Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

PROJECTE FINAL DE CARRERA (PFC)

GEOSAR Mission: Orbit Determination Methods and Techniques

Marc Fernàndez Uson
PFC Advisor: Prof. Antoni Broquetas Ibars

May 2016

PROJECTE FINAL DE CARRERA (PFC)

GEOSAR Mission:
 Orbit Determination Methods and Techniques

Marc Fernàndez Uson

ABSTRACT

Multiple applications such as land stability control, natural risks prevention or accurate numerical weather prediction models from water vapour atmospheric mapping would substantially benefit from permanent radar monitoring given their fast evolution is not observable with present Low Earth Orbit based systems. In order to overcome this drawback, GEOstationary Synthetic Aperture Radar missions (GEOSAR) are presently being studied.

GEOSAR missions are based on operating a radar payload hosted by a communication satellite in a geostationary orbit. Due to orbital perturbations, the satellite does not follow a perfectly circular orbit, but has a slight eccentricity and inclination that can be used to form the synthetic aperture required to obtain images.

Several sources affect the along-track phase history in GEOSAR missions causing unwanted fluctuations which may result in image defocusing. The main expected contributors to azimuth phase noise are orbit determination errors, radar carrier frequency drifts, the Atmospheric Phase Screen (APS), and satellite attitude instabilities and structural vibration. In order to obtain an accurate image of the scene after SAR processing, the range history of every point of the scene must be known. This fact requires a high precision orbit modeling and the use of suitable techniques for atmospheric phase screen compensation, which are well beyond the usual orbit determination requirement of satellites in GEO orbits. The other influencing factors like oscillator drift and attitude instability, vibration, etc., must be controlled or compensated.

In order to determine the satellite orbit, GEOSAR mission propose a group of Active Radar Calibrators (ARCs). These ARCs will be placed in well-known positions of the observed scene providing range and range-rate measurements. From such measurements, the satellite position and velocity may be initially calculated. Then, the initial state may be refined by means of differential correction techniques such as Least Squares or Kalman filter techniques. In this way, the satellite orbit may be calculated more precisely, which is crucial in order to achieve well focused images.

This document will present the methods for computing the initial state of the satellite orbit, and will study the use of Least Squares technique as a method to determine the satellite orbit precisely. Since there is no real data available, ideal data will be created in order to perform different simulations of all methods and techniques presented within this document. Thus, the results will be used as a first approximation to the future satellite orbit determination.

ACNOWLEDGEMENTS

I would like to specially thank my PFC advisor, Prof. Antoni Broquetas, for introducing me to the orbit determination topic, and for his guidance during all project. I would also appreciate the support and exchange of ideas among all colleagues of the working group, especially Roger Martín. I hope this document may help you when dealing with orbit determination in your future PhD .

On the other hand, I would like to thank all people that have shared time with me during all university studies. I will begin with Marc Arànega and Manak Bhambi. I started the Telecommunications Engineering with them, but they became engineers first some years ago, and they are now supporting me. I will continue with Luís Aldana who is the first person I met after returning to university life. And, I will conclude with Eduardo Delgado, Juan Arimany, David Tomuletiu, Susana Amorós, Miquel Àngel Corbella, Milena Ten, Jordi Nonell, Meritxell Liria, Àlex Peiró, Laura Samos..., people that have helped me to finalize my university studies, so that my warm thanks to all of them.

Finally, I would like to thank my family for being always there during good and bad times.

This work has been financed by the Spanish Science, Research and Innovation Plan (Ministerio de Economía y Competitividad) with Project Code TIN2014-55413-C2-1-P.

TABLE OF CONTENTS

CHAPTER 1: GEOSAR Mission 1
1.1. GEOSAR Mission: Applications 3
1.2. Synthetic Aperture 6
1.3. L-band and X-band Radars 7
1.4. GEOSAR Mission Limitations 8
1.5. Radar Observables and Proposed Systems to Obtain Them 9
1.6. Project Objective 10
CHAPTER 2: Synthetic Aperture Radar Techniques. Examples 13
2.1. Synthetic Aperture Radar (SAR) Introduction 15
2.2. Pulse Compression Example 17
2.3. SAR Processor Example. 28
2.4. Real Range History Example. 41
CHAPTER 3: Initial Orbit Determination 47
3.1. Coordinate Systems 50
a) Geocentric Equatorial Coordinate System, IJK 50
b) Body-Fixed Coordinate System, ITRF 50
c) Perifocal Coordinate System, $P Q W$ 51
3.2. Satellite State Representations 51
3.3. Proposed Methods to Initially Determine the Satellite Orbit 57
3.4. Obtaining the Ideal Data 60
a) The Earth Model 60
b) Time 62
c) Satellite Parameters 64
d) Site Parameters 64
e) Ideal Simulated Satellite Orbit 65
f) Ideal Range and Range-rate Observations 71
3.5. Trilateration and Gibbs Methods Analyses. 74
a) Results Analysis of Setting A 76
b) Results Analysis of Setting B 78
3.6. Noise of Range and Range-rate Observations 79
3.7. Trilateration and Gibbs Methods Analyses Adding Noise 81
3.8. Statistical Analyses of Trilateration and Gibbs Methods. 86
a) Results Analysis of Setting C. 87
b) Results Analysis of Setting D 89
c) Results Analysis of Setting E 93
d) Results Analysis of Setting F 95
e) Results Analysis of Setting G. 97
3.9. Results Summary 98
CHAPTER 4: Differential Correction Techniques 101
4.1. Least Squares Fundamentals 104
a) Linear Least Squares 104
b) Nonlinear Least Squares 107
4.2. Applying Least Squares Technique to Orbit Determination 109
4.3. Results Analyses of Least Squares Technique 117
a) Results Analysis of Setting H 119
b) Results Analysis of Setting I 126
c) Results Analysis of Setting J 128
d) Results Analysis of Setting K 130
4.4. Results Summary 132
CONCLUSIONS 133
APPENDIX A 135
A.1. Matlab Scripts and Functions of Sections 3.5 and 3.7 135
A.2. Matlab Scripts and Functions of Section 3.8 137
A.3. Matlab Scripts and Functions of Section 4.3 139
A.4. Summary of All Matlab Functions and Scripts Used 140
APPENDIX B 143
B.1. Results of Section 3.5: Setting A 143
B.2. Results of Section 3.5: Setting B 145
B.3. Results of Section 3.7: Setting B + Noise. 148
B.4. Results of Section 3.8: Setting C 151
B.5. Results of Section 3.8: Setting D 152
B.6. Results of Section 3.8: Setting E. 154
B.7. Results of Section 3.8: Setting F 156
B.8. Results of Section 3.8: Setting G 157
APPENDIX C 161
C.1. Results of Section 4.3: Setting H. 161
C.2. Results of Section 4.3: Setting I 169
C.3. Results of Section 4.3: Setting J. 172
C.4. Results of Section 4.3: Setting K 174
REFERENCES 179

