y pedir el albarán. Este sería el ejemplo de Siesmo y Vuida Vila.

Pero hay algunas empresas que pueden no disponer del material al instante como es el ejemplo de Ferros Alomar, entonces hay que encargar el pedido con antelación suficiente para que el día que el transportista lo vaya a recoger dicho material esté preparado para llevárselo.

A continuación se muestra un ejemplo de pedido de material, realizado por el estudiante en prácticas, de la obra situada en la calle Almogávares 8 (ver tabla 2.2.2.1).
Tabla 2.2.2.1

1. La karcher se utilizará para poder limpiar la fachada. Se encuentra en Rosellón 297.

2. Había varillas en el almacén de esta tipología. Se usarán para fabricar grapas para poder reparar las distintas grietas y fisuras que hay en la obra vista. Como estarán ligeramente expuestas a la intemperie se usarán unas especiales galvanizadas para evitar que se oxiden en un futuro y agraven la grieta existente.

3. El rollo de cartón se usará para poder trabajar en las barandas (soldado, lijado y pintado) de los balcones sin afectar a la superficie que se encuentre debajo de éstas.

4. Se utilizará para collar bien la grapa a la pared, nos sirve tanto el normal (-3) como el rápido (-1).

5. Se utilizará para poder hacer el agujero en donde irá colocada la grapa.

6. Se utilizarán para fijar los cartones.

7. Se utilizarán para pintar la parte de la piedra que quedará dentro del goterón del vierteaguas.

8. Hará falta más borada para terminar los últimos balcones.

2.2.2.2 Control de material

Como se ha comentado anteriormente es importante que los operarios dispongan del material necesario que van a utilizar en los distintos procesos ejecutivos con anticipación para así no detener las actividades y que no se produzca un incremento del coste de mano de obra, por lo tanto de forma periódica se iba haciendo recuentos de material. A continuación se muestra un ejemplo de recuento de material de la obra situada en la calle Rosellón número 297 (ver tablas 2.2.2.2 y 2.2.2.3).

<table>
<thead>
<tr>
<th>07/01/2016 PEDIDO MATERIAL ALMOGÁVARES N° 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. KARCHER</td>
</tr>
<tr>
<td>2. 5 VARILLAS DEL HERREROO 6</td>
</tr>
<tr>
<td>GALVANIZADAS</td>
</tr>
<tr>
<td>3. ROLLO CARTON DE 50 M</td>
</tr>
<tr>
<td>4. 1 CAJA DE TACO QUIMICO</td>
</tr>
<tr>
<td>5. TALADRO CON BROCA DEL 6 Y 8</td>
</tr>
<tr>
<td>6. 5 CINTAS DE CARROCERO</td>
</tr>
<tr>
<td>7. BROCHA PLANA Y BROCHA PARA RADIADOR</td>
</tr>
<tr>
<td>8. 1 SACO DE BORADA DE 20KG MARRÓN</td>
</tr>
<tr>
<td>CLASSIC</td>
</tr>
</tbody>
</table>

Tablas 2.2.2.2 y 2.2.2.3
<table>
<thead>
<tr>
<th>Tabla 2.2.2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSELLÓN 297 N° SACOS DE BIOCALCE DE PIEDRA</td>
</tr>
<tr>
<td>BALCÓN 1</td>
</tr>
<tr>
<td>BALCÓN 2</td>
</tr>
<tr>
<td>BALCÓN 3</td>
</tr>
<tr>
<td>BALCÓN 4</td>
</tr>
<tr>
<td>BALCÓN 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 2.2.2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSELLÓN 297 N° SACOS DE BIOCALCE DE PIEDRA</td>
</tr>
<tr>
<td>BALCÓN 1</td>
</tr>
<tr>
<td>BALCÓN 2</td>
</tr>
<tr>
<td>BALCÓN 3</td>
</tr>
<tr>
<td>BALCÓN 4</td>
</tr>
<tr>
<td>BALCÓN 5</td>
</tr>
</tbody>
</table>

En base a este consumo de material y la obra que queda por ejecutar se hará un pedido de 20 sacos del material Biocalce de piedra, el porte se le encargará al transportista de traerlo y el peón se desplazará a la calle Rosellón 297 temporalmente para subir el material mediante la polea con la ayuda de un oficial y así también aprovechar para bajar la runa que se ha ido acumulando en el andamio durante el transcurso de la ejecución de los balcones.
2.2.3 PLANNING DE OBRA

Durante la estancia del estudiante en prácticas en la empresa se le encomendó la realización de un planning de la obra situada en la calle Rosellón número 297. Pero éste no se trata de una previsión de los tiempos de ejecución sino de un control de estos tiempos actualizados cada vez que se realizaba una visita en la obra.

Éste planning se realizó en la fase de rehabilitación de balcones explicada en el apartado 2.2.1.2 en la parte 2 (reparación de balcones) pues se trata de un proceso iterativo que aunque pueda estar sometido a ciertas variaciones siempre sigue la misma mecánica, con lo cual un planning de éste proceso ejecutivo para cinco de las plantas del edificio con esta tipología de balcones permitía organizar este proceso de una forma que fuese visible rápidamente así como facilitar la faena a la hora de realizar la certificación quincenal de la obra.

Durante la elaboración del planning estuvieron trabajando en la obra el encargado general y un oficial. Cabe destacar por eso que el encargado no estuvo presente durante toda la ejecución de esta fase de la obra pues él además de trabajar como un oficial más tiene otras tareas como coordinar trabajadores material etc, con lo cual hubo periodos de tiempo en que solo trabajaba un recurso.

En el planning las divisiones de los periodos de trabajo se han hecho de media jornada en media jornada para poder determinar el inicio y el final de una actividad con mayor exactitud así como los solapes con otras actividades.

Los balcones van numerados de 1 a 5 entendiendo que el 1 es el balcón de la parte más superior de la fachada y el 5 el más inferior.

El planning final se puede ver en el Anexo 7.5
2.2.4 DIARIO DE OBRA Y FOTOGRAFÍAS

Durante las prácticas el alumno se encargó de la elaboración de un diario de obra que iba actualizando de forma periódica.

Este diario organizaba, a diferencia del apartado 2.2.1 (explicación de obras) las obras de forma cronológica y además tenía un carácter más personal puesto que era importante para saber quién estaba realizando cada tarea en cada momento así como las dificultades que habían surgido fruto de los distintos trabajos. Además de la descripción de los trabajos realizados con los que se encontraba el alumno cada día que visitaba una o varias de las obras, el diario va acompañado de material fotográfico para corroborar la veracidad de las tareas descritas.

El diario también ayudó a seguir el proceso ejecutivo así como la cronología de éste. Se puede consultar en el Anexo 7.1.
2.2.5 CONTROL DE COSTES ALMOGÁVARES 8

Ya a poco de finalizar el periodo de prácticas se le encargó al alumno realizar un control de costes de la fachada posterior de la obra situada en la calle Almogávares 8.

Para la realización de esta tarea se extrajeron los datos de la base de datos creada con Microsoft Acces en donde se recogían los gastos derivados de los materiales, el transportista, las subcontratas y la mano de obra propia así como los ingresos derivados de las certificaciones.

Toda esta información se organizó de la siguiente forma:

El primer paso consiste en organizar los valores del presupuesto. Para eso se coge el resumen del presupuesto y en la columna de al lado se le aplica el IVA, tal y como se puede ser en la tabla 2.2.5.1.

<table>
<thead>
<tr>
<th>CAPÍTULO 2 FACHADA POSTERIOR</th>
<th>PRESUPUESTO</th>
<th>PRESUPUESTO CON IVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 ANDAMIO Y ELEMENTOS AUXILIARES</td>
<td>9.474,78 €</td>
<td>10.422,26 €</td>
</tr>
<tr>
<td>2.2 ALBAÑILERIA</td>
<td>- €</td>
<td>- €</td>
</tr>
<tr>
<td>2.2.1 PARAMENTOS Y REVESTIMIENTOS</td>
<td>19.840,30 €</td>
<td>21.824,33 €</td>
</tr>
<tr>
<td>2.2.2 BALCONES DE FACHADA</td>
<td>23.274,85 €</td>
<td>25.602,34 €</td>
</tr>
<tr>
<td>2.3 TRABAJOS CERRAJERÍA</td>
<td>6.699,31 €</td>
<td>7.369,24 €</td>
</tr>
<tr>
<td>2.4 CARPINTERÍA EXTERIOR</td>
<td>- €</td>
<td>- €</td>
</tr>
<tr>
<td>2.5 PINTURA Y PROTECCIÓN</td>
<td>7.409,89 €</td>
<td>8.150,88 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>66.699,13 €</td>
<td>73.369,05 €</td>
</tr>
</tbody>
</table>

Tabla 2.2.5.1

A continuación se organizan los datos de las certificaciones hasta el último período para saber lo que se ha certificado hasta la fecha y si todo lo que se ha certificado ha sido cobrado por la empresa o no (ver tabla 2.2.5.2)

<table>
<thead>
<tr>
<th>FACHADA POSTERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERTIF.</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Tabla 2.2.5.2
A continuación se organizan los costes hasta el mismo período en que se habían tenido en cuenta las certificaciones. Se organizan en dos grupos:

Costes industriales, los costes de las subcontratas y los materiales comprados.

Coste mano obra, los costes de la plantilla de trabajadores contratados a jornada completa de la empresa.

Los costes pendientes que aún no se han pagado se colocan en el mismo mes en que se pasó la notificación como se puede ver en la tabla 2.2.5.3.

<table>
<thead>
<tr>
<th>FECHA PAGO</th>
<th>PAGO IND.</th>
<th>PENDIENTE</th>
<th>COSTE MANO OBRA</th>
<th>COSTES TOTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>oct-15</td>
<td>121,00 €</td>
<td>-</td>
<td>6.499,37 €</td>
<td>6.620,37 €</td>
</tr>
<tr>
<td>nov-15</td>
<td>-</td>
<td>1.304,68 €</td>
<td>6.499,37 €</td>
<td>7.804,05 €</td>
</tr>
<tr>
<td>ene-16</td>
<td>7.008,51 €</td>
<td>321,84 €</td>
<td>6.499,37 €</td>
<td>13.829,72 €</td>
</tr>
<tr>
<td>feb-16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL PARCIAL</td>
<td>11.024,79 €</td>
<td>2.204,17 €</td>
<td>25.997,47 €</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL COSTES 39.226,43 € 39.226,43 €

Tabla 2.2.5.3

Teniendo en cuenta las certificaciones y los gastos se fabrica una tabla en donde por meses se van agrupando los cobros y los gastos para conseguir los valores de la tesorería parcial y acumulada. En este supuesto se parte de la premisa de que todos los cobros y los pagos pendientes se liquidan a final del mes de enero (ver tabla 2.2.5.4).

<table>
<thead>
<tr>
<th>FECHA PAGO</th>
<th>TESORERIA PARCIAL</th>
<th>TESORERIA ACUMULADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>jun-15</td>
<td>7.336,90 €</td>
<td>7.336,90 €</td>
</tr>
<tr>
<td>jul-15</td>
<td>- €</td>
<td>7.336,90 €</td>
</tr>
<tr>
<td>ago-15</td>
<td>- €</td>
<td>7.336,90 €</td>
</tr>
<tr>
<td>sep-15</td>
<td>- €</td>
<td>7.336,90 €</td>
</tr>
<tr>
<td>oct-15</td>
<td>837,53 €</td>
<td>8.174,43 €</td>
</tr>
<tr>
<td>nov-15</td>
<td>757,71 €</td>
<td>8.932,15 €</td>
</tr>
<tr>
<td>dic-15</td>
<td>4.200,94 €</td>
<td>13.133,09 €</td>
</tr>
<tr>
<td>ene-16</td>
<td>3.963,76 €</td>
<td>17.096,85 €</td>
</tr>
<tr>
<td>feb-16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2.2.5.4
El gráfico de la tesorería parcial y acumulada resultante de la tabla anterior sería el siguiente (ver Gráfico 2.2.5.1).

Gráfico 2.2.5.1

A continuación se muestra una tabla resumen de la situación de los costes y las certificaciones a final del mes de enero (ver tablas 2.2.5.5.I) y (2.2.5.5.II).

<table>
<thead>
<tr>
<th>ENERO</th>
<th>CAPÍTULO 2 FACHADA POSTERIOR</th>
<th>PRESUPUESTO IVA</th>
<th>% obra ejec.</th>
<th>certif. presupuesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 ANDAMIO Y E. A.</td>
<td>10.422,26 €</td>
<td>80</td>
<td>8.337,81 €</td>
<td></td>
</tr>
<tr>
<td>2.2 ALBAÑILERIA</td>
<td>- €</td>
<td>-</td>
<td>- €</td>
<td></td>
</tr>
<tr>
<td>2.2.1 PARAMENTOS Y REV.</td>
<td>21.824,33 €</td>
<td>75</td>
<td>16.368,25 €</td>
<td></td>
</tr>
<tr>
<td>2.2.2 BALCONES DE FACHADA</td>
<td>25.602,34 €</td>
<td>90</td>
<td>23.042,11 €</td>
<td></td>
</tr>
<tr>
<td>2.3 TRABAJOS CERRAJERÍA</td>
<td>7.369,24 €</td>
<td>50</td>
<td>3.684,62 €</td>
<td></td>
</tr>
<tr>
<td>2.4 CARPINTERÍA EXTERIOR</td>
<td>- €</td>
<td>-</td>
<td>- €</td>
<td></td>
</tr>
<tr>
<td>2.5 PINTURA Y PROTECCIÓN</td>
<td>8.150,88 €</td>
<td>60</td>
<td>4.890,53 €</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>73.369,05 €</td>
<td></td>
<td>56.323,31 €</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2.2.5.5.I
<table>
<thead>
<tr>
<th>falta por certif.</th>
<th>certif. futuras</th>
<th>costes final de enero</th>
<th>B sobre costes según certif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.084,45 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>- €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.456,08 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.560,23 €</td>
<td>39.226,43 €</td>
<td>17.096,88 €</td>
</tr>
<tr>
<td>50</td>
<td>3.684,62 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>- €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.260,35 €</td>
<td>17.045,74 €</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2.2.5.5.II
2.3 TAREAS DEL ALUMNO EN EL DESPACHO

2.3.1 PREVENCIÓN DE RIESGOS LABORALES

Durante el período de prácticas el alumno asistió a 4 sesiones de 2 horas cada una de un curso sobre las claves para superar la campaña de inspección del año 2015, curso gratuito patrocinado por el ayuntamiento de Barcelona, el de Mataró, el de Cervelló y la APAE (Asociación de Profesionales Autónomos y Empresas). Este curso fue impartido por el grupo OTP Europreven, un grupo de asesores especializados en educar empresas en la materia de prevención de riesgos laborales.

En estas sesiones se trataron, en primera instancia, temas de prevención de riesgos laborales des de un punto educativo. Pero las sesiones posteriores se centraron más en la prevención des de un punto de vista empresarial, definiendo los mecanismos que una empresa debería de integrar en lo que respecta a los riesgos laborales para poder superar una inspección de trabajo con un resultado satisfactorio, nunca dejando de lado la seguridad de sus trabajadores y siempre emprendiendo una actitud proactiva.

En base a la formación adquirida en estas sesiones se le encargó al estudiante la redacción de dos esquemas acerca de las obligaciones y las responsabilidades de la comunidad de propietarios cuando un contratista accede a realizar unas obras en la finca, éste sería el caso del primer supuesto (ver esquema 2.3.1.1) y las obligaciones y responsabilidades de un administrador de fincas en caso de que el propietario, de una propiedad de régimen vertical, haga apoderado al administrador y éste se encargue de gestionar las obras. Éste segundo caso correspondería al segundo esquema (ver esquema 2.3.1.2).
OBRAS EN LA COMUNIDAD RÉGIMEN PROPIEDAD HORIZONTAL

Contratista principal

Subcontratas

Comunidad
(Centro de trabajo)

La comunidad antes de empezar las obras deberá exigir a las empresas y trabajadores que accedan a su centro de trabajo:

1. Alta de seguridad social y T.C.
2. Información y formación de los trabajadores
3. Certificados de aptitud de los trabajadores
4. Categoría profesional de los trabajadores
5. Listado de los trabajadores
6. Previsión de seguimiento y control
7. Pólizas de responsabilidad Civil / Patronal y recibo
8. EPI’s que van a utilizar los trabajadores
9. Recurso preventivo (en caso de actividad de riesgo)

Supuesto 1: La comunidad consigue toda la documentación. Se inician las obras.

*Consejo: El portero tengo el curso de 60 horas que lo habilita para ser recurso preventivo para controlar, sin ser responsable, a los trabajadores.

Contratista principal: responsable
Comunidad: responsable subsidiario

Accidente laboral

Supuesto 2: Las empresas y/o trabajadores no tienen la documentación correcta o no disponen de ella.

2.1 La comunidad inicia/sigue las obras sin la documentación
2.2 La comunidad paraliza las obras o contrata las obras con una nueva empresa

Comunidad y contratista principal responsables solidarios

Esquema 2.3.1.1
OBRAS EN PROPIEDAD VERTICAL. EL PROPIETARIO DEL CENTRO DE TRABAJO HACE APODERADO AL ADMINISTRADOR DE FINCAS

Esquema 2.3.1.2
2.3.2 INSPECCIÓN TÉCNICA DE EDIFICIOS

Durante las prácticas, el estudiante colaboró con el despacho Blur Arquitectura y con el arquitecto Joan Boada para realizar inspecciones técnicas en dos fincas distintas.

La normativa de las ITEs se encontraba en un período transición durante el las prácticas. Las dos ITEs en las que participó estaban ya regularizadas por la nueva normativa, el “Decreto 67/2015, de 5 de mayo, para al fomento del deber de conservación, mantenimiento y rehabilitación de los edificios de viviendas, mediante las inspecciones técnicas y el libro del edificio”, con lo cual los técnicos tuvieron que adaptar su método de trabajo a la hora de realizar las nuevas inspecciones.

De las dos ITEs en las que una de ellas nunca se llegó a terminar en el periodo de prácticas. La otra no sólo asistió sino que también la transcribió a formato digital juntamente con otro estudiante en prácticas y uno de los arquitectos del despacho Blur Arquitectura.

De la experiencia de las dos ITEs se extrae un protocolo a seguir a la hora de realizar una:

- El administrador de fincas o el presidente de la comunidad se pone en contacto con la empresa que vaya a realizar la ITE.
- Se establece un día y una hora favorable para los propietarios y la empresa encargada de realizar la ITE.
- El día de la visita el o los técnicos visitan una por una las viviendas así como los espacios comunes. Se han de detectar y apuntar todas las lesiones existentes así como poder describirlas, ubicarlas en el edificio y definir su grado de peligrosidad.
- Si se ha podido visitar un mínimo del 80 % de las viviendas así como los sobreáticos y áticos que han de ser visitados obligatoriamente se puede redactar la ITE a formato digital y enviarla.
- Si no se ha llegado a esas condiciones mínimas se tendrá que establecer otro día de visita.
- Una vez se hayan visitado o superado el mínimo el número de viviendas establecido por la ley se redacta la ITE en el despacho. Para ello se necesita ingresar en la página web http://ite.agenciahabitatge.cat/Ite/AppJava/views/login.xhtml y se llenan los parámetros siguientes:

1. Datos del informe de la ITE: aquí se especifica la fecha de inspección, emisión y caducidad.
2. Identificación del edificio: se especifica la dirección del edificio así como su referencia catastral.
3. Identificación propiedad: en este apartado se especifica qué tipo de régimen jurídico tiene la propiedad y los datos del representante de dicha propiedad.
4. Identificación del técnico redactor: en este apartado se incluyen los datos personales del técnico encargado de realizar la ITE.

5. Datos generales del edificio: se especifica la superficie construida de la finca, el número de viviendas, locales y parkings por planta, la ubicación de la finca y el número de viviendas visitadas.

6. Descripción del edificio: en este apartado, primeramente se hace una breve descripción de la finca, ubicando las fachadas y describiendo la distribución de las viviendas. Luego se dibuja, mediante la plataforma Autocad, una serie de croquis de la planta del edificio marcando las viviendas patios, terrazas y las calles o medianeras de alrededor y se nombra cada grupo de tal forma que podamos referenciar descripciones o lesiones futuras a los croquis.

Dentro de éste mismo apartado se describe la envolvente, con la ayuda de soporte fotográfico, de todo el edificio parte por parte. Se describirán fachadas, terrazas, cubiertas, patios y medianeras, ubicándolas y referenciándolas al croquis.

7. El siguiente apartado se trata de la descripción normalizada de los sistemas constructivos del edificio y consiste en una serie de una serie de preguntas acerca de la cimentación, estructura, cerramientos e instalaciones, a elegir respuesta entre varias opciones.

8. A continuación se redacta el apartado más importante de la ITE. La relación y la calificación de las deficiencias detectadas durante las visitas. En él se describe, con la ayuda de material fotográfico, las lesiones encontradas, ubicándolas en el edificio y detallando también la causa que ha provocado dicha lesión. Las lesiones tienen un sistema de valoración que va desde muy grava hasta leve. Es el técnico quien, con la ayuda de la normativa, valora la gravedad de la lesión.

9. En el siguiente apartado se detalla una valoración de las condiciones de accesibilidad de la finca, valorando si es o no posible adaptar el edificio para que disponga de un itinerario accesible. Por eso es importante realizar un croquis con los itinerarios conflictivos. A continuación se muestra un ejemplo de un croquis realizado por el alumno:
10. El siguiente apartado hace referencia a las condiciones de sostenibilidad del edificio. Para ello es importante que durante las visitas se vayan tomando notas acerca del tipo de carpinterías que dispone cada vivienda y del sistema de calefacción y de ACS utilizado para así poder sacar una media y poder hacer una valoración acerca de cómo se podría mejorar el aspecto de la eficiencia energética.

11. El siguiente apartado es el último. Se trata de una tabla resumen de las deficiencias encontradas y su ubicación. Esta tabla resumen juntamente con soporte fotográfico va bien para explicar la valoración de la ITE a los propietarios.

Una vez ya se ha redactado la ITE se procede a presentarla juntamente con la solicitud de emisión del certificado de aptitud y, una vez revisado por parte de la administración, se emitirá el certificado de aptitud.

En función de las deficiencias encontradas el certificado de aptitud se emite como:

- Apto: si el edificio no presenta deficiencias.
- Apto: si el edificio presenta deficiencias leves.
- Apto provisional: si el edificio presenta deficiencias importantes.
Apto cautelarmente: si el edificio presenta deficiencias graves o muy graves, pero se han adoptado medidas cautelares de forma provisional. Este es el caso de la ITE que se encuentra en el Anexo 7.4, en donde los desprendimientos de los balcones de fachada fueron calificados como graves pero se adoptaron las medidas cautelares colocando una malla que impide que dichos desprendimientos caigan a la calle (ver Imagen 2.3.2.1).

Resolución denegatoria de aptitud: si el edificio presenta deficiencias calificadas como graves o muy graves sin las medidas cautelares ejecutadas.

Imagen 2.3.2.1
2.3.3 Delineación de planos

Otra de las tareas de despacho encomendadas al alumno durante el período de prácticas fue la delineación de planos.

La mecánica de esta tarea siempre fue la misma en todos los casos:

1. Primeramente un cliente se pone en contacto con la empresa.

2. Se envía al estudiante en prácticas a la finca para que tome medidas usando un metro convencional y un metro láser que dispone de nivel y se realiza a mano el levantamiento gráfico, acotándolo y también tomando fotografías del entorno de la finca para así poder resolver en el propio despacho posibles dudas que surjan.

3. Se digitalizan los planos dibujados a mano alzada utilizando la plataforma Autocad.

4. Se realiza una propuesta de distribución de mobiliario y se la muestra a su superior para debatir con él como puede ser mejorada.

5. Finalmente se implantan los cambios en la distribución de mobiliario acordados y se guardan los planos en una carpeta especificada previamente para que puedan ser encontrados con facilidad.

1. Para ver un ejemplo de proyecto de la calle Sardeña 342 delineados durante las prácticas ir al apartado 8 del proyecto.
2.3.4 DIAGNÓSTICO Y ETIOLOGÍA DE LESIONES

El alumno realizó, en dos ocasiones, una colaboración con el arquitecto Joan Boada para encontrar y diagnosticar lesiones de carácter estructural en la finca situada en la calle Lauria número 51.

Las herramientas que el arquitecto tiene a su disposición para diagnosticar son las siguientes:

- Cámara de fotos para dejar constancia de las lesiones encontradas
- Un endoscopio con cable moldeable que tiene una cámara con linterna en el extremo y que permite visualizar sitios que se encuentran escondidos.
- Un taladro con una broca de 10 mm que permite diagnosticar el estado interno de las vigas de madera mediante la perforación de éstas.
- Un punzón para poder diagnosticar el estado superficial de las vigas.
- Maceta, escarpa, guantes y gafas de protección.
- Metro para poder dimensionar la lesión y libreta para apuntar los datos extraídos.

En la primera visita se realizó una visita en los locales comerciales de la planta baja (farmacia y restaurante) y se determinó el estado actual de las vigas de madera.

En la farmacia comprueba el estado de las cabezas de las vigas de madera que da a los patios (ver Imagen 2.3.4.1) ya que estas son las que se encuentran más expuestas a la intemperie. El objetivo era visitar la totalidad de la farmacia pero al final se llegó a un consenso para que otro día, en una hora menos concurrida, realizar una inspección de las vigas de madera cuyas cabezas están empotradas en la fachada principal. Cabe destacar que las vigas de la farmacia están cubiertas por un falso techo de madera conglomerada así que hay que proceder a su desmontaje previo para poder examinar las vigas.

Para detectar el estado interno de las vigas el arquitecto se guía por dos parámetros:

1. La resistencia que ofrece la viga de madera a la perforación de la broca.
2. El olor que desprende la broca una vez sacada del interior de la viga.

Imagen 2.3.4.1
La segunda visita se llevó a cabo en algunas de las viviendas. Se analizaron las cabezas vigas de madera que dan a los patios mediante un punzón para ver el estado superficial de la viga y mediante un taladro para analizar el estado del interior de la viga.

De las viviendas se analizaron las cabezas vigas de madera pertenecientes a los patios, así como las viguetas metálicas pertenecientes a las tribunas interiores (ver Imagen 2.3.4.2). Las cuales la única forma de diagnosticar los posibles problemas que estas pudieran tener era mediante la inspección visual directa o indirecta (endoscopio).

Imagen 2.3.4.2

El resultado de la segunda visita fueron algunas vigas metálicas oxidadas o corrosionadas y algunas vigas de madera en mal estado ya sea por exceso de flexión (lo que en muchos casos provoca la rotura de la bovedilla) o de forma superficial (hongos).
3 CONCLUSIONES

Las conclusiones que se extraen tanto de la realización de las prácticas como de la redacción del proyecto son satisfactorias tanto en el ámbito laboral como en el personal.

Haber realizado las prácticas en una empresa constructora que desarrolla la mayoría de sus actividades en el sector de la rehabilitación ha permitido tanto la ampliación de conocimientos como la aplicación de los que ya se habían adquirido durante el proceso formativo de la carrera. Pero la adquisición de conocimientos solamente ha sido uno de los beneficios que han aportado las prácticas, ya que también se ha adquirido la metodología de trabajo propia de una empresa constructora, con lo cual se ha descubierto el papel de cada uno de los agentes que intervienen en la construcción y sus responsabilidades.

Haciendo referencia al objetivo expuesto en la introducción del proyecto de final de grado, el hecho de haber realizado las prácticas en una empresa pequeña ha hecho que el estudiante se percate que estimar los tiempos de ejecución de las obras sea una tarea complicada en éste tipo de empresas pues los trabajadores son desplazados con frecuencia de sus puestos de trabajo habituales para atender actuaciones de urgencia u otros trabajos rápidos. También hay que añadir la dificultad adicional de que se trata de una empresa especializada en el sector de la rehabilitación lo cual provoca que muchas veces no se conozca la magnitud de una tarea hasta que se está ejecutando pues es difícil estimar las condiciones en las que se encuentran algunos subsistemas a simple vista.

También se ha deducido que en las empresas pequeñas no se disponen de equipos especializados en cada fase de construcción, sino de trabajadores versátiles que poseen conocimientos en todos los ámbitos sobre los que la empresa ofrece sus servicios y cuando se necesita, de forma puntual, realizar una tarea con un equipo especializado se subcontrata a una empresa externa.

Como valoración personal el hecho de que las prácticas se hayan realizado en éste tipo de empresa ha sido una experiencia positiva pues el trato ha sido más personal y ha hecho que el alumno se sienta más vinculado y se implique más en las dificultades que han ido surgiendo.

La redacción del proyecto en sí ha servido para darse cuenta, después de un período de 6 meses en prácticas, de todos los trabajos que se han llevado a cabo, ya sean por encargos como por iniciativa propia, exponiendo así las funciones que ha tenido el estudiante en la empresa durante el período de prácticas.
4 BIBLIOGRAFÍA

4.1 NORMATIVA

- CTE-SUA Seguridad de utilización y accesibilidad.
- CTE DB-HS Salubridad.
- Decreto de habitabilidad 141/2012, del 30 de octubre, sobre condiciones mínimas de habitabilidad de las viviendas y las cédulas de habitabilidad.
- Normativa urbanística metropolitana de Barcelona, Normas urbanísticas del Plano Metropolitano, Capítulo 4.
- Decreto 67/2015, de 5 de mayo, para al fomento del deber de conservación, mantenimiento y rehabilitación de los edificios de viviendas, mediante las inspecciones técnicas y el libro del edificio.

