Note: More Efficient Conversion of Equivalence-Query Algorithms to PAC Algorithms

Ricard Gavaldà∗
Department of Software (LSI)
LARCA Research Group
Universitat Politècnica de Catalunya

May 8th, 2008

Abstract

We present a method for transforming an Equivalence-query algorithm using \(Q \) queries into a PAC-algorithm using \(\frac{Q}{\epsilon} + O\left(\frac{Q^{2/3}}{\epsilon} \log \frac{Q}{\delta}\right) \) examples in expectation. The method is a variation of that by Schuurmans and Greiner which provides, for each \(\gamma > 0 \), an algorithm using \((1 + \gamma)\frac{Q}{\epsilon} + O\left(\frac{1}{\epsilon} \log \frac{Q}{\delta}\right) \) examples in expectation. In other words, we show that the constant in front of the dominating term \(Q/\epsilon \) can be made \(1 + o(1) \).

1 Introduction

In her seminal paper on learning from queries, Angluin [Ang87] showed that algorithms using Equivalence queries can be rewritten as PAC algorithms. Her simulation uses a worst-case sample \(O\left(\frac{Q^2}{\epsilon} \ln \frac{1}{\delta}\right) \) to achieve \((\epsilon, \delta) \)-confidence from an algorithm using \(Q \) Equivalence queries, but it is not difficult to show that in her same simulation, sample size \(O\left(\frac{Q}{\epsilon} \ln \frac{Q}{\delta}\right) \) suffices.

∗Partially supported by the EU PASCAL2 Network of Excellence, and by the Spanish Ministry of Education through the MOISES-BAR project, TIN2005-08832-C03-03. gavalda@lsi.upc.edu, http://www.lsi.upc.edu/~gavalda.
It was shown later that, with a different algorithm, that the dependence on \(n \) can be made linear. Specifically, Littlestone [Lit89] showed that there is a simulation using a worst-case sample size \(4 \frac{Q}{\epsilon} + O\left(\frac{1}{\epsilon} \ln \frac{Q}{\delta} \right) \) (his simulation was phrased in terms of on-line learning rather than Equivalence queries, but the distinction is irrelevant for our purpose). Schuurmans and Greiner [SG95, Sch96] showed how to build, for every constant \(\gamma > 0 \), a simulation that uses expected sample size \((1 + \gamma) \frac{Q}{\epsilon} + c(\gamma) \frac{1}{\epsilon} \ln \frac{Q}{\delta} \). Here \(c(\gamma) \) is constant for each \(\gamma \), but tends to infinity as \(\gamma \) tends to 0.

In this note we show that the leading constant in front of the \(Q/\epsilon \) term can be made \(1 + o(1) \), that is, arbitrarily close to 1 as \(Q \) grows. In fact, our algorithm is essentially the same as the Schuurmans-Greiner one, except that instead of using a fixed value for \(\gamma \) a priori, we let the value of \(\gamma \) decrease at a precisely controlled rate as the algorithm progresses.

2 The Algorithm

We view an Equivalence query algorithm as a particular case of a strategy for generating hypothesis from sequences of labelled examples. Given such an algorithm, we build a new algorithm \(\mathcal{S} \), given in Figure 1, which reads a sequence of example, uses the Equivalence-query strategy as a black box, and eventually outputs a hypothesis from those generated by the strategy. We will show that \(\mathcal{S} \) is a PAC-learning algorithm.

Procedure \texttt{sprt} is Wald’s Sequential Probability Ratio Test, discussed below, and also used in the Schuurmans-Greiner approach. The main difference with their method is that we do not fix a constant \(\gamma \) \textit{a priori}, but rather use a different \(\gamma_i \) that varies with \(i \). We will fix one particular setting for the sequence of \(\gamma_i \) to obtain our bound on the sample size used by \(\mathcal{S} \), but occasionally comment on the effect of using other values for \(\gamma_i \).

We will argue that procedure \(\mathcal{S} \) satisfies three conditions, which we formulate as theorems: Correctness, Completeness, and Efficiency.

