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Abstract: In this paper, the use of a specific metric as a feature selection step is investigated.
The feature selection step tries to model the correlation among adjacent feature vectors and the
variability of the speech. We propose a new procedure which performs the feature selection in
two steps. The first step takes into account the temporal correlation among the N feature vectors
of a template in order to obtain a new set of feature vectors which are uncorrelated. This step
gives a new template of M feature vectors, with M << N. The second step defines a specific
distance among feature vectors to take into account the frequency discrimination features which
discriminate each word of the vocabulary from the others or a set of them. Thus, the new
feature vectors are uncorrelated in time and discriminant in frequency.
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I. INTRODUCTION

The problem of feature selection in speech recognition can be studied by different ways. One
way is to study the feature selection as a problem of data compression to reduce the
computational time and memory requierements. From this point of view, a lot of similar
techniques were implemented in the last years where a new template is obtained removing those
feature vectors which are similars. Trace segmentation and variable frame coding are two
classical techniques [1-3]. Another point of view, proposed in this paper, is to assume that
there is an underlying set of "real" uncorrelated features, and the features we are working on are
"impure" in the sense that they are a linear combination of those "real” features. Then, the
objective is to find a transformation which recovers the "real" features [4]. These two points of
view select the feature in the time dimension, that is, it is a temporal selection. Thus the
temporal selection obtain a new template where the feature vectors are uncorrelated or without
temporal redundancy. However, the temporal selection doesn’t take into account the variability
and separability among words. Thus, a frequency selection step which reduces the within-class
variability and increases the separability among words is needed. This is the second step
proposed in our feature selection procedure which is done by defining a specific distance for
each feature vector. Thus, we propose a feature selection procedure which makes use of a
representation criteria for temporal selection and discriminant criteria for frequency selection.
Figure 1 shows the process of temporal and frequency selection.
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Figure 1. Two step feature selection procedure (M<N; Q<P)
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II. TEMPORAL SELECTION

Temporal selection is the first step in our feature selection process. Its purpose is to obtain a
time compression by removing the correlation of the temporal evolution of the spectrum.
Basically, the problem is to represent the sequence of spectra by a superposition of the
members of an orthogonal family of functions where the input template is representated with
less coefficients.

Given a NxP matrix Y of spectral parameters {yj(n)} representing N frames of P
"impures" features, the transformation obey the following formulation

N
yim) = Y, amdm@m)  1<i<P; 1<nsN (1)
m=1

where oy (i) is the mth "real” feature vector and ¢m(n) is the mth transformation function of the
transformation matrix {T}.

There are two definitions of transformation functions:
1- Data independent transformation functions. The transformation functions are members of a
deterministic family of orthogonal functions as the Discret Cosinus Transform (DCT).
2- Data dependent transformation functions. The transformation functions are found from the
data using a criteria of minimum square error. The error of representing yi(n) with M "real”
feature vectors is defining as follow

e =E{Gi-f) G-Iy )
M
where 9i= z Im(1)Pm(n) is the estimation of "impure" feature vectors with M "real”
m=]

feature vectors. With the constraint that the transformation functions are orthogonal, the
transformation functions are found solving the eigensystem

ny¢m = )bmq)m (3)
where ny is the covariance matrix defined as
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vi = {yi(1),yi(2),-......yi(N) }

From this eigensystem, N eigenvalues and their corresponding eigenvectors are
obtained. However, only the M eigenvectors with the largest eigenvalues are retained. Thus,
the transformation matrix {T} is composed by the M eigenvectors with the M largest
eigenvalues, ranking them from the largest to the smallest one. Because of the orthogonal
property of the transformation functions, the new "real" feature vectors are computed as a linear
combination of the "impure" feature vectors as follows [5]

N
om(@ = Y, yi()dm(n) 1<i<P ; 1<ms<M (6.2)
n=1

which is known as the Karhunen-Logve transform (KLT) or

N
am(1) = zi (¥i(n)-yi(n))dm(n) 1<i<P; 1smsM (6.b)
n=

which is Known as Principal Component Analysis (PCA).
The principal properties of the new representation are:



-Coefficients with the largest variances are the "real” features.
-The new "real" features are uncorrelated.

-Feature vectors are arranged in variance order, thus, no time-alignment is needed in the
comparison step.

The transformation matrix is computed in the training process. We distinguish two
cases:

1- General matrix. A transformation matrix Ty for all the words of the vocabulary. In
this case, the covariance matrix Cyy is obtained averaging the covariance matrix of each training
word.

2- Specific matrix. A transformation matrix T¥ for each word of the vocabulary. Then,
the covariance matricx Cyy is obtained using several repetitions of the word 'w'.
Figure 2 shows the evolution of the first three transformation functions for the General

matrix and for the Specific matrix of the word /set/.
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Figure 2. a)First three transformation functions of the General matrix. b)First three
transformation functions of the word /set/.