4.2 LIBROS

4.3 PÁGINAS WEB

- http://giscosa.com/es/
- https://esp.sika.com/
- http://www.weber.es/home.html
- http://ajuntament.barcelona.cat/es/
- https://maps.google.com
- https://www1.sedecatastro.gob.es
5 AGRADECIMIENTOS

En este apartado quiero agradecer personalmente a todas las personas que de una forma u otra me han ayudado a que la redacción de éste proyecto fuese posible.

En especial quisiera agradecer a:

Gustavo Gispert, tutor del proyecto en la universidad

Jorge Sobrino, Gerente General Corema Arquitectura S.L. y tutor del proyecto en la empresa

Sonia Osorio, administrativa de la empresa Corema Arquitectura S.L.

Amelio, encargado general y oficial de 1ª de obra de Corema Arquitectura S.L.

Manolo, oficial de 1ª de obra de Corema Arquitectura S.L.

Héctor, oficial de 1ª de obra de Corema Arquitectura S.L.

Miguel, oficial de 1ª de obra de Corema Arquitectura S.L.

Jose, oficial de 2ª de obra de Corema Arquitectura S.L.

David, peón de obra de Corema Arquitectura S.L.

Armand, peón de obra de Corema Arquitectura S.L.

A mi familia en general, pero especialmente a mis padres Mario y Montse, mi hermano Romá y mi tío Jordi por ofrecerse a prestarme ayuda técnica y moral a la hora de redactar este proyecto.
6 CARTA DE VALORACIÓN DE ALUMNO

COREMA Arquitectura S.L.
N.I.F: B-63.888.341
C/ Rosellón 370, Local 2 08025 Barcelona
T 93 528 69 73
http://www.arqcorema.com

Distinguidos Sres.

En nombre de COREMA ARQUITECTURA y en el mío propio, deseo agradecer la labor profesional al Sr. Sergi López Bolat en su empeño y dedicación en las tareas encargadas.

Destaco en primer lugar su conocimiento e implicación en los procesos de rehabilitación a los que ha tenido acceso y de los cuales ha realizado amplio seguimiento, advirtiendo desviaciones y concretando procesos, ayudando a lo largo de los trabajos.

Sus ganas de aprender han superado las líneas básicas de los procesos mostrados, sumergiéndose en el trabajo de seguimiento e incorporándose en un grupo de trabajo establecido, prestando ayudas necesarias más allá del mero conocimiento.

Valga este agradecimiento como extensión para la futura recomendación del trabajador a aquellas empresas en las que pudiera estar interesado en colaborar, haciendo mención de los méritos personales y profesionales alcanzados durante la ejecución de las prácticas laborales relacionadas con su PFC mientras cursaba último curso del año académico 2015-2016.

Por motivos que escapan al propio trabajador, COREMA ARQUITECTURA no pudo renovar nuestra relación profesional, sin descartar por ello una futura reincorporación con la recuperación del marco económico actual.

La calidad personal del Sr. López y su implicación en las tareas asignadas, considero que han contribuido a llevar la relación de "prácticas" a un agradable entorno de trabajo y colaboración. Con este escrito deseo transmitir mi agradecimiento a su persona y motivar su incorporación al mundo laboral con energía y la misma profundidad que ha mostrado durante este periodo.

Atentamente,

[Signature]

Jorge L. Sabino
Administrador COREMA ARQUITECTURA
7 ANEXOS

7.1 DIARIO DE SEGUIMIENTO DE OBRA 22/07/2015 – 4/02/2015

22/07/2015
Calle Lauria 51:

Se hormigona el balcón intermedio de viguetas metálicas. Se realiza una primera capa de hormigón aligerado, la cual no llega hasta las caras externas de las almas de las vigas metálicas del balcón para que así la segunda capa de hormigón se pueda meter por los laterales del hormigón aligerado y todo forme un conjunto macizado.

- Mallazo soldado en bigas acero
- Armadura negativo anclada con taco químico
- Composición del balcón
- Balcón hormigonado y remolineado

En la parte inferior del balcón hay una capa de rasilla que queda sujeta entre las dos alas de las vigas metálicas y que sirve a modo de encofrado.

Repicado de la cubierta plana antigua de la finca. No es toda la cubierta ya que la otra parte pertenece a la otra finca. Se repica mediante un martillo neumático de suelo. Solo se repica la rasilla. Se deja la capa separadora y la lámina impermeabilizante antigua puesto que posteriormente se hará un planché de mortero y se colocará la nueva impermeabilización encima.
Se trae un camión-grúa móvil con volquete, el cual procede del taller de herrería para la colocación de las carpinterías de aluminio de los balcones:

1. Se saca la jaula que se usará para subir a los operarios del camión y se deja en el suelo, dejando un perímetro de seguridad para descargarla.

2. Se suben los operarios a la jaula y la grúa los sube a la zona de trabajo. Antes de abrir la barandilla de seguridad de la jaula los operarios atan el sistema de seguridad anti caída a la cuerda y se bajan de la jaula con total seguridad.

3. Se establece abajo un perímetro de seguridad para evitar que objetos puedan caer encima de las personas.

4. Se van colocando las carpinterías con la ayuda de la grúa atándolas mediante una braga.
Perímetro de seguridad

23/07/2015

Calle Lauria 51:

Se termina de repicar la cubierta plana y los minveles antiguos de ésta. Se baja la runa con polea manual.

El día 20 de julio se empezó con la resolución de la grieta, la causa de la cual fue por una descompensación de las paredes de fachada, debido a un asentamiento diferencial. El proceso constructivo mediante el cual se ha determinado la reparación consiste en ir colocando grapas cada dos hiladas de ladrillos perforados en tabla de tres agujeros. De esta forma se asegura la traba entre las dos paredes de fachada. Hay que tener en cuenta que por el interior de la grieta pasa un bajante así que ha de se trata de un trabajo delicado.

Para las cornisas empotran una rasilla a la pared y luego colocan el regle encima. Con un molde de policarbonato dan forma al material biocalcio de piedra. Un material con características similares a la piedra.
Los barrotes verticales de las barandillas se taladran para posteriormente colocar unos pasamanos nuevos.

Se repica la arista de la pared de fachada que se encuentra en la parte inferior del balcón para que el revoco que se coloque debajo del balcón entre dentro de la pared y así la deformación natural del balcón no rompa el revoco de la pared.

24/07/2015

Calle Lauria 51:

Se repica el aislante de la pared de las viviendas de la cubierta.

Se hace una regata en todo el perímetro del muro de coronación de la cubierta que es donde irá empotrado el final de la lámina EPDM butilo de 1,2 mm de espesor. En este caso la lámina geotextil no llegará hasta la regata porque al colocarla encima de la zona de la regata con el butilo, esta se despega y se cae.

Se revocan los techos de los balcones con un mortero con árido fino.
El arquitecto Joan Boada realiza una visita en los locales comerciales de planta baja (farmacia y restaurante) y estudia el estado actual de las vigas de madera.

En la farmacia comprueba el estado de las cabezas de las vigas de madera que da a los patios. Se llegaba un consenso para otro día, en una hora menos concurrida, realizar una inspección de las vigas de madera pertenecientes a la parte comercial de la farmacia.

Las vigas de la farmacia están cubiertas por un falso techo de madera conglomerada así que hay que proceder a su desmontaje previo para poder examinar las vigas.

Las herramientas que el arquitecto tiene a su disposición son las siguientes:

- Cámara de fotos para dejar constancia de las lesiones encontradas
- Un endoscopio con cable moldeable que tiene una cámara en los extremos y que permite visualizar sitios que se encuentran escondidos.
- Un taladro con una broca de 10 mm que permite diagnosticar el estado interno de las vigas de madera mediante la perforación de éstas
- Un punzón para poder diagnosticar el estado superficial de las vigas.

Para detectar el estado interno de las vigas el arquitecto se guía por dos parámetros:

1. La resistencia que ofrece la viga de madera a la perforación de la broca.
2. El olor que desprende la broca una vez sacada del interior de la viga.
27/07/2015

Calle Lauria 51:

Se empieza con la ejecución de las cornisas de los balcones. Se dejan por hacer algunas zonas ya que están los puntales del andamio cerca. Se ejecutarán con posterioridad.

Preparando cornisa balcón

Se forma un planché de mortero en la cubierta para regularizar la superficie. Se coloca encima de los restos de la lámina impermeabilizante antigua y restos de la capa separadora plástica. Este planche se agrieta debido a su esbeltez. Pero como tan solo es una capa separadora entre la impermeabilización antigua y la nueva simplemente se sigue con el proceso.

Preparado planché mortero Planché mortero

Se extraen las tres viguetas de la esquina con la grieta provocada por los asentamientos diferenciales las cuales estaban en avanzado estado de corrosión, y se terminan de colocar los ladrillos y las grapas para trabar las dos paredes. Se deja un espacio para colocar las nuevas viguetas cuyas cabezas irán intercaladas entre pletinas metálicas, las cuáles se recortan en dos piezas pues se perdió la pieza que iba colocada en ese lugar.
Se limpia la runa que se ha ido acumulando en la parte inferior del andamio.

Se pintan las carpinterías. Se encarga de ello del equipo de pintores y el encargado que ubica y controla la plataforma elevadora.

28/07/2015

Calle Lauria 51:

Este día vino el arquitecto Sr. Joan Boada, a realizar unas catas en las viviendas. Se analizaron las cabezas vigas de madera que dan a los patios mediante un punzón para ver el estado superficial de la viga y mediante un taladro para analizar el estado del interior de la viga. El taladro proporcionaba unos resultados fiables analizando dos parámetros: el olor que desprendía el interior de la viga de madera y la resistencia que la viga ofrecía a la penetración de la taladradora.

De las viviendas se analizaron las cabezas vigas de madera pertenecientes a los patios, así como las viguetas metálicas pertenecientes a las tribunas interiores. Las cuales la única forma
de diagnosticar los posibles problemas que estas pudieran tener era mediante la inspección visual directa o indirecta (endoscopio).

El resultado fueron algunas vigas metálicas oxidadas o corrosionadas y algunas vigas de madera en mal estado ya sea por exceso de flexión (lo que en muchos casos provoca la rotura de la bovedilla) o de forma superficial (hongos).

Cata en habitación pared de fachada
Cata en habitación pared de fachada
Cata en salón pared de patio interior

30/07/2015

Calle Lauria 51:

En lo referente a los balcones de viguetas primero se hormigonará el de abajo ya que la grieta se terminó de reparar hace poco y se está esperando a que el mortero coja resistencia.

En el balcón de viguetas de abajo se cortan las armaduras a negativo y se empotran en el interior de la pared fijándolas con silkaflex.
Calle Lauria 51:

Se hormigona el balcón de la planta baja. Como la capa de hormigón resistente (no aligerado) es de poco grosor, no se usará un vibrador, en su defecto se irá introduciendo una varilla en el interior durante el proceso de hormigonado para asegurarse de que no queden bolsas de aire y el hormigón cubra todo el espacio.

Se prepara el armado del balcón superior. Hay un percance en este balcón. La cuerda de replanteo que pasa por los extremos de las viguetas metálicas pasa por algunos de los extremos de las vigas, pero hay algunas que se han recortado de más. Se sigue con el proceso.
Se pintan las carpinterías de las tribunas con la ayuda de una plataforma elevadora.

4/09/2015

Calle Lauria 51:

En la cubierta se coloca la rasilla tipo Piere en el tejado. Se usan cuerdas para ir colocando las hiladas de rasilla. Respecto a las juntas de dilatación transversales, primero se cubre todo el tejado con rasilla y, posteriormente se corta la junta de dilatación con una radial y se limpia el hueco donde posteriormente se colocará el material silkaflex de la casa silka.
Por lo referente a las juntas de dilatación perimetrales, se deja un espacio de unos 5 cm en los extremos y se rellenan con mortero.

En los dinteles de obra de la planta baja, han colocado unas grapas ya que estos se encontraban agrietados y tras haber quitado el estucado se percataron de que la grieta atravesaba el dintel entero.

Hay que reparar la fachada posterior, trabajará una empresa subcontratada especializada en trabajos en altura, por lo tanto no será necesaria la colocación de un andamio.

16/09/2015

Calle Rosellón 297:

Montaje del andamio de anchura = 5,84 m y con paso inferior con las medidas indicadas en la normativa.
22/09/2015

Calle Lauria 51:

Se rellena con silkaflex la última junta de dilatación de la cubierta.

Se ha empezado a pintar el interior de los muros de coronación de la cubierta.

En una de las esquinas de la cubierta se ha formado un pequeño escalón con rasilla. Esto se ha hecho para el correcto desagüe de las aguas de no ser así, el agua se quedaría acumulada en dicha esquina.
Se forman los zócalos de la parte exterior de la fachada con el material biocalce de piedra. En éste caso le añade un tinte para que tenga un color distinto.

23/07/2015

Calle Lauria 51:

Se repica y se deja uniforme la baba que ha quedado en la coronación del muro pues al colocar el remate del muro no se uniformó la superficie por debajo y dificulta las tareas de pintado así como afecta a su estética.

Se colocan las carpinterías de aluminio de la zona de las tribunas, situada entre las calles de Consejo de Ciento y Lauria. Los ferrallistas habían cargado las carpinterías en la grúa una encima de otra y dispuestas en un orden que permitiría ir poniéndolas a medida que se iban sacando. Teniendo en cuenta que se empezaría por el balcón de arriba. El problema fue que el vecino del balcón de arriba estaba ausente y al no llevar la jaula para poder subir a los operarios se tuvo que empezar con el balcón de abajo. Teniendo que sacar todas las carpinterías para poder acceder a la primera del balcón de abajo.
Otras incidencias producidas durante la colocación de las carpinterías fueron el hecho de no cumplir con los tiempos previstos, un golpe en la cornisa mientras se estaba llevando a cabo la colocación de la carpintería el cual precisó de reparación posterior. Esto se debió al uso de una braga demasiado larga la cual hizo que la pluma de la grúa tocase el balcón superior. Así que se tuvo que bajar la carpintería, cambiar de braga y volverla a subir.

Otra problemática fue el hecho de que había un pequeño desfase entre la esquina del balcón de en medio respecto al superior e inferior. Esto provocó que las carpinterías quedasen ligeramente descuadradas. Se intentó repartir el error tanteando y midiendo la distancia que quedaría hasta el extremo para comprobar si las últimas carpinterías cabrían y teniendo en cuenta que entre las dos carpinterías de la esquina de en medio se colocaría una chapa metálica de cerramiento que igualaría la distancia entre la parte superior e inferior de la carpintería.
Calle Lauria 51:

Se realizan reparaciones en los bajantes que dan al patio. Se avisa a los vecinos de que se estan realizando reparaciones en los bajantes para que no utilicen los sanitarios que desagüen a la red de saneamiento que está siendo reparada. Aún así esto no evita alguna decarga de sanitario sorpresa. Ante estas circunstancias los operarios de la propia empresa deciden cortar el suministro de agua para evitar nuevas descargas de los sanitarios.

Para la reparación primero se extraen los trozos antiguos de los bajantes problemáticos. Una vez extraídos se miden las distancias a cubrir y se marcan y se cortan mediante una radial los nuevos trozos de bajantes.

Para las uniones se recubre la cabeza del bajante mediante papel de diario y se le va dando un mayor diámetro. Una vez ya tiene el diámetro suficiente para introducirse en el interior de la otra parte estas dos se pegan mediante el uso de una cola especial para unir secciones de pvc.

Calle Rosellón 297:

Se ha terminado de repicar los balcones con la picoleta y de darles un cepillado para poder conseguir una sección que se encuentre en condiciones para posteriormente poder aplicar el
consolidante. Ahora se baja toda la runa acumulada en el andamio. Una vez bajada la runa se vuelve a coser la malla de gallinero del andamio con bridas.

Se llevó a cabo una reunión con los técnicos de la casa de morteros para establecer las propiedades del material que servirá como reconstrucción de la piedra natural. Se usará el biocalcio de piedra. Pero con la propiedad de que sea transpirante para que así la piedra pueda transpirar y no se pudra evitando así la posterior degradación del balcón una vez rehabilitado. Es importante que al balcón no se le coloque un pavimento encima pues este evitaría la transpiración natural de la piedra por la parte superior.

30/09/2015

Calle Rosellón 297:

Se procede a desmontar los compresores de los aires acondicionados, los cuales se encuentran en los balcones de los vecinos que no han podido desmontarlos por su cuenta.

ACTA DE TRABAJO DE DESMONTADO DE AIRES ACONDICIONADOS CALLE ROSELLÓN N. 297

<table>
<thead>
<tr>
<th>N</th>
<th>PISO</th>
<th>HORARIO</th>
<th>GAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
</table>
| 1 | 3R 1ª | 9:30 – 10:05 | R-407 | 1. Se le informa de que la máquina tiene una pequeña fuga y que como el gas aún existe se le recargará la máquina.
 | | | 2. La tapa de registro del compresor está podrida. |
| 2 | PRIN 1ª | 10:05 – 11:00 | R-410A | 1. Respecto a la máquina de la habitación, el mando a distancia no funciona y se precisa de su puesta en funcionamiento de forma manual.
 | | | 2. El desagüe se ha roto durante el desmontaje del compresor exterior ya que se encontraba en mal estado y hará falta realizar un empalme con un tubo nuevo.
 | | | 3. Convendría colocar soportes anti vibración nuevos ya que se encuentran deteriorados. |
| 3 | 4RT 1ª | 11:00 – 11:50 | R-410A | 1. Hay una pequeña fuga. Se ha intentado recuperar todo el gas posible.
 | | | 2. Convendría cambiar los soportes del compresor exterior pues estos se encuentran corrosionados |
05/10/2015

Calle Lauria 51:

Se terminaron de colocar ya todas las carpinterías de los dos balcones, así como de reparar el bajante del patio.

06/10/2015

Calle Lauria 51:

Se están realizando las tareas de soldado de las carpinterías. Posteriormente se pintarán y luego se colocarán el acristalamiento.
Calle Rosellón 297:

Se ha dado una forma de media caña a los balcones de obra (los de arriba del todo) ya que se quitó el pavimento y ahora al pasar la karcher por ellos podrían aparecer humedades en el interior de la vivienda.

07/10/2015

Calle Rosellón 297:

Se repican las zonas bufadas de la fachada, las cuales ya se habían marcado con anterioridad, para así no tener que pasar la karcher por estas zonas. Estas no se habían repicado antes de pasar la karcher para que el agua no pasara a través de la pared y mantenerlo así hasta que se hubiese terminado de pasar la karcher. Este procedimiento se ha ejecutado así a excepción de un tramo de estuco bufado que por peligro inminente de desprendimiento se repicó con anterioridad.
08/10/2015

Calle Lauria 51:

Se está haciendo el planché de mortero de la cubierta del badalot. Amenaza con caer lluvias. Una vez formado el planche y haberlo remolineado, se deja tapado con la lámina impermeabilizante para así asegurarse de que las lluvias no interfieren en el fraguado del mortero.

![Planché de mortero badalote cubierta](image)

13/10/2015

Calle Rosellón 297:

Se forma el revoco nuevo de los parches de la fachada que se encontraban desprendidos de la pared de ladrillo con mortero fino. También, con el mortero fino, se rellenan los huecos de mayor profundidad que hayan podido quedar en los estucados antiguos. La forma de rellenar los parches es tirando dos maestras con el grosor del revoco antiguo, esperar a que el mortero se endurezca un poco y reglear el mortero entre estas dos maestras.

Posteriormente se coloca el revoco 0,0 (el más fino, masilla) por encima del revoco fino como capa de acabado antes de la pintura. Al tratarse de un material fino será menos poroso, además solamente permite un grosor máximo de 3mm por eso se ha dejado, en la medida de lo posible, la capa anterior lo más uniformada posible.
En los empotramientos de las barandillas han realizado un agujero alrededor para poder pintar la parte empotrada con pintura anti óxido. Como ya lo han pintado taparan el agujero con mortero.

Calle Lauria 51:

Se ha rellenado el parche de la vivienda de la cubierta con mortero fino. Se ha pintado la pared de la zona no rellenada y también las cabezas de las vigas de madera que sobresalían.

Se han colocado los vierteaguas del badalot de la escalera.
14/10/2015

Calle Rosellón 297:

Se han rellenado todos los parches replicados con mortero de cal. Se empezó utilizando el mortero con una dosificación de cemento portland demasiado alta, pero se cambió la dosificación pues la fachada está estucada mediante un mortero de cal, y la utilización de una alta dosificación de cemento portland en el mortero podría provocar una incompatibilidad entre el material antiguo y el nuevo.

Parches rellenados con mortero de cal

23/10/2015

Calle Rosellón 297:

Hay tres operarios trabajando en el revestimiento de fachada. Uno está arreglando la parte exterior del muro de coronación de la cubierta. Repicando, recreciendo y aristando.

Formación aristas muro de coronación

Los otros dos trabajan de arriba hacia abajo. Primero uno paso el revoco fino en los lugares con cierta variación de volumen y ahora otro pasa el revoco 0,0 por encima como última capa de acabado liso.
Formación de capa de revoco 0,0

30/10/2015
Calle Rosellón 297:
Se ha terminado de colocar la última capa de revoco 0,0 en toda la fachada, exceptuando en las zonas de las cimbras (la de arriba del todo si).
Se está lijando toda esta capa para dejar el acabado final bien liso y posteriormente poder pintar encima sin que sean perceptibles algunas irregularidades.

Formación de capa con revoco 0,0 de ornamentos y muro de coronación

02/11/2015
Calle Rosellón 297:
Se sigue lijando los imperfecciones de la última capa de revoco 0,0. Hoy se terminará de lijar y se empezaran a corregir las imperfecciones. Posteriormente se empezarán a marcar las líneas que imitarán la construcción con piedra natural.
Ornamento recubierto de revoco 0,0 terminado

04/11/2015

Calle Rosellón 297:

Se está colocando una capa de revoco 0,0 en algunas partes de las cimbras (las partes más rugosas) que coinciden con las partes que sobresalen más respecto a la fachada. En estas partes el proceso de ejecución ya se realiza teniendo en cuenta que posteriormente no se podrá lijar la superficie dada la complejidad geométrica de las piezas, así que se intenta, en la medida de lo posible dejar un acabado liso e uniforme.

No se ha terminado de repasar y lijar la fachada puesto que las lluvias no permiten que el mortero 0,0 se termine de secar y al lijarlo no se elimina el material sobrante ni se deja el acabado liso. Hay que esperar a que el material se seque por completo.

Jorge realiza la visita de obra semanal. Se decide hacer un cambio de operarios. Héctor se traslada a Almogávares a ayudar a retirar la runa y Amelio se traslada de Almogávares a Rosellón para mostrar cómo realizar el proceso constructivo de los balcones a Miguel.

Se decide que antes de dejar las aristas vivas lo cual provoca que cualquier imperfección sea más visible se opte por matar un poco el canto de dichas aristas y así conseguir disimular las imperfecciones en el caso de que se produjesen.

Se decide también el proceso constructivo del muro de coronación tal y como se muestra en la imagen:
Calle Rosellón 297:

Se terminan de preparar las carpetas de obra de calle Rosellón 297 y calle Almogávares 8 y se llevan las correspondientes carpetas a las obras.

Miguel se hace responsable de la carpeta de obra de Rosellón 297 y Jose se hace responsable de la carpeta de obra de Almogávares hasta que llegue Amelio que será el responsable definitivo de la carpeta.
Miguel se traslada a Calle Rosellón 370 porque tiene que arreglar un bajante del patio donde ya había trabajado con posterioridad. Amelio se queda trabajando solo en Rosellón 297 Jose, David y Héctor siguen moviendo runa de Almogávares.

09/11/2015

Calle Almogávares 8:

Amelio, Jose y Héctor están tirando maestras en los balcones. Se deja una maestra tirada para que Jose y Héctor vean como se hace y puedan seguir ellos dos solos repitiendo el mismo proceso en todos los balcones de la parte izquierda del andamio. El proceso consiste en tener como referencia la hilada de piedra lateral y tomar como punto 0,0 la parte superior de esta piedra. A partir de este punto rellanar todo el balcón y darle un grueso de 1,5 cm en la parte interior para la formación de pendiente.

Esto se ejecuta con la colocación de un regle en el extremo del balcón (un poco tirado para afuera) y posteriormente una vez tenemos controlada la cota 0,0, en la parte interior del balcón se hacen las maestras del grueso que nos pida la parte inferior del regle más el 1,5 cm de pendiente. Una vez echa la maestra con mortero se forma la arista del balcón con geolite. Se espera que se seque todo, se mira pasando el regle entre la maestra y la arista si este pica con algún trozo saliente y de ser así se repica y se forma el planche de mortero mediante pasadas de regle entre la maestra y la arista.

10/11/2015

Calle Almogávares 8:

Ha habido un conflicto en la técnica a usar para realizar los planches de los balcones y es que todo y solo haber dejado el hormigón estructural de los balcones algunos de estos tienen pendiente con lo que en alguno sale a hacer un recrecido grande mediante el planche. Además como la posición del balcón con la piedra no siempre es la misma hay alguno en que el planche llega muy arriba del marco inferior de la ventana. A esto se le ha de tener en cuenta que después del planche habrá que realizar las capas siguientes.
Aparte dentro del mismo balcón y nivelando respecto a la piedra, sale como mínimo en un balcón una diferencia de 4 cm en el canto a lo largo de su longitud.

Se estará a la espera de la visita de obra el día siguiente por parte de los técnicos para que decidan la decisión a tomar. De mientras el balcón conflictivo se deja con un regle vertical pequeño con las cotas marcadas.

![Regle vertical con conflicto marcado](image1.jpg)
![Formación arista superior](image2.jpg)

Humedeciendo superficie para formación de planché

11/11/2015

Calle Rosellón 297:

Se realiza visita de obra por parte de Jorge, Enric y el presidente de la comunidad. Se ha empezado a colocar los regles en los balcones los cuales delimitaran los límites de estos.

Se han cortado los zapateros con la forma que adoptará la cornisa del balcón final, forma que se dará moldeando el material biocalcio de piedra.
12/11/2015

Calle Rosellón 297:

Se siguen colocando los regles de los balcones. Los regles laterales se apoyan a la pared mediante toques de obra en la cota final donde tienen que ir. Se colocan también toques encima del balcón para delimitar la parte superior del balcón. Los toques se colocan mediante geolite para que adopten resistencia.

![Regles colocados](image1.png) ![Apoyo de regles a la pared](image2.png)

13/11/2015

Calle Lauría 51:

Se coloca una chapa nueva de la arista que estaba descuadrada. Para eso se utiliza la plataforma elevadora y el equipo de ferrallistas se encarga de soldar la nueva chapa. Se delimita un espacio de paso para viandantes tanto por delante como por detrás de la plataforma (solo el espacio de detrás cumple con la normativa de paso que exige la ley), pero como se está soldando la arista cae el residuo de la soldadura, por lo tanto se decide cortar el paso trasero temporalmente y yo me encargo de hacer parar los trabajos en caso de que una persona con movilidad reducida tenga que pasar por la acera, para abrir el paso trasero, cerrado por los conos, esperar a que pase y poder reanudar los trabajos nuevamente.

![Colocando la chapa](image3.png) ![Chapa colocada](image4.png)
16/11/2015

Calle Rosellón 297:

Se colocan los regles del balcón de abajo del todo. En este caso, se reglea de una forma distinta al método que se ha usado para el resto de los balcones. Esto se debe a que el balcón de abajo del todo no tiene cimbra y no permite la colocación de sargentos en dichas cimbras para poder aguantar los regles.

17/11/2015

Calle Rosellón 297:

Se ha empezado a colocar la tornillería del balcón de piedra superior. Amelio se encarga de colocar las varillas y Miguel de cortarlas y de que queden al tamaño justo, tamaño que lo delimita la parte superior del regle inferior más 0,5 cm de recubrimiento mínimo. A priori puede parecer que 0,5 cm de recubrimiento es poco pero hay que tener en cuenta que las varillas son de acero inoxidable y que el latón es un material que no se oxida, de ahí que se use el latón y no un alambre convencional a modo de atar las varillas y formar un esqueleto que permita aguantar el biocalcio de piedra.
Los tornillos se distribuyen de la siguiente forma:

- En la arista superior del balcón se van alternando varillas de diámetro 6 y 8 mm.
- En las esquina, las cuales son las partes más conflictivas del balcón se utilizan varillas de diámetro 10 mm.
- En el resto del balcón se utilizan varillas de diámetro 6 mm.

El método usado para dejar los 0,5 cm de recubrimiento varía dependiendo la parte en donde se trabaje del balcón:

1. Si se trabaja en los cantos se pasará el zapatero para ver si alguna varilla toca o pasa muy cerca del dibujo que delimita el zapatero. Si la longitud de la varilla excede por mucho la delimitación del zapatero, se recorta mediante la radial, mientras que si excede un poco se golpea mediante la maceta para doblarla y que varíe así un poco su longitud.