Theorem 1 (Correctness) The probability that \(\mathcal{S}(\epsilon, \delta) \) outputs some \(h \in H \) with error \(\text{error}(h) > \epsilon \) is less than \(\delta \).

The completeness condition can be stated in many ways, of which the following is but one example:

Theorem 2 (Completeness) If for some \(i \) we have that \(\text{error}(h_i) = 0 \) with probability 1, then \(\mathcal{S}(\epsilon, \delta) \) stops with probability 1.
Algorithm $S(\epsilon, \delta)$

1. Generate initial hypothesis h_1;
2. $i := 1$; $t := 0$;
3. while TRUE
 4. do
 5. $t := t + 1$;
 6. get a training example $(x_t, c(x_t))$, labelled by the unknown target c;
 7. if $h_i(x_t) \neq c(x_t)$ (i.e., $(x_t, c(x_t))$ is a counterexample for h_i)
 then
 8. use (x_t, y_t) to generate h_{i+1};
 9. start testing $error(h_i)$ on subsequent examples
 using $\text{sprt}(\epsilon/(1 + \gamma_i), \epsilon, \delta/(i(i+1)), 0)$;
 $i := i + 1$;
 10. if for some $j < i$, the sprt test for h_j rejects
 then
 11. drop h_j from the list of hypothesis being tested
 if for some $j < i$, the sprt test for h_j accepts
 then
 12. output h_j and stop
 13. end while

Figure 1: Algorithm S
Putting both claims together, if the strategy used to generate hypothesis is an exact Equivalence-query algorithm learning with finitely many queries, with probability 1 the algorithm stops, and its output is, with probability $1 - \delta$, a hypothesis h having $\text{error}(h) < \epsilon$.

Theorem 2 in fact follows from this more general statement:

Theorem 3 (Running time) Define $\gamma_i = i^{-1/3}$, and let the base Equivalence-query learner learn with at most Q queries. Then

$$E[\text{running time of } S(\epsilon, \delta)] \leq \frac{Q}{\epsilon} + 7 \frac{Q^{2/3}}{\epsilon} \cdot (\ln \frac{Q(Q + 1)}{\delta} + 2).$$

We do not describe here the \textsc{sprt} test. We quote, however, some relevant properties from [Sch96], appendix A:

Theorem 4 [Sch96] Let $k > 1$ and suppose \textsc{sprt}$(\epsilon/k, \epsilon, \delta_{\text{acc}}, \delta_{\text{rej}})$ is run on a sequence $X_1, X_2, \ldots, X_i, \ldots$ of i.i.d. boolean random variables. Then:

1. If $E[X_i] > \epsilon$, the probability that \textsc{sprt} accepts is at most δ_{acc}.
2. If $E[X_i] < \epsilon/k$, the probability that \textsc{sprt} rejects is at most δ_{rej}.
3. ([Sch96], Lemma A.4) If $\delta_{\text{rej}} = 0$, the expected running time of \textsc{sprt} is

$$\left(\frac{k}{k - 1 - \ln k} \right) \frac{1}{\epsilon} \left(\ln \frac{1}{\delta_{\text{acc}}} + 1 \right).$$

3 Proof of Theorem 1

The proof is as in [SG95, Sch96], but we reproduce it for completeness. We say that a hypothesis $h \in H$ is ϵ-bad iff $\text{error}(h) \geq \epsilon$. Observe that the \textsc{sprt} instance associated to h_i is fed boolean variables whose expected value is precisely $\text{error}(h_i)$. Therefore, by Theorem 4, part (1), we have the following (where probabilities are taken over infinite sequences of independently generated examples).

$$\Pr[S(\epsilon, \delta) \text{ outputs an } \epsilon\text{-bad hypothesis}]$$

$$\leq \sum_{i=1}^{\infty} \Pr[h_i \text{ is } \epsilon\text{-bad yet } S(\epsilon, \delta) \text{ outputs } h_i]$$
\[
\leq \sum_{i=1}^{\infty} \Pr[\text{sprt}(\epsilon/(1 + \gamma_i), \epsilon, \delta/(i(i+1)), 0) \text{ accepts } h_i \mid h_i \text{ is } \epsilon\text{-bad}]
\]
\[
\leq \sum_{i=1}^{\infty} \frac{\delta}{i(i+1)} = \delta.
\]