ACRONYMS AND ABBREVIATIONS

APS	Atmospheric Phase Screen
ARC	Active Radar Calibrator
BPA	Back Propagation Algorithm
COE	Classical Orbital Elements
ECEF	Earth-Centred, Earth-Fixed
ECI	Earth Centred Inertial
ENVISAT	ENVIronmental SATellite
ERS	European Remote Sensing
FFT	Fast Fourier Transform
FM	Frequency Modulated
GEO	Geostationary Earth Orbit
GEOSAR	GEOstationary Synthetic Aperture Radar
GMST	Greenwich Mean Sidereal Time
IJK	Geocentric Equatorial Coordinate System
InSAR	Interferometric Synthetic Aperture Radar
ITRF	International Terrestrial Reference Frame
ITRS	International Terrestrial Reference System
JD	Julian Date
LEO	Low Earth Orbit
LEOSAR	Low Earth Orbit Synthetic Aperture Radar
LS	Least Squares
LST	Local Sidereal Time
Matlab	MATrix LABoratory
NWP	Numerical Weather Prediction
PFC	Projecte Final de Carrera
PQW	Perifocal Coordinate System
PRF	Pulse Repetition Frequency
RADAR	RAdio Detection And Ranging
RCS	Radar Cross Section
RMS	Root Mean Square
SAR	Synthetic Aperture Radar
SES	Société Européenne des Satellites
SLL	Side Lobe Level
SNR	Signal-to-Noise Ratio
STD	Standard Deviation
SV	State Vector
TLE	Two-Line Element
UT1	Universal Time 1
UTC	Coordinated Universal Time
VLBI	Very Large Baseline Interferometer
WGS-84	World Geodetic System 1984

ecom
scn

LIST OF FIGURES

Figure 1.1: Phase map estimation considering a grid of stable targets with APS correlation of 2 km 4
Figure 1.2: Displacement due to volcanic activity in Tenerife (2005-2008) 5
Figure 1.3: Typical GEO satellite-Earth relative motion. A portion of the track (in green) can be used to form a radar synthetic aperture 7
Figure 1.4: GEOSAR L-band beam coverage (red circle) and X-band beam coverage (yellow circles) 8
Figure 1.5: Block diagram of a proposed ARC system for GEOSAR missions 10
Figure 2.1: SAR image of Barcelona city (Spain)... 17
Figure 2.2: (a) Transmitted signal $s_{\mathrm{e}}(t)$, and (b) Target echo $s_{\mathrm{r}}(t)$ and matched filter output $y(t)$ 18
Figure 2.3: A zero-Doppler cut of the ambiguity function of a linear FM pulse with $\rho=10$ 20
Figure 2.4: Amplitude and phase of the low pass equivalent of the transmitted signal 21
Figure 2.5: Instantaneous frequency of the transmitted signal 22
Figure 2.6: Instantaneous frequency of the transmitted signal (zoom in) 22
Figure 2.7: Amplitude and phase of the transmitted signal spectrum 23
Figure 2.8: Amplitude and phase of the matched filter spectrum 23
Figure 2.9: Amplitude of the radar matched filter output 24
Figure 2.10: Normalized and centred amplitude of the radar matched filter output 24
Figure 2.11: Amplitude of the interpolated radar matched filter output 25
Figure 2.12: Amplitude of the interpolated, normalized and centred radar matched filter output 26
Figure 2.13: Amplitudes of: (a) the matched filter, (b) the triangular window and (c) the resulting filter 27
Figure 2.14: Amplitudes of: (a) the matched filter, (b) the Hanning window and (c) the resulting filter 27
Figure 2.15: Radar filter outputs 28
Figure 2.16: Raw data acquisition of an area $\Psi(z, x)$. 28
Figure 2.17: Image acquisition from raw data 29
Figure 2.18: Direct problem of scattering 29
Figure 2.19: Inverse problem. 30
Figure 2.20: SAR processor blocks 31
Figure 2.21: Example of range compressed signal of a single target 31
Figure 2.22: Geometry used in Equation (2.30) 32
Figure 2.23: Radiation diagram of the radar antenna 33
Figure 2.24: Minimum length of axis x 34
Figure 2.25: $t_{\text {min }}$ and $t_{\text {max }}$ 35
Figure 2.26: Amplitude and phase of the raw data 36
Figure 2.27: Amplitude and phase of the range compressed signal 36
Figure 2.28: Linear interpolation computation of the signal range compressed amplitude 37
Figure 2.29: Amplitude and phase of the image $\Psi_{\mathrm{I}}(z, x)$ 38
Figure 2.30: Amplitude and phase of the image range cut on the target location. 39
Figure 2.31: Amplitude and phase of the image azimuth cut on the target location 39
Figure 2.32: Interpolated and normalized amplitude of the image range cut on the target location 40
Figure 2.33: Interpolated and normalized amplitude of the image azimuth cut on the target location. 40
Figure 2.34: Satellite orbit around the Earth during the first week of January 2012 43
Figure 2.35: Satellite orbit alone during the first week of January 2012 44
Figure 2.36: Satellite-Barcelona range history during the first week of January 2012 44
Figure 3.1: a) ECI Coordinate System, and b) ECEF Coordinate System 50
Figure 3.2: Perifocal Coordinate System, $P Q W$ 51
Figure 3.3: \quad Satellite state vector at time t_{0}, \mathbf{X}_{0}, and satellite state vector at time t_{1}, \mathbf{X}_{1} 52
Figure 3.4: a, e, and p orbital elements of \mathbf{a}) circular orbit, and \mathbf{b}) elliptical orbit 53
Figure 3.5: $\quad i, \Omega, \omega$, and v orbital elements 55
Figure 3.6: $\quad \widetilde{\omega}_{\text {true }}, u$, and $\lambda_{\text {true }}$ orbital elements 56
Figure 3.7: Eccentric anomaly, E 56
Figure 3.8: Sketch of Trilateration method 57
Figure 3.9: Obtaining the satellite state vector by using Trilateration method. 58
Figure 3.10: Obtaining the satellite state vector by using Trilateration and Gibbs methods 59
Figure 3.11: Longitude, λ, and geodetic latitude, ϕ 61
Figure 3.12: Geodetic latitude, ϕ, vs. Geocentric latitude, ϕ_{gc} 62
Figure 3.13: Greenwich Mean Sidereal Time, θ_{GMST}, and Local Sidereal Time, θ_{LST} 63
Figure 3.14: Sites location. 66
Figure 3.15: Sidereal day vs. Solar day (exaggerated view) 66
Figure 3.16: Different views of the ideal simulated satellite orbit around the Earth from COE of Table 3.4 69
Figure 3.17: Ideal satellite position state vector evolution along one orbit 70
Figure 3.18: Ideal satellite velocity state vector evolution along one orbit 71
Figure 3.19: Geometry of range observations computation 71
Figure 3.20: Geometry of range-rate observations computation 73
Figure 3.21: Ideal range history of Barcelona location along one satellite orbit 73
Figure 3.22: Ideal range-rate history of Barcelona location along one satellite orbit. 74
Figure 3.23: Errors in the satellite position state vector along one satellite orbit (setting A) 76
Figure 3.24: Errors in the satellite velocity state vector along one satellite orbit (setting A) 77
Figure 3.25: Errors in the range history of Barcelona location along one satellite orbit (setting A) 77
Figure 3.26: Errors in the range-rate history of Barcelona location along one satellite orbit (setting B) 78
Figure 3.27: Ideal (in green) and approximate (in red) satellite orbits around the Earth (setting B + noise) 82
Figure 3.28: Errors in the satellite position state vector along one satellite orbit (setting B + noise) 83
Figure 3.29: Errors in the satellite velocity state vector along one satellite orbit (setting B + noise) 83
Figure 3.30: Ideal (in green) and approximate (in red) range histories of Barcelona location along one satellite orbit (setting B + noise) 84
Figure 3.31: Ideal (in green) and approximate (in red) range-rate histories of Barcelona location along one satellite orbit (setting B + noise). 85
Figure 3.32: Statistical errors in the satellite state vector at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting C) 87
Figure 3.33: Statistical errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=30600 \mathrm{~s}$ (setting C) 88
Figure 3.34: Statistical noise added to the ideal ρ observations and errors obtained between the ideal and approximate ρ observations of Barcelona location at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting C) 88
Figure 3.35: Statistical noise added to the ideal ρ observations and errors obtained between the ideal and approximate ρ observations of Betzdorf location at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting C) 89
Figure 3.36: Statistical noise added to the ideal ρ observations and errors obtained between the ideal and approximate ρ observations of Milan location at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting C) 89
Figure 3.37: Errors in the satellite state vector at initial epoch, $t_{0}=0 \mathrm{~s}$ (setting D) 90
Figure 3.38: Errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=21600 \mathrm{~s}$ (setting D) 90
Figure 3.39: Statistical noise added to the ideal $\dot{\rho}$ observations and errors obtained between the ideal and approximate $\dot{\rho}$ observations of Barcelona location at initial epoch, $t_{0}=0 \mathrm{~s}$ (setting D) 91
Figure 3.40: Statistical noise added to the ideal $\dot{\rho}$ observations and errors obtained between the ideal and approximate $\dot{\rho}$ observations of Betzdorf location at initial epoch, $t_{0}=0 \mathrm{~s}$ (setting D) 92
Figure 3.41: Statistical noise added to the ideal $\dot{\rho}$ observations and errors obtained between the ideal and approximate $\dot{\rho}$ observations of Milan location at initial epoch, $t_{0}=0 \mathrm{~s}$ (setting D) 92
Figure 3.42: Errors in the satellite state vector at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting E) 94
Figure 3.43: Errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=30600 \mathrm{~s}$ (setting E) 94
Figure 3.44: Errors in the satellite state vector at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting F) 96
Figure 3.45: Errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=30600 \mathrm{~s}$ (setting F) 96
Figure 3.46: Errors in the satellite state vector at initial epoch, $t_{0}=0 \mathrm{~s}$ (setting G) 97
Figure 3.47: Errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=21600 \mathrm{~s}$ (setting G) 98
Figure 4.1: Dimensions and structure of vector $\tilde{\mathbf{b}}$ 112
Figure 4.2: Dimensions and structure of matrix \mathbf{A} 113
Figure 4.3: Dimensions and structure of matrix \mathbf{W} 113
Figure 4.4: Determination of the first modified orbit when using finite differencing 114
Figure 4.5: Partial derivatives calculation when using finite differencing 115
Figure 4.6: Evolution of $\delta \widehat{\mathbf{x}}$ components along the first 10 iterations of Least Squares algorithm considering 10 (in red), 100 (in blue), and 1000 (in orange) observations 121
Figure 4.7: Evolution of the initial nominal position state vector along the first 10 iterations of Least Squares algorithm considering 10 (in red), 100 (in blue), and 1000 (in orange) observations 121
Figure 4.8: Evolution of the initial nominal velocity state vector along the first 10 iterations of Least Squares algorithm considering 10 (in red), 100 (in blue), and 1000 (in orange) observations 122
Figure 4.9: Evolution of the errors between the ideal and nominal state vectors along the first 10 iterations of Least Squares algorithm and considering 10 (in red), 100 (in blue), and 1000 (in orange) observations 122
Figure 4.10: Precision of setting H when using 10 observations. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f} 124
Figure 4.11: Precision of setting H when using 100 observations. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}. 125
Figure 4.12: Precision of setting H when using 1000 observations. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}. 125
Figure 4.13: Precision of setting I. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f} 128
Figure 4.14: Precision of setting J. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f} 129
Figure 4.15: Precision of setting K. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}. 131
Figure A.1: Block diagram of Matlab scripts and functions used in sections 3.5 and 3.7 137
Figure A.2: Block diagram of Matlab scripts and functions used in section 3.8. 139
Figure A.3: Block diagram of Matlab scripts and functions used in section 4.3 140