2. Si se trabaja en la parte de abajo se ha improvisado una herramienta que consiste en un regle con un trozo de metacrilato de 5 mm de espesor el cual permite dar el recubrimiento mínimo a base de ir pasando el regle por debajo y ver si las varillas rozan. En caso de que sea así se recortan mediante el uso de una radial.

Colocación de la tornillería

18/11/2015

Calle Rosellón 297:

Se ha empezado a colocar el alambre de latón que liga todas las varillas. Se sigue un patrón de ligado que permite que todas queden unidas entre sí. Además se colocarán tantas hiladas como permita la longitud de las varillas.
Colocación alambre de latón

24/11/2015

Calle Almogávares 8:

Se está colocando la lámina EPDM butilo de los balcones. No se están solucionando los encuentros de la lámina impermeabilizante con el paramento vertical. Esto se justifica porque se trata de un balcón y el paramento vertical.

La lámina EPDM butilo se corta siguiendo las medidas tomadas de un balcón base y una vez cortada con la forma del balcón, se pega mediante cola especial BA-007. Se cola todos los extremos de la lámina. La forma correcta de ejecutarlo es colando parte del suelo en donde irán los extremos de la lámina y posteriormente los extremos de la lámina. Se deja secar la cola un tiempo y cuando ya está seca se unen las dos partes coladas (suelo y butilo) y se aplana la lámina mediante un rodillo que también prensará la cola.

Preguntar duda: porque se está colocando la lámina EPDM butilo antes de sanear las armadura de la parte inferior de los balcones. El hecho se seguir este proceso de ejecución obliga a los trabajadores a extremar las precauciones cuando se encuentren en la fase de saneado de los balcones pues cuando estén trabajando les puede caer restos de hormigón desprendido del balcón o pisar alguna piedra que pueda provocar la rotura de la lámina.
25/11/2015

Calle Rosellón 297:

Se ha realizado la visita de obra semanal. Jorge no ha podido asistir por problemas personales. He realizado la acta de visita siguiente:

En día Miércoles 25 de noviembre de 2015 se ha realizado una visita de obra semanal, con horario predefinido en la obra situada en Calle Rosellón 297. Los asistentes de esta visita de obra han sido Enric, Miguel, Joan y Sergi.

Enric ha expuesto, luego de una inspección en el balcón de piedra en el que se estaba ejecutando la tornillería, que la primera capa del material biocalcio de piedra que se usará para la reconstrucción de los balcones se ha de apretar bien ya que es un material que te exige que haya un buen contacto entre el material antiguo (losa balcón) y el primer recubrimiento con el nuevo material (biocalcio de piedra). En base a esta premisa, Enric ha propuesto que en los balcones siguientes se aplique la primera capa antes de empezar a perforar y colocar la tornillería para que sea más sencillo apretar el biocalcio de piedra sin que la tornillería y el alambre de latón estorben. Y una vez se haya colocado la primera capa entonces colocar la tornillería.

Miguel ha expuesto que no le preocupa el hecho de tener que apretar la primera capa de biocalcio de piedra aún con la tornillería colocada. Ha aportado distintas soluciones a la aplicación de este material:

1. Echar el material con fuerza mediante la paleta.
2. Ir apretando el material con fuerza mediante la mano o la paleta.

No se ha establecido ningún cambio en el proceso ejecutivo así que se deduce que se seguirá con el mismo proceso constructivo pero teniendo en cuenta, por parte de los paletas lo anteriormente expuesto por Enric.

Hemos revisado también la plantilla de los números. Se ha comentado que en alguna parte el corte se desvía en el interior de la hoja del material y además que no se trata de un corte limpio, pues pese a ir con cautela es algo normal cuando se corta con el cúter. Luego Enric ha comentado que mirará de conseguir una máquina de hilo caliente para poder cortar la plantilla de forma recta. Pero que de momento no realizará ninguna acción por lo que respeta a este asunto ya que su proceso ejecutivo aún está lejos de llevarse a cabo.

30/11/2015

Calle Almogávares 8:

Se están haciendo los frontales de los balcones. Primero se forma la arista superior con geolite (material compatible con el hormigón), luego se ejecuta la arista inferior con el mismo material, y posteriormente se rellena el espacio entre las dos aristas dando capas y mediante el regle y el remolineador se deja un acabado liso. Me percate que los vierteaguas no son los que
la empresa suele utilizar y que son un tipo de vierteaguas que Jorge comentó que no cumplían con su propósito. Se lo comento y me dice que son los que han escogido los vecinos. La empresa subcontratada linken vertical sigue colocando los tacos químicos en la piedra. Y una vez colocado lo tapan con cemento.

01/12/2015

Navas de Tolosa 369:

Jorge realiza una visita, a petición de Alex, al edificio en donde se está realizando la ITE, para que valore los pequeños desprendimientos del acabado vertical de fachada debido, sobre todo, a la corrosión de los empotramientos de fachada.

Tras visitar un piso con el este problema valora que el peligro es inminente y que se han de colocar unas redes de protección para evitar que los trozos desprendidos de la fachada caigan a la calle.
02/12/2015

Calle Lauria 51:

Se está realizando la terraza del patio a la cual tiene acceso el Principal Primera. Esta terraza se está realizando con un acabado cerámico distinto al que suele usar la empresa. Esto se debe a que era material antiguo que la empresa tenía acopiado y quería usarlo. La problemática es que hay una pequeña variación entre los tamaños de las piezas de hasta +/- 5 mm. Esto provoca que se tenga que hacer un replanteo de que pieza colocar cada vez que se tenga que colocar una. Estas piezas se colocan encima del geotextil, con un poco de cemento cola y luego mortero normal.

Ha habido un conflicto con el sumidero. Se realizó la impermeabilización con la lámina EPDM butilo antes de saber que sumidero se iba a colocar. Una vez colocada la lámina se compró el sumidero para el diámetro correspondiente al bajante, pero como la lámina se coloca por el interior del bajante para evitar filtraciones ahora el sumidero se puede colocar, pero iría por encima del acabado cerámico, lo cual no es una solución viable, por eso se decide comprar un sumidero para un bajante de diámetro inferior, lo cual provoca que el agujero del desagüe sea inferior y se tenga que mirar si el diámetro del desagüe del sumidero es suficiente para los metros cuadrados de cubierta y el régimen pluviométrico de la ciudad en donde nos encontramos. Luego de realizar un pequeño cálculo el resultado es favorable y se sigue con la ejecución de la cubierta.

Colocación acabado de gres porcelánico

03/12/2015

Calle Almogávares 8:

Se realiza la visita de obra semanal. Se miran los vierteaguas escogidos por los vecinos. Se pone una muestra en un murete para que los vecinos puedan ver el resultado final del acabado de sus balcones.

Ha habido un conflicto con las aristas inferiores de los balcones. Se realizaron las aristas con la premisa de que tenían que ir de piedra a piedra. Siempre y cuando las piedras de lado y lado los balcones estuvieran a nivel. Pero no se tuvo en cuenta otro factor. Y es que el bajo techo
de los balcones en algunos casos está a un nivel inferior a la piedra. Con lo cual la arista inferior en algunos balcones queda por encima del bajo techo. Ante este conflicto se decide que hay dos posibilidades:

1. Repicar los techos hasta que queden a nivel con la arista. A riesgo de quitar parte del recubrimiento de las armadura y debilitar el hormigón.

2. Recrecer las aristas inferiores hasta que el bajo techo quede a nivel con el punto más bajo de la arista, Llegando esta arista a terminar con la piedra, lo cual puede hacer que el frontal del balcón tenga pequeñas variaciones de longitud pero como se trata de una longitud bastante grande nadie se percatará.

Se decide la segunda opción pues además de ser una opción económicamente más viable, no debilita ni perjudica a la estructura.

04/12/2015

Calle Rosellón 297:

Se realiza una prueba de estanqueidad en el piso principal primera. No se trata de una cubierta nueva, sino de una terraza de patio antigua así que no se hace la prueba de estanqueidad estándar para cubiertas nuevas las cuales tienen una duración de 48 horas. Se quiere detectar de donde procede el problema. Con anterioridad a la prueba se establecen tres posibles opciones:

1. Rotura de lámina impermeabilizante
2. Problema en el bajante o en la unión entre el bajante y el colector
3. Falta de impermeabilización en el cajón del bajante

Se tapa el bajante con un parche de lámina EPDM butilo, se llena la terraza de agua mediante un grifo que se encuentra en esta misma y se deja la cubierta llena hasta el mediodía. (4-5 horas).

El resultado es favorable. No se detecta ninguna filtración en la zona del bajante del piso de abajo.

Esto deja dos opciones posibles para las humedades de la zona del bajante:

1. Pequeña fuga del bajante o de la unión del bajante que llega a cubierta con el colector
2. Falta de impermeabilización superior del cajón del bajante.

Se harán las siguientes pruebas para detectar la causa de la filtración posteriormente:
1. Llenar la cubierta de arriba y dejar caer el agua de golpe así se verá si es problema del bajante o de la unión de éste con el colector. Pues los vecinos han confirmado que las humedades aparecen siempre que se produce una lluvia de grandes dimensiones.

2. Regar con la manguera la parte superior del cajón del bajante para así comprobar si es un problema de la falta, o de la rotura de la impermeabilización superior del bajante.

07/12/2015

Calle Rosellón 297:

Miguel sigue trabajando en la tornillería de los balcones. Hoy irá Amelio para ayudarle con la tornillería. Como están trabajando en los penúltimos balcones y se trata de una de las plantas con dos balcones Miguel ha dejado un balcón a medio colocar el alambre de latón para que cuando llegue Amelio cada uno pueda trabajar en un balcón distinto y no se entorpezcan a la hora de trabajar.

Pronto Héctor se trasladará a la obra para empezar a dar grueso con el biocalcio de piedra a los balcones mientras se va terminando la tornillería.

09/12/2015

Calle Rosellón 297:

Amelio se ha trasladado a la obra y mientras Miguel está colocando la tornillería del cuarto balcón, Amelio va dando grueso con biocalcio de piedra al primer balcón. La forma de dar grueso es mediante capas. Formando primero los frontales del balcón para así tener las aristas echas. Posteriormente, se rellenará, la parte de abajo del balcón y, mediante el zapatero se dará forma a la ornamentación final de la cornisa. La primera capa de contacto entre el biocalcio de piedra y la piedra antigua del balcón se ha de colocar de forma enérgica para asegurar la adherencia entre los dos materiales.
La rasilla que se utilizó para aguantar los regles de momento se queda allí. Se vigila de no rellenar la parte superior de la rasilla mediante el biocalcio de piedra. Cuando se vayan a quitar los regles, se quitará la rasilla y los restos del geolite y se rellenará el hueco mediante biocalcio de piedra.

No se está mojando la superficie de cada capa de biocalcio de piedra cada vez que se quiere aplicar una capa nueva. Esto se debe a que es un mortero en base de cal y tarda mucho en fraguar. Por lo tanto durante el tiempo entre que se coloca una capa y la siguiente no da tiempo a fraguar y por lo tanto no hay problema de que la primera capa absorba el agua de constitución del mortero de la segunda capa.
10/12/2015

Calle Almogávares 8:

Se ha llevado a cabo la visita de obra semanal. Jorge no ha podido asistir.

Se han comentado los siguientes puntos:

Las aristas de los balcones con un solo frontal se llevarán de piedra a piedra. Cuando el hormigón del bajo techo esté a un nivel superior respecto a la arista, se quedará la arista sobresalida y actuará a modo de goterón, en cambio cuando el hormigón del bajo techo del balcón queda por debajo de la arista, la arista se formará igual (de piedra a piedra) y si es posible se repicará el estucado blanco para disimular la diferencia de cota.

Los vierteaguas se han empezado a colocar. Solo se puede dejar un hueco de 1 cm pues al tratarse de unas piezas de anchura pequeña no permite sobresalirse más. Las piezas de las esquinas se han cortado mediante un disco para elementos cerámicos, pero aun así la superficie más exterior queda desbastada. Por eso se traerá una sierra de agua para tener un corte de más precisión.

Colocación de vierteaguas

14/12/2015

Calle Almogávares 8:

Hay 3 operarios trabajando. Jose está rematando el frontal que estaba haciendo Héctor porque se ha tenido que ir debido a que lo han llamado para que vaya a calle Lauria 51. Manolo está colocando la cerámica superior de los balcones, y David tareas de limpieza y organización de materiales.
16/12/2015

Calle Rosellón 297:

Se está formando el frontal mediante biocalcio de piedra del cuarto balcón, y se está terminando de colocar el alambre de latón del quinto balcón.

Una vez echo los frontales se harán las cornisas con los zapateros y luego se quitarán los regles y se rellenará la parte inferior.

El biocalcio se aplica en pequeñas cantidades y echando el material de forma fuerte desde la paleta al balcón. Esto provoca que se produzca una cantidad de merma bastante grande. Cuando se trabaje en la parte inferior del balcón se colocará un toldo para recoger el biocalcio de piedra restante y volverlo a meter en el capazo para ser reutilizado.

Nota: poner cantos de gero en los agujeros para evitar que aniden las palomas.

17/12/2015

Calle Almogávares 8:

Se ha terminado de colocar el pavimento cerámico de los balcones de la parte derecha (los que tienen esquina) y Manolo ya ha empezado a borrar.

Héctor y Jose están terminando los frontales de los balcones de la parte izquierda (los que solo tienen un frontal).

Los operarios de Linken Vertical han estado sellando las juntas que se cortaron en la piedra artificial mediante masilla de poliuretano de la casa silka.

Se ha realizado la visita de obra semanal. Jorge no ha podido asistir. Enric ha comentado que algunos de los vierteaguas que se encuentran en la zona de la esquina no tienen suficiente junta pues están pegados y se deben de quitar y volver a colocar unos nuevos o bien recortarlos para que queden con una junta suficiente. En caso contrario, la dilatación del material podría hacer que la pieza cerámica se rompiera.
Enric también ha comentado a los de Linken Vertical que las cuerdas que tienen colgadas en la parte de más a la izquierda de la fachada posterior están rozando en la parte de arriba las tejas, lo cual es un peligro pues el roce podría conducir a un desgaste prematuro de la cuerda. Los operarios de Linken han comentado que antes de colgarse por esas cuerdas colocaran unos tablones de madera para evitar el roce. También les ha comunicado que él tiene las llaves de la cubierta por si necesitan acceder a ella.

18/12/2015

Calle Rosellón 297:

Se termina el frontal del balcón de arriba del todo. El ornamento que se ha hecho con la ayuda del zapatero. Se repica el frontal del balcón de abajo porque se hizo el recrecido y no se pasó el zapatero antes de que el material empezara a fraguar. Mientras Amelio va terminando de pasar el zapatero en el balcón de arriba el Miguel va repicando los frontales de los balcones cuidadosamente para que el lunes se pueda hacer el mismo proceso en los balcones de abajo.

21/12/2015

Calle Rosellón 297:

Se termina el frontal del segundo balcón mientras Miguel va repicando los balcones de abajo.
Calle Almogávares 8:

Se está realizando el acabado cerámico de los suelos de los balcones de la parte de la derecha, así como el revocado de los techos. El revoco de los techos de los balcones se hace mediante un mortero con árido fino para dejar un acabado liso y sin imperfecciones. Además el mortero se hace con una consistencia líquida porque si no se despega del techo.

Calle Rosellón 297:

Se forma la cornisa de uno de los balcones de la zona 4, Mientras Miguel va preparando el segundo balcón.

Cabe destacar que durante el proceso ejecutivo hay tiempos de espera, especialmente en la fase de dar grueso a las últimas capas. Esto se debe a que hay que esperar a que el biocalcio de piedra fragüe un poco para poder pasar bien el zapatero sin llevarte con él más material del necesario. Por eso mientras se espera que un balcón vaya secando en su última fase, se va preparando el siguiente.
07/01/2016

Calle Almogávares 8:

Se ha realizado la visita de obra semanal, con la asistencia de Jorge y Enric:

Se ha determinado la actuación sobre la fisura en la fábrica de ladrillo. Como se encuentra en una esquina, se colocarán grapas con varillas del herrero galvanizadas cada cuatro hiladas, las cuales se doblaran mediante el uso del andamio y luego se colocará por el otro lado una varilla roscada de acero inoxidable, intercalando las grapas de dos puntas. Las varillas se colocaran en las juntas para evitar tener que reconstruir la fábrica de ladrillo.

11/01/2016

Calle Almogávares 8:

Se siguen colocando grapas en la pared de fachada posterior. Manolo ha colocado los vierteaguas del último balcón, saltando uno de los pisos el cual se ha de llegar a un consenso para poder dar una solución constructiva. El conflicto viene dado porque al propietario de uno de los pisos no está conforme en los siguientes puntos:

1. Acabado cerámico es demasiado rugoso lo cual dificulta la limpieza. Eso se debe a que tiene que ser un pavimento antideslizante para evitar posibles caídas.
2. La nueva pendiente del balcón es inferior a la que había originalmente lo cual hace que entre la parte inferior de la carpintería y el pavimento (el cual aún no se ha colocado) haya un pequeño escalón.

El propietario propone:

Realizar un planché nuevo para poder dejar las pendientes a como estaban originalmente y que se le coloque otro acabado cerámico que el considere adecuado haciéndose responsable él de cualquier incidencia futura que pudiese haber al no colocarse un acabado cerámico con revestimiento antideslizante.
12/01/2016

Rosellón 297:

Hoy ha habido visita por parte del administrador de fincas la constructora y el presidente de la comunidad. Yo me he encargado de explicarle al acompañante del administrador de fincas los diferentes procesos constructivos ejecutados en la fachada.

Se ha formado ya el primer techo del balcón de arriba del todo. Como ya se explicó la técnica consiste en ir echando pequeños parches de biocalcio de piedra de forma enérgica mediante la paletina y posteriormente mediante el palustre terminar de enganchar estos parches a la piedra. El uso del palustre es muy indicado porque permite entrar, al ser más pequeño, en las cavidades que quedan entre las armaduras roscadas y el alambre de latón y así poder apretar los parches de material para asegurar una correcta adherencia. En el techo se formará un goterón que quedaría rehundido respecto al techo del balcón.

Se está formando el suelo del primer balcón. Dejando una pendiente ligeramente superior al 1%. Cabe destacar que la barandilla entorpece el poder reglear el material con lo cual se usan regles planos para que quepan por debajo de la barandilla.
Calle Almogávares 8:

He vuelto a pedir más varillas de acero inoxidable para la formación de grapas, debido a que por la fachada en donde no se encuentra el andamio habrá que colocar. El equipo de trabajos en vertical se encargará de colocarlas, previamente se tendrán que desmontar los aires acondicionados.

Como en una fase posterior se tendrá que pasar la karcher para limpiar la fachada, me he encargado de mirar que ésta pudiese llegar a todos los puntos de la fachada. Me he cerciorado de que la longitud de la manguera de agua es de 30 metros. En base a esto he mirado en qué punto se podría ubicar teniendo en cuenta el límite de la acometida eléctrica. No se puede conectar un alargo para así disponer de más longitud de cable eléctrico pues se trata de una máquina que usa acometida trifásica y no se dispone de ningún alargo con dichas características. Mediante el uso del metro láser he ido apuntando a todos los extremos de la fachada para ver la distancia desde un punto que a priori es favorable para la colocación de la karcher y he visto que como mucho se necesitarían 25 metros de cable. Esto teniendo en cuenta que cuando se trabaje arriba del todo la manguera va a tener un poco de panza hará que esta distancia que sobra sea la necesaria para trabajar en la limpieza de la fachada de forma cómoda.

13/01/2016

Calle Rosellón 297:

Hoy se ha terminado el primer suelo del balcón 1. Una vez bien regleado (tarea que se llevó a cabo ayer) se ha pasado una púa para marcar la junta de dilatación, previamente marcada en la cornisa mediante un lápiz que es en donde se unen las piedras mediante el machihembrado.

En el techo se formó primero una capa mediante la paleta la cual se tenía que tirar con fuerza y posteriormente apretar debido a todas las avrillas y el alambre de latón que se encontraba por medio. La segunda capa es más fácil de colocar. Solo utilizando el mortero en la paleta y luego echándolo encima de la primera capa sin tirarlo ya queda bien agarrado. Hay que tener en cuenta en esta capa que hay que dejar el hueco para el goterón rehundido

15/01/2016

Calle Almogávares 8:

Se ha empezado a repicar los minveles de la cubierta del ático. De momento al ser viernes y al tener la probabilidad de lluvia de hasta un 40% durante algún periodo horario del fin de semana no se repicará la cubierta entera. Se empezará a repicar la semana que viene.

Se está pasando la karcher por la fachada. No se está usando la karcher de la que dispone la propia empresa pues se ha averiado. Se debería haber comprobado su correcto funcionamiento antes de iniciar la fase de ejecución en la que se iba a usar. Pero se han reemprendido los trabajos de forma rápida pues los trabajadores de la empresa subcontratada Linken Vertical han dejado prestada la karcher de su empresa a los trabajadores de Corema. Cabe destacar que esta nueva karcher va con corriente monofásica a diferencia de la que disponía la empresa la
cual funcionaba en trifásica. Esto produce que en algunas zonas de la fachada se haya de hacer un inciso extra para que ésta quede bien limpia.

Antes de emprender la limpieza de la fachada, se ha avisado a todos los vecinos de que cerraran las persianas de sus viviendas para así evitar posibles filtraciones al interior de las viviendas.

Para pasar la karcher es necesario que trabajen dos operarios. Mientras uno la va pasando el otro mediante el uso de una rasqueta va haciendo saltar el mortero/ geolite que haya quedado pegado a la obra vista fruto de los trabajos anteriores.

Limpieza de fachada con karcher Repicado minveles de cubierta
19/01/2016
Calle Rosellón 400:

Se ha procedido a realizar una prueba de estanqueidad en la cubierta de la finca. Previamente se ha examinado la vivienda de la finca que presentaba humedades y, se ha hecho alguna cata en el falso techo de un baño en donde se detectaba humedad para ver si así se podía detectar la procedencia.

Posteriormente se han tapado dos bajantes mediante el uso parches de lámina EPDM butilo y la cola BA-007 y se ha procedido a llenar las dos cubiertas hasta donde se ha podido. En un caso el límite ha sido por culpa de que el agua rebasaba una de las limatesas de la cubierta y esto producía que se escapara por un lateral y desaguara y en el otro caso el límite lo ha impuesto la altura del marchapié de una puerta de la cubierta.

Se ha empezado con el proceso de llenado a las 10:00 h y se ha terminado de llenar a las 10:30.

Inmediatamente después del proceso de llenado se ha ido al piso de abajo en donde se encontraban las humedades y se han marcado los extremos exteriores de las humedades. A las 3 de la tarde se procederá a examinar el piso nuevamente y se compararan los límites de las humedades que se habían marcado con anterioridad con los nuevos para ver si las humedades han aumentado de superficie.
Se quitará el parche de butilo y se desaguará el agua del bajante.

Prueba de estanqueidad de las cubiertas

Cata en humedad de falso techo

22/01/2016

Calle Almogávares 8:

Se ha procedido a realizar la impermeabilización de la cubierta del ático. El sistema utilizado es la lámina EPDM butilo de 1,2 mm de espesor. La lámina se ha de empotrar en una regata perimetral que previamente se ha realizado. Se ha de formar una media caña entre el paramento horizontal correspondiente a la cubierta y el paramento vertical correspondiente al muro de coronación para que a la hora de colocar la lámina no se formen formas angulares y para que el rodillo que se pasa para pegar la lámina al suelo llegue a todos los puntos.

Se mide la cubierta para saber los parches de la lámina de butilo que se van a recortar.

Se coloca, en las oberturas de los sumideros unos parches de junta rápida la cual será un refuerzo en la impermeabilización. Este mismo refuerzo se colocará en los solapes y en las esquinas que serán los puntos más conflictivos de la cubierta.

Se barre bien la cubierta para evitar que puedan quedar trozos de piedra debajo del butilo y se colocan las láminas en el sitio en donde irán.
Una vez se tiene el replanteo de las láminas echo, se procede a realizar los pliegues en las láminas en donde se colocará el Adhesivo de la casa giscosa. En este caso será el 007, el cual sirve para encolar la lámina con los paramentos. Se coloca mediante el uso de una brocha el adhesivo tanto en la lámina como en el suelo. Una vez colocado se espera a que el adhesivo este seco (se puede tocar para comprobar que se ha secado) y una vez seco un operario va pegando la lámina mientras el otro justo después va pasando el rodillo.

Una vez colocada la lámina se hacen las oberturas en los bajantes. Se recortan las oberturas en formas de triángulos la cual permite colocar la lámina EPDM sin que se formen arrugas en el interior de los bajantes, justo por encima del parche de junta rápida, el cual se colará con la cola fenasteride que también se usará para los solapes.

Se procede a colocar los refuerzos con junta rápida en los solapes y las esquinas y la cubierta ya estará totalmente impermeabilizada.

25/01/2016

Calle Sevilla 69:

Se ha procedido a colocar la puerta de acceso a la vivienda:
Primero se ha procedido a la ampliación del hueco de entrada. La hoja exterior de la puerta media 84 cm y la interior es de 72 cm. Se ha tenido que modificar la anchura, profundidad y altura del hueco. El problema es que al modificar la altura y profundidad del hueco se ha tenido que repicar un poco el arco superior de descarga de la obertura. La modificación del arco de descarga hará que se tenga que plantear la colocación de una grapas de acero galvanizada anclada mediante taco químico.

Una vez se ha tenido el hueco necesario, se ha presentado el marco de la puerta en donde se quería colocar y se ha apolomado y nivelado. Los herreros han marcado mediante un lápiz los puntos en donde se fijarán varillas roscadas de acero inoxidable a la pared, se esperará a que seque el taco químico y posteriormente se soldaran estas varillas a la puerta.

28/01/2016

Calle Almogávares 8:

Se ha empezado a colocar la cerámica de la cubierta del ático. Se ha realizado una junta de dilatación en la mitad. Dicha junta estará situada en el pasillo de forma transversal de tal forma que separará las dos longitudes mayores de la cubierta. Todo y tratarse de una cubierta pequeña tiene una longitud bastante grande, es por este motivo que se ha decidido realizar la junta de dilatación.

En la cubierta se han corregido las pendientes de tal forma que las limatesas y limahoyas queden bien marcadas. Anteriormente éstas existían pero abarcaban un ámbito demasiado grande produciendo que quedase una forma cóncava en las limahoyas y una forma convexa en las limatesas.

También se han estado rematando las grietas de los ladrillos. Una vez las grapas estaban colocadas las grietas y la regata que se hicieron se llenaron con mortero. Pero los posibles ladrillos astillados producto de perforar la junta de mortero se han reparado con borada de color marrón (la misma que se está usando para borar el suelo de los balcones y la terraza del ático). Así como se está usando este mismo método para darle un acabado final a la grieta con una capa fina de este material encima del todo.

La empresa subcontratada linken vertical, se encarga de colocar el alicatado cerámico que va encima de los alfeizares de ventana. Otro operario de esta misma empresa se encarga de pasar la karcher de su empresa por la parte de la fachada que no es accesible des del andamio.

29/01/2016

Rosellón 297:

Se han empezado a marcar las líneas en la fachada. Primero se marcaron las líneas mediante el uso de un lápiz y luego mediante el regle y una herramienta de raspado se marcan. El relieve será visible especialmente una vez se pinte la fachada.
Se ha tomado un ancho de piedra parecido al de la fachada del al lado que es simétrica a la nuestra. Se ha ido tomando distancias respecto a los balcones y se ha repartido las distancias entre el ancho de piedra, 30 cm, con un margen de ± 2 cm para hacer cuadrar el ancho de piedra en una medida que sea fácil de trabajar. Una vez repartida, nos sale el número de piedras que caben en la distancia que hemos determinado. Cabe tener en cuenta que los zócalos de las balconeras serán de 50 cm a la hora de restar las distancias.

La longitud de las piedras se ha determinado que será de 65 cm, y las hiladas irán trabadas.

04/02/2016

Rosellón 297:

Se están colocando los vierteaguas del muro de coronación de la cubierta. Son los vierteaguas típicos que usa la empresa con triple holgura y que deben sobresalir 4 cm respecto a la arista del muro de coronación para que cumplan con su función correctamente.

El conflicto viene dado porque el material tiene pequeñas variaciones de dimensión lo cual provoca que al colocarlos las juntas queden con pequeñas variaciones a lo largo de su longitud. Aparte de este problema, existe un problema de incremento de mano obra pues el oficial tiene que ir descartando los vierteaguas e ir probando uno por uno si el error en su dimensión es algo que puede ser disimulado posteriormente mediante la borada o no.

Informo a Jorge de la baja calidad de fabricado de este material para evitar conflictos futuros.

Se están marcando las líneas que representaran las piedras en la fachada, mientras otro operario se dedica a limpiar desde arriba para abajo la fachada para dejarla bien preparada pues está previsto mañana empezar a pintarla.