4 Proof of Theorem 3

For every \(i \), we define the following random variables and expected values:

- \(h_i \) is the random variable representing the \(i \)th generated hypothesis,
- \(\epsilon_i \) is such that \(1/\epsilon_i = E[1/\text{error}(h_i)] \),
- \(T_i \) is the number of examples read from the moment in which \(h_i \) is generated until either \(h_{i+1} \) is generated (if \(h_{i+1} \) is ever generated; otherwise, \(T_i = \infty \))
- \(R_i \) is the running time of the \text{sprt} test run on \(h_i \), and
- \(T \) is the running time of the algorithm.

Proving Theorem 3 is thus bounding \(E[T] \). Let \(i \) be the first index such that \(\epsilon_i(1 + \gamma_i) < \epsilon \). Note that if the base Equivalence learner uses at most \(Q \) queries, we have \(i \leq Q \). Observe also that

\[
T \leq \sum_{j<i} T_j + R_i \tag{1}
\]

because, by definition of \(T_j \) and \(R_i \), by this time \(h_i \) has been generated and the \text{sprt} test for \(h_i \) has stopped. Since the test is run with parameter \(\delta_{\text{rej}} \), it rejects \(h_i \) with probability 0, i.e., it accepts \(h_i \). Therefore, by this time either \(S \) stops outputting \(h_i \), unless it has stopped before due to another \(h_j \).

Taking expectations in Equation (1), we have

\[
E[T] \leq \sum_{j<i} E[T_j] + E[R_i]. \tag{2}
\]

We first bound \(E[T_j] \); the proof of the lemma is given later.

Lemma 1 \(E[T_j] = 1/\epsilon_j \).
Taking \(k = (1 + \gamma_i) \) in Theorem 4, part (3), provides the following bound on \(E[R_i] \):

\[
E[R_i] \leq \frac{1 + \gamma_i}{\gamma_i - \ln(1 + \gamma_i)} \frac{1}{\epsilon} \left(\ln \frac{i(i+1)}{\delta} + 1 \right). \tag{3}
\]

As a detour, let us note how to get the result in [SG95, Sch96]. Since \(i \) is the first index such that \(\epsilon_i(1 + \gamma_i) < \epsilon \), for \(j < i \) we have \(\epsilon_j \geq \epsilon/(1 + \gamma_j) \), that is, \(E[T_j] = 1/\epsilon_j \leq (1 + \gamma_j)/\epsilon \). Fix \(\gamma_i = \gamma \) for every \(i \). Then from Equation (2) we get

\[
E[T] \leq \sum_{j<i} \frac{1 + \gamma_j}{\epsilon} + \frac{1 + \gamma}{\gamma - \ln(1 + \gamma)} \frac{1}{\epsilon} \left(\ln \frac{i(i+1)}{\delta} + 1 \right)
= (1 + \gamma) \frac{i}{\epsilon} + c(\gamma) \frac{1}{\epsilon} \left(\ln \frac{i(i+1)}{\delta} + 1 \right).
\]

Now, take take instead \(\gamma_i = i^{-1/3} \). We have the following two lemmas, whose proofs are given later:

Lemma 2 For \(\gamma_j = j^{-1/3} \),

\[
\sum_{j<i} (1 + \gamma_j) \leq i + \frac{3}{2} i^{2/3}.
\]

Lemma 3 Define \(c(\gamma) = (1 + \gamma)/(\gamma - \ln(1 + \gamma)) \). Then \(c(\gamma) \leq 7/\gamma^2 \) for every \(\gamma \in (0,1] \), and \(c(\gamma) \) tends to \(2/\gamma^2 \) as \(\gamma \) tends to 0.