LIST OF TABLES

Table 2.1: Location parameters of a base station placed in the city of Barcelona (Spain) 42
Table 2.2: Maximum and minimum ranges per orbit between the satellite and base station 45
Table 3.1: Defining parameters of WGS-84 60
Table 3.2: Satellite parameters 64
Table 3.3: Location parameters of each site 65
Table 3.4: COE computed for the ideal simulated satellite orbit (in bold, the element set) 68
Table 3.5: Summary of all conditions considered on settings A and B 75
Table 3.6: \quad Parameters of GEOSAR mission needed to obtain σ_{ρ} and $\sigma_{v_{r}}$ 81
Table 3.7: Standard deviation of range and range-rate observations 81
Table 3.8: Difference between the noises added to the ideal ρ and $\dot{\rho}$ observations and the error obtained between the ideal and approximate ρ and $\dot{\rho}$ observations at epoch t_{0} 85
Table 3.9: Summary of all conditions considered on settings C and D 86
Table 3.10: Summary of all conditions considered on setting E 93
Table 3.11: Summary of all conditions considered on settings F and G 95
Table 3.12: Summary of all simulation results performed in Chapter 3. This table shows the value range of the errors between ideal and approximate values of different parameters 99
Table 4.1: \quad Finite differencing algorithm 116
Table 4.2: Least Squares algorithm 117
Table 4.3: Initial nominal state vector at $t_{0}=0 \mathrm{~s}$ 119
Table 4.4: \quad Summary of all conditions considered on setting H 119
Table 4.5: Initial, final, and two intermediate values of vector $\delta \widehat{\mathbf{x}}$ considering 10,100 , and 1000 observations 120
Table 4.6: \quad Summary of the order of magnitude errors of setting H. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated 123
Table 4.7: \quad Summary of the errors of setting H (matrix \mathbf{W} use). This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated 126
Table 4.8: \quad Summary of all conditions considered on setting I 127
Table 4.9: Comparison between the errors of settings D, H, and I. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated 127
Table 4.10: Summary of all conditions considered on setting J 128
Table 4.11: Comparison between settings H and J. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated 129
Table 4.12: Summary of all conditions considered on setting K 130
Table 4.13: Comparison between the errors of settings I, J, and K. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated 131
Table 4.14: Summary of all simulation results performed in Chapter 4. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ and $\dot{\rho}$ observations of all sites evaluated 132
Table A.1: Summary of all Matlab functions and scripts used along the PFC 142
Table B.1: Numerical results of satellite state vector (setting A) 143
Table B.2: Numerical results of range observations (setting A) 144
Table B.3: Numerical results of Classical Orbital Elements (setting A) 144
Table B.4: Numerical results of satellite state vector (setting B) 145
Table B.5: Numerical results of range observations (setting B). 146
Table B.6: Numerical results of Classical Orbital Elements (setting B) 146
Table B.7: Numerical results of range-rate observations (setting B) 147
Table B.8: Numerical results of the noise added to range observations at initial epoch (setting B + noise) 148
Table B.9: Numerical results of the noise added to range-rate observations at initial epoch (setting B + noise) 148
Table B.10: Numerical results of satellite state vector (setting B + noise) 148
Table B.11: Numerical results of range observations (setting B + noise) 149
Table B.12: Numerical results of Classical Orbital Elements (setting B + noise) 149
Table B.13: Numerical results of range-rate observations (setting B + noise) 150
Table B.14: Statistical results of the noise added to range observations at initial epoch (setting C) 151
Table B.15: Statistical results of range observations (setting C) 151
Table B.16: Statistical results of satellite state vector (setting C) 152
Table B.17: Statistical results of the noise added to range observations at initial epoch (setting D) 152
Table B.18: Statistical results of the noise added to range-rate observations at initial epoch (setting D) 152
Table B.19: Statistical results of range observations (setting D). 153
Table B.20: Statistical results of range-rate observations (setting D). 153
Table B.21: Statistical results of satellite state vector (setting D) 154
Table B.22: Statistical results of the noise added to range observations at initial epoch (setting E) 154
Table B.23: Statistical results of range observations (setting E) 155
Table B.24: Statistical results of satellite state vector (setting E) 155
Table B.25: Statistical results of the noise added to range observations at initial epoch (setting F) 156
Table B.26: Statistical results of satellite state vector (setting F) 156
Table B.27: Statistical results of range observations (setting F) 157
Table B.28: Statistical results of the noise added to range observations at initial epoch (setting G). 157
Table B.29: Statistical results of the noise added to range-rate observations at initial epoch (setting G) 158
Table B.30: Statistical results of range observations (setting G) 158
Table B.31: Statistical results of range-rate observations (setting G). 159
Table B.32: Statistical results of satellite state vector (setting G) 160
Table C.1: Statistical results of range observations (setting H with 10 observations) 161
Table C.2: \quad Statistical results of satellite state vector (setting H with 10 observations). 162
Table C.3: Statistical results of range observations (setting H with 100 observations) 163
Table C.4: \quad Statistical results of satellite state vector (setting H with 100 observations) 164
Table C.5: Statistical results of range observations (setting H) 165
Table C.6: Statistical results of satellite state vector (setting H) 166
Table C.7: Statistical results of range observations (setting H without weighting matrix) 167
Table C.8: \quad Statistical results of satellite state vector (setting H without weighting matrix). 168
Table C.9: Statistical results of range observations (setting I) 169
Table C.10: Statistical results of range-rate observations (setting I) 170
Table C.11: Statistical results of satellite state vector (setting I) 171
Table C.12: Statistical results of range observations (setting J) 172
Table C.13: Statistical results of satellite state vector (setting J) 173
Table C.14: Statistical results of range observations (setting K) 174
Table C.15: Statistical results of range-rate observations (setting K) 175
Table C.16: Statistical results of satellite state vector (setting K) 176