Se ha realizado un pedido al Estil. Los materiales pedidos han sido:

- Cartón hidrófugo 45 x 0,90 m
- Aguarrás
- Brochas redondas y de radiador
- Pintura antioxidante
- Rodillos que no dejen pelo en la fachada
- Cinta carrocería
- Escurridor para envases de pintura
7.2 CATÁLOGOS DE MATERIALES

7.2.1 Adhesivo BA-007, casa Giscosa

BA-007

1. Descripción:
El BA-007 es un adhesivo de soporte diseñado para adherir la membrana impermeabilizante Giscolene a diferentes tipos de soporte: madera, obra, metal y otros sustratos homologados.

2. Características
- Excelente comportamiento al envejecimiento.
- Excelente adherencia.
- Buena resistencia al frío y al calor.

3. Instalación
Homogeneizar antes y durante su aplicación. Debe de tener un aspecto uniforme sin sedimentos.
Si ha permanecido expuesto a temperaturas < 15°C es preciso acondicionarlo a temperatura ambiente.
Las superficies sobre las que se vaya a aplicar han de estar limpias, lisas, secas y libres de asperezas cortantes.
Aplicar el adhesivo BA-007 mediante un rodillo de pintura resistente a los disolventes, una brocha o una espátula dentada.
Extender simultáneamente una capa gruesa y homogénea de adhesivo por ambas superficies a unir.
En tiempo frío y húmedo asegurarse que los materiales y el adhesivo estén a la temperatura correcta.
Dejar evaporar los disolventes contenidos en el adhesivo (alrededor de 10-20 min. según la temperatura ambiente y el tipo de soporte). Es aconsejable no trabajar con temperaturas ambientales inferiores a 5°C, el tiempo de secado es muy largo y aumenta el riesgo de condensaciones sobre el adhesivo.
Encargar la membrana con precisión y sin tensión, para evitar la formación de arrugas.
Prensionar la membrana contra el soporte con un cepillo-escoba. La unión es definitiva a partir de 48 a 72 horas.
Consulte con el Departamento Técnico de Giscosa si desea información adicional.

4. Rendimiento
De 1,5 a 2 m² por litro, según la naturaleza del soporte. Para materiales porosos el consumo es superior.
El BA-007 no se puede diluir.

Tel +34 902 112 007 - Fax +34 900 112 007 - giscosa@giscosa.com
5. Propiedades

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>polímeros sintéticos</td>
</tr>
<tr>
<td>Disolventes</td>
<td>Acetato de etilo, ciclohexano</td>
</tr>
<tr>
<td>Residuo seco</td>
<td>36 ± 3%</td>
</tr>
<tr>
<td>Densidad a 20°C</td>
<td>855 ± 15 kg/m³</td>
</tr>
</tbody>
</table>

6. Presentación/Almacenamiento/Caducidad

Envases de 1, 5 y 20 litros.
La caducidad es de 12 meses si el material se conserva bien cerrado en el envase original y a temperaturas que oscilen entre 15 y 25 ºC.

7. Precauciones

- No utilizar para uniones entre láminas Giscolene.
- Producto fácilmente inflamable.
- Conservar el adhesivo protegido de las llamas y/o fuentes de chispas.
- Utilizar y almacenar en lugares ventilados.
- No fumar durante su utilización.
- Antes de utilizar el producto, comprobar compatibilidad con el soporte.
- Para más información consultar la ficha de seguridad.
7.2.2 Biocalce piedra, casa Kerakoll

Biocalce® Piedra

Mortero natural eco-compatible de cal natural pura NHL 3.5, conforme a la norma EN 459-1, para la ejecución y el llaguedo altamente transpirables de muros y fábricas, idóneo para el GreenBuilding y en la Restauración Histórica. Antibacteriano y antimoho natural. Contiene sólo materias primas de origen estrictamente natural. Reducible como árido después de su vida útil.

Biocalce® Piedra es un mortero idóneo para el levantamiento de muros de caravista y para el llaguedo de muros de ladrillo o piedras naturales.

Ventajas del Producto

- Natural, poroso y altamente transpirable, deja al muro libre para respirar
- Idóneo para el llaguedo de viejos muros de piedra o ladrillo
- Mezcla plástica y suave para una veloz y fácil extensión
- Mezclable con áridos autotónicos de 1 a 4 mm para reproducir el mortero típico de origen

GreenBuilding Rating

<table>
<thead>
<tr>
<th>Elementos Naturales de Biocalce Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal Natural</td>
</tr>
<tr>
<td>NHL 3.5</td>
</tr>
<tr>
<td>1/10 mm</td>
</tr>
</tbody>
</table>

Beneficios GreenBuilding

Los primeros datos facilitados por la Comisión Europea confirmán que los enrocados Kerakoll de la línea BIO respiran y mejoran la calidad del aire en interiores en beneficio de la salud de los habitantes de los edificios. Diluyen velocizadamente las concentraciones de los contaminantes y el exceso de humedad para garantizar el equilibrio higrométrico del aire, son más eficientes que aquellos de base cementosa y facilitan la difusión hacia el exterior, a través de los muros, de las sustancias químicas. La línea Bio de Kerakoll garantiza ambientes sanos y de alto confort.

DATOS - JRC - Ispra

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>- 62% en 7 h</td>
</tr>
<tr>
<td>Limoneno</td>
<td>- 30% en 6 h</td>
</tr>
<tr>
<td>Tolueno</td>
<td>- 90% en 7 h</td>
</tr>
<tr>
<td>H₂O (enrocado cal NHL)</td>
<td>- 50% en 24 h</td>
</tr>
<tr>
<td>H₂O (enrocado cemento)</td>
<td>- 50% en 67 h</td>
</tr>
</tbody>
</table>
Destinos de uso
Llueguedo o rejuntado transpirable de muros portantes y de cerramiento de ladrillo, tejo volcánico, piedra y paredes mixtas interiores y exteriores.

Biocalce® Piedra es particularmente apropiado para el levantamiento de muros caravista y para el llueguedo de muros de ladrillo o piedra natural en la Construcción del Bienestar, donde el origen estrictamente natural de sus componentes garantiza el respeto de los parámetros fundamentales de porosidad, hidroscopicidad y transpirabilidad requeridos.

Biocalce® Piedra es idóneo para el relleno y la reconstrucción vista en la Restauración Histórica, donde la elección de materiales primas tradicionales tales como cal natural, puzolana natural, piedra, mármol y granito, dosificados sabiamente, garantiza intervenciones de conservación que respetan las estructuras ya existentes y los materiales originarios.

No utilizar
Sobre soportes sucios, no cohesionados, pulverulentos. Sobre soportes con elevada presencia de salinidad intersticial.

Preparación de los soportes
El soporte debe estar limpio y ser consistente, estar libre de partículas frasables, de polvo y molinos. Los muros de época deben limpiarse cuidadosamente de residuos de trabajos anteriores y de polvo o molinos (piezas troqueladas, piezas de maquilas, etc.) o de sales intersticiales superficiales que podrían perjudicar la adhesión. Retirar el mortero de albañilería inseguro o inconsistentes entre los mampuestos. Antes de proceder al relleno, mojar siempre los soportes.

Preparación
Biocalce® Piedra se prepara mezclando 1 saco de 25 kg con aprox. 4,5 litros de agua limpia en hormigonera o en cubo. La mezcla se obtiene vertiendo agua en el recipiente y añadiendo el polvo de modo gradual. La mezcla se puede realizar en hormigonera, en cubo (a mano o con agitador mecanico a bajo número de revoluciones) o con amasadora en continuo hasta obtener un mortero homogéneo y sin grumos. Usar el producto preparado sin recuperarlo en la siguiente mezcla. Almacenar el material en lugares protegidos del calor en verano o del frio en invierno. Emplear agua corriente no sujeta a la influencia de las temperaturas externas.

La calidad del mortero, garantizada por su origen estrictamente natural, se verá comprometida por la adición de cualquier dosis de cemento.

Aplicación
Llueguedo muros caravista: en el llueguedo de muros caravista, extender una primera mano de Biocalce® Piedra en las juntas, oportunamente preparadas y humedecidas, con paleta, llena o máquina efectuando una energía presión para garantizar la adhesión. El mortero sobre este deberá ser inmediatamente retirado, limpiando en seguida también el ladrillo. Rellenos a ras de muro se pueden limpiar con esponja.

Construcción muros caravista: en el acabado de muros caravista poner en obra el mortero con paleta para formar el lecho de colocación, colocar el mampuesto realizando ligeros movimientos rotatorios hasta obtener la alineación y el posicionamiento correctos, retirar el mortero sobrante de los frentes del muro con corte y alisado recogiéndolo con la paleta.

Limpieza
Biocalce® Piedra es un producto natural, la limpieza de las herramientas se realiza con agua antes de que el producto endurezca.

Especificación de proyecto
En la Construcción del Bienestar y la Restauración Histórica se realizarán intervenciones de llueguedo o rejuntado de muros interiores y exteriores en ladrillo, tejo volcánico, piedras naturales, con mortero compuesto de alta resistencia hidroscopicidad y transpirabilidad de cal hidráulica pura Nitr. 3,5, puzolana natural extralimpia y dírides de arena sílica y mármol puro blanco blanco marfil con una granulometría 0 - 1,4 mm.

Las características requeridas, obtenidas exclusivamente con el empleo de materias primas de origen estrictamente natural, garantizan un reducido contenido de cloruros (≤ 0,03% Cl).

El mortero natural deberá satisfacer los requisitos de la norma norma EN 998-2: G / M S, resistencia a compresión inicial ≥ 0,2 N/mm², adherencia al soporte ≥ 0,4 N/mm², absorción hídrica capilar = 0,4 kg/(m² · m·s), reacción al fuego clase A1.

Incluye los enjagues, esquineros y rebordes, el alisado de las juntas, el corte para la formación de las jambas en los vanos y en cada retazo que para la colocación de muros de cualquier dimensión, incluidas las cargas de los andamios de servicio (andamios móviles o caballetes) para intervenciones de hasta 3,50 metros de altura y todo aquello necesario para dar al trabajo el acabado perfecto.

La aplicación se hará a mano o mecanizada.

Rendimiento Biocalce® Piedra = 1,7 kg/dm³.
Para obtener un mortero que refleje las particularidades del sitio, sin variar sus características técnicas, añadir a la mezcla de Bionalce® Piedra un árido autóctono de grano entre 1 y 4 mm, hasta el 20% del peso como máximo.

Bionalce® Piedra es un producto de cal hidráulica natural sin pigmentos, por tanto la coloración puede asumir tonalidades variables entre lotes de diferente producción. Por otra parte, al ser un producto mineral, el color del mortero endurecido y seco varía en función de la absorción de los soportes y de las condiciones atmosféricas durante la aplicación.

<table>
<thead>
<tr>
<th>Tipos de mortero</th>
<th>mortero de albanilería con prestaciones garantizadas para usos generales (G) para exteriores en elementos sujetos a requisitos estructurales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza que ácida del ligante</td>
<td>Cal Hidráulica Natural Para NHK 35 EN 450-1</td>
</tr>
<tr>
<td>Intervalo granométrico</td>
<td>0 - 1,4 mm EN 1015-1</td>
</tr>
<tr>
<td>Densidad aparente del polvo</td>
<td>1,38 kg/cm³ UIAC</td>
</tr>
<tr>
<td>Consistencia</td>
<td>12 meses en el envase original</td>
</tr>
<tr>
<td>Envase</td>
<td>Saco 25 kg</td>
</tr>
<tr>
<td>Agua de masado</td>
<td>4,5 l / 1 saco 25 kg</td>
</tr>
<tr>
<td>Consistencia mortero fresco</td>
<td>165 mm EN 1015-3</td>
</tr>
<tr>
<td>Densidad aparente del mortero fresco</td>
<td>1,97 kg/cm³ EN 1015-6</td>
</tr>
<tr>
<td>Densidad aparente del mortero endurecido y seco</td>
<td>1,75 kg/cm³ EN 1015-10</td>
</tr>
<tr>
<td>pH medido</td>
<td>12</td>
</tr>
<tr>
<td>Temperatura límite de aplicación de -5°C a +35°C</td>
<td></td>
</tr>
<tr>
<td>Rendimiento</td>
<td>1,7 kg/cm³ EN 1015</td>
</tr>
</tbody>
</table>

Toma de datos a 20 ± 2°C de temperatura, 65 ± 5% H.R. y sin ventilación. Pueden variar en función de las condiciones particulares de cada obra.

Resistencia a compresión

- Categoría M 5 EN 998-2

<table>
<thead>
<tr>
<th>Coeficiente de resistencia a la difusión del vapor de agua (μ)</th>
<th>≥ 0,4 kg/(m²·min·Pa) EN 1015-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorción hídrica capilar</td>
<td>0,05 ≤ 0,045 (valor tabulado) EN 1015-18</td>
</tr>
<tr>
<td>Reacción al fuego</td>
<td>Clase A EN 13501-1</td>
</tr>
<tr>
<td>Resistencia a la izquierdazamiento</td>
<td>0,2 N/mm EN 1052-3</td>
</tr>
<tr>
<td>Adherencia al soporte (hasta)</td>
<td>24 días ≥ 0,40 MPa N/mm² EN 1015-12</td>
</tr>
<tr>
<td>Contenido de cloruros</td>
<td>≤ 0,02% CI EN 1015-17</td>
</tr>
<tr>
<td>Conductividad térmica (λ, W/m·K)</td>
<td>0,75 W/m·K (valor tabulado) EN 1743</td>
</tr>
<tr>
<td>Dureza (hierro-desgaste)</td>
<td>Valoración basada en las características válidas en el lugar de uso previsto del mortero EN 998-1</td>
</tr>
</tbody>
</table>

| Índice de radioactividad | I = 0,26 UNI 10797/1999 |

Toma de datos a 40 ± 2°C de temperatura, 65 ± 5% H.R. y sin ventilación. Pueden variar en función de las condiciones particulares de cada obra.

Prestaciones High-Tech

- Producto para uso profesional
- Proteger las superfi cies del sol directo y del viento
- Curar el sacado humedeciendo el producto endurecido durante las primeras 24 horas
- En caso necesario solicitar la ficha de seguridad
- Para todo aquello no contemplado consultar con el Kerakoll Worldwide Global Service +34 902 325 555

La presente información está actualizada a mayo de 2011, su precisión puede verse afectada a integraciones y/o variaciones en el tiempo por parte de KERAKOLL S.p.A. En dichas actualizaciones, se producirán actualizaciones en el sitio web www.kerakoll.com. Los datos relativos a la clasificación están reflejados en el CSR Data Report 02/2010. KERAKOLL S.p.A. no responde de la validad, actualidad y actualización de su propia información y en caso de que se obtenga directamente de su web. Esta ficha técnica ha sido redactada en base a nuestros propios conocimientos teóricos y prácticos, sin embargo, no siendo posible intervenir en las condiciones de las obras y en su ejecución de las listas, dichas informaciones representan indicaciones de carácter general que no comprometen en modo alguno a nuestra compañía. Se aconseja una prueba preventiva para verificar la idoneidad del producto para el uso previsto.

Advertencias

Kerakoll

The GreenBuilding Company

ISO 9001 CERTIFIED

KERAKOLL IBÉRICA S.A.
Carrretera de Alicante, Km. 10,450 - 12006
Castellón de la Plana - España
Tel +34 964 25 15 00 - Fax +34 964 24 11 00
info@kerakoll.es - www.kerakoll.com
7.2.3 Geolite, casa Kerakoll

GeoLite®

Geomotorno mineral certificado, eco-compatible, a base de Geolitano con reacción cristalina, para la pasivación, reparación, alistado y protección monolítica de estructuras en hormigón degradado, idóneo para el GreenBuilding. Bajoísmo contenido de polímeros patroquímicos, exento de fibras orgánicas. Texturizado, de fraguado normal 80 min.

GeoLite® es un geomóntoro texturizado para pasivar, reparar, alisar y proteger estructuras en hormigón armado, como vigas, pilares, logias, frentes de balcón, rampas, hormigón visto, elementos decorativos, cornisas y obras de infraestructura como puentes, viaductos, túneles y canales hidráulicos.

LíneA Construcción / Geomóntoros Minerales para la Reparación Monolítica del Hormigón

GeoLite®
- Categoría: Minerales Inorgánicos
- Clase: Geomóntoros Minerales para la Reparación Monolítica del Hormigón
- Rating: Eco 3

GREENBUILDING RATING®

| SISTEMA DE MEDIDA CERTIFICADO POR EL CONE DE CERTIFICACIÓN DE...
<table>
<thead>
<tr>
<th>Eco 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observaciones: 33, 45, 21</td>
</tr>
<tr>
<td>Reparar materiales: 100%</td>
</tr>
<tr>
<td>Resistencia: 100%</td>
</tr>
</tbody>
</table>

VENTAJAS DEL PRODUCTO

- GEOLOGÁNTI: El uso deseado del innovador Geolitano favoral con cristalización guepolímero no solo las mejoras de reparación del hormigón, garantiza la protección de materiales no antes diseñados y productos de eco-compatibilidad únicos.
- MINERALI: El primer geomóntoro que permite la formación de una masa mineralogica capaz de desarrollar, proteger y endurecer obras de hormigón aislado, una necesidad de aplicar máximas superposiciones.
- ENCAPSULANTE: El único certificado para pasar, enoestratificar, altas, regenerar y proteger en un solo acto.
- CRISTALIZANTE: Las reparaciones monolíticas de GeoLite®, naturalmente estables, se cristalizan en el hormigón y garantizan la durabilidad del hormigón.
- VELAS: El primer geomóntoro que necesita solo de dos de trabajo para la realización de reparaciones completas, frente los seis días necesarios para los círculos de reducción de hormigones de paredes en este momento.
- ADHESIVO: El primer geomóntoro con tiempos de fraguado óptimos (30-45, 60-90 min), adecuado para la protección de las piezas de hormigón a función de las condiciones de obra.

ECO NOTAS

- A base de Geolitano
- Reparaciones eco-compatibles del hormigón
- Bajoísmo contenido de polímeros patroquímicos
- Exento de fibras orgánicas
- Con bajas emisiones de CO2
- Con bajísimas emisiones de componentes orgánicos volátiles
- Reciclable como relleno mineral para evitar los costos de eliminación de residuos y el impacto medioambiental

CAMPOS DE APLICACIÓN

Destinos de uso
- Pasivación, reparación localizada y generalizada, alisado y protección monolítica de estructuras de hormigón armado como vigas, pilares, logias, frentes de balcón, rampas, hormigón visto, elementos decorativos, cornisas y obras de infraestructura como puentes, viaductos, túneles y canales hidráulicos.

ESPECÍFICO PARA intervenciones de dimensiones mediana o grande, aplicación a máquina, alisado de las mismas superficies.
- Idóneo para el GreenBuilding y en la Restauración de la Arquitectura Moderna.

MODO DE EMPLEO

Preparación de los soportes
- A antelación a aplicar GeoLite®, es necesario crear un sustrato consistente en el soporte (nupacidad mínima de 5mm) mediante escayolación mecánica o hidromecánica, proceder a la eliminación de profundidad del posible hormigón dañado; después es necesario eliminar el exceso de las armaduras, que se deben limpiar mediante abrasión (manual o mecánica) o chocar de arena. Se procederá a continua o a la limpieza del soporte, eliminando cualquier resto de polvo, grasa, aceites y otras sustancias contaminantes con aire comprimido o hidroalcoholico, y al mojado hasta saturación del soporte, pero sin agua en superficie. De manera alternativa, la aplicación de GeoLite®, base, sobre todo tipo de soportes, garantiza una absorción regular y favorece la natural cristalización del geomóntoro. Antes de aplicar GeoLite®, controlar la bondad de la clase de resistencia del hormigón de soporte.

Recolectores de atraso sobre las superficies: es necesario incluir una armadura (malla electrotensada o hierba) anclada al soporte mediante anclaje mecánico.
MODO DE EMPLEO

Preparación
Geolite® se prepara mezclando 25 kg de polvo con el agua indicada en el envase (es aconsejable utilizar todo el contenido del saco). La preparación de la mezcla puede ser realizada en hormigonera, mezclando hasta obtener un mortero homogéneo y libre de grumos; también es posible utilizar una máquina de amasado adecuada, con el agua que corresponda, e incorporar en este momento el polvo. Para obtener un mortero de gran consistencia, agregar 1/3 de agua más. Para pequeñas cantidades, mezclar el producto en un cubo y usar un batedor a bajo número de revoluciones.

Conservar el material al resguardo de fuentes de humedad y en lugares protegidos de la acción directa del sol.

Aplicación
Para la reparación localizada y/o generalizada, que prevé la aplicación de Geolite® en espesores variables de 2 a 40 mm (máx. por capa), aplicar el mortero manualmente con palanca o mediante máquina revolotadora.

Para la realización de un aislado protector, aplicar Geolite® manualmente (con lama de acento) o con máquina en espesores inferiores a 2 mm.

Uptilzar el curado en ambiente húmedo de las superficies durante por lo menos 24 horas.

Limpieza
La limpieza de las herramientas y de las máquinas de mezclado de Geolite® se efectúa con agua antes del endurecimiento del producto.

ESPECIFICACIÓN DE PROYECTO

Pasada(c), reparación localizada o generalizada monolítica con centímetros de espesor de elementos en estructuras e infraestructuras de hormigón deteriorado; aislado monolítico protector con milímetros de espesor, mediante aplicación manual o a máquina de pastas mineral certificadas, eco-compatibles, biodegradables y con resolución escrita, conServiceImpl, con baja absorción de poliamínes perjudiciales y exento de fósforas orgánicas, específicas para la pasada, la reparación, el aislado y la protección monolítica con durabilidad garantizada de estructuras de hormigón, Geolite® de Kerakoll® Spa, Greenbuilding Renovation Eco 3, prevista de marcado CE y conforme a los requisitos prestacionales requeridos por la Norma EN 1504-7 para la pasada de las remates de armadura, por la EN 1504-2, Clase H4, para la reconstrucción volumétrica y el aislado y por la EN 1504-2 para la protección de las superficies, de acuerdo a los Principios 2, 3, 4, 5, 7, 8 y 11 definidos por la EN 1504-9.

DATOS TÉCNICOS SEGÚN NORMA DE CALIDAD KERAKOLL

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>polvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad aparente</td>
<td>1340 kg/m³</td>
</tr>
<tr>
<td>Naturaleza mineralógica</td>
<td>sílica - carbonácea</td>
</tr>
<tr>
<td>Intervalo granulométrico</td>
<td>0 - 0.5 mm</td>
</tr>
<tr>
<td>Envase</td>
<td>sacos 25 kg</td>
</tr>
<tr>
<td>Agua de amasado</td>
<td>5,5 l / 1 saco 25 kg</td>
</tr>
<tr>
<td>Esmucimiento de la mezcla</td>
<td>140 - 190 mm</td>
</tr>
<tr>
<td>pH de la mezcla</td>
<td>12,5</td>
</tr>
<tr>
<td>Inicio / Fin de fraguado</td>
<td>- 16 - 80 min (140 - 220 min, a 18 °C) - (- 60 - 65 min, a +30 °C)</td>
</tr>
<tr>
<td>Temperatura de fraguado</td>
<td>25 - 52 °C a +6 °K</td>
</tr>
<tr>
<td>Espesor mínimo</td>
<td>2 mm</td>
</tr>
<tr>
<td>Espesor máximo por capa</td>
<td>40 mm</td>
</tr>
</tbody>
</table>

Nota: en caso de +5 °C de temperaturas, 35% hR y sin ventilación.
<table>
<thead>
<tr>
<th>Características prestacionales</th>
<th>Método de ensayo</th>
<th>Requisitos exigidos EN 1994-1</th>
<th>Prestaciones GeoLite®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección contra la corrosión</td>
<td>EN 15103</td>
<td>ninguna corrosión</td>
<td>especificación superior</td>
</tr>
<tr>
<td>Adhesión a células</td>
<td>EN 15104</td>
<td>> 96% del valor de la obra no revestida</td>
<td>especificación superior</td>
</tr>
<tr>
<td>Resistencia a compresión</td>
<td>EN 12100</td>
<td>≥ 45 MPa (28 días)</td>
<td>≥ 40 MPa (7 días)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 55 MPa (28 días)</td>
</tr>
<tr>
<td>Resistencia a tracción por flexión</td>
<td>EN 196/1</td>
<td>ninguno</td>
<td>> 5 MPa (34 h)</td>
</tr>
<tr>
<td>Adhesión</td>
<td>EN 1522</td>
<td>≥ 2 MPa (28 días)</td>
<td>> 8 MPa (7 días)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 10 MPa (28 días)</td>
</tr>
<tr>
<td>Resistencia a la carbonatación</td>
<td>EN 13295</td>
<td>profundidad de carbonatación a temperatura de referencia (MIC 0.45%)</td>
<td>especificación superior</td>
</tr>
<tr>
<td>Módulo elástico a compresión</td>
<td>EN 12412</td>
<td>≥ 20 GPa (28 días)</td>
<td>25 GPa (28 días)</td>
</tr>
<tr>
<td>Compatibilidad térmica en los ciclos de frío-calor con sais animales</td>
<td>EN 13671-1</td>
<td>resistencia de unión después de 50 ciclos ≥ 2 MPa</td>
<td>> 2 MPa</td>
</tr>
<tr>
<td>Absorción capilar</td>
<td>EN 1297</td>
<td>≤ 0,8 kg/m².min</td>
<td>< 0,5 kg/m².min</td>
</tr>
<tr>
<td>Contenido en iones cloro (determinado en el producto en vacío)</td>
<td>EN 1015-17</td>
<td>≤ 0,05%</td>
<td>< 0,05%</td>
</tr>
<tr>
<td>Reacción al fuego</td>
<td>EN 13671-1</td>
<td>NaCl</td>
<td>Eurofase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características prestacionales</th>
<th>Método de ensayo</th>
<th>Requisitos exigidos EN 1744-2 (C)</th>
<th>Prestaciones GeoLite®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeabilidad al vapor de agua</td>
<td>EN 109</td>
<td>clase de referencia</td>
<td>clase II, < 5 m</td>
</tr>
<tr>
<td>Absorción capilar y permeabilidad al agua</td>
<td>EN 109-3</td>
<td>w < 0,1 kg·m⁻²·h⁻¹·a⁻¹</td>
<td>w < 0,1 kg·m⁻²·h⁻¹·a⁻¹</td>
</tr>
<tr>
<td>Fuerza de adhesión por tracción directa</td>
<td>EN 1542</td>
<td>≥ 0,8 MPa</td>
<td>> 2 MPa</td>
</tr>
<tr>
<td>Retraso lineal</td>
<td>EN 13671-1</td>
<td>≤ 0,3%</td>
<td>≤ 0,8%</td>
</tr>
<tr>
<td>Coeficiente de expansión térmica</td>
<td>EN 1720</td>
<td>α ≤ 30·10⁻⁶·k⁻¹·°C⁻¹</td>
<td>α ≤ 30·10⁻⁶·k⁻¹·°C⁻¹</td>
</tr>
<tr>
<td>Resistencia a la abrasión</td>
<td>EN 150</td>
<td>pérdida de peso < 3000 mg</td>
<td>especificación superior</td>
</tr>
<tr>
<td>Adh. en relación a shock térmico</td>
<td>EN 13671-2</td>
<td>≥ 2 N/m²</td>
<td>> 2 N/m²</td>
</tr>
<tr>
<td>Resistencia a los gases</td>
<td>EN 150</td>
<td>clase de referencia</td>
<td>Clase III: ≥ 20 N/m²</td>
</tr>
<tr>
<td>Sustancias peligrosas</td>
<td></td>
<td>conforme al punto 5.4</td>
<td>GeoLite®</td>
</tr>
</tbody>
</table>

CALIDAD DEL AIRE INTERIOR (IAQ): EMISIONES COMPOSTOS ORGANICOS VOLÁTILES
Conformidad: EC 1: Rulas GSV-Empfoe Cert. GSV 2036/11.01.02
ADVERTENCIAS

- Producto para uso profesional
- abstenerse a las posibles normas y disposiciones nacionales
- usar la temperatura compreada entre +5 °C y +40 °C
- no añadir conglomerales o aditivos en la mezcla
- no aplicar sobre superficies sueltas o no adherentes
- no aplicar sobre yeso, metal o madera
- después de la aplicación, proteger las superficies del sol directo y del viento
- vigilar el curado en ambiente homólogo del producto durante las primeras 24 horas
- en caso necesario solicitar la ficha de seguridad
- para todo aquello no contemplado consultar con el Kerakoll Worldwide Global Service +34 902 325 555

Los datos relativas a las características físicas y fílicas no se corresponden con el dispositivos KeraKoll GmbH. Las indicaciones se han adaptado para el uso de proyectos de KERAKOLL. Para estas posibles actualizaciones, consultar la sustancia completa. KERAKOLL Slyl, frecuentemente, actualización y actualizaciones con

No se indican con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la misma. En consecuencia, se indica posible interesar en las posibles actualizaciones de las mismas. No se utilizan con la marca de KERAKOLL y las posibles actualizaciones en el caso de que se altera el diseño o diseño de la mismo.
7.2.4 Biocalce Revoco fino, casa Kerakoll

Biocalce® Revoco Fino

Aliador natural certificado, eco-compatible, de cal natural para NHL 3.5 conforme a la norma EN 459-1 para el acabado de grano fino altamente transpirable de enfoscados, ideado para el Greenbuilding y la Restauración Histórica. Contiene solo materias primas de origen rigurosamente natural, con reducidas emisiones de CO₂ y bajísimas emisiones de COVs. Con ventilación natural activa en la dilución de los contaminantes de interior, bacteriostático y fungicida natural. Reciclable como árido después de su vida útil.