III. FREQUENCY SELECTION

The second step of the feature selection process is to compute a transformation matrix for each
new uncorrelated feature vector obtained in the temporal selection in order to discriminate
between words. This step can be seen as a method for finding a specific distance measure for
each reference vector. This specific distance takes into account the discriminant properties of the
feature vectors which reduces the within-class variability and increases the separability among
feature vectors. Thus, the frequency selection step is related with the comparison step. Defining

the weighted Euclidean distance between the test vector o and the reference vector o as
d(i,j) = Il Fj (oci—(xj)I|2 @
a specific distance matrix Fj={fd;,fdy, ....fdg} of Q weighting vectors for each reference

vector of each word has to be computed. Figure 3 shows the relation between specific distance
and frequency selection.
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Figure 3. Relation between the frequency selection and the specific distance measure
point of view



In order to find the discriminant matrix Fj, two classes of vectors are defined. For a
word 'w', the mth feature vector of any utterance of it forms the correct class (0e) and the mth

feature vector of the other words forms the incorrect class (o). Thus, defining the mean
interclass distance as the mean distance between the incorrect class vectors and the mean correct

class (o) feature vector

E(Dinter) = E(IFc (04 - ooli2) ®
where o is mean vector of the correct class, and taking into account the matrix relation
llall2 = tr(a at) ®
we can rewrite (.) as
E(Dinter) = w(Fe E((oi-0tc)(a-0te))ED) (10)
defining the between-class mean distance matrix as
B = E((ai-0tc)(0ti-0tc)H (11)
the mean interclass distance is as follow
E(Dinter) = tr (Fc B Fch) (12)

In order to take into account the within-class variability a mean intraclass distance is
defined as

EDintra) = tr (Fc W EcH) 13)
where
W =EB((0ce - 0tc)(Otce - 0c)D) (14)
In this way, the criterion function to be maximized is [4,6]
J = tr(fdg B fdx?) - A(tr(fdxy W fdgt) -1) (15)
The solution of this optimization problem is the eigensystem
(W-1B)fdy = Ajfdi (16)

therefore, the specific distance matrix is formed by the Q eigenvectors with the Q largest
eigenvalues of W-1B, whenever

Q
E(Dinter) = kZl Ak >> Q = EDintra) (17)

The discriminant properties can be found in the matrix W-1B because

P
w(W-1B) = ) Ak (18)
k=1

This process is made for each reference vector of each word of the vocabulary. In the training

process, a mean vector (0¢) for each feature vector is computed and used as reference to
compute de within-class and between-class mean distance matrices as well as reference vector
for the recognition process. Figure 4 shows of the projection of the first feature vector of
several words using the first two discriminant eigenvectors of the word /dos/.
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Figure 4. Projection of the first feature vector of several words using the first two
discriminant eignevectors of the word /dos/ (correct class).



IV. RESULTS AND CONCLUSIONS

The recognition experiments were made using two data base. A data base consists of ten

repetitions of the Catalan digits {u,dos,tres, kuatra,sink,sis,s€t,vuit,nou,zeru} uttered by six
male and three female speakers (900 words) and recorded in a quiet room. The second data base
is the Spanish E-set {b,c,d,e,g,p,t} uttered by two male and one female speakers, seven
repetitions, recorded in a laboratory enviroment.

For feature extraction, the speech signal was sampled at § KHz, preemphasized
(H(z)=1-0.95z-1) and 8 Log-Area ratios were computed each 15 ms for the digit data base and
10 ms for the E-set data base using the LPC analysis of 30 ms. A typical Hamming smoothing
window was applied to the data. After the LPC analysis, template were normalized to a fixed
number N of frames, with N equal to 30, to apply the temporal selection step.

A classical pattern recognition system which compares an input template with a set of
reference templates by means of a linear frame to frame comparison was used. The references,
obtained in the trainning process, are constituted by the feature vectors obtained in the feature
selection process and two transformation matrices. One is used to temporal selection and the
other is to frequency selection which is specific for each frame.

We present two experiments. The first experiment is a multispeaker experiment. Six
repetitions of the nine speakers digit data base are used as training. In each recognition
experiment, an evidence measure was computed as Ev=(D2-D1)100/D1, where D2 is the
distance to the second candidate and D1 is the distance to the first candidate. Figure 5 shows the
recognition results obtained for different values of M and Q using both temporal transformation
matrices Tg (General matrix) and TV (Specific matrix). For the best result, M=3 and Q=2 with

Ty, the mean evidence is 85,4 % showing the good discrimination properties of this feature
sc%ec-tion process.
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Figure 5. Error rate for several values of M and Q.

With the E-set data base, the results are quite different. In this case, the optimal number
M of temporal features is 9 (General matrix) and the discriminant features is 4. With these
values of M and Q, the recognition rate is 12.53 % averaging seven experiments where six
different repetitions were used as training in each experiment. Figure 6 shows the confusion
matrix.



] D E G P T
B | 129 1 7
C 1 137 8 1
D 1 141
E 136 4 7
G 3 144
P 1 9 15 109] 13
T 32 9 106

Figure 6. Confusion matrix for the E-set experiment

The second experiment is a speaker independent experiment. In this case, the training
set is made up by ten repetitions of six speakers of the digit data base, using three speakers are
as test. Figure 7 shows the results for three different versions: a) classical independent system
with a clustering process, b) only temporal selection step and c¢) temporal and frequency
selection steps. This figure shows also the computational load in number of multiplications per
recognized word. It can be noted that the best result is obtained using the two steps feature
selection process which increase the recognition rate decreasing the number of features and the
computational load.

] #referencq # features | computational
% error | evidence perword | per word | load

a) Classical
system 2.00 45 % 2 480 48000

b) Temporal | 300 | 549 1 24 1000
selection

c) Twosteps| 1.66 77 % 1 9 1500
selection

Figure 7. Results for the speaker independent experiments

As conclusion, a two step feature selection procedure has been introduced. This feature
selection procedure transforms an input template of features to a new representation where the
correlation among vectors is removed by using the idea of Principal Component Analysis or
Karhunen-Loéve transform and the variability and separability among words is taking into
account using the idea of Discriminant Analysis and Specific distance measure. As a result, the
new template has the feature vectors arranged in variance order, therefore, no time-alignment is
needed in the comparison step and each reference vector has associated a specific distance
measure which select the discriminant features. The result is an important improvement in the
error rate and a very small computational load.
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