LIST OF SYMBOLS

a	Semi-major axis
b	Observation matrix
b	Residual matrix
c	Speed of light
d	Interval of time between two consecutive time samples when linear interpolation is performed
e	Eccentricity
e_{\oplus}	Eccentricity of the Earth
f^{-1}	Flattening of the Earth
f_{D}	Frequency Doppler
$f_{\text {i }}$	Instantaneous frequency
$f_{\text {s }}$	Sampling frequency
f_{0}	Carrier frequency
h	Altitude
h	Angular momentum
i	Inclination
k_{0}	Wave number
$m_{\text {sat }}$	Mass of the satellite
m_{\oplus}	Mass of the earth
n	Mean motion
p	Semi-latus rectum
r	Satellite position state vector
$\mathrm{r}_{\text {site }}$	Site position state vector
\bar{r}	Residuals
$t_{\text {f }}$	Final epoch
$t_{\text {max }}$	Maximum time to reach the farthest image pixel
$t_{\text {min }}$	Minimum time to reach the closest image pixel
$t_{\text {p }}$	Time of periapsis passage
$t_{\text {r }}$	Delay between the transmitted and received pulse
t_{0}	Initial epoch
u	Argument of latitude
u_{0}	Argument of latitude at epoch t_{0}
v	Satellite velocity state vector
v_{r}	Radial velocity
$\mathrm{v}_{\text {rel }}$	Relative velocity of the satellite to the site
$\mathrm{v}_{\text {site }}$	Site velocity state vector
$x_{0_{i}}$	Observed values of the dependent variable
$y_{\text {c }}$	Computed values of the dependent variable
y_{0}	Observed values of the dependent variable
A	Partial-derivative matrix
B	Band-limited width of the signal
E	Eccentric anomaly
E / N_{0}	Signal-to-Noise Ratio

G	Antenna gain
G	Gravitational constant
H	Observation partial derivatives
J	Cost function
$J D_{\text {UT1 }}$	Julian Date in UT1
L	Losses
L_{a}	Antenna length
$L_{\text {min }}$	Minimum length of the radar along track direction
$L_{\text {s }}$	Synthetic aperture
M	Mean anomaly
P_{t}	Transmitted peak power
P_{r}	Echo power delivered by the antenna
R	Distance between the radar antenna and target
$R_{\text {eq }}$	Equatorial radius of the Earth
R_{0}	Radar-target closest approach
$S L L_{\text {az }}$	Azimuth cut SLL
$S L L_{\mathrm{rg}}$	Range cut SSL
T	Orbital period
T	Pulse duration
$T_{\text {s }}$	Sample time
$T_{\text {UT1 }}$	Number of Julian centuries from a particular epoch in UT1
W	Weighting matrix
X	State vector
$\widehat{\mathbf{x}}$	Solution, state vector or state space
$\widehat{\mathbf{X}}_{\text {mod }}$	Modified state vector
$\widehat{\mathbf{X}}_{\text {nom }}$	Nominal state vector
α	Oversampling factor
α	RMS time duration
$\alpha_{\text {i }}$	Interpolation factor
β	RMS bandwidth
γ	Linear FM rate
δ_{i}	Difference between modified and nominal state vector (component i)
$\delta \tilde{\mathbf{x}}$	Estimated correction to the state
$\theta_{\text {bw }}$	Azimuth beam width
$\theta_{\text {GMST }}$	Greenwich Mean Sidereal Time
$\theta_{\text {GMST Oh }}$	Greenwich Mean Sidereal Time at 0 h
$\theta_{\text {LST }}$	Local Sidereal Time
λ	Longitude
λ	Radar wavelength
$\lambda_{\text {sat }}$	Initial satellite longitude
$\lambda_{\text {true }}$	True longitude
$\lambda_{\text {true }}^{0}$	True longitude at epoch t_{0}
μ	Gravitational parameter
v	True anomaly
v_{0}	True anomaly at epoch t_{0}
ξ	Error

ρ	Compression factor
ρ	Range measurement/observation
$\boldsymbol{\rho}$	Vector range
$\dot{\rho}$	Range-rate measurement/observation
$\widehat{\boldsymbol{\rho}}$	Unit range vector
σ	RCS of the target
$\sigma_{v_{\mathrm{r}}}$	Standard deviation of range-rate measurements/observations
σ_{ρ}	Standard deviation of range measurements/observations
$\sigma_{f_{D}}^{2}$	Cramer-Rao lower bound on frequency estimation
σ_{τ}^{2}	Cramer-Rao lower bound for delay estimation
τ_{0}	Pulse duration
ϕ	Geodetic latitude
$\phi_{\text {com }}$ pulse	Phase peak of the compressed pulse
ϕ_{gc}	Geocentric latitude
$\phi_{\text {peak }}$	Pulse phase peak
$\phi_{\text {pulse }}$	Pulse phase
$\phi_{\text {sat }}$	Satellite geodetic latitude
ω	Argument of periapsis
ω_{0}	Carrier angular frequency
ω_{\oplus}	Mean angular rotation of the Earth
$\widetilde{\omega}_{\text {true }}$	True longitude of periapsis
Δf	Bandwidth
Δt	Interval of time between two consecutive time samples
Δx	Theoretical azimuth resolution
Δx^{\prime}	Nominal azimuth resolution
Δx^{\prime}	Approximate azimuth resolution
ΔR	Theoretical range resolution
ΔR^{\prime}	Approximate range resolution
$\Delta U T 1$	Time difference between UT1 and UTC at one particular epoch
$\Delta \rho$	Range resolution
$\boldsymbol{\Phi}$	Matrix of variational equations
Ω	Right ascension of the ascending node
r	Vernal equinox