Biocalce® Revoco Fino es un aliador transpirable para intervenciones de acabado superficial de enfoscados y de saneamiento en los ciclos Biocalce®.

Línea de aplicación

Destinado para:
- Aliados transpirables (presuntivamente 0 - 0,5 mm) de enfoscados, morteros y de saneamiento.
- Biocalce® Revoco Fino es especialmente apropiado para el acabado de grano fino en superficies enfoscadas en la Construcción del Bienestar, en la que se utiliza para cubrir el acero, los aleros y los muros de concreto, garantizando el máximum confort de habitabilidad y transpirabilidad requeridas.

No es adecuado para:
- Sobre soluciones acuosas, no cohesionadas, puzleventes. Sobre viejas pinturas o estucos viejos. Sobre soportes con elevada presencia de sales de aluminio.

Modo de empleo

Preparación del soporte
- El soporte debe estar limpio y ser consistente, estar libre de partículas, de polvo y mohos. Las viejas superficies deben estar sanas y secas, compactas y deben limpiarse cuidadosamente de restos previos de trabajos anteriores (estratos antiguos, viejos encofrados, etc.). Raspado de las superficies de los enfoscados nuevos con una lana metálica raspadora para eliminar la capa superficial, facilitando la posterior colocación del mortero de acabado sin la formación de burbujas de aire. Antes de proceder al acabado mejor siempre las superficies.
MODO DE EMPLEO

Preparación
Blanco del Revoco Fino se prepara mezclando 1 saco de 25 kg con aprox. 7,5 litros de agua limpia. La mezcla se obtiene viniendo agua en el recipiente y añadiendo el polvo de modo gradual. La mezcla se puede realizar en hormigones, en caja de mano o con agitador mecánico a bajo número de revoluciones o con amasadora en continuo hasta obtener un mortero homogéneo y sin grumos. Usar todo el producto preparado sin recuperar en la siguiente mezcla. Almacenar el material en lugares protegidos del calor en verano o del frío en invierno. Emplear agua corriente no sujeta a la influencia de las temperaturas extremas. La calificación del mortero, garantizada por su origen estrictamente natural, se verá comprometida por la adición de cualquier dosis de cemento.

Aplicación
Blanco del Revoco Fino se aplica fácilmente con lana americana como un mortero de acabado tradicional. Extender una primera mano sobre la superficie del entresuelo, oportunamente preparada y humedecida, con la más fina americana, poniendo con fuerza para garantizar la adhesión y espesor del aire contenido en las porosidades. Lavar a cabo las manos posteriores hasta obtener el espesor deseado. Acabar con toma, fijar a lana americana en función del acabado deseado. Controlar el espesor del producto mediante humedeciendo durante las primeras 24 horas.

Limpieza
Blanco del Revoco Fino "00" es un producto natural, la limpieza de las herramientas se realizan con agua antes de que el producto endurezca.

OTRAS INDICACIONES

Blanco del Revoco Fino es un producto de cal hidráulica natural sin pigmentos, por tanto la coloración puede asumir tonalidades variables entre los diferentes productos. Al ser un producto mineral, el color del mortero de acabado endurecido y seco variará en función de la absorción del soporte y de las condiciones atmosféricas durante la aplicación.

ESPECIFICACION DE PROYECTO

En la construcción del Bienestar y la Restauración Histórica se realizarán intervenciones de acabado superficial de entresuelos de textura fino y espesor total no superior a 3 mm compuestas por mortero de alta resistencia, huecoespacios y transparencia de cal hidráulica natural para Núm. 3,5 y árboles de polvo de Mármol Blanco Macael con ventilación natural activa en la dilución de los contaminantes de interior, caracterización y funcionalidad natural GreenBuilding Rating Bio 4 (tipo Blanco del Revoco Fino). Las características requeridas, obtenidas exclusivamente con el empleo de materias primas de origen rigurosamente natural, garantizan una buena adherencia al soporte (0,3 N/mm²). Preparado, proyectado o extendido con lana, sin costes de adobes fijos, comprimidos gastos de sistemas de ventilación o cambiadores de aire.

REndimiento Blanco del Revoco Fino
- 1,5 kg/m² por mm de espesor.

DATOS TÉCNICOS SEGÚN NORMA DE CALIDAD KERAKOLL

<table>
<thead>
<tr>
<th>Tipo de mortero</th>
<th>Mortero de acabado superficial/interiores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturaleza química del ligante</td>
<td>Cal hidráulica Natural Pieno Núm. 3,5</td>
</tr>
<tr>
<td>Intervalo granulométrico</td>
<td>0 – 500 μm</td>
</tr>
<tr>
<td>Densidad aparente del polvo</td>
<td>< 1.45 kg/dm³</td>
</tr>
<tr>
<td>Conservación</td>
<td>12 meses en el envase original</td>
</tr>
<tr>
<td>Envasado</td>
<td>sacos 25 kg</td>
</tr>
<tr>
<td>Agua de amasado</td>
<td>> 7,5 l / saco 25 kg</td>
</tr>
<tr>
<td>Consistencia mortero fresco</td>
<td>< 196 mm</td>
</tr>
<tr>
<td>Densidad aparente del mortero fresco</td>
<td>< 1,00 kg/dm³</td>
</tr>
<tr>
<td>Densidad aparente del mortero endurecido y seco</td>
<td>1,64 kg/dm³</td>
</tr>
<tr>
<td>Espesor</td>
<td>12 mm</td>
</tr>
<tr>
<td>Temperatura límite de aplicación</td>
<td>5 – 35 °C</td>
</tr>
</tbody>
</table>
PRESTACIONES

| CALIDAD DEL AIRE INTERIOR (IAQ) CON - EMISIONES COMUESTOS ORGÁNICOS VOLÁTILES |
|-------------------------------|---------------|----------------|
| Comportamiento | EC 1 plus GEV-Emporte | EN 13779:2001 |

| CALIDAD DEL AIRE INTERIOR (IAQ) ACTIVE - DIULACIÓN CONTAMINANTES INTERIORES* |
|--------------------------------|----------------|----|
| Tolueno | 319 µg/m³ | 6% | método JRC |
| Pícteno | 440 µg/m³ | 12%| método JRC |
| Formaldeído | 799 µg/m³ | 2% | método JRC |
| Dicloro de Carbono (CCl₂) | 550 mg/m³ | 4% | método JRC |
| Humedad (Aire Humedo) | 88 mg/m³ | 4% | método JRC |

CALIDAD DEL AIRE INTERIOR (IAQ) BIODEACTIVA - ACCIÓN BACTERIOSTÁTICA

- Enterococcus faecalis
 - Clase F + no proliferación
 - método ESBT

- Penicilium brevicompactum
 - Clase F no proliferación
 - método ESBT

- Cladosporium sphaerospermum
 - Clase F no proliferación
 - método ESBT

- Aspergillus niger
 - Clase F no proliferación
 - método ESBT

ADVERTENCIAS

- **Producto para uso profesional**
 - atenerse a las pautas normas y disposiciones nacionales
 - utilizar con temperaturas comprendidas entre 5°C y 25°C
 - comprobar que el sustrato no esté húmedo
 - proteger las superficies del sol directo y del viento
 - no aplicar sobre superficies sucias o no cohesidas
 - humedecer los muros antes de la aplicación
 - curar el sacado humedeciendo el producto endurecido durante las 24 primeras horas
 - en caso necesario solicitar la ficha de seguridad
 - para todo aquello no contemplado consultar con el Kerakoll Worldwide Global Service +34 932 355 165
7.2.5 Biocalce Revoco Tipo 0,0, casa kerakoll

Biocalce Revoco Tipo "00"

Alisador natural eco-compatible de cal natural para NHL 3.5 conforme a la norma EN 459-1 para el acabado bruñido altamente transpirable de enfoscados, idóneo para el Greenbuilding y la Restauración Histórica. Específico como alisador en el sistema de saneamiento según la norma WTA. Antibacterico y antimojo natural. Contiene sólo materias primas de origen estrictamente natural. Reciclable como árido después de su vida útil.

Biocalce® Revoco Tipo '00' es un alisador transpirable para intervenciones de acabado superficial de enfoscados civiles y de saneamiento en los ciclos Biocalce®.

Ventajas del Producto

- Natural, poroso y altamente transpirable, deja al muro libre para respirar.
- Antibacterico y fungistático natural clasificado B+ y F+ (método CSTB).
- Interiores, exteriores.
- Mezcla suave y ligera.

GreenBuilding Rating

Elementos Naturales Biocalce Revoco Tipo "00"

<table>
<thead>
<tr>
<th>Cal Natural para NHL 3.5</th>
<th>Cal Caliza Ca, 90</th>
<th>Relub de Mármol Puro Blanco 100</th>
<th>100,2 mm</th>
</tr>
</thead>
</table>

Beneficios GreenBuilding

Los primeros datos facilitados por la Comisión Europea confirman que los enfoscados Kerakoll de la línea BIO respiran y mejoran la calidad del aire en interiores en beneficio de la salud de los habitantes de los edificios. Diluyen velozmente las concentraciones de los contaminantes y el exceso de humedad para garantizar el equilibrio higrométrico del aire, son más eficientes que aquellos de base cementosa y facilitan la difusión hacia el exterior, a través de los muros, de las sustancias químicas. La línea Bio de Kerakoll garantiza ambientes sanos y de alto confort.

DATOS - JRC - Ispra

- CO₂: 62% en 7 h
- Limoneno: 30% en 6 h
- Tolueno: 90% en 7 h
- H₂O (enfoscado cal NHL): 50% en 24 h
- H₂O (enfoscado cemento): 50% en 67 h
Proyecto final de Grado Arquitectura Técnica y Edificación
Practicum en la empresa Corema Arquitectura S.L.

Destinos de uso
Alizado transpirable (granulometría 0 – 0,2 mm) de enfoscados civiles y de saneamiento Biocalce®, interiores y exteriores. Biocalce® Revoco Tipo ‘00’ es particularmente apropiado para el acabado brullido en superficies enfoscadas en la Construcción del Bienestar. El origen rigurosamente natural de sus materias primas garantiza el respeto de los parámetros fundamentales de porosidad, higroscopía y transpirabilidad requeridos. Biocalce® Revoco Tipo ‘00’ es idóneo para acabados naturales y transpirables en la Restauración Histórica, donde la elección de materiales tradicionales como la cal natural y el polvo de Mármol Puro Macael, sabiamente dosificados, garantiza intervenciones de conservación respetando las estructuras ya existentes así como los materiales originales.
No utilizar
Sobre soportes sucios, no cohesionados, pulverulentos. Sobre viejas pinturas o estucos viejos. Sobre soportes con presencia salina intersticial.

Preparación de los soportes
El soporte debe estar limpio y ser consistente, estar libre de partes fiables, de polvo y mochis. Los viejos enfoscados deben estar sanos y secos, compactos y deben limpiarse cuidadosamente de residuos procedentes de trabajos anteriores (estucos antiguos, viejos altiblados, etc.). Raspar las superficies de los enfoscados nuevos con una lama metálica raspadora para eliminar la capa superficial, facilitando la posterior colocación del mortero de acabado sin la formación de burbujas de aire. Antes de proceder al acabado mojar siempre los soportes.

Preparación
Biocalce® Revoco Tipo ‘00’ se prepara mezclando 1 saco de 20 kg con aprox. 12 litros de agua limpia. La mezcla se obtiene vertiendo agua en el recipiente y añadiendo el polvo de modo gradual. La mezcla puede realizarse en hormigonera, en capazo la mano o con agitador mecánico a bajo número de revoluciones) o con amasadora en continuo hasta obtener un mortero homogéneo y sin grumos. Usar todo el producto preparado sin recuperarlo en la siguiente mezcla. Almacenar el mortero en lugares protegidos del calor en verano o del frío en invierno. Emplear agua corriente no sujeta a la influencia de las temperaturas externas.
La calidad del mortero, garantizada por su origen estrictamente natural, se verá comprometida por la adición de cualquier dosis de cemento.

Aplicación
Biocalce® Revoco Tipo ‘00’ se aplica fácilmente con llana americana como un mortero de acabado tradicional de yeso. Extender una primera mano sobre la superficie del enfoscado, oportunamente preparada y humedecida, con llana americana, presionando con fuerza para garantizar la adhesión y expulsar el aire contenido en las porosidades. Llevar a cabo las manos posteriores hasta obtener el espesor deseado. Controlar el secado del producto endurecido humedeciéndolo durante las primeras 24 horas.

Limpieza
Biocalce® Revoco Tipo ‘00’ es un producto natural, la limpieza de las herramientas se realiza con agua antes de que el producto endurezca.

En la Construcción del Bienestar y la Restauración Histórica se realizarán intervenciones de acabado brullido de superficiales de enfoscados en posteriores pasadas y espesor total no superior a 2 mm compuestas por mortero de altísima porosidad, higroscopiedad y transpirabilidad de cal hidráulica natural para NAI 3,5 y grúas de polvo de Mármol Puro Macael tipo Biocalce® Revoco Tipo ‘00’. Las características requeridas, obtenidas exclusivamente con el empleo de materias primas de origen rigurosamente natural, garantizan una buena adherencia al soporte (≤ 0,3 N/mm²).

Aislamiento Biocalce® Revoco Tipo ‘00’; ≤ 1 kg/m² por mm de espesor.

KHERKOLL
The Greenbuilding Company
Proyecto final de Grado Arquitectura Técnica y Edificación
Practicum en la empresa Corema Arquitectura S.L.

Otras indicaciones

Biocalcé Rénovox Eixo "09" es un producto de cal hidráulica natural sin pigmentos, por tanto la coloración puede asumir tonalidades variables entre lotes de diferente producción.
Al ser un producto mineral, el color del mortero de acabado endurecido y seco varía en función de la absorción del soporte y de las condiciones atmosféricas durante la aplicación.

Datos técnicos según Sistema de Calidad Kerakoll

<table>
<thead>
<tr>
<th>Tipo de mortero</th>
<th>mortero de acabado interiores/exteriores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturaleza química del ligante</td>
<td>Cal hidráulica Natural para NRM 3.5 / CL 90-5 EN 458-1</td>
</tr>
<tr>
<td>Intervalo granulométrico</td>
<td>0 - 200 μm</td>
</tr>
<tr>
<td>Densidad aparente del polvo</td>
<td>0,871 kg/dm³</td>
</tr>
<tr>
<td>Conservación</td>
<td>≥ 12 meses en el envase original</td>
</tr>
<tr>
<td>Envase</td>
<td>Saco 20 kg</td>
</tr>
<tr>
<td>Agua de amasado</td>
<td>12 L / 1 saco 20 kg</td>
</tr>
<tr>
<td>Consistencia mortero fresco</td>
<td>196 mm</td>
</tr>
<tr>
<td>Densidad aparente del mortero fresco</td>
<td>1,00 kg/dm³</td>
</tr>
<tr>
<td>Densidad aparente del mortero endurecido y seco</td>
<td>1,42 kg/dm³</td>
</tr>
<tr>
<td>pH mezcla</td>
<td>≥ 12</td>
</tr>
<tr>
<td>Temperatura límite de aplicación</td>
<td>de +8 °C a +30 °C</td>
</tr>
<tr>
<td>Conductividad térmica</td>
<td>0,16 W/mK</td>
</tr>
<tr>
<td>Espesor mínimo</td>
<td>≥ 0,5 mm</td>
</tr>
<tr>
<td>Espesor máximo por capa</td>
<td>≤ 1 mm</td>
</tr>
<tr>
<td>Permeabilidad al vapor</td>
<td>≥ 10</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>≥ 1 kg/m² por metro de espesor</td>
</tr>
</tbody>
</table>

Toma de datos a ±20 ± 2 °C de temperatura, 65 ± 5% H.R. y sin ventilación. Pueden variar en función de las condiciones particulares de cada obra.

*Determinado en climatizada según EN 1264

Prestaciones High-Tech

Reacción al fuego | clase A1 EN 15501-1 |
Resistencia a compresión a 28 días | ≥ 0,29 N/mm² EN 1015-11 |
Adhesión al soporte | ≥ 0,3 N/mm² EN 1542 |

Toma de datos a ±20 ± 2 °C de temperatura, 65 ± 5% H.R. y sin ventilación. Pueden variar en función de las condiciones particulares de cada obra.

Advertencias

- Producto para uso profesional
- Atender a las posibles normas y disposiciones nacionales
- Utilizar con temperaturas comprendidas entre +8 °C y +30 °C
- Comprobar que el soporte no esté helado
- Proteger las superficies del sol directo y del viento
- No aplicar sobre superficies sucias o no cohesionadas
- Humedecer los muros antes de la aplicación
- Curar el terreno humedeciendo el producto endurecido durante las primeras 24 horas
- En caso necesario solicitar la ficha de seguridad
- Para todo aquello no contemplado consultar con el Kerakoll Worldwide Global Service +34 902 325 555

La presente información está actualizada en mayo de 2011; su precio puede que la misma más o menos una variaciones en el tiempo por parte de KERAKOLL S.p.A. Para los precios y las actualizaciones, se puede consultar el sitio web www.kera-coll.com. Los datos técnicos que se indican en este texto se refieren al 03 June Review 07/2010. KERAKOLL S.p.A. reserva la facultad de variar, actualizar y sustituir la información que se ofrece en caso de que se obtenga directamente de sus webs. La ficha técnica ha sido redactada en base a nuestros mejores conocimientos técnicos y prácticos. Sin embargo, no siendo posible intervenir en las condiciones de las obras y en la ejecución de las mismas, dichas informaciones representan indicaciones de carácter general que no comprometen en modo alguno a nuestra Compañía. Se aconseja una prueba preventiva para verificar la idoneidad del producto para el uso previsto.

KERAKOLL IBERICA S.A.
Carretera de Alcora, Km. 10,450 - 12006
Castellón de la Plana - España
Tel: +34 964 25 15 00 - Fax: +34 964 24 11 00
info@kerakoll.es - www.kerakoll.com
7.2.6 Biocalce Silicato Consolidante, casa kerakoll

Biocalce® Silicato Consolidante

Biocalce® Silicato Consolidante es específico para consolidar y uniformar superficies absorbentes antes de la aplicación de ciclos decorativos a base de silicatos; también idóneo para consolidar entorchados adheridos al soporte meral, no revestidos con acabados sintéticos. Protege naturalmente con aceite de pino según las indicaciones de la norma DIN 18303.

ELEMENTOS NATURALES

- Silicato de Potasio Puro
- Aceite de Pino

CAMPOS DE APlicación

- Dorotado con acrílicos
- Estuco acrílico
- Pintura de acrílico
- Bichos de acrílico

MODEO DE EMPLEO

Preparación de las superficies

El soporte debe limpiarse con los medios apropiados para dejarlo libre de partículas, polvo y manchas. Nuevas reparaciones de entorchado deben dejarse secar.

El espesor debe estar seco en el momento de la aplicación.

VENTAJAS DEL PRODUCTO

- Durabilidad y ventaja de uso
- Absorbe mejor el agua
- No cambia el peso del soporte
- Específico para utilizar Biocalce® Silicato Puro Pintura
- De elevado fluidos y fácil aplicación

GREENBUILDING RATING

- Biocalce® Silicato Consolidante
- - Catálogo Inorgánico Naturales Fluidos
- - Clase A: Acabados Naturales Transpirables: Silicato Puro
- - Pintura Bio 5

VENTAJAS DEL PRODUCTO

- - Naturalmente transpirable, deja al muro libre para respirar
- - Actúa como preservador de la silicatación
- - No cambia el peso del soporte
- - Específico para utilizar Biocalce® Silicato Puro Pintura
- - De elevado fluidez y fácil aplicación
MODO DE EMPLEO

Preparación
Agitar cuidadosamente antes de usar.

Aplicación
Consolidador: aplicar una o más manos con brocha teniendo cuidado de extender el consolidador con manos cruzadas e irregulares, evitando goteras. Volver a aplicar pasadas 12 horas.
Dilución: Biocalce® Silicato Consolidante se puede diluir hasta un máximo del 50% en volumen, es función de la presencia del soporte. Biocalce® Silicato Consolidante se aplica con temperaturas comprendidas entre +8 °C y +30 °C y con humedad relativa inferior al 80%.
Proteger de las heladas.

Limpieza
Biocalce® Silicato Consolidante es un producto natural, la limpieza de las herramientas se realizan con agua antes de que el producto enterece.

OTRAS INDICACIONES

Las decoraciones posteriores se realizan una vez Biocalce® Silicato Consolidante se haya endurecido totalmente y en cualquier caso nunca antes de 12 horas desde la última aplicación.

Dado la puntuación de formulación de Biocalce® Silicato Consolidante y su elevada alcalinidad, proteger las superficies antiguas durante la aplicación. Elementos de decoración artesana y vinos, cerámica, piedras naturales, barro cocido y minerales se pueden dorar en contacto con productos a los silicatos. Las posiblesalteraciones de producto se deben eliminar inmediatamente con agua limpia.

ESPECIFICACIÓN DE PROYECTO

Biocalce® Silicato Consolidante es un consolidante orgánico presente de cemento a base de silicato de petato para estabilizado y aceite de petro según la norma DIN 18000, caracterizado por su elevado poder de penetración para consolidar los suelos antes de la aplicación de los colores decorativos a los silicatos. Biocalce® Silicato Consolidante está listo para usar. Con ventilación natural activa en la dilución de los contaminantes en interiores, barrocalizónico y fungicida activos, GreenBuilding Builde® BIO. A. Específico para suelos minerales en la Construcción del Bimenar y en la Restauración Histórica bajo la tutela del área del Patrimonio Histórico del Ministerio de Cultura de Italia.

Rendimiento Biocalce® Silicato Consolidante: 0.2 km² por mano.

DATOS TÉCNICOS SEGÚN NORMA DE CALIDAD KERAKOLL

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso de nutrientes</td>
<td>6 meses en el envase original</td>
</tr>
<tr>
<td>Conservación</td>
<td></td>
</tr>
<tr>
<td>Advertencias</td>
<td>proteger de las heladas, evitar instalación directa y fuentes de calor</td>
</tr>
<tr>
<td>Envase</td>
<td></td>
</tr>
<tr>
<td>Temperatura límite de aplicación</td>
<td>de +8 °C a +30 °C</td>
</tr>
<tr>
<td>pH en envase</td>
<td>7,1</td>
</tr>
<tr>
<td>Volar límite de H.R.</td>
<td>≤ 80%</td>
</tr>
<tr>
<td>Densidad</td>
<td>1,1 kg/l</td>
</tr>
<tr>
<td>Resistencia a 100 °C</td>
<td>≥ 63%</td>
</tr>
<tr>
<td>Secado completo a 23 °C y 80% H.R.</td>
<td>72 h</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>0,2 km² por mano</td>
</tr>
</tbody>
</table>

Tenía de datos a 25% ± 2 °C de temperatura, 85 % H. R., y ventilación. Pueden variar en función de las condiciones climáticas de cada obra.
Proyecto final de Grado Arquitectura Técnica y Edificación
Practicum en la empresa Corema Arquitectura S.L.

PRESTACIONES

| CALIDAD DEL AIRE INTERIOR (IAQ) ACTIVO - DILUCIÓN CONTAMINANTES INTERIORES * |
|-----------------------------|-----------------|-----------------|-----------------|
| | Flujo | Dilución |
| Tolueno | 247 µg/m³/h | +65% | método JRC |
| Propano | 287 µg/m³/h | +107% | método JRC |
| Formolóxido | 200 µg/m³/h | +62% | método JRC |
| Dióxido de Carbono (CO₂) | 1000 mg/m³/h | +20% | método JRC |
| Humedad (Aire Humedecido) | 42 mg/m³/h | +60% | método JRC |

* Para la dilución se empleó método JRC. La metodología empleada permite la reducción de contaminantes en ambientes interiores. Presentado tratado flujo y dilución relacionado con la reducción de contaminantes en ambientes interiores.

ADVERTENCIAS

- Producto para uso profesional
- Avisar a las posibles normas y disposiciones nacionales.
- Utilizar con temperaturas comprendidas entre 48 °C y 18 °C.
- Comprobar que el sustrato no esté húmedo.
- No aplicar con viento fuerte, sol directo, lluvia o con riesgo de lluvias en las próximas 24 horas.
- Proteger de la lluvia hasta su completa solidificación (sin lluvia 72 horas a >23 °C estable y con humedad interior a 60%).
- No aplicar sobre superficies suaves o no calibradas.
- En caso necesario consultar la ficha de seguridad.
- Para todo aquello no contemplado consultar con el Kerakoll Worldwide Global Service +34 902 525 555.

Los datos referentes a las disminuciones de la empresa Corema Arquitectura S.L. con el número de expediente 10325. Los datos de referencia son válidos para el año 2011. Las personas interesadas en solicitudes de informes o actas están encargadas con KERAKOLL S.L. Con referencias de la entrada, actualización y validación del presente contrato con el fin de que se cumpla con el objetivo de que se realicen en las mejores condiciones técnicas y profesionales. En el caso que se realicen en las condiciones de las mismas y no se comunique la recepción de los datos, el responsable de este documento no asumirá ninguna responsabilidad en lo que concierne a nuestra responsabilidad. En cumplimiento de los derechos de autor del presente documento, podrá ser sometido a nuestra responsabilidad. www.kerakoll.com
7.2.7 Giscolene, casa Giscosa

GISCOLENE

1. Descripción:

La membrana Giscolene es una lámina impermeabilizante de caucho sintético EPDM vulcanizado para toda clase de impermeabilizaciones (cubiertas, balsas, estanques, niveles freáticos, ...).

2. Propiedades

- Permanente elasticidad desde −45°C hasta 130°C.
- Resistencia al ozono y a la radiación UV.
- Excelente estabilidad térmica y dimensional.
- Facilidad y rapidez de instalación.

3. Aplicación

La colocación según el sistema de impermeabilización con láminas Giscolene debe ser realizada por personal experimentado e instaladores homologados de acuerdo con las instrucciones del Manual Técnico de Giscosa y empleando los accesorios del sistema.

Las condiciones de la zona a impermeabilizar deben ser las normales para la realización de un trabajo de impermeabilización. La superficie tiene que estar seca, limpia y libre de elementos purgantes. En determinadas circunstancias deberá colocarse un geotextil adecuado.

La membrana debe reposar unos 30 minutos antes de realizar las uniones y fijar definitivamente. Consulte con el Departamento Técnico de Giscosa si desea información adicional.

4. Rendimiento

Las dimensiones de la membrana Giscolene se calcularán para cubrir el sustrato, incluyendo los solapos de las juntas y remontes.

5. Características

<table>
<thead>
<tr>
<th>Característica</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracción (MPa)</td>
<td>>9</td>
</tr>
<tr>
<td>Alergamiento (%)</td>
<td>>500</td>
</tr>
<tr>
<td>Dureza (Shore A)</td>
<td>50-70</td>
</tr>
<tr>
<td>Permeabilidad al vapor de agua (μ)</td>
<td>50,000</td>
</tr>
<tr>
<td>Durabilidad (UV)</td>
<td>Pasa</td>
</tr>
<tr>
<td>Resistencia al ozono</td>
<td>Pasa</td>
</tr>
</tbody>
</table>

Tel: +34 902 112 007 - Fax: +34 900 112 007 - giscosa@giscosa.com
La gama Gisocolene dispone del marcado CE según normas EN 13955, EN 13967, EN 13061, EN 13362 y 13984. El Gisocolene 120/150 disponen de diferentes certificados de acuerdo con la Guía UEA tIc de impermeabilización de cubiertas. Las láminas Gisocolene cumplen con diferentes estándares nacionales e internacionales.

Póngase en contacto con el Departamento de Calidad de Giscosa si desea más información.

6. Presentación/Almacenamiento/Caducidad

Rollos: 1,5 metros de ancho por 20 metros de largo.
Módulos: Hasta 1000 m² de superficie.
Se presentan debidamente identificados tanto la membrana como en el embalaje. Pueden entregarse en cajas de cartón (25-36 rollos) ó en palets. Mantener protegido de agresiones mecánicas. Almacenar apartado de las fuentes de combustión y de las llamas abiertas.