From Equations (2) and (3) and Lemmas 2 and 3, and using again that for all \(j < i \) we have \(E[T_j] = 1/\epsilon_j \leq (1 + \gamma_j)/\epsilon \), we obtain

\[
E[T] \leq \sum_{j<i} \frac{1 + \gamma_j}{\epsilon} + \frac{7}{\gamma_i^2} \frac{1}{\epsilon} \left(\ln \frac{i(i+1)}{\delta} + 1 \right)
\leq \frac{1}{\epsilon} \left(i + \frac{3}{2} i^{2/3} + 7 \frac{i^{2/3}}{\epsilon} \left(\ln \frac{i(i+1)}{\delta} + 1 \right) \right)
\leq \frac{i}{\epsilon} + 7 \frac{i^{2/3}}{\epsilon} \left(\ln \frac{i(i+1)}{\delta} + 2 \right)
\]

i.e., the statement of Theorem 3.
Proof of Lemma 1. Suppose that in a particular run of the algorithm the random variable h_j takes a particular value $h \in H$. Conditioned to $h_j = h$, the expected number of examples that have to be read to produce a counterexample for h_j is an exponential distribution with base $\text{error}(h)$, and therefore,

$$E[T_j|h_j = h] = \sum_{\ell=1}^{\infty} (1 - \text{error}(h))^{\ell-1} \cdot \text{error}(h) \cdot \ell = 1/\text{error}(h).$$

So $E[T_j] = E[1/\text{error}(h)]$ (where the expectation is taken over h on the right-hand side), which is $1/\epsilon_j$ by definition of ϵ_j. □ (Lemma 1)

Proof of Lemma 2. We show by induction on i the following inequality, which implies the lemma:

$$\sum_{j \leq i} (1 + j^{-1/3}) \leq \frac{i}{\epsilon} + \frac{3}{2} \frac{i^{2/3}}{\epsilon}.$$

For $i = 1$ it is obvious. Assume true for i, then

$$\sum_{j=1}^{i+1} j^{-1/3} \leq \frac{3}{2} \frac{i^{2/3}}{\epsilon} + (i + 1)^{-1/3}$$

and observe that

$$\frac{3}{2} \frac{i^{2/3}}{\epsilon} + (i + 1)^{-1/3} \leq \frac{3}{2} (i + 1)^{2/3}$$

iff (multiplying on both sides by $(i + 1)^{1/3}$)

$$\frac{3}{2} (i^2(i + 1))^{1/3} + 1 \leq \frac{3}{2} (i + 1)$$

iff (taking cubes on both sides)

$$\left(\frac{3}{2}\right)^3 (i^2(i + 1)) \leq \left(\frac{3}{2}(i + 1) - 1\right)^3$$

which is verified to be true by simple algebra. □ (Lemma 2)
Proof of Lemma 3. We have $c(1)^2 = 2/(1 - \ln(2)) < 7$, and studying the Taylor expansion of $c(\gamma)^2$ shows that it is strictly increasing with γ, so $c(\gamma)^2 < 7$ for all $\gamma < 1$. Also, for small enough γ we have $\ln(1+\gamma) \approx \gamma - \gamma^2/2$, from which $c(\gamma) \approx 2/\gamma^2$ follows. □ (Lemma 3)

5 Final Remarks

Observe that Theorem 3 does not strictly require that the algorithm produces an hypothesis with 0 error within the first Q queries. It is enough to assume that within the first Q queries it generates a hypothesis h_i with $\epsilon_i(1+\gamma_i) < \epsilon$.

Note also that a variety of bounds on the sample size are possible by taking other definitions for γ_i. In particular, with essentially the same proof, if we take $\gamma_i = 1/i^\beta$ for $\beta < 1$, we obtain (approximately)

$$E[T] \leq \frac{Q}{\epsilon} + \frac{1}{1-\beta} \frac{Q^{1-\beta}}{\epsilon} + 7 \frac{Q^{2\beta}}{\epsilon} \ln \frac{Q(Q+1)}{\delta}.$$

We just chose $\beta = 1/3$ to make $1 - \beta = 2/3$, but if the values of Q and δ are known in advance, other values of β may give better bounds.

Finally, as indicated by Lemma 3, the factor 7 in front of the second term is actually a decreasing function of Q that tends to 2 as Q grows.

References