GEOSAR Mission

1.1. GEOSAR MISSION: APPLICATIONS

1.2. SYNTHETIC APERTURE

1.3. L-BAND AND X-BAND RADARS
1.4. GEOSAR MISSION LIMITATIONS
1.5. RADAR OBSERVABLLES AND PROPOSED SYSTEMS TO OB'TAIN 'THEM

1.6. PROJECT OBJECTIVE

(2)) telecom

GEOstationary Synthetic Aperture Radar (GEOSAR) missions are presently being studied in order to provide continuous monitoring of the Earth on a continental scale (Tomiyasu, 1983). Nowadays, LEOSAR (Low Earth Orbit Synthetic Aperture Radar) missions offer Earth imaging, but they cannot provide continuous information about events that suffers rapid changes in short periods of time (LEO satellites have a revisit time of 11-14 days). This permanent monitoring will allow GEOSAR missions to cover a new set of applications that will be discussed in this chapter (Wadge et al., 2014).

GEOSAR missions are based on operating a radar payload hosted by a communication satellite in a geostationary orbit. One can think that a satellite located in a geostationary orbit remains fixed from an Earth observer. In practice, residual inclination and eccentricity of the satellite orbit results in a small elliptical motion relative to Earth. This fact will allow the radar to form the synthetic aperture required to obtain images. The shape of this synthetic aperture and other important parameters of GEOSAR missions will be explained in this chapter.

As the radar payload will be placed on a platform over 42000 km from the Earth's centre, some limitations will affect the design of the system in order to get well focused images. One of these limitations arises from the fact that the satellite orbit is not known with the required precision. That lack of knowledge will affect the range history of the signal received by the radar, and therefore will produce image defocusing. In this chapter, the main limitations of GEOSAR missions will be described paying more attention on the limitation about the satellite orbit determination. In this way, the starting point of this document will be introduced.

Once the mission has been introduced and in order to conclude the chapter, the objective of this project will be explained as well as the main aspects of the following chapters will be discussed.

1.1. GEOSAR MISSION: APPLICATIONS

The major scientific advantage in geostationary radar is the ability to provide an early warning and monitor short-lived (less than a day) phenomena that would otherwise be missed, aliased or confused with noise. Many of such short-lived phenomena represent hazards at the Earth's surface (e.g., earthquakes, volcanic eruptions, flooding), and others may be hazardous only at certain times (e.g., landslides, urban subsidence). On the other hand, there are some phenomena that do not entail a risk at the Earth's surface but require short-interval radar measurements in order to reveal valuable information (e.g., snow mass, agricultural events).

Hereafter, the main applications of GEOSAR missions will be listed and briefly explained.

Atmospheric Phase Screen (APS)

In SAR acquisition, particularly in interferometry, the APS is an undesired artefact that affects the target phase estimation. The APS variations are related to the changes in the atmospheric properties such as water vapour content, temperature and pressure. These parameters cause a change in the refractivity index, mostly in the tropospheric layer, and produce an undesired atmospheric phase delay.

In typical LEOSAR missions, with integration times around 1 s , the atmospheric phase map is considered invariant during the acquisition. However, in GEOSAR missions, the atmospheric phase decorrelation during the integration time (up to hours) must be characterized and compensated from the acquired raw data in order to avoid image defocusing.

In Figure 1.1, an example of an input phase map and the retrieved one is shown (Ruiz Rodon et al., 2014).

Figure 1.1: Phase map estimation considering a grid of stable targets with APS correlation of 2 km .

The APS data can be also used in Numerical Weather Prediction (NWP) by means of the information about water vapour content in the atmosphere (Monti Guarnieri et al., 2011).

Flooding

Hydrological flood models can be run to predict inundation if the topography, the water flux, the nature of the surface, and the flow paths taken are known. Images showing the flood boundary every 2 hours would be a major advance on current and planned capabilities, though they would not be available at all times. Thus, this boundary information could then be assimilated into hydrological models.

Hydrology

Soil moisture is an essential climate variable with major satellites dedicated to its measurement. However, these measurements are too coarse and infrequent to record good quality data from precipitation events. A backscatter-based retrieval of soil moisture at a scale of $1 \mathrm{~km} / 1 \mathrm{~h}$ is required to do this. Therefore, continuous monitoring is needed.

Agriculture

Field-to-field comparisons when farming activities will be provided by using geostationary radar. Such data would feed into farming-centric concerns and management on the one hand, and land surface vegetation models and hydrological, small catchment-scale models on the other.

Cryosphere

The motion of glaciers can be measured by the advance or retreat of the glacier front and by the vectors of motion on the flow surface. The speed of many glaciers (metres/day) cannot be daily monitored by LEO satellites. In addition, the much more frequent observations from geostationary radar will enable studies of even fast moving glaciers to be made.

With two radars using different frequencies, the snow mass can also be estimated. They could be together used to retrieve the mass of dry snow and the location of the region over which snow was melting.

Earthquakes

The damage done to buildings when an earthquake occurs (the main determinant of deaths and injuries) may take a long time to discover due to a lack of communications, remoteness and darkness. On the other hand, the elastic part of the Earth's crust slowly deforms over distances of hundreds of kilometres between earthquakes. Mapping these phenomena will be important in order to support the emergency services response and help forecast future major earthquakes.

Volcanoes

LEO satellites cannot capture the complex pattern of deformation that magma makes prior to and during an eruption. To understand the location, motion and threat posed of lava flows, pyroclastic flows and ash falls is vital to advice the civil authorities on evacuations and other mitigation measures.

In Figure 1.2, an example of displacement due to volcanic activity in Tenerife (Canary Islands) is shown. This image was taken by ENVISAT (Environmental Satellite) satellite during 2005-2008.

Figure 1.2: Displacement due to volcanic activity in Tenerife (2005-2008).

Landslides

Continuous monitoring and detection of soil displacements would help to asses and prevent landslides. After debris avalanches and landslides have produced, a timely map covering an area from hundreds to thousands of square kilometres in extent is required. Some individual landslides can be monitored by ground-based InSAR (Interferometric Synthetic Aperture Radar) but regional surveillance requires satellite-based methods.

Subsidence

The removal of liquids from the pore spaces of rocks or the rocks themselves cause the surrounding rock mass to subside. LEO radars are good at monitoring the long-term secular deformation signal from regional subsidence; however, the more rapidly accelerating deformation due to sinkhole formation (e.g., in building structures) is missed. This local deformation will be measured by means of geostationary radar.