Caducidad limitada

7. Precauciones

Para mayor información consulte la ficha de seguridad del producto,
7.2.8 Sikaflex -11 FC+, casa sika

Sikaflex®-11 FC

Masilla adhesiva elástica multiuso

<table>
<thead>
<tr>
<th>Descripción del Producto</th>
<th>Sikaflex®-11 FC es una masilla adhesiva monocomponente, a base de poliuretano.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso</td>
<td>Para sellado elástico o impermeable de juntas en edificación y obra civil, con bajos niveles de movimiento.</td>
</tr>
<tr>
<td></td>
<td>Juntas entre muro-suelo</td>
</tr>
<tr>
<td></td>
<td>Juntas en suelos y pavimentos</td>
</tr>
<tr>
<td></td>
<td>Juntas entre carpintería y obras de fabrica (ventanas, puertas)</td>
</tr>
<tr>
<td></td>
<td>Uniones en tuberías prefabricadas</td>
</tr>
<tr>
<td></td>
<td>Relleno de gresetas y fisuras</td>
</tr>
<tr>
<td></td>
<td>Juntas en caras, depósitos y piscinas</td>
</tr>
<tr>
<td></td>
<td>Terrazas transitorias o no transitorias</td>
</tr>
<tr>
<td></td>
<td>Uniones sometidas a golpes y vibraciones</td>
</tr>
<tr>
<td></td>
<td>Zócalos, rodapiés, cuberjuntas, azulejos, etc.</td>
</tr>
<tr>
<td></td>
<td>Para pegado elástico y filtración de elementos diversos empleados</td>
</tr>
<tr>
<td></td>
<td>en construcción, como:</td>
</tr>
<tr>
<td></td>
<td>Cocinas y fregaderos metálicos</td>
</tr>
<tr>
<td></td>
<td>Instalaciones de agua y aire acondicionado</td>
</tr>
<tr>
<td></td>
<td>Carpas y conductos de ventilación</td>
</tr>
<tr>
<td></td>
<td>Tejas</td>
</tr>
</tbody>
</table>

Características/Ventajas	Alta resistencia
	Elasticidad permanente
	No descuelga
	Sin retracción
	No es corrosivo
	Posee una excelente resistencia al envejecimiento y la intemperie
Datos del Producto

<table>
<thead>
<tr>
<th>Forma</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apariencia / Color</td>
<td>Crema, blanco, marrón y negro</td>
</tr>
<tr>
<td>Presentación</td>
<td>Cartuchos de 310 cm³, unidades de 310 cm³ y sachets de 600 cm³</td>
</tr>
</tbody>
</table>

Almacenamiento

<table>
<thead>
<tr>
<th>Condiciones de Almacenamiento</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservación</td>
<td>15 meses los cartuchos y 9 meses los sachetes desde su fecha de fabricación, en sus envases de origen, bien cerrados y no deteriorados. En lugar fresco y seco, entre +9°C y +25°C.</td>
</tr>
</tbody>
</table>

Datos Técnicos

<table>
<thead>
<tr>
<th>Composición química</th>
<th>Elastómero monocomponente a base de poliuretano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad</td>
<td>Aprox. 1,2 kg/l</td>
</tr>
<tr>
<td>Formación de piel</td>
<td>Aprox. 60 minutos (+23 / 50% r.h.)</td>
</tr>
<tr>
<td>Velocidad de polimerización</td>
<td>Aprox. 2 mm/24 horas (+23/50% r.h.)</td>
</tr>
<tr>
<td>Máximo movimiento admisible</td>
<td>25%</td>
</tr>
<tr>
<td>Dimensionado de la junta</td>
<td>Anchura mínima: 8 mm</td>
</tr>
<tr>
<td></td>
<td>Anchura máxima: 20 mm</td>
</tr>
<tr>
<td>Temperatura de servicio</td>
<td>Desde -20°C hasta +80°C</td>
</tr>
</tbody>
</table>

Propiedades Mecánicas/Físicas

Adherencia	Sikaflex®-11 FC® tiene excelente adherencia sin impregnación sobre la mayor parte de los materiales comunes, como el hormigón, hormigón celular, ladrillo, piedra, aluminio anodizado o lacado, revestimientos epoxídicos, poliéster, acero inoxidable y la mayor parte de maderas tratadas. Otros soportes: Hacer ensayos o consultar al Departamento Técnico.
Dureza Shore A	De 25 a 35.
Módulo elástico	Aprox. 6.5 N/mm² al 100% de elongación (22°C / 50% r.h.)
Alargamiento a la rotura	Aprox. 400% (+23°C / 50% r.h.)
Recuperación elástica	> 90%

Resistencia

<table>
<thead>
<tr>
<th>Resistencias químicas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Resiste al agua, agua de mar, soluciones de limpieza a base de lejía, detergentes, agua caldosa, ácidos y bases de origen inorgánico en baja concentración y alcanforados.</td>
<td></td>
</tr>
<tr>
<td>- Resiste temporalmente a hidrocarburos, ácidos dícticos y alcalis diluidos.</td>
<td></td>
</tr>
<tr>
<td>- No resiste a disolventes, ni bases o ácidos minerales fuertes. No conviene que esté en contacto con el agua de piscinas.</td>
<td></td>
</tr>
</tbody>
</table>
Información del Sistema

Detalles de Aplicación

Consumo

- Pegado:
 - Por puntos: 1 Cartucho de 310 ml para 100 puntos de 3 cm².
 - Por cordones: 1 Cartucho de 310 ml para 6 m de cordón de 8 mm de diámetro.
 - En toda la superficie: 1 Cartucho de 310 ml para 0,3 m² para un espesor mínimo de 1 mm.

Selección:

La junta debe ser diseñada según la capacidad de movimiento de la masilla. En general la junta debe tener un espesor comprendido entre 5-20 mm. La relación entre la anchura y la profundidad debe ser aproximadamente 2:1 respectivamente.

Las juntas menores de 5 mm deben abrirse. La anchura de las juntas y la aplicación de la masilla (valor guía de aplicación de +10°C).

Para calcular la anchura y el tamaño de junta necesario de la anchura será preciso evaluar las características térmicas y la adherencia del sellado según el estado del soporte.

<table>
<thead>
<tr>
<th>Anchura de junta</th>
<th>10 mm</th>
<th>15 mm</th>
<th>20 mm</th>
<th>25 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad de la junta</td>
<td>8 mm</td>
<td>8 mm</td>
<td>10 mm</td>
<td>12 mm</td>
</tr>
<tr>
<td>Longitud de la junta / 600 ml</td>
<td>Aprox. 0 m</td>
<td>Aprox. 2,5-3 m</td>
<td>Aprox. 1,9 m</td>
<td>Aprox. 1,5 m</td>
</tr>
<tr>
<td>Longitud de la junta / 510 ml</td>
<td>Aprox. 3 m</td>
<td>Aprox. 1,5 m</td>
<td>Aprox. 0,9 m</td>
<td>Aprox. 0,6 m</td>
</tr>
</tbody>
</table>

Aplicación del fondo de junta: La masilla debe ser compatible con el fondo de junta (espuma de poliuretano clásica).

Calidad del soporte

Limpio, seco, cohesion, homogéneo, libre de grasa, polvo y partículas menudas.

Después de sanear la junta se colocará una cinta adhesiva a cada lado de la junta para evitar que se manche la superficie.

Preparación del soporte/imprimación

Generalmente no es necesaria imprimación. En soportes muy porosos (hornigón, mortero, madera) o cuando la masilla vaya a setear en contacto permanente con agua, se aconseja dar la imprimación con Sika Primer-1.

Para soportes porosos ligeramente humedos ≤9% se recomienda aplicar la imprimación Sika Primer-3.

Para soportes metálicos, férreos o no férreos, sin tratamientos superficiales se aplicará Sika Primer-204.

Sobre vidrio utilizar Sika Primer-205 G+P

Para aluminio emplear Sika Primer-210 T y para plásticos se recomienda la realización de ensayos.

Las imprimaciones se aplican con pincel en las caras interiores de la junta.

Los consumos serán en los casos de aprox. 250 g/m², lo que equivale a 5 g por metro lineal de junta y cm de profundidad.

Todas las imprimaciones se presentan en botellas de 250 cm³ salvo el Sika Primer-1 y el Sika Primer-3 que también se dispone en botellas de 1 L.
<table>
<thead>
<tr>
<th>Condiciones de Aplicación/ Limitaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura del soporte</td>
</tr>
<tr>
<td>Min. -5°C / máx. +40°C</td>
</tr>
<tr>
<td>Temperatura ambiente</td>
</tr>
<tr>
<td>Min. -5°C / máx. +40°C</td>
</tr>
<tr>
<td>Humedad del soporte</td>
</tr>
<tr>
<td>Seco</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrucciones de Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método de Aplicación/ Herramientas</td>
</tr>
<tr>
<td>Preguntas:</td>
</tr>
<tr>
<td>Colocar con una pistola sobre la pieza a pegar, los cordones o los puntos (distantes algunos cm) de Sikaflex® 111 FC.</td>
</tr>
<tr>
<td>Fijar la pieza a pegar antes de que la masa o fondo pil. ejerciendo una simple presión manual.</td>
</tr>
<tr>
<td>Mantener la pieza firme, si fuera necesario, durante las primeras horas de polimerización con la ayuda de una cinta adhesiva u otro elemento auxiliar.</td>
</tr>
<tr>
<td>Citra posibilidad: Aplicar sobre la superfi cie una capa de Sikaflex® 111 FC.</td>
</tr>
<tr>
<td>Las piezas se deben posicionar en los primeros minutos después de la aplicación y volver a colocar. Ejercer de nuevo la presión necesaria.</td>
</tr>
<tr>
<td>La eficiencia del pegado se obtiene después de la polimerización completa del pegamento, entre 24 y 48 h (a +23°C) para un espesor de 2 a 5 mm.</td>
</tr>
<tr>
<td>Sellado:</td>
</tr>
<tr>
<td>No realizar juntas de anchura menor de 6 mm.</td>
</tr>
<tr>
<td>Utilizar fondo de junta Sika®, aplicando con una herramienta que no sea punzante con objeto de no dañar la superfi cie.</td>
</tr>
<tr>
<td>Aplicar la pieza con una pistola en una o más pasadas según la anchura de la junta, evitando la inclusión de aire.</td>
</tr>
<tr>
<td>Apretar el adhesivo contra los labios y después aislar con una espátula molida con agua ligera y abonada antes de que se formen los pegamentos.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limpieza de Herramientas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para eliminar las manchas de masa fresca utilizar el Sikadur® TopClean-T. Una vez que ha polimerizado la masa, sólo puede ser eliminada por medios mecánicos.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notas de Aplicación/ Limitaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>En general, los sellados clásicos no deben pintarse.</td>
</tr>
<tr>
<td>Cuando se pinta la masa con pinturas compatibles está debe cubrir al menos 1 mm a cada lado de la junta.</td>
</tr>
<tr>
<td>La compatibilidad de productos de sellado debe ser asemejada a la Junta (DN V 28 452-2).</td>
</tr>
<tr>
<td>La variación de color puede darse debido a la composición química, temperatura ambiente, radiación ultravioleta, especialmente en el color: blanco. Una variación en el color no influye en la resistencia del producto.</td>
</tr>
<tr>
<td>Antes de utilizar sobre piedra natural contactar con el Departamento Técnico.</td>
</tr>
<tr>
<td>No debe utilizarse Sikaflex® 111 FC para el sellado en piscinas con alto contenido de productos químicos, ni en estaciones gasolineras.</td>
</tr>
<tr>
<td>No utilizar sobre soportes bituminosos, cauchos, Chloroprene, EPDM y materiales procedentes de aciares, plásticos o disolventes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos los datos técnicos de esta hoja de Datos de Producto están basados en ensayos de laboratorio. Los datos in situ pueden variar debido a circunstancias fuera de nuestro control.</td>
</tr>
</tbody>
</table>

Sikaflex® 111 FC
Instrucciones de Seguridad e Higiene

<table>
<thead>
<tr>
<th>Medidas de protección</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección personal</td>
<td></td>
</tr>
<tr>
<td>Medidas generales de protección e higiene.</td>
<td></td>
</tr>
<tr>
<td>Proveer una ventilación satisfactoria o escapar de gases en el área de trabajo</td>
<td></td>
</tr>
<tr>
<td>Evitar el contacto con los ojos y la piel.</td>
<td></td>
</tr>
<tr>
<td>No fumar, ni comer o beber durante el trabajo.</td>
<td></td>
</tr>
<tr>
<td>Lavarse las manos antes de los descansos y después del trabajo.</td>
<td></td>
</tr>
<tr>
<td>Protección preventiva de la piel con crema protectora.</td>
<td></td>
</tr>
<tr>
<td>Quitarse inmediatamente la ropa manchada o empapada.</td>
<td></td>
</tr>
<tr>
<td>Protección de los ojos con gafas de bujía/nítrico.</td>
<td></td>
</tr>
<tr>
<td>Protección de los oídos con calzón protector.</td>
<td></td>
</tr>
<tr>
<td>Protección corporal con ropa de trabajo.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ecología</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No vertir al alcantarillado, cursos de agua o terrenos.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transporte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercancía no peligrosa.</td>
<td></td>
</tr>
</tbody>
</table>

Toxicidad

<table>
<thead>
<tr>
<th>Experiencia sobre personal.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacto con la piel: Puede causar irritación.</td>
<td></td>
</tr>
<tr>
<td>Contacto con los ojos: Puede causar irritación.</td>
<td></td>
</tr>
<tr>
<td>Inhalación: Puede causar irritación.</td>
<td></td>
</tr>
<tr>
<td>Ingestión: Puede causar perturbaciones en la salud.</td>
<td></td>
</tr>
</tbody>
</table>

Notas Legales

Esta información y, en particular, las recomendaciones relativas a la aplicación y uso final del producto, están dadas de buena fe, basadas en el conocimiento actual y la experiencia de Sika de los productos cuando se utilizan de acuerdo a las recomendaciones de Sika. En la práctica, las posibles diferencias en los materiales, sustratos y condiciones reales en el lugar de aplicación son tales, que no se puede deducir de la información del presente documento, ni de cualquier otra recomendación escrita, ni de consejo alguno ofrecido, ninguna garantía en términos de comercialización o idoneidad para propósitos particulares, ni obligación alguna fuera de cualquier disposición legal que pueda existir. El usuario de los productos debe realizar las pruebas para comprobar su idoneidad de acuerdo al uso que se le quiera dar. Sika se reserva el derecho de cambiar las propiedades de sus productos. Los derechos de propiedad de terceros partes deben ser respetados. Todos los productos se entregan de acuerdo a lo dispuesto en las provisiones vigentes Condiciones Generales de Venta y Suministro. Los usuarios deben de conocer y utilizar la versión última y actualizada de las Hojas de Datos de Productos locales, copia de las cuales se mandarán a quien las solicite, o también se puede conseguir en la página "www.sika.es"
7.2.9 Sika Anchorfix -3, casa sika

<table>
<thead>
<tr>
<th>Descripción del Producto</th>
<th>Adhesivo inyectable de dos componentes, a base de resinas epoxi de alta resistencia, libre de diluyentes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usos</td>
<td>Para la fijación de anclajes no expansivos en los siguientes casos:</td>
</tr>
<tr>
<td></td>
<td>- Anclajes estructurales</td>
</tr>
<tr>
<td></td>
<td>- Rastos de acero corrugado en trabajos de reparación y obra nueva</td>
</tr>
<tr>
<td></td>
<td>- Varillas corrugadas</td>
</tr>
<tr>
<td></td>
<td>- Poros y sistemas de sujeción especiales</td>
</tr>
<tr>
<td></td>
<td>- Instalación de servicios mecánicos y eléctricos (casaertería y ventilación, aparatos sanitarios).</td>
</tr>
<tr>
<td></td>
<td>- Anclaje de soportes para conductos y equipos</td>
</tr>
<tr>
<td></td>
<td>- Trabados con hilvanado cardán.</td>
</tr>
<tr>
<td></td>
<td>- Fijación de barandillas, bañadores.</td>
</tr>
<tr>
<td></td>
<td>- Fijación de protillos</td>
</tr>
<tr>
<td></td>
<td>- Fijación de marcos de ventanas y puertas.</td>
</tr>
<tr>
<td>Sobre los siguientes soportes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hormigón.</td>
</tr>
<tr>
<td></td>
<td>- Piedra natural.</td>
</tr>
<tr>
<td></td>
<td>- Roca sólida.</td>
</tr>
<tr>
<td></td>
<td>- Mampostería.</td>
</tr>
<tr>
<td></td>
<td>- Acero.</td>
</tr>
<tr>
<td></td>
<td>- Madera.</td>
</tr>
<tr>
<td>Características/Ventajas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Largo tiempo abierto</td>
</tr>
<tr>
<td></td>
<td>- Se puede utilizar en hormigón húmedo</td>
</tr>
<tr>
<td></td>
<td>- Alta capacidad de carga</td>
</tr>
<tr>
<td></td>
<td>- Ensayo ETA.</td>
</tr>
<tr>
<td></td>
<td>- No desaguía, aplicable incluso en lochos.</td>
</tr>
<tr>
<td></td>
<td>- Libre de estriado.</td>
</tr>
<tr>
<td></td>
<td>- Aplicable con pistolas convencionales.</td>
</tr>
<tr>
<td></td>
<td>- Excelente adherencia al soporte.</td>
</tr>
<tr>
<td></td>
<td>- Sin retracción, durante el endurecimiento.</td>
</tr>
<tr>
<td></td>
<td>- Aplicable con pistolas convencionales (cartucho de 250 ml)</td>
</tr>
<tr>
<td></td>
<td>- Bajo abr.</td>
</tr>
<tr>
<td></td>
<td>- Baja pérdida de material</td>
</tr>
</tbody>
</table>

Ensayos

- **Certificados/Normativa**
 - **Ensayado según ETA**
 - **Fabricante**
 - **Producto para anclajes de armaduras de acero según EN 1504-6:2006 con Declaración de Prestaciones 02-04 03-01 003 0 0600021 1001, con Certificado de Conformidad delControl de Producción en Fábrica según el certificado número 0921/CPD/2006, provisto del Marca CE
Datos del Producto

Forma

Colores
- Comp. A: translúcido
- Comp. B: gris
- Comp. A+B mezclados: gris claro

Presentación
- Cartuchos de 250 ml, 12 por caja
- Palet: 60 cajas con 12 cartuchos
- Cartuchos de 400 ml, 12 por caja
- Palet: 50 cajas con 12 cartuchos.

Almacenamiento

Condiciones de almacenamiento/conservación
12 meses desde su fecha de fabricación en sus envases de origen bien cerrados y no deteriorados, almacenados en lugar fresco y seco, alejado de fuentes de calor a temperaturas de entre +5°C y +30°C. Protegido de la acción directa del sol.

Todos los cartuchos de Sika AnchorFix®-S+ tienen la fecha de caducidad impresa en la etiqueta.

Datos Técnicos

Densidad
- Part. A: 1.13 kg/l
- Part. B: 1.71 kg/l
- 1.15 kg/l (componíentes A+B mezclados)

Velocidad de curado

<table>
<thead>
<tr>
<th>Temperatura del soporte</th>
<th>Tiempo atiborro T_{at}</th>
<th>Tiempo de curado T_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>+35°C - +40°C</td>
<td>10 minutos</td>
<td>7 horas</td>
</tr>
<tr>
<td>+20°C - +35°C</td>
<td>15 minutos</td>
<td>14 horas</td>
</tr>
<tr>
<td>+10°C - +20°C</td>
<td>35 minutos</td>
<td>30 horas</td>
</tr>
<tr>
<td>+5°C - +10°C</td>
<td>75 minutos</td>
<td>40 horas</td>
</tr>
</tbody>
</table>

3 En hormigón húmedo el tiempo de curado debe ser el doble.
4 Temperatura mínima del cartucho: -5°C.

Resistencia al descuelgue
No descuelga, aplicable incluso en techos.

Espesor de capa
Max. 5 mm

Propiedades Mecánicas/Físicas

Resistencia a compresión

<table>
<thead>
<tr>
<th>Tiempo de curado</th>
<th>-5°C</th>
<th>-23°C</th>
<th>+40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 horas</td>
<td>-11 N/mm²</td>
<td>-94 N/mm²</td>
<td>-108 N/mm²</td>
</tr>
<tr>
<td>1 día</td>
<td>-17 N/mm²</td>
<td>-104 N/mm²</td>
<td>-115 N/mm²</td>
</tr>
<tr>
<td>3 días</td>
<td>-86 N/mm²</td>
<td>-112 N/mm²</td>
<td>-123 N/mm²</td>
</tr>
<tr>
<td>7 días</td>
<td>-89 N/mm²</td>
<td>-114 N/mm²</td>
<td>-127 N/mm²</td>
</tr>
</tbody>
</table>

±5 N/mm²

Resistencia al arrancamiento

Ensayos de arrancamiento (según norma NF P 19-502)

Andaños de barras corrugadas en lasas:

- **Condiciones:**
 - **Calidad del acero:** B500B
 - **Diámetro de la barra:** 12 mm
 - **Diámetro del taladro:** 22 mm
 - **Profundidad del andaño:** 120 mm

Resultado del ensayo: Carga última ≥70 kN, deslizamiento ≤ 0.6 mm

Máxima capacidad de carga de la máquina de ensayos.
Resistencia

Resistencia térmica
-40°C a +45°C. Exposición prolongada.

Información del Sistema

Detalles de Aplicación

<table>
<thead>
<tr>
<th>Consumo de material por anclaje de mi</th>
<th>Volumen térmico (m³)</th>
<th>Profundidad del basado (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>M8</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>M10</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>M12</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>M14</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>M16</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>M18</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>M20</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>M22</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>M24</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>M26</td>
<td>28</td>
<td>34</td>
</tr>
</tbody>
</table>

Las cantidades indicadas están calculadas sin tener en cuenta las pérdidas de material. Perdidas: 10-50%.

Se puede conocer la cantidad de producto inyectado durante la aplicación con la ayuda de la escala de la etiqueta del cartucho.

Calidad del soporte
Los soportes de hormigón y mortero deben tener una edad mínima de 28 días. Se debe verificar la resistencia del soporte (hormigón, mampostería, piedra natural).
Se deben hacer ensayos de arranque si se desconoce la resistencia del soporte.
La superficie del lasado debe estar limpia, seca, libre de grasas y aceites, etc.
Se deben eliminar las partículas de polvo. Los rodones de acero corrugado y las varillas roscadas tienen que limpiarse de aceites, grasas u otras sustancias o partículas como suciedad, etc.

Condiciones de Aplicación/Limitaciones

Temperatura del soporte
Min. +5°C/ Max. +30°C.

Temperatura ambiente
Min. +5°C/ Max. +30°C.

Temperatura del producto
Sika AnchorFix®-3+ debe estar a temperaturas entre +5°C y +30°C.

Punto de rocío
La temperatura del soporte durante la aplicación debe estar al menos +3°C por encima del punto de rocío para evitar condensación.

Instrucciones de Aplicación

Mezclado
Herramientas de aplicación

Coger el cartucho

- **250 ml**
- **400 ml**

1. Desenroscar y quitar la tapa blanca
2. Tirar de la boquilla
3. Entroscar la boquilla mezcladora
4. Colocar el cartucho en la pistola y empezar la aplicación.

Cuando se interrumpen los trabajos, la boquilla mezcladora se puede quedar puesta en el cartucho. Si la resina ha endurecido en la boquilla cuando se reanudan los trabajos, se debe utilizar una boquilla nueva.

Cuando se va a almacenar un cartucho vacío, quitar la boquilla, limpiar el cartucho con un trapo seco y volver a poner el tapón.
<table>
<thead>
<tr>
<th>Método de aplicación</th>
<th>Comentarios generales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Realizar el agujero de diámetro y profundidad requeridos con un taladro eléctrico. El diámetro del taladro debe estar de acuerdo al diámetro de la barra a anclar.</td>
</tr>
<tr>
<td></td>
<td>Cada vez que se limpie el taladro se debe soplar, a continuación con una bomba de soplar o aire comprimido, empezando desde el fondo del taladro (al menos 2 veces). Importante: Usar compresores libres de aceite.</td>
</tr>
<tr>
<td></td>
<td>Se debe limpiar el taladro con un cepillo redondo (al menos 2 veces). El diámetro del cepillo debe ser mayor que el diámetro del taladro.</td>
</tr>
<tr>
<td></td>
<td>Cada vez que se limpie el taladro se debe soplar, a continuación con una bomba de soplar o aire comprimido, empezando desde el fondo del taladro (al menos 2 veces). Importante: Usar compresores libres de aceite.</td>
</tr>
<tr>
<td></td>
<td>Se debe limpiar el taladro con un cepillo redondo (al menos 2 veces). El diámetro del cepillo debe ser mayor que el diámetro del taladro.</td>
</tr>
<tr>
<td></td>
<td>Cada vez que se limpie el taladro se debe soplar, a continuación con una bomba de soplar o aire comprimido, empezando desde el fondo del taladro (al menos 2 veces). Importante: Usar compresores libres de aceite.</td>
</tr>
<tr>
<td></td>
<td>Extrusionar aproximadamente dos veces hasta que aparezcan los dos componentes mezclados. No usar este material. Dejar de hacer presión y limpiar la entrada del cartucho con un trapo.</td>
</tr>
<tr>
<td></td>
<td>Inyectar el adhesivo en el taladro, empezando desde el fondo llegando la boquilla hacia atrás progresivamente. En cualquier caso se debe evitar la entrada de aire. Para anclajes de cierto profundidad se puede utilizar un tubo alargador.</td>
</tr>
<tr>
<td></td>
<td>Insertar el anclaje con un ligero movimiento de giro en el taladro relleno de resina. Debe salir algo de adhesivo por acceso importante. El anclaje debe ser coronado durante el tiempo abierto de la resina.</td>
</tr>
<tr>
<td></td>
<td>Durante el tiempo de endurecimiento de la resina no se debe mover o aplicar carga alguna. Se deben limpiar inmediatamente las herramientas con Sika® Coima Limpior. Después de la aplicación lavar manos y piel con agua y jabón.</td>
</tr>
</tbody>
</table>

Nota Importante: Arquitectura: En bloques huecos.
Usar Sika® Anchort®-1 para bloques huecos.

| Limpieza de herramientas | Limpiar las herramientas y el equipo de aplicación con Sika® Coima Limpior inmediatamente después de su uso. El producto una vez endurecido/curado solo se puede eliminar por métodos mecánicos. |

Nota: Todos los datos técnicos expuestos en esta Hoja de Datos de Producto están basados en ensayos de laboratorio. Las medidas reales de estos datos pueden variar debido a circunstancias más allá de nuestro control.

Instrucciones de Seguridad o Higiene: Para cualquier información relativa a cuestiones de seguridad en el uso, manejo, almacenamiento y eliminación de residuos de productos químicos, los usuarios deben consultar la versión más reciente de la Hoja de Seguridad del producto, que contiene datos físicos, ecológicos, toxicológicos y demás cuestiones relacionadas con la seguridad.
Notas Legales

Esta información, en particular, las recomendaciones relativas a la aplicación y uso final del producto, están dadas de buena fe, basadas en el conocimiento actual y la experiencia de Sika de los productos y servicios de Sika, en función de los materiales, propiedades y condiciones reales en el lugar de aplicación. Sika no se hace responsable de la información del presente documento, ni de cualquier otra recomendación escrita, ni de consejos, asesoramiento, guías generales, tratamientos comerciales, que se puedan derivar de este documento, ni de cualquier otro producto del que se hable. Sika se reserva el derecho de cambiar las propiedades de sus productos. Los derechos de propiedad de terceros partes deben ser respetados. Los usuarios deben conocer y utilizar la versión última y actualizada de las Hojas de Datos de Productos local, copia de las cuales se mandarán a quien las solicite, o también se puede conseguir en la página www.sika.es.
7.2.10 Arlita Leca dur, casa Weber

Arlita® Leca® dur
arcilla expandida de altas resistencias

- Excelente relación ligereza/dureza
- Bombeable
- Estable en el tiempo
- Respetuosa con el medio ambiente
- Tamaño: 2-10 mm

APLICACIONES
- Recrecidos ligeros de altas prestaciones.
- Hormigones ligeros estructurales (>25 MPa).
- Drenajes.
- Jardinería.
- Nivelaciones.
- Cubiertas vertes.

PRESENTACIÓN
Sacos de plástico de 50 l.
Palet de 3 m³ (60 sacos) con palet intermedio.

RENDIMIENTO
Aproximadamente, 50 l (un saco)
15 m² y cm de espesor.

COLORES
Grisáceo.

CONSERVACION
El material es impermeable, sólo se degrada el envase.

SOPORTES
- Forjados.
- Cubiertas.
- Láminas de polipropileno y geotextiles.
- Poliestireno.
- P.V.C.
- Terreno compactado.

COMPOSICIÓN
Arlita expandida.

RECOMENDACIONES DE USO
Prever juntas de dilatación en los encuentros con los petos.

PREPARACIÓN DEL SOPORTE
- Asegurar que la superficie del forjado sea consistente y esté totalmente limpia.
- Proteger vigas y correas de madera (si las hay) colocando una lámina de polietileno antes de vertir el hormigón.
- Prever juntas de dilatación.
- Humedecer el soporte.
MODO DE EMPLEO

Amasar arcilla expandida Arista® Leca® dur con un 10-20% de agua y un 15-30% de cemento, y verter o bombar sobre el soporte.

Extender el mortero con un espesor mínimo de 3 cm, regándolo sobre maestras recuperables.

Dejar fraguar un mínimo de 12 horas en condiciones normales, antes de ser revestido.

* Según la aplicación, se puede verter o bombar en seco

CARACTERÍSTICAS TÉCNICAS

<table>
<thead>
<tr>
<th>Características de empleo generales</th>
<th>Conservación producto impregnado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulometría</td>
<td>2 - 10 mm</td>
</tr>
<tr>
<td>Densidad</td>
<td>350 kg/m³</td>
</tr>
<tr>
<td>Conductividad térmica (EN12664)</td>
<td>0.1 W/(m K)</td>
</tr>
<tr>
<td>Resistencia a la fragmentación y mañanas</td>
<td>1 MPa</td>
</tr>
<tr>
<td>Temperatura máxima utilización</td>
<td>1150°C</td>
</tr>
<tr>
<td>Partículas machacadas</td>
<td>25% masa</td>
</tr>
<tr>
<td>Chloratos</td>
<td>< 0,1% Cl</td>
</tr>
<tr>
<td>Sulfatos solubles en ácido</td>
<td>< 0,4% SO₃</td>
</tr>
<tr>
<td>Azufre total</td>
<td>< 0,2% S</td>
</tr>
<tr>
<td>Absorción de agua</td>
<td>< 34% masa seca</td>
</tr>
</tbody>
</table>

Estos resultados se han obtenido en ensayos realizados en condiciones estándar, y pueden variar en función de las condiciones de puesta en obra.

UNE-EN 13055-1
Agregado ligero artificial obtenido por proceso de materias naturales. Para la utilización en hormigón, prefabricados, morteros e inyectados en edificios y en obras de ingeniería civil. La caracterización ecotóxica del producto revela que está clasificado como inerte (Anexo III del Dl 15/2002). No ha sido determinado el uso en ambientes sujetos a helio y destello.

Sistema de gestión certificado de acuerdo a la norma ISO 9001

© Weber / Ficha Técnica Arista® leca® dur 13/11/2013 – Página 2 de 2 (esta versión sustituye y anula todas anteriores)
7.3 **REHABILITACIÓN DE CUBIERTAS**

La empresa siempre utiliza el mismo sistema a la hora de rehabilitar una cubierta que ha padecido el deterioro de su impermeabilización y esto ha provocado humedades normalmente en el piso inmediatamente inferior a la cubierta, aunque también pueden producirse en otras partes del edificio.

Los procesos que se han de seguir para rehabilitar una cubierta genérica son los siguientes:

1. Repicar el pavimento de acabado mediante un martillo neumático de suelo con cuidado de no romper las capas inferiores. Se ha de ir con cuidado de solo quitar el acabado cerámico para no romper el soporte de la nueva impermeabilización (ver Imagen 41).

![Imagen 41](image1.png)

2. Se forma una regata perimetral a unos 10 cm de altura, en caso de que ésta no exista, respecto el nivel del suelo que es donde irá empotrada la lámina impermeabilizante.

3. Se forma un planché de mortero para regularizar la superficie, en caso de que ésta presente imperfecciones o en el caso de que haya quedado al descubierto parches de lámina asfáltica y no puedan ser sacados con facilidad. En la empresa se utiliza la lámina EPDM butilo como sistema de impermeabilización (ver Anexo 7.2.7). Esta lámina va pegada al suelo en sus extremos y necesita de una superficie bien regularizada y resistente para poderse pegar. El planché que se forma ya cumplirá con esta función con tan solo un grosor de 1 cm aunque al tratarse de una capa de mortero muy esbelta en algunos puntos cuando el mortero fragüe se empezará a agrietar. Es importante que la superficie quede bien regularizada para que la lámina EPDM butilo quede bien pegada (ver Imagen 42).
4. Se forma una media caña con mortero en todo el perímetro de la cubierta en caso de que no se disponga de una anterior. Es importante que esté bien echada y con un acabado bien liso pues es donde irá pegada la lámina EPDM. Se le da la forma de media caña porque hay que pasar el rodillo para presionar la cola, como se explicará posteriormente y además porque es importante que la lámina no tenga zonas muy anguladas para evitar que se rompa (ver Imagen 43).

5. Se mide la cubierta y se replantean los parches de butilo que se han de cortar. Hay que tener en cuenta que el ancho de la lámina es limitado, en nuestro caso el ancho del rollo en que viene el butilo es de 1 m, con lo cual habrá que prever unos solapes de lámina a lo
largo de la cubierta. Estos solapes deberán ser de un mínimo de 10 cm. Se cortan los parches del butilo mediante el uso de un cúter (ver Imagen 44).

6. Se limpia bien toda la superficie de cubierta, evitando que quede cualquier trozo de runa por pequeño que sea. La lámina EPDM butilo tiene un espesor de 1,2 mm, y es resistente frente a pinchazos, pero si quedase un trozo de obra debajo de ella y posteriormente se pasase el rodillo para asegurar la adherencia de la cola, podría rasgarla.

7. Se colocará primero unos parches de junta rápida de Firestone en los desagües, a modo de refuerzo de impermeabilización. Esta junta rápida se trata de una cinta autoadhesiva de EPDM/butilo, diseñada para las uniones de las membranas de EPDM. Se usará tanto en los bajantes como en las esquinas y en los solapes (ver Imagen 45).
8. Hay que ir con cuidado a la hora de solapar las láminas EPDM. Hay que tener en cuenta la dirección de la pendiente, para que la lámina que se encuentre en el punto más bajo de la pendiente, el extremo que se solape siempre quede por debajo del extremo que se solape de la lámina que quede en el punto más alto.

9. Se colocan las láminas, como se ha mencionado anteriormente empezando des del punto más bajo hasta el más alto. La lámina irá encima del bajante cubriéndolo por encima. Mientras un trabajador va colando las láminas en todo el perímetro mediante el adhesivo 007 de la casa Giscosa (ver Anexo 7.2.1) y las propias láminas entre ellas mediante el adhesivo de solape 008 de la misma casa el otro trabajador va pasando un rodillo de forma enérgica en las zonas en donde hay cola para asegurar bien la adherencia entre los dos elementos encolados. Cabe destacar que la cola se aplica mediante una brocha, primero se deja la lámina preparada en el suelo y se hace un pliegue en donde se pondrá la cola, posteriormente se cola la parte del suelo o la otra lámina que se tendrá que juntar con la primera y se espera un tiempo a que la cola se seque. El tiempo de secado de la cola dependerá de las condiciones atmosféricas del momento en que se aplica. Se considera como un buen parámetro el hecho de que al presionar el dedo contra la superficie colada éste no se lleve parte de la cola. Una vez secas las dos superficies se juntan y se pasa el rodillo.

10. Se coloca un refuerzo de junta rápida en las esquinas cuya arista queda orientada al interior de la cubierta, para así reforzar las partes más susceptibles a desgarrarse en frente a movimientos provocados por las dilataciones (ver Imagen 46).

11. Posteriormente se abre la obertura del bajante que ha sido tapada por la lámina colocada encima y se pega la lámina superior encima de la junta rápida. Éste es un paso importante a llevar a cabo antes de que se termine la jornada laboral, puesto a que unas lluvias
inesperadas podrían inundar la cubierta ya que el agua no podría desaguar (ver Imagen 47).

Imagen 47

12. Una vez tengamos impermeabilizada la cubierta se procede a la colocación de la lámina geotextil. Se trata de una lámina fibrosa que hará la función de capa separadora entre la lámina EPDM butilo y el acabado cerámico ya que éste al ser la capa más exterior de la cubierta estará sujeta a ciertas dilataciones las cuales podrían rasgar la lámina EPDM y producir humedades por filtración.

13. Una vez colocada la capa de geotextil se empieza con el acabado de la cubierta. Acabados hay de muchos tipos. Es importante saber con qué material se va a enlardar la pieza. Si se trata de un material cerámico poroso puede ser con un mortero normal, pero si se va a colocar un gres porcelánico definitivamente habrá que enlardar la pieza con cemento cola.

Se han de ir verificando las pendientes mientras se va colocando el acabado con la ayuda del nivel ya que en esta fase es muy sencillo corregir las pendientes de la cubierta que estuviesen mal o fuesen insuficientes. Sólo hay que dar más o menos grosor de material (ver Imagen 48).
14. Una vez colocada toda la rasilla en la cubierta de forma continua, se procede a cortar mediante el uso de la mola y un disco para corte cerámico las juntas de dilatación planteadas en proyecto. Antes de cortarlas se marca mediante la guíñola por donde se hará el corte. Una vez cortadas se limpia la superficie y se coloca unas tiras de cinta de carrocería en los extremos para no manchar el suelo y se aplica el sikaflex -11 FC+ de color granate (ver Imágenes 49 y 50).
Imagen 50
REDACCIÓN DE ITE

7.4 INFORME DE ITE

ITE (L’INFORME DE LA INSEPCIÓ TÈCNICA DELS EDIFICIS D’HABITATGES)

<table>
<thead>
<tr>
<th>1. DATES DE L’INFORME ITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data inspecció: 20/11/2015</td>
</tr>
<tr>
<td>Data emissió: 15/12/2015</td>
</tr>
<tr>
<td>Data caducitat: 15/04/2016</td>
</tr>
</tbody>
</table>

Artikel 8.5 del Decret 67/2015, de 5 de maig: "L’informe de la inspecció tècnica té una vigència de 4 mesos, a comptar des de la data de la seva emissió, i ha de ser presentat davant de l’Administració abans de la finalització d’aquest termini. Finalitzat aquest termini es produeix la seva caducitat."

2. IDENTIFICACIÓ DE L’EDIFICI

<table>
<thead>
<tr>
<th>Taus de Via</th>
<th>Carrer</th>
<th>Via</th>
<th>Núm.</th>
<th>Escair</th>
<th>Bloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>08041</td>
<td>Poblat</td>
<td>BARCELONA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Rel. Cadastral: | 1756913 | D3615 |

3. IDENTIFICACIÓ PROPRIETAT

<table>
<thead>
<tr>
<th>Núm. jurídic de la propietat:</th>
<th>Propietat horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titular:</td>
<td>NIF/CIF:</td>
</tr>
<tr>
<td>Adreça:</td>
<td>08041 Navas de Tolosa 287-289 2ºA</td>
</tr>
<tr>
<td>CP:</td>
<td>08041</td>
</tr>
<tr>
<td>Poblat:</td>
<td>Barcelona</td>
</tr>
<tr>
<td>Tel. Fis:</td>
<td>Tel. Mòbil:</td>
</tr>
<tr>
<td>Representant:</td>
<td>Adreça electrònica:</td>
</tr>
<tr>
<td>Adreça:</td>
<td>NIF/CIF:</td>
</tr>
<tr>
<td>Tel. Fis:</td>
<td>08029</td>
</tr>
<tr>
<td>Poblat:</td>
<td>Barcelona</td>
</tr>
<tr>
<td>Tel. Fis:</td>
<td>Tel. Mòbil:</td>
</tr>
</tbody>
</table>

4. IDENTIFICACIÓ DEL TÈCNIC REDACTOR

<table>
<thead>
<tr>
<th>Tècnica:</th>
<th>NIF/CIF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titulació:</td>
<td>Arquitecte/a</td>
</tr>
<tr>
<td>Col·legi Professional:</td>
<td>CMAC: N.: Col·legat/da.</td>
</tr>
<tr>
<td>Adreça:</td>
<td>08029 Navas de Tolosa 287-289 2ºA</td>
</tr>
<tr>
<td>CP:</td>
<td>08041</td>
</tr>
<tr>
<td>Poblat:</td>
<td>Barcelona</td>
</tr>
<tr>
<td>Tel. Fis:</td>
<td>Tel. Mòbil:</td>
</tr>
<tr>
<td>Adreça electrònica:</td>
<td>Adreça electrònica:</td>
</tr>
</tbody>
</table>

Alex Dorras Ortega, Arquitecte/a
5. DADES GENERALS DE L’EDIFICI (RELACIÓ DE NOMBRE D’ENTITATS)

<table>
<thead>
<tr>
<th>Planta</th>
<th>Existeixent</th>
<th>Inpecccionat</th>
<th>Habitatges</th>
<th>locals</th>
<th>Total d’entitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pau enta</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pau primera</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Pau segona</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Pau tercera</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Pau quarta</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Pau cinquena</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Pau atc</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Pau sòbro</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>9</td>
<td>30</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>

Any de construcció: 1999

Tipologia edificativa:
- Edificació exempta/ajardinada o aparplanada en parcel·la/bloc obert:
- Edificació entre mitgeres/adossada/edificació en illa tancada:

Tipologia edificativa: Núvols de comunicació vertical en edificis residencials

- Un sol núcli d’escal·les:
 - Sense ascensor
 - Amb 1 ascensor
 - Amb 2 o més ascensors

- Dos o més núvols de comunicació vertical:
 - Núm. total d’escal·les:
 - Núm. total de ascensors:
 - Núm. total d’habitacions amb accés a través de més de 1 núcli:
 - Núm. total d’habitacions sense accés a través d’ascensor:

Núm. mig d’habitacions per planta: 4
Proyecto final de Grado Arquitectura Técnica y Edificación
Practicum en la empresa Corema Arquitectura S.L.

6. DESCRIPCIÓ DE L’EDIFICI

Descripció general de l’edifici: Edifici plurifamiliar d’habitatges entre mitjanes amb accés pel Carrer Navas de Tolosa 367-369. L’edifici està compost per una Planta Baixa, cinc Plantes Pis, una Planta Atic i una Planta Sobrealtic.

L’edifici està dividit en:
- Planta Baixa accés a la finca, 2 locals i 3 habitatges.
- Plantes Pis 4 habitatges per planta.
- Planta Atic 3 habitatges per planta (Atic 3a amb terrassa).
- Planta Sobrealtic 2 habitatges per planta, amb terrasses privades.

L’edifici té la façana principal al Carrer Navas de Tolosa 367-369, i la façana posterior dóna a un PÀT interior d’illa i tant a la dreta com a l’esquerra amb edificis plurifamiliars d’habitatges situats al nº365 i al nº371 del carrer Navas de Tolosa.

Segons dades cadastrals l’edifici té:
2199 m² de superfície construida sobre un solar de 367 m² de superfície total.

Emplaçament i croquis de plantes i seccions
Descripción del sistema envolupant de l’edifici

Façanes:

Descripció: Façana principal.
Façana de maçó ceràmic de 30 cm de gruix, desconexen si a l’interior de la façana hi ha càmera d’aire, ja que no hem pogut comprovar-ho. El revestiment exterior és diferents tipus.
A nivell de planta baixa l’acabat és de un aplacat de pedra natural.
A partir de planta pis i fins a l’atac hi troben un mateix acabat arrebolat i pintat. A la planta atic i sobreatac la façana es retira per donar pas a les seves terrasses privades.

Alex Borras Ortega, Arquitecte/a
El soterr de forjat estan revestits amb el mateix arrebossat i pintat. La caiguda en aleida dels balcons es protegeix amb una barana metàl·lica de 90cm.

Fotografies:
Descripción: FAÇANA POSTERIOR
La façana posterior de la finca dona al pati interior d’illa. La façana és de maó masoli i té un greix de 30 cm. Desconéixer si disposa de càmera d’aire ja que no hem pogut accedir a mirar-ho. La façana té un mateix acabat, arrebossat i pintat. Trobem tres tipus d’obertura: en algunes hi ha fusta amb vidre senzill, altres amb aluminí i vidre senzill i les últimes amb aluminí i vidre doble. A la planta sobreescric la façana es recull per donar pas a la terrassa d’aquest mateix pis.

Fotografies:
Cobertes:

Descripció: COBERTA
La coberta principal de l'edifici és una coberta inclinada. L'acabat de la coberta és amb teula àrab, desconeixem la composició i disposició de les capes de la coberta ja que no hem pogut accedir a ella.
A la coberta hi veiem la claràcia de la caixa d'escala.

Fotografies:

Alex Borras Ortega, Arquitecte/a
Descripció: TERRASSA NIVELL PLANTA SOBREÀTIC
A nivell de planta sobreàtic, tenim dues terrasses que donen servei als pisos sobreàtics 1º i 2º, una a la Façana principal i una altra a la façana posterior.
La compartimentació i disposició de les capes de la terrassa la desconeixem ja que no hem pogut accedir a ella. L'acabat de les cobertes és de rajola ceràmica de 20x14cm. La coberta disposa d'un ampli dibuix de blocs d'alpaca, arrebossat i pintat amb un acabat de rajola ceràmica.
La coberta desguassa mitjançant un sistema de boneres.
Fotografies:
Descripción: TERRASSA NIVELL DE PLANTA ÀTIC.
En la façana principal, a nivell de planta òtic, tenim una terrassa ja que la façana es retira per donar pas a ella, la terrassa dona servei al habitatge de l’òtic 34. La composició i disposició de les capes de la terrassa la desconsemem ja que no hem pogut accedir a mitjar-ho. L’acabat de la terrassa és de rajola ceràmica de 20x14cm. La terrassa disposa d’un ampli d’obra de 1,5 metres. La coberta desguassa mitjançant un sistema de boneres.

Fotografies:
Façanes:

Descripció: FAÇANA PRINCIPAL A NIVELL DE PLANTA SOBREÀTIC.
En la façana principal, a nivell de planta sobreàtic, la façana es retira per donar pas a una terrassa que donarà servei a la porta 2ª. Aquesta façana té la mateixa composició que la façana principal, és de 30 cm de gruix i desconexen-se si té camera d’aire. L’acabat d’aquest tram de façana és arrebossat i pintat.

Fotografies:
Descripció: FAÇANA PRINCIPAL A NIVELL DE PLANTA ÀTIC
En la façana principal, a nivell de planta àtic, la façana es retira per donar pas a una terrassa que donarà servei a la porta 3º. Aquesta façana té la mateixa composició que la façana principal, és de 30 cm de gruix i desconeixem si té camera d'aire. L'arxotat d'aquest tram de façana es arrobaosat i pintat.

Fotografia:
Descripció: FACÀNA POSTERIOR A NIVELL DE PLANTA SOBREÀTIC.
En la façana posterior, a nivell de planta sobreàtic, la façana es retira per donar pas a una terrassa que donarà servei a la porta 1ª. Aquesta façana té la mateixa compençó que la façana posterior, és de 30 cm de groc i desconéixer si té camera d’aire.
L’acabat d’aquest tram de façana és arrebossat i pintat.

Fotografies:

Fotografia: Façana Posterior Sobreàtic

Fotografia: Façana Posterior Sobreàtic
Mitgeres:

Descripció: MITGERA 1
Es troba completament tapada per la finca col·lindant, situada al mateix carrer nº371, ja que té una altura més alta.

Descripció: MITGERA 2
Es troba completament tapada per la finca col·lindant, situada al mateix carrer al nº365, ja que té una altura més alta.

Patió:

Descripció: PATI LATERAL 1
La finca disposa de tres patis, dos patis laterals entre les mitgeres de les fines col·lindants, i un pati interior posterior. El Pati 1 està entre el nº 367-369 i el nº371 del carrer Navas de Tolosa. És un pati interior de ventilació, que dona servei a les pcrtes 2a i 3a. En el pati podem veure que hi passen les intal·lacions de l'edifici com la de sanejament. Les parets del pati són de 15 cm de gruix. El pati va des de la Planta Baixa fins a la coberta, i està descobert. L'arabat del pati és amrebossat i pintat.

Fotografies:
Descripció: PATI LATERAL 2
La finca disposa de tres patis, dos patis laterals entre les mitgeres de les finques col·lindants, i un pati interior posterior. El Pati 2 està entre el nº 367-369 i al nº365 del carrer Navas de Tolosa. És un pati interior de ventilació, que dona servei a les portes 1a i 4ta. En el pati podem veure que hi passen les intel·l·lacions de l'edifici com la de sanejament. Les parets del pati són de 15 cm de gruix.
El pati va des de la Planta Baixa fins a la coberta, i està descobert. L'acabat del pati és arrebossat i pintat. El paviment del pati és de formigó, i desaigua mitjançant boneres.
En el pati hi ha instal·lada la bateria de contadores d'agua.

Alex Borràs Ortega, Arquitecte/a
Descripción: PATI LATERAL 2
La finca dispone de tres patios, dos patios laterales entre los míticos de las fincas col-lindantes, y un patio interior posterior.
El Pati 2 está entre el nº 367-369 y el nº365 del carrer Navas de Tolosa. Es un patio interior de ventilación, que daña servi a les porques 1a i 4ta. En el patio se ven que hi passen les instalacions de l'edifici com la de sanejament. Les parets del pati són de 15 cm de gruix.
El pati va des de la Planta Baixa fins a la coberta, i està descobert. L'acabat del pati és arrebossat i pintat. El paviment del pati és de formigó, i desaigüa mitjançant boneres.
En el pati hi ha instal·lada la bateria de contadors d'aigua.

Fotografies:
Descripció: PATI POSTERIOR 3
La finca disposa de tres patis, dos patis laterals entre les mitgeres de les finques col·lindants, i un pati posterior.
El Pati posterior 3 està a la façana posterior de l'edifici. És tracta d'un pati en planta baixa que dona servei als baixos 1ª i 2ª.
El pati va des de la Planta Baixa fins a la coberta, i està descobert. L'acabat del pati és arrebossat i pintat. El paviment del pati és de formigó, en els baixos 2ª i de rajola ceràmica de 28x14cm en els baixos 1ª, i desagüa mitjançant boneres.
El pati està dividit per una paret d'obra.
Fotografies:
CODI INFORME: AAAB3325
NAVAS DE TOLOSA, núm. 367, 08041, BARCELONA

Fotografía Pat 2

Fotografía Pat 2

Alex Borrás Ortega, Arquitecta/a
Página 21 de 44
Orientació de la façana principal de l'edifici

Nord Est
7. Descripción Normalizada del Sistemas Constructiu de l'Edifici a Effets Estadístics

FONAMENTACIÓ

<table>
<thead>
<tr>
<th>Sistemes de contenció</th>
<th>□ Mur de pedra</th>
<th>□ Mur de fàbrica bloc</th>
<th>□ Mur pantalla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ Es desconeg/ Altre</td>
</tr>
<tr>
<td>Fonamentació superficial</td>
<td>□ Sabates, rases i peus de paredat</td>
<td>□ Llosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Sabata o Rases formigó</td>
<td>□ Es desconeg/ Altre</td>
<td></td>
</tr>
<tr>
<td>Fonamentació profunda</td>
<td>□ Pilons</td>
<td>□ Pantales</td>
<td>□ Es desconeg/ Altre</td>
</tr>
</tbody>
</table>

Observacions:

ESTRUCTURA

<table>
<thead>
<tr>
<th>Estructura vertical</th>
<th>Parets de Carrega</th>
<th>Pilars</th>
<th>Altres</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Compresa de fusta</td>
<td>□ De fusta</td>
<td>□ Màs</td>
<td>□ Es desconeg/ Altre</td>
</tr>
<tr>
<td>□ De formigó armat</td>
<td>□ De fàbrica de maix</td>
<td>□ Ferro colat</td>
<td></td>
</tr>
<tr>
<td>□ De tova</td>
<td>□ De bloc ceràmic</td>
<td>□ Acor</td>
<td></td>
</tr>
<tr>
<td>□ De tija</td>
<td>□ De bloc formigó</td>
<td>□ Formigó armat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Amb entramat de fusta</td>
<td>□ Altres</td>
<td></td>
</tr>
<tr>
<td>Estructura horizontal</td>
<td>Forjat (Elements secundaris, biguetes)</td>
<td>Forjat (Entrebigat)</td>
<td>Altres</td>
</tr>
<tr>
<td>Planta Tipus</td>
<td>□ Compresa de fusta</td>
<td>□ Forjat</td>
<td>□ Forjat metacalar</td>
</tr>
<tr>
<td></td>
<td>□ Metàl·l·ques</td>
<td>□ Rovelló</td>
<td>□ Llosa formigó</td>
</tr>
<tr>
<td></td>
<td>□ De formigó armat</td>
<td>□ Revolto ceràmic</td>
<td>□ Es desconeg/Altre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ Revolto de formigó</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ Altres</td>
<td></td>
</tr>
<tr>
<td>Estructura horizontal Terres, Planta en contacte amb Terreny</td>
<td>Forjat</td>
<td>Forjat Sanitar</td>
<td>Altres</td>
</tr>
<tr>
<td></td>
<td>□ Identic al de P. Tipus</td>
<td>□ Identic al de P. Tipus</td>
<td>□ Toilet</td>
</tr>
<tr>
<td></td>
<td>□ Diferent al de P. Tipus</td>
<td>□ Diferent al de P. Tipus</td>
<td>□ Bidets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ Bidets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ Es desconeg/Altre</td>
</tr>
<tr>
<td>Estructura de coberta</td>
<td>Forjat horitzontal</td>
<td>Encavallades, pèrtixs</td>
<td>Altres</td>
</tr>
<tr>
<td></td>
<td>□ Capa formació pendent</td>
<td>□ Bigues formigó armat + taulell</td>
<td>□ Taulell ceràmic</td>
</tr>
<tr>
<td></td>
<td>□ Environs + taulell</td>
<td>□ Bigues metal·l·ica + taulell</td>
<td>□ Taulell fusta</td>
</tr>
<tr>
<td></td>
<td>□ Forjat inclinat</td>
<td>□ Bigues fusta + taulell</td>
<td>□ Xapa/Sandwich</td>
</tr>
<tr>
<td></td>
<td>□ Formigó armat</td>
<td></td>
<td>□ Es desconeg/Altre</td>
</tr>
<tr>
<td></td>
<td>□ Altre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Es desconeg/Altre</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Escala

<table>
<thead>
<tr>
<th>Estructura</th>
<th>Fusta</th>
<th>Metàl·l·ques</th>
<th>Volta ceràmica</th>
<th>Llosa armada</th>
<th>Altre</th>
<th>Es desconeg/Altre</th>
</tr>
</thead>
</table>

Observacions:
TANCAMENTS VERTICALS I COBERTES

Façana principal

<table>
<thead>
<tr>
<th>Acabat Vist en Façana Principal</th>
<th>Acabat Revestit en Façana Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porxetat</td>
<td>Arrebossat i pintat</td>
</tr>
<tr>
<td>Carreu</td>
<td>Estucat</td>
</tr>
<tr>
<td>Fàbrica Massive</td>
<td>Morter monocapa</td>
</tr>
<tr>
<td>Fàbrica bloc ceràmic</td>
<td>Aplacat ceràmic</td>
</tr>
<tr>
<td>Altres</td>
<td>Xapa metàl·lica</td>
</tr>
</tbody>
</table>

Disposa de Cambra d’aire:
- Sí
- No
- Es desconegut

Disposa d’Aillament Tèrmic:
- Sí
- No
- Es desconegut

Altres façanes, façanes a patis, i mitjans

<table>
<thead>
<tr>
<th>Acabat Vist en Altres Façanes</th>
<th>Acabat Revestit en Altres Façanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porxetat</td>
<td>Arrebossat i pintat</td>
</tr>
<tr>
<td>Carreu</td>
<td>Estucat</td>
</tr>
<tr>
<td>Fàbrica Massive</td>
<td>Morter monocapa</td>
</tr>
<tr>
<td>Fàbrica bloc ceràmic</td>
<td>Aplacat ceràmic</td>
</tr>
<tr>
<td>Altres</td>
<td>Xapa metàl·lica</td>
</tr>
</tbody>
</table>

Disposa de Cambra d’aire:
- Sí
- No
- Es desconegut

Disposa d’Aillament Tèrmic:
- Sí
- No
- Es desconegut

Fusteria i vidre en buits d’obra

<table>
<thead>
<tr>
<th>Tipo de fusteria</th>
<th>Tipo de vidre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasta</td>
<td>Amb capa baixa emissiú</td>
</tr>
<tr>
<td>Acar</td>
<td>Amb capa de control solar</td>
</tr>
<tr>
<td>Aluminí</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>Altres</td>
<td></td>
</tr>
</tbody>
</table>

Tipus de vidre
- Simple
- Doble vidre
- Triple vidre

Tipus de fusteria
- Pasta
- Acar
- Aluminí
- PVC
- Altres

Terrat / Coberta plana

<table>
<thead>
<tr>
<th>Coberta plana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitable</td>
</tr>
<tr>
<td>No transitable</td>
</tr>
</tbody>
</table>

Disposa d’allament tèrmic:
- Sí
- No
- Es desconegut

Disposa de lámima impermeabilitzant:
- Sí
- No
- Es desconegut

INSTAL·LACIONS DE L’EDIFICI

sanejament

<table>
<thead>
<tr>
<th>Sistema d’evacuació d’aigües residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>No disposa de Sistema d’evacuació d’aigües residuales</td>
</tr>
<tr>
<td>Disposa de Sist. Evacuació a carreia de clavegueram públic</td>
</tr>
<tr>
<td>Disposa de Sist. Evacuació propi (fossa aïspta, etc.)</td>
</tr>
</tbody>
</table>

Baixants
- Baixants vistos
- Baixants encaixats

Collectors
- Collectors vistos
- Collectors soterrats

Materials baixants
- Ceràmic
- PVC
- Fibrociment
- Es desconeguts/Altres

Materials col·lectors
- Pormigó
- PVC
- Fibrociment
- Es desconeguts/Altres

Comptadors

- Comptadors únic per a tot l’edifici
- Comptadors individuais per habitatge/local
- Comptadors individuais centralitzats