1.2. SYNTHETIC APERTURE

The Geostationary Earth Orbit (GEO) is a circular orbit located in the Earth's equatorial plane with a radius over 42000 km from the Earth's centre. The peculiarity of this orbit is that a satellite placed into this orbit has a period of one sidereal day (i.e. the satellite follows the Earth's rotation about its axis). Hence, the geostationary orbit clearly offers unique advantages for global communications. Its primary attribute is that the sub-satellite point is fixed at a selected longitude with 0° latitude. GEO satellites may therefore provide fixed-point to fixed-point communications to any site within the beam of their antennas. In this way, an almost complete global coverage (except for the intermediate polar regions) may be achieved from merely three satellites, and with no need for the ground antenna to switch between satellites.

However, perturbations such as the force exerted by the Earth's equatorial bulge, the solar radiation pressure and the gravitational attraction of the Sun and the Moon affect the satellite trajectory in the GEO orbit. Due to these perturbations, the satellite orbit is no longer circular and equatorial. A slight eccentricity and inclination appear in the orbit that both have to be corrected from time to time in order to keep the satellite into the GEO orbit.

GEOSAR missions can take benefit of this slightly elliptical orbit in order to form the synthetic aperture needed to obtain images (Ruiz Rodon et al., 2014). In Figure 1.3, an example of this elliptical movement for an observer on the Earth's surface is shown. The satellite used in the figure is located in $19.2^{\circ} \mathrm{E}$ longitude to cover, for example, Europe. Thus, the green line of the satellite orbit could be used as a synthetic aperture in order to obtain images from the European region.

Up to now, it has only been described the advantages of placing a radar payload in a GEO orbit; however, as the radar will be far away from the Earth's surface, some limitations must be overcome (see Section 1.4). Before seeing them, another important aspect of GEOSAR missions will be explained in the next section.

Figure 1.3: Typical GEO satellite-Earth relative motion. A portion of the track (in green) can be used to form a radar synthetic aperture.

1.3. L-BAND AND X-BAND RADARS

A dual band GEOSAR mission has been recently proposed: one working at L-band and the other at Xband (Wadge et al., 2014).

The L-band wide coverage beam will offer continental coverage ($\sim 3000 \mathrm{~km}$) with coarse 1 km resolution considering an integration time of 20-30 minutes. Thus, low resolution water vapour maps will be obtained in order to provide interesting meteorological information for weather forecast. At the same time, these atmospheric maps will be important in order to compensate the tropospheric delay in the higher resolution X-band images acquisition. As it will be explained in Section 1.4 in more detail, GEOSAR missions will need long integration time (up to hours) in order to obtain higher resolution images. Under these conditions, the atmosphere cannot be considered invariant. The L-band radar will consequently have to monitor continuously the atmosphere in order to retrieve its temporal evolution (Ruiz Rodon et al., 2012).

On the other hand, the X-band radar will be used to cover smaller areas ($\sim 500 \mathrm{~km}$). With observation times of few hours, medium resolution images (10-20 metres) will be obtained.

In Figure 1.4, the geometry of the system acquisition in GEOSAR missions, for example over Europe, is shown. The red circle represents the L-band beam coverage covering most of Europe, whereas the yellow circles show the X-band beam coverage covering smaller areas.

Figure 1.4: GEOSAR L-band beam coverage (red circle) and X-band beam coverage (yellow circles).

1.4. GEOSAR MISSION LIMITIATIONS

Once the advantages and suitability of GEOSAR missions have been explained, let us consider the difficulties and limitations of the mission.

As it has been said, GEOSAR missions will place a radar payload in a satellite platform of a GEO orbit. The radar payload will consequently be far away from the Earth's surface receiving a low power echo from the targets and resulting in a low Signal-to-Noise Ratio (SNR). In order to increase the SNR, a first option could be to increase the transmitted power and use larger antennas; however, this fact would suppose higher development and exploitation costs. Therefore, the possibility to launch GEOSAR missions working with typical LEOSAR power and antenna parameters is being studied. In this case, SNR can be increased using along-track oversampling with a PRF (Pulse Repetition Frequency) well above the Doppler bandwidth, and operating the radar with a long integration time.

In order to obtain medium resolution images (10-20 metres) by means of the X-band radar, the integration time should be increased up to hours; thus, the illumination energy can substantially increase. However, what is the problem of using this long integration time? During this time, the atmosphere changes and radar signals can be decorrelated significantly. The effect of the atmosphere on radar signals cannot be considered invariant as it is in LEOSAR missions where the integration time is around 1 s . The temporal evolution of the atmosphere must consequently be compensated before doing the azimuth SAR compression in order to avoid image defocusing. This atmosphere retrieval will be performed by means of the atmospheric phase screen maps obtained by using the Lband radar (Ruiz Rodon et al., 2013).

Besides the APS, several sources affect the along-track phase history in GEOSAR missions causing unwanted fluctuations which may result in image defocusing. Thus, the main expected contributors to azimuth phase noise are:

- Atmospheric Phase Screen.
- Radar carrier frequency drifts.
- Satellite attitude instabilities and structural vibration.
- Orbit determination errors.

In order to obtain an accurate image of the scene after SAR processing, the range history of every point of the scene must be known. This fact requires a high precision orbit modelling and the use of suitable techniques for atmospheric phase screen compensation. The other influencing factors such as carrier frequency drifts or satellite attitude or structural fluctuations must be controlled or compensated.

It has to be considered that the processes responsible of the synthetic aperture phase changes are slow in comparison to the pulse duration. For this reason, no degradation is expected in the processor pulse compression task in GEOSAR missions.

The usual orbit modelling requirements to manage repositioning of satellites in GEO orbits are well beyond of the exposed orbital determination requirements for this mission. Such expected precision is in the order of magnitude of the radar wavelength. As GEOSAR missions will work in the X-band, the expected errors in the range history of every location under the satellite L-band beam coverage must be less than or equal to centimetres during the radar synthetic aperture.

The methods and techniques used to find such precision are discussed later in the following chapters. First, it has to be explained the radar measurements that are going to be used in order to determine the satellite orbit in GEOSAR missions. Such measurements will be the starting point to develop all theory of this document.

1.5. RADAR OBSERVABLES AND PROPOSED SYSTEMS 'TO OB'TAIN THEM

Assuming a group of suitable radar reflectors are deployed at well-known Earth surface positions, radar observables can be of three types:

- Pointing Angles: Direction of arrival of reflected signals (with respect to the radar antenna using an appropriate reference system). This direction is defined in the 3 dimension space by a couple of angles.
- Range: Distance from radar antenna to reflectors deployed on the Earth's surface, computed from the echo time delay.
- Range-rate: Line-of-sight radial velocity component of the relative motion of reflectors as observed by the radar antenna. It can be easily derived from the Doppler shift measured from the received signal.

Two possible systems in order to obtain precise measurements suitable for accurate orbit determination are presently being studied in GEOSAR missions. First, a group of Active Radar Calibrators (ARCs) will provide range and range-rate measurements by means of a well-located transponders network. These transponders will act as active reflectors by using the known transmitted signal of the radar (Casado, 2016). On the other hand, an alternative or complementary technique based on ground interferometric measurements of the radar transmissions is also being studied (Martín, 2016). Such system will provide high resolution angular data using a VLBI (Very Large Baseline Interferometer) configuration.

This document will study the precise orbit determination from range and range-rate measurements. In Figure 1.5, a block diagram of a proposed ARC system for GEOSAR missions is shown. Such system consists in a linear transponder that includes a receiver antenna, a high gain amplifier and a transmitter antenna plus complementary electronics. Consult Casado (2016) for further information about the ARC system.