Material muntants

<table>
<thead>
<tr>
<th>Material muntants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plom</td>
</tr>
<tr>
<td>Ferro</td>
</tr>
<tr>
<td>Coure</td>
</tr>
<tr>
<td>Plàstic</td>
</tr>
<tr>
<td>Altres</td>
</tr>
<tr>
<td>Instal·lació elèctrica</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>L’edifici disposa (instal·lació elèctrica elements comuns)</td>
</tr>
<tr>
<td>☑ Caixa General de Protecció (CGP)</td>
</tr>
<tr>
<td>☑ Quadra Comandament i Protecció (QCP)</td>
</tr>
<tr>
<td>☑ Interruptor Control Potència (ICP)</td>
</tr>
<tr>
<td>☑ Interruptor Diferencial (ID)</td>
</tr>
<tr>
<td>☑ Interruptor Automàtic a l’inici dels circuits de serveis comuns (IAC)</td>
</tr>
<tr>
<td>☑ Altres</td>
</tr>
<tr>
<td>☑Fuseble a l’inici de les derivacions individuals a habitatges o locals</td>
</tr>
</tbody>
</table>

<p>| Calefacció | |
|------------|| |
| Es disposa de sistema de Calefacció | |
| ☑ Es disposa de sistema de Calefacció Col·lectiva/Central | |
| ☑ Caldera comunitària | |
| ☑ Bomba de calor | En cas contrari, indicar: |
| ☑ Altres | % d’habitatges/locals disposen de sistemes individuals de Calefacció: 60.0% |
| Combustible Calefacció Colectiva/Central | % habitatges amb Caldera (Gas canalitzat): 20.0% |
| ☑ GLP | Indicant: ☑ Propa | Gas Natural |
| ☑ Gasoil | % habitatges amb Caldera Gasoil: |
| ☑ Gas Natural | % habitatges amb Calefacció elèctrica: 40.0% |
| ☑ Altres | Indicant: ☑ Bomba de Calor |
| Aigua Calenta Sanitària (ACS) | % amb Altres: |
| L’edifici disposa de sistema d’ACS | |
| L’edifici disposa de sistema d’ACS Central | |
| Combustible per a producció ACS | |
| ☑ GLP | En cas contrari, indicar: |
| ☑ Gasoil | % d’habitatges/locals disposen de sistemes individuals de producció d’ACS: 100.0% |
| ☑ Gas Natural | % habitatges amb Escalfadors (Gas canalitzat): 47.0% |
| ☑ Altres | Indicant: ☑ Propa | Gas Natural |
| ☑ L’edifici disposa de captadors solars per a la producció d’ACS | 0% habitatges amb Escalfadors (Gas embotellat): 10.0% |
| | Indicant: ☑ Propa | Buta |
| | % habitatges amb Escalfadors elèctrics: 30.0% |
| | % amb Altres: 0.0% | |</p>
<table>
<thead>
<tr>
<th>Gas canalitzat per a instal·lacions domèstiques</th>
<th>Combustible</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’edifici disposa d’acumulador a servei de distribució canalitzada de gas per a ús domèstic</td>
<td>Propò</td>
</tr>
<tr>
<td>% d’habitacions/locs que disposen d’acumulador a servei de distribució canalitzada de gas per a ús domèstic: 58,0%</td>
<td>Comptadors</td>
</tr>
<tr>
<td>□ Comptadors individuars per habitatge/local</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refrigeració</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L’edifici disposa de sistema de Refiguració</td>
<td></td>
</tr>
<tr>
<td>□ L’edifici disposa de sistema col·lectiu de Refiguració</td>
<td></td>
</tr>
<tr>
<td>□ Amb torre de refredament</td>
<td></td>
</tr>
<tr>
<td>□ Sense torre de refredament</td>
<td></td>
</tr>
<tr>
<td>En cas contrari, indicar:</td>
<td></td>
</tr>
<tr>
<td>% d’habitatges/locs disposen de sistemes d’refriguració (aire condicionat): 58,0%</td>
<td></td>
</tr>
<tr>
<td>Núm. aparells d’aire condicionat visibles en façanes: 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventilació i renovació d’aire</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L’edifici disposa de sistema de ventilació per a les cambres humides (bany i cuines) dels habitacions</td>
<td></td>
</tr>
<tr>
<td>Tipus de sistemes:</td>
<td></td>
</tr>
<tr>
<td>□ Finestres</td>
<td></td>
</tr>
<tr>
<td>□ Pati d’instal·lacions</td>
<td></td>
</tr>
<tr>
<td>□ Shunts</td>
<td></td>
</tr>
<tr>
<td>□ Altras</td>
<td></td>
</tr>
<tr>
<td>□ Existències locals o habitatges on les cambres humides no tinguen cap dels sistemes anteriors de ventilació</td>
<td></td>
</tr>
<tr>
<td>Els apartaments disposen de sistemes de ventilació:</td>
<td></td>
</tr>
<tr>
<td>□ Mecànica</td>
<td></td>
</tr>
<tr>
<td>□ Natural</td>
<td></td>
</tr>
<tr>
<td>□ Híbrida</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protecció Contra Incendis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L’edifici disposa de sistema de protecció contra incendis</td>
<td></td>
</tr>
<tr>
<td>L’edifici disposa de:</td>
<td></td>
</tr>
<tr>
<td>□ Un sistema de detecció d’incendis</td>
<td></td>
</tr>
<tr>
<td>□ Un sistema d’alarma</td>
<td></td>
</tr>
<tr>
<td>□ Extintors Mòbils</td>
<td></td>
</tr>
<tr>
<td>□ Hidrants exteriors</td>
<td></td>
</tr>
<tr>
<td>□ Columna sec</td>
<td></td>
</tr>
<tr>
<td>□ Boca d’incendis equipada</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protecció Contra el Llum</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L’edifici disposa de sistema de protecció contra el llum</td>
<td></td>
</tr>
<tr>
<td>L’edifici disposa de:</td>
<td></td>
</tr>
<tr>
<td>□ Parallamps de punteu</td>
<td></td>
</tr>
<tr>
<td>□ Parallamps Faraday</td>
<td></td>
</tr>
<tr>
<td>□ Parallamps amb sistemes actius (oïntzants)</td>
<td></td>
</tr>
<tr>
<td>□ Altres tipus de parallamps</td>
<td></td>
</tr>
<tr>
<td>□ Un dispositiu de protecció contra sobretensions transitòries</td>
<td></td>
</tr>
<tr>
<td>□ Xarxa de terra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instal·lacions de Comunicacions ICT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L’edifici disposa de instal·lacions de comunicacions ICT</td>
<td></td>
</tr>
<tr>
<td>L’edifici disposa de:</td>
<td></td>
</tr>
<tr>
<td>□ Antena per a recepció de TDT</td>
<td></td>
</tr>
<tr>
<td>□ Antena per a recepció de TV Satèltit</td>
<td></td>
</tr>
<tr>
<td>□ Accés de parells de correu</td>
<td></td>
</tr>
<tr>
<td>□ Accés de telecomunicacions per cable</td>
<td></td>
</tr>
<tr>
<td>□ Accés de fibra óptica</td>
<td></td>
</tr>
<tr>
<td>□ Accés sense fils</td>
<td></td>
</tr>
<tr>
<td>□ Altres instal·lacions d’ICT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instal·lació d’ascensor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L’edifici disposa d’ascensor comunitari:</td>
<td></td>
</tr>
<tr>
<td>□ Sí</td>
<td></td>
</tr>
<tr>
<td>□ No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions de la cabina</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat: 110.0</td>
<td></td>
</tr>
<tr>
<td>Amplada: 85.0</td>
<td></td>
</tr>
<tr>
<td>Ubicació: Caua d’escala</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observacions:</th>
<th></th>
</tr>
</thead>
</table>

Alex Borjas Ortega, Arquitecta/a
FOTOGRAFÍA DE LA BATERÍA DE COMPTADORS D’AIGUA

FOTOGRAFÍA DEL QUADRE GENERAL DE COMANDAMENT I PROTECCIÓ DE LA INSTAL·LACIÓ ELÈCTRICA COMUNITÀRIA (Recull de mecanismes de seguretat existents)
8. RELACIÓ I QUALIFICACIÓ DE LES DEFICIÈNCIES DETECTADES

<table>
<thead>
<tr>
<th>FONAMENTACIÓ</th>
<th>DEFICIÈNCIES</th>
<th>MG</th>
<th>G</th>
<th>T</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFICIÈNCIES</td>
<td>Altres deficiències en fonaments</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tipus: Altres deficiències en fonaments

DESCRIPCIÓ DE LA DEFICIÈNCIA I LOCALITZACIÓ:

HUMIDITATS PER CAPSULARITAT DEL TERRENY

En el pisot dels baños i el locale de Planta Baixa, podem observar que en alguns llocs interior, hi ha humitat. Són humitats per capsularitat del terreny.

![Humiditat capsularitat del terreny](image-url)
Deficiencia:
- Molt Grue
- Grue
- Importat
- Lleu

Observacions:

<table>
<thead>
<tr>
<th>TANCAMENTS VERTICALS: FAÇANES, MITGERES I FORATS</th>
<th>DEFICIÈNCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MG</td>
</tr>
<tr>
<td>Humitat per filtracions en els murs de tancament, fusteries i troballes</td>
<td></td>
</tr>
<tr>
<td>Humitat per condensació o altres causes en els murs de tancament, fusteries i troballes</td>
<td></td>
</tr>
<tr>
<td>Risc de desprendiment d'elements adossats a les façanes</td>
<td></td>
</tr>
<tr>
<td>Altres deficiències en els murs de tancament</td>
<td></td>
</tr>
</tbody>
</table>

Tipus: Risc de desprendiment d’element adossats a les façanes

Descripció de la deficiència i localització:

- Façana principal:
 Desprendiment del revestiment dels murs d’obra dels balcons de la façana principal. Aquest desprendiment es provoca per l’emprèstit de les baranes metàl·liques a la obra. La unitat d’aquestes baranes amb els murs d’obra s’ha anat desprendent del revestiment. Aquest fet ha d’emprar-se per intervenir en els balcons de tota la façana principal per reparar els balcons afectats.

Nom: Borrás Ortega, Arquitect/a

Pàgina 29 de 44
Desprendimiento en estructura basada

Deficiencias: ☐ Molt Greu ☐ Greu ☐ Important ☐ Lligue

Les mesures cautelars han estat executades? ☐ Sí ☐ No

Nom del tècnic responsable de les mesures cautelars executades: Àlex Borrás Ortega
Titolació: Arquitecte/a

Àlex Borrás Ortega, Arquitecte/a
Observaciones:

(Art 9.2, en los casos de deficiencias graves o muy graves s'aurà d'indicar el termini orientatiu per esmenar les deficiències)

S'ha d'actuar puntualment en les zones més afectades. I tindrem un plaç de 2 anys per realitzar les obres.

Tipus: Humitat per condensació o altres causes en els murs de tancament, fusteries i troballes

DESCRIPCIÓ DE LA DEFICIÈNCIA I LOCALITZACIÓ:

HUMITATS BALCONS FÀCADA PRINCIPAL
Humitat dels balcons de la façana principal provocades per la falta de goteri en la part inferior del balcón i en l'emptit de la coberta de l'edific.

Humedad en el balcón debido a la falta de goberna.
Humedad balcones por falta goteo

Humedad balcones por falta goteo

Deficiencias: ☐ Molt Greu ☐ Greu ☐ Important ☐ Llei

Les mesures cautelars han estat executades?: ☐ Sí ☐ No

Nom del Tècnic responsable de les mesures cautelars executades: Àlex Borras Ortega
Titolació: Arquitecte/a
Observaciones: (Art 9.2, en los casos de deficiencias graves o muy graves sí se ha de indicar el termino orientativo para esanar las deficiencias)

Las deficiencias han de ser corregidas en un periodo aproximado de 2 años.

Tipos: Otras deficiencias en los muros de tamboramiento

DESCRIPTIÓN DE LA DEFICIENCIA Y LOCALIZACIÓN:

REVESTIMIENTO FÁCADA POSTERIOR

El revestimiento de la fachada posterior se troba en un estat desfavorable, degut a la falta de mantenimiento. La pintura es quasi inexistente i la capa de morter comença a caure. Els encaixaments de ferro dels estradores que hi ha collocats a la façana posterior presenten corrosió i en alguns casos han trençat el revestiment ja que han augmentat de volum. S'ha de fer una intervenció de tota la façana, acostant sobre el revestiment, emportaments dels estradores, finestres, trencadises, etc. Aquesta falta de revestiment està provocant humitats en alguns pisos que donen a la façana principal, ja que influeix molt l'entrada als habitatges.
Proyecto final de Grado Arquitectura Técnica y Edificación
Practicum en la empresa Corema Arquitectura S.L.

CODI INFORME: AAAB3325
NAVAS DE TOLOSA, núm. 367, - 08041, BARCELONA (BARCELONA)

Tipo: Humedades por filtraciones en los muros de tencamento, fustarías y troquelías

DESCRIPCIÓN DE LA DEFICIENCIA Y LOCALIZACIÓN:
ENFLORECENÇÈNCIES PARETS INTERIORS DEL 1º®
En les parets interiors del pis 1ª®, observem que en les parets de façana que donen al pati 1 i a la façana posterior, en algunes zones hi ha enflorencències. Aquest fet es degui a la falta de revestiment que hi ha la façana posterior, per tant a la vegada que actuen sobre la façana també haurien d'actuar en aquestes zones interiors. A la part que dona el pati, l'enflorencència està seca, ja que el pati ha estat reformat amb anterioritat i ha deixat d'entrar aigua per aquest punt.

Observaciones:
ELEMENTS ADROSSATS A FACÀNA

<table>
<thead>
<tr>
<th>DEFICIÈNCIES</th>
<th>MG</th>
<th>G</th>
<th>I</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mal estat</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descripció de la deficiència i localització:

EMPOTRAMENTS ESTENEDORS PATI 1

Els empotraments dels estenedors de cordes del pati 1, es troben en mal estat. El suport està fissurat degut a la corrosió que té l'encaixament de fíns a dis la fàbrica de maix. Per solucionar-ho hauríem de treure l'element metàlic-ho, sanejar la zona i col·locar un nou estenedor.

Observacions:

Deficiència: ❑ Molt greu ❑ Greu ❑ Important ❑ Lindu

TERRATS I COBERTES PLANES

<table>
<thead>
<tr>
<th>DEFICIÈNCIES</th>
<th>MG</th>
<th>G</th>
<th>I</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altres deficiències en terrats (indica absència d'aïllament tèrmic)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descripció de la deficiència i localització:

REVESTIMENT AMIT TERRASSA ATC

El revestiment de la terrassa de l'ats 34 està bufat, al fer la inspecció veiem que el revestiment està totalment separat de la fàbrica de tancament de la terrassa. Aquest fet està provocat per la falta de dotació del amfit, per tant l'agua de la pluja regaixa per sobre del parament i ha degradat el morter de revestiment.
Arquitectura del 1F

| Deficiencia | Molt Genu | Genu | Important | Lluv | Ocupa

Observaciones:
9. AVALUACIÓ DE LES CONDICIONS BÀSQUES D'ACCESSIBILITAT

Avaluació de les condicions bàsiques d'accessibilitat universal i no discriminació de les persones amb discapacitat per a l'accés i utilització de l'edifici d'acord amb la normativa vigent, estallittle si l'edifici és susceptible o no de realitzar millors i ajustes raonables per a satisfacer-la.

1. Tècnic/a competent a sota signant valora que:

☐ L'EDIFICI SATISFA COMPLETAMENT LES CONDICIONS BÀSQUES D'ACCESSIBILITAT
☐ L'EDIFICI NO SATISFA COMPLETAMENT LES CONDICIONS BÀSQUES D'ACCESSIBILITAT

1. DEFICIÈNCIES SEGONS CONDICIONS FUNCIONALS DE L'EDIFICI

☐ ACCESSIBILITAT EXTERIOR
☒ ACCESSIBILITAT ENTRE PLANTES DE L'EDIFICI
☐ ACCESSIBILITAT EN PLANTES DE L'EDIFICI
☐ ACCESSIBILITAT EN PLACES D'APARCAMENT
☒ ACCESSIBILITAT EN ALTRES ESPACES D'US COMUNITARI

2. BREU DESCRIPCIÓ DE LA PROBLEMÀTICA D'ACCESSIBILITAT EXISTENT

Podem diferenciar tres problemàtiques d'accessibilitat diferents:
1. No ho es disposa d'un andador pràcticable/accessible des de l'exterior per a persones amb mobilitat reduïda.
2. Davant de la porta d'accés no es pot mesurar una circumferència de diàmetre 1,50 metres i l'accés a l'ascensor no té les mesures mínimes establertes per la normativa.
3. Els estels de cada planta no disposen de les mesures mínimes establertes a la normativa.

3. AJUSTOS RAONABLES PER ASSLIR L'ACCESSIBILITAT

La substitució dels estels que es troben en el tramo que va des de l'accés a l'edifici fins a l'ascensor per rampes que puguin ser utilitzades per persones amb mobilitat reduïda.
10. RECOMANACIONS TÈCNICHES PER A LA MILLORA DE LA SOSTENIBILITAT I L’ECOFICIÈNCIA DE L’EDIFICI

- Existència del Certificat d’Eficciència Energètica de l’edifici

<table>
<thead>
<tr>
<th>recomanacions tècniques, desglossades per millores, per a la millora de la sostenibilitat i l’ecoficiència de l’edifici</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesura 1. Descripció: SUBSTITUCIÓ I INSTAL·LACIÓ DE CALDERES I BOMBES DE CALOR Es recomana substituir les calderes de gas i electricitat per calderes d’alta eficiència energètica. Es recomana substituir les bombes de calor existents per bombes de calor d’alta eficiència energètica. Finalment, als habitatges que no disposin de calefacció, es recomana instal·lar una caldera o una bomba de calor segons el tipus de surfactantament que disposin al pia (gas o electricitat), també arren d’alta eficiència energètica.</td>
</tr>
<tr>
<td>Mesura 2. Descripció: SUBSTITUCIÓ DE FUSTERIES Es recomana substituir les fusteries de fusta/alumini amb vidre doble per fusteries d’alumini amb vidre doble que s’adapten a la normativa actual.</td>
</tr>
</tbody>
</table>

Alex Borràs Ortega, Arquitecte/a
11. RESUM ESTAT DE CONSERVACIÓ

La inspecció a realitzar és de calibre visual, i respecte a aquests elements de l’edifici als que s’ha tingut acord. No forma part de la inspecció detectar possibles vicis ocaisos, si preveure causes sobrevencides. Els elements objecte d’inspecció són els que consten en aquest model d’Informe. Quan les dades obtingudes en la inspecció visual no siguen prou per a valorar les deficiències detectades, el Tècnic/a encarregat de la inspecció haurà de proposar a la propietat de l’immòbil, efectuar una diagnòstic de l’element o elements constructius afectats, assim com les prose que consideren necessàries.

11.1. LOCALITZACIÓ I QUALIFICACIÓ DE CADASCUNA DE LES DEFIICIENCIES (Transcripció automàtica de les deficiències relacionades en l’apartat 8)

<table>
<thead>
<tr>
<th>LOCALITZACIÓ</th>
<th>MG</th>
<th>G</th>
<th>I</th>
<th>LL</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonamentació</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estructura vertical</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estructura horizontal</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estructura de coberta</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estructura d’escales</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tancaments verticals: Façanes, mitjanes i horats</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acabats de façana</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pintura exterior i ensenyament</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elements adossats a façana</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altres elements de façana</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrats i cobertes planes</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobertes inclinades</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instal·lació d’aigua</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instal·lació d’electricitat</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instal·lació de sanejament</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instal·lació de gas</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instal·lació d’ascensor</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altres instal·lacions</td>
<td>□ Mesures cautelars executades</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.2. PERIODICITAT DE L’INFORME DE VERIFICACIÓ DE L’ESTAT DE LES DEFIICIENCIES

La vigència del Certificat d’Aptitud queda condicionada a que s’efecteu una visita tècnica que indiqui la visita d’un tècnic competent a l’edifici, tal com prescriu l’article 14 del Decret 67 de 5 de maig, per a l’ elaboració d’un Informe de verificació on faci constar l’estat de manteniment de les deficiències detectades amb les següents dates:

- 12 mesos

Dates programades per a l’ elaboració d’un informe de verificació de les deficiències Greus o Mort Greus amb les mesures cautelars executades:

- 14/12/2015
- 14/12/2016
- 14/12/2017

11.3. RECOMANACIONS NECESSÀRIES PER A UN CORRECTE MANTENIMENT I CONSERVACIÓ

En un plaç de 2 anys s’han de reparar les dues fajans de l’edifici.

El certificat d’aptitud de la faja tindrà una vigència de 10 anys, passat aquest temps farà falta renovar-lo, seguint el mateix procediment.

Alex Borras Ortega, Arquitecte/a
11.4. Valoración Final de l'Estat de Conservació de l'Edifici

A efectos del Real Decreto 233/2013, de 5 de abril, el que es regula el Pla Estatal de foment de lloguer d'habitatges, la rehabilitació edificatòria i la regeneració i renovació urbaines 2013-2016

<table>
<thead>
<tr>
<th></th>
<th>Favorable</th>
<th>Desfavorable</th>
</tr>
</thead>
</table>

Nota: Aquesta valoració de l'estat de conservació de l'edifici es subscrita pel Tècnic/a competent en base a les deficiencies detectades i relacionades a l'apartat 1 de la part I d'aquest informe, durant una inspecció de caràcter visual, i respecte d'aquests elements de l'edifici als que ha tingut accés. S'assigna de forma automàtica com a Favorable si no es detecten deficiencies a aquestes són lleuger. D'assigna de forma automàtica com a Desfavorable la resta de casos.

Observacions:
Declaro responsablement com a tècnic competent:

☐ Que les dades aportades en aquest informe són certes i vigents.

☐ Que compleixo amb l'article 7.4 del Decret 67/2015, de 5 de maig, per al foment del dure de conservació, manteniment i rehabilitació dels edificis d'habitatges, mitjançant les inspeccions tècniques i el libre de l'edifici, en quan a que sóc un tècnic competent que no incorro en cap incompatibilitat, prohibició o inhabilitació per a l'exercici professional i inc en vigor l'assegurança de responsabilitat civil corresponent.

☐ Que dono per tancat i signat, a través del portal generador, el present informe.

ACREDITACIÓ TANCAMENT INFORME AL PORTAL GENERADOR INFORME ITE

Mitjançant aquesta signatura electrònica, l'Agència de l'Habitatge de Catalunya garanteix que el tècnic redactor d'aquest informe s'ha identificat amb un certificat digital, dins del portal generador d'informes ITEs (http://ite.agenciahabitatge.cat/ite), com a Alex Borras Ortega i amb NIF , i ha donat per tancat i signat aquest informe en data 13/12/2015 i hora 11:24.

Únicament amb aquesta signatura electrònica de l'informe ITE s'acредita la finalització del seu tancament.

Justificació de lliurament de l'informe:

A efectes del que disposa l'article 10 del Decret 67/2015, de 5 de maig, referent a les obligacions de la Propietat posteriors a la recepció de l'Informe de la inspecció tècnica d'edificis d'habitatges, la data de recepció d'aquest informe és:

Nom del tècnic redactor: Alex Borras Ortega, Arquitecte/a
Nom Propietari o Representant:
NIF:
Signature:
7.4.2 TABLA RESUMEN ITE

<table>
<thead>
<tr>
<th>No</th>
<th>FOTOGRAFÍA</th>
<th>LOCALITZACIÓ I DESCRIPCIÓ</th>
<th>IMPORTÀNCIA</th>
<th>ACTUACIÓ (BREU)</th>
</tr>
</thead>
</table>
| 1. | ![Fotografia](image1) | HUMITATS PER CAPILARITAT
En els pisos dels baixos i els locals de Planta Baixa, podem observar que en algunes divisióies interiors, hi ha humitats. Són humitats per capilaritat del terreny. | X Lieu
Important
Greu
Molt greu
| Risc | • Rascar la zona per sanejar les humitats
• Pintar la zona de les humitats amb pintures antioxilags per evitar l'expansió d'aquests. |
| 2. | ![Fotografia](image2) | FAÇANA PRINCIPAL
Desprendiment del revestiment dels murs d'obra dels balcons de la façana principal. Aquest desprendiment es provoca per l'emportament de les baranes metàl·liques a la obra. La unió d'aquestes baranes amb els murs d'obra s'ha anat corrosiionant i per tant augmentant de volum, i aquest fet ha trencat el revestiment. | X Lieu
Important
Greu
Molt greu
| Risc | • Repicat dels empotraments de les baranes a la fàbrica.
• Sanejat de les zones amb corrosió.
• Col·locació de la barana novament, amb una pintura de protecció.
• Referí el revestiment de morter i pintarem. |
| 3. | ![Fotografia](image3) | HUMITATS BALCONS FAÇANA PRINCIPAL
Humitats dels balcons de la façana principal provocades per la falta de goteó en la part inferior del balcons i en l'ampit de la coberta de l'atí. | X Lieu
Important
Greu
Molt greu
| Risc | • Sanejarem la zona de la façana que tingui humitats.
• Tornarem a realitzar el revestiment de tota la façana, podem fer una intervenció conjunta amb els balcons
• Col·locarem un goteó a les plantes atí i sobreàtic per evitar que regalimi aigua per la façana. |
| 4. | ![Fotografia](image4) | REVESTIMENT FAÇANA POSTERIOR
El revestiment de la façana posterior es troba en un estat desfavorable, degut a la falta de manteniment. La pintura es quasi inexistent i la capa de mortar comença a caure. Els encastaments de ferro dels estenedors que hi ha colcats a la façana posterior presenten corrosió i en alguns casos han trencat el revestiment ja que han augmentat de volum. | X Lieu
Important
Greu
Molt greu
| Risc | • Farem una intervenció a tota la façana posterior.
• Repicat de tot el revestiment, tornarem a enguixar i pintar de nou.
• Sanejar els encastaments dels estenedors metàl·lics a la fàbrica de maó. |
5. **EFLORECÈNCIES PARETS INTERIORES DEL 1ººA**

En les parets interiors del pis 1ººA, observem que en les parets de façana que donen al pati 1 i a la façana posterior, en algunes zones hi ha eflorescències. Aquest fet es degut, a la falta de revestiment que té la façana posterior, per tant a la vegada que actuen sobre la façana també haurem d’actuar en aquestes zones interiors. A la paret que dona el pati, l’eflorescència està seca, ja que el pati ha estat reformat amb anterioritat i ha deixat d’entrar aigua per aquest punt.

6. **EMPOTRAMENTS ESTENEDORS PATI 1**

Els empotraments dels estenedors de cordes del pati 1, es troben en mal estat. El suport està fissurat degut a la corrosió que té l’encastament de ferro a dins la fàbrica de maó.

7. **REVESTIMENT AMPIT TERRASSA ÀTIC**

El revestiment de la terrassa del àtic 3º està bufat, al fer la inspecció veiem que el revestiment està separat de la fàbrica de tancament de la terrassa. Aquest fet s’ha provocat per la falta de goteró del amfit, per tant l’aigua de la pluja regalima per sobre del parament i ha degradat el morter de revestiment.
7.5 PLANNING OBRA CALLE ROSELLÓN Nº 297

<table>
<thead>
<tr>
<th>Proceso constructivo de los balcones</th>
<th>ene-15</th>
<th>feb-15</th>
<th>mar-15</th>
<th>abr-15</th>
<th>may-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelado del capirote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aranque balcones y aplicación de consolidante</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación de regles 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación de regles 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación de regles 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación de regles 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación de regles 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforación, cortado y colocación de varilla 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforación, cortado y colocación de varilla 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforación, cortado y colocación de varilla 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforación, cortado y colocación de varilla 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforación, cortado y colocación de varilla 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación alambre de latón 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación alambre de latón 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación alambre de latón 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación alambre de latón 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación alambre de latón 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación biocalcio frontal Balcón 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación biocalcio frontal Balcón 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación biocalcio frontal Balcón 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación biocalcio frontal Balcón 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación biocalcio frontal Balcón 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación cornisa Balcón 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación cornisa Balcón 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación cornisa Balcón 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación cornisa Balcón 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación cornisa Balcón 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación techo Balcón 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación techo Balcón 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación techo Balcón 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación techo Balcón 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación techo Balcón 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación suelo Balcón 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación suelo Balcón 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación suelo Balcón 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación suelo Balcón 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formación suelo Balcón 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 DOSSIER DE PLANOS
1. COCINA - COMEDOR
2. HABITACION 1
3. HABITACION 2
4. HABITACION 3
5. BAÑO
6. DISTRIBUIDOR
7. PATIO EXTERIOR
8. EXTERIOR VIVEINDA

Nombre:
Fecha: 19/10/2015
Comprobado:
Fecha: 21/10/2015

Dibujado: Sergi López Bolart
Comprobado: Jorge Sobrino

Dirección: Calle Sardeña N°342, Piso Porteria, Barcelona

Plataforma: Autocad

TÍTULO: Fotografías
Cotas: metros

Nº Plano: 02

E: 1/50
PATIO EXTERIOR

HABITACIÓN 1

HABITACIÓN 2

COCINA - COMEDOR - SALA DE ESTAR

HABITACIÓN 3

DISTRIBUIDOR

BAÑO

Dibujado
Sergi López Bolart
19/10/2015

Comprobado
Jorge Sobrino
21/10/2015

Nombre
Fecha

TÍTULO
Demoliciones

Dirección: Calle Sardeña N°342,
Piso Porteria, Barcelona

Cotas: metros

Plataforma: Autocad

Nº Plano: 03