Figure 1.5: Block diagram of a proposed ARC system for GEOSAR missions.

1.6. PROJEC'I OB.JECTIVE

The aim of this project is to perform a first study on the satellite determination methods and techniques available in the literature in order to calculate the satellite orbit of GEOSAR mission from range and range-rate measurements. These methods or techniques must consider the requirements of the mission, so that the expected relative errors in the range history of every location under the satellite L-band beam coverage must be less than or equal to centimetres (i.e., the radar X-band wavelength). It
is worth mentioning that bias errors in range history have no impact on the synthetic aperture focusing, which means high precision is needed but not high accuracy. In addition, autofocus synthetic aperture techniques can be used to refine the range history predicted from the orbital model. Taking into account the small magnitude of orbital perturbations, in practice, the precision requirement could be relaxed in the order of magnitude of tens of centimetres.

In the following chapters, the methodology to determine the satellite orbit from range and rangerate measurements will be explained. This methodology will be accompanied by theoretical and practical results obtained from Matlab simulations. The errors found in each section will also be discussed since the magnitude of these errors will play a major role on the focused image acquisition. In this way, the structure of this document has been designed as follows.

Chapter 2 will introduce the Synthetic Aperture Radar to the reader. It will explain the reason why the synthetic aperture is needed. In addition, two basic examples will illustrate how a SAR forms a well-focused image from the received echoes and the accurate knowledge of the acquisition geometry. Then, this chapter will conclude including a third example reproducing the GEOSAR data acquisition case over the city of Barcelona (Spain).

Chapter 3 will begin the introduction and study of the initial orbit determination methods from range and range-rate measurements given by an ideal ARC system. As there is no real data available yet, an ideal simulated system will be designed in order to provide ideal data without considering any kind of perturbations involving the satellite movement around the Earth (i.e., only taking into account the interaction between the satellite and the Earth). Once the ideal data is achieved, the precision of the initial orbit determination methods evaluated will be assessed by Matlab simulations considering two different environments: a) initial range and range-rate data completely ideal, and b) adding expected noise to such initial data. All the results within this chapter will be shown by means of numerical results and the use of different plots.

Chapter 4 will conclude the explanation of orbit determination methods and techniques of this document introducing the Least Squares technique. The methods presented in Chapter 3 do not fulfil the GEOSAR mission requirements, so that there is the need to study the use of differential correction techniques in order to increase the precision of the satellite orbit determination. As in Chapter 3, the theoretical fundamentals of such technique will be accompanied by numerical results and different plots performed by Matlab simulations in order to show the Least Squares feasibility on GEOSAR mission.

Finally, the conclusions and future work of this document will be addressed. Some appendices are also added, so that the reader may have a complete description of the results obtained and the Matlab functions involved in all simulations performed throughout this document.

Synthetic Aperture Radar Techniques. Examples

2.1. SYNTHETIC APERTURE RADAR (SAR) INTRODUCTION

2.2. PULSE COMPRESSION EXAMPLE
2.3. SAR PROCESSOR EXANPLE
2.4. REAL RANGE HISTORY EXAMPLE
(2) telecom

This chapter aims to provide the fundamental basis of a Synthetic Aperture Radar (SAR) and some techniques that it uses in order to form images. In this way, the chapter is organised as follows. Section 2.1 will introduce the reader to SAR explaining the basic operation principles. Then, two basic examples related to SAR are shown in Sections 2.2 and 2.3 in order to complement the explanations done in Section 2.1. Finally, Section 2.4 will show a real range history example between a satellite located in a geostationary orbit and one site placed over the Earth's surface. Thus, the reader will be familiarized with the main aspects involved in the SAR image acquisition.

The reader may consult Cumming and Wong (2005) in order to complete all explanations given into this chapter about Synthetic Aperture Radar and related techniques.

2.1. SYNTHETIC APERTURE RADAR (SAR) INTRODUCTION

The objective of Synthetic Aperture Radar is to obtain high-resolution images. This resolution for Earth Observation applications is in the order of magnitude of metres both in distance (or range) resolution and lateral (or azimuth) resolution.

The radar can easily obtain metre resolutions in distance since it implies working with an appropriate pulse bandwidth and matched filter. In addition, distance resolution is not degraded by the operating distance (i.e., the same distance resolution is obtained whether the radar is closer or further to the scene where the radar is taking an image). However, problems appear when considering lateral resolution. Such resolution is determined by the antenna beam-width projected to the ground, and therefore lateral resolution degrades with the operating distance. The further the radar is from the scene, the coarser the lateral resolution will be. For instance, considering the radar at a distance of hundreds of kilometres, the achieved lateral resolution would be in the order of magnitude of kilometres in spite of using large antennas in the order of 10 m long. Thus, there is a need to improve the lateral resolution in order to obtain lateral or cross-range resolutions in the order of metres, required for remote sensing applications from aircraft and satellites.

Reducing the lateral beam-width of an antenna can be realised by replicating a small antenna at regular intervals. Thus, an array of antennas may be built with much larger dimensions compared to a single element antenna. However, such big antennas cannot be placed in a satellite since an array of kilometres of length will be needed in order to obtain metric resolutions.

In order to circumvent this limitation, if the radar is installed on a moving platform it is possible to record the radar echoes obtained with a single antenna along the track in order to combine them later on with appropriate focusing weights. This array is called synthetic array since it does not exist physically. Therefore, high radar resolutions can be obtained by using a small antenna and large synthetic apertures. This kind of instruments is named Synthetic Aperture Radars (SAR).

The synthetic aperture is usually limited by the antenna beam-width, which results in a synthetic aperture length proportional to scene to radar distance. This fact will compensate the distance impact over the radar lateral resolution discussed above.

In order to form high-resolution images, two orthogonal dimensions of the imaged surface must be sensed with similar spatial resolution. Using broadband transmitted pulses and matched receiving filters, radars can maximize both Signal-to-Noise Ratio (SNR) and time-delay resolution in the echo waveform. Since the time delay of each scene scattering object is proportional to the distance from the radar, the required range resolution orthogonal to the lateral synthetic aperture resolution can be obtained with appropriate transmitted pulse design and subsequent filtering in the receiver.

The Chirp signal is the most used radar pulse in SAR systems in order to obtain high range resolution images. It has the particularity that both pulse time duration and bandwidth can be very large resulting in a high-energy pulse. By processing a Chirp with a matched filter, a narrow impulse is obtained, being ideal for high range resolution applications. This technique is known as pulse compression.

In order to form the synthetic aperture, the pulse transmission is repeated regularly during the flight, and the echoes stored in a 2D matrix are called raw-data. The matrix dimensions are the echo time delay and flight distance (also called slow-time). Every point of the scene generates a twodimensional holographic patch on the raw-data matrix, which is not directly interpretable. From this hologram, a focused image is obtained by means of a SAR processor, which performs two compressions on the received raw-data: a) pulse range compression, and b) azimuth compression (see Figure 2.20).

The first compression is implemented along the range direction. It uses a matched filter in order to achieve the best possible SNR of the signal at the output of the filter. This matched filter is the optimal one and provides the signal autocorrelation at its output. The following section will illustrate an example of pulse compression considering a static radar and a point target. Thus, the reader will be able to understand better how the pulse compression works since mathematical formulation and intermediate results are given.

The second compression of SAR processor is performed in a similar way to the previous one but now along the azimuth direction. In this case, the signal is compressed by using a SAR algorithm. Section 2.3 will show a basic and complete SAR processor example. In this case, it has been considered to use a Back Propagation Algorithm (BPA) in order to address the azimuth compression due to its flexibility (Soumekh, 1999). BPA, compared to other algorithms, is suitable for synthetic aperture curved tracks, which is the case of GEOSAR mission. As in the pulse compression example, Section 2.3 will provide all mathematical formulation used and will show many figures in order to illustrate the geometry of the example and the intermediate results obtained. In this way, the reader will have a better understanding of how a SAR processor works.

Once the bases of the SAR processor have been explained, Figure 2.1 illustrates a real SAR image of Barcelona city (Spain), which is a composite of ERS (European Remote Sensing satellite) and ENVISAT (Environmental Satellite) satellites.

Figure 2.1: SAR image of Barcelona city (Spain).

2.2. PULSE COMPRESSION EXAMPLE

We have a target at distance R from a radar antenna and we want to derive and plot the matched filter output after a pulse compression is performed. In Figure 2.2, we can see the sketch of the example.

The transmitted signal $s_{e}(t)$ is a chirp pulse given by

$$
\begin{equation*}
s_{\mathrm{e}}(t)=\operatorname{Re}\left\{\prod\left(\frac{t}{\tau_{0}}\right) e^{j 2 \pi f_{0} t} e^{j \pi \gamma t^{2}}\right\} \tag{2.1}
\end{equation*}
$$

where τ_{0} is the pulse duration, f_{0} is the carrier frequency, and γ is the linear $F M$ rate.
If we now write the low pass equivalent of the transmitted signal (i.e., we get rid of the carrier term $e^{j 2 \pi f_{0} t}$), Equation (2.1) becomes

$$
\begin{equation*}
\widetilde{s_{\mathrm{e}}}(t)=\prod\left(\frac{t}{\tau_{0}}\right) e^{j \pi \gamma t^{2}} \tag{2.2}
\end{equation*}
$$

Figure 2.2: (a) Transmitted signal $s_{\mathrm{e}}(t)$, and (b) Target echo $s_{\mathrm{r}}(t)$ and matched filter output $y(t)$.

Assuming an isolated point target, the target echo received on the radar can be expressed as

$$
\begin{equation*}
s_{\mathrm{r}}(t)=\operatorname{Re}\left\{\prod\left(\frac{t-t_{\mathrm{r}}}{\tau_{0}}\right) e^{j 2 \pi f_{0}\left(t-t_{\mathrm{r}}\right)} e^{j \pi \gamma\left(t-t_{\mathrm{r}}\right)^{2}}\right\} \tag{2.3}
\end{equation*}
$$

where t_{r} is the delay between the transmitted and received pulse given by

$$
\begin{equation*}
t_{\mathrm{r}}=\frac{2 R}{c} \tag{2.4}
\end{equation*}
$$

where c is the speed of light.

If we now write Equation (2.3) on its low pass equivalent expression, we obtain

$$
\begin{equation*}
\widetilde{s_{\mathrm{r}}}(t)=\prod\left(\frac{t-t_{\mathrm{r}}}{\tau_{0}}\right) e^{-j 2 \pi f_{0} t_{\mathrm{r}}} e^{j \pi \gamma\left(t-t_{\mathrm{r}}\right)^{2}}=\prod\left(\frac{t-\frac{2 R}{c}}{\tau_{0}}\right) e^{-j 2 k_{0} R} e^{j \pi \gamma\left(t-\frac{2 R}{c}\right)^{2}} \tag{2.5}
\end{equation*}
$$

where k_{0} is the wave number given by

$$
\begin{equation*}
k_{0}=\frac{\omega_{0}}{c}=\frac{2 \pi f_{0}}{\lambda_{0} f_{0}}=\frac{2 \pi}{\lambda_{0}} \tag{2.6}
\end{equation*}
$$

where λ_{0} is the carrier wavelength.

The matched filter of the receiver performs the pulse compression. Hence, the matched filter output $\tilde{y}(t)$ is simply the convolution between the target echo and matched filter.

$$
\widetilde{s_{\mathrm{r}}}(t) \longrightarrow \widetilde{h_{\mathrm{m}}}(t) \longrightarrow \tilde{y}(t)
$$

Then, the matched filter output can be expressed as

$$
\begin{equation*}
\tilde{y}(t)=\frac{1}{2} \widetilde{s_{\mathrm{r}}}(t) * \widetilde{h_{\mathrm{m}}}(t) \tag{2.7}
\end{equation*}
$$

telecom
BCN
where the matched filter $\widetilde{h_{\mathrm{m}}}(t)$ is the time-reversed, complex conjugate of the transmitted signal $\widetilde{s_{\mathrm{e}}}(t)$

$$
\begin{equation*}
\widetilde{h_{\mathrm{m}}}(t)={\widetilde{s_{\mathrm{e}}}}^{*}(-t)=\prod\left(\frac{t}{\tau_{0}}\right) e^{-j \pi \gamma t^{2}} \tag{2.8}
\end{equation*}
$$

Note that the convolution is multiplied by $1 / 2$ because it is shown on low pass equivalent terms.

A convolution is computationally costly since an integral must be computed for every t.

$$
\begin{equation*}
\tilde{y}(t)=\frac{1}{2} \int \widetilde{s_{\mathrm{r}}}(\tau) \widetilde{h_{\mathrm{m}}}(t-\tau) d \tau \tag{2.9}
\end{equation*}
$$

Thus, it is appropriate to obtain the filter output in the spectral domain (fast convolution technique) in order to gain computational efficiency,

$$
\begin{gather*}
\widetilde{S_{\mathrm{r}}}(f) \longrightarrow \widetilde{H_{\mathrm{m}}}(f) \longrightarrow \tilde{Y}(f) \\
\tilde{Y}(f)=\frac{1}{2} \widetilde{S_{\mathrm{r}}}(f) \widetilde{H_{\mathrm{m}}}(f) \tag{2.10}
\end{gather*}
$$

where the matched filter spectrum $\widetilde{H_{\mathrm{m}}}(f)$ is the complex conjugate of the transmitted signal spectrum.

$$
\begin{equation*}
\widetilde{H_{\mathrm{m}}}(f)=\mathcal{F}\left\{\widetilde{\mathrm{S}_{\mathrm{e}}}{ }^{*}(-t)\right\}={\widetilde{S_{\mathrm{e}}}}^{*}(f) \tag{2.11}
\end{equation*}
$$

Finally, to derive the expression of the matched filter output in the time domain, an inverse Fourier transform must be performed.

$$
\begin{equation*}
\tilde{y}(t)=\mathcal{F}^{-1}\{\tilde{Y}(f)\}=\mathcal{F}^{-1}\left\{\frac{1}{2} \widetilde{S_{\mathrm{r}}}(f) \widetilde{H_{\mathrm{m}}}(f)\right\} \tag{2.12}
\end{equation*}
$$

Radar and target specifications:

- Carrier frequency: $f_{0}=9.65 \mathrm{GHz}(X-B a n d ~ r a d a r)$
- Pulse duration: $\tau_{0}=100 \mathrm{~ns}$
- Bandwidth: $\Delta f=100 \mathrm{MHz}$
- Linear FM rate: $\gamma=\frac{\Delta f}{\tau_{0}}=\frac{100 \cdot 10^{6} \mathrm{~Hz}}{100 \cdot 10^{-9} \mathrm{~s}}=10^{15} \frac{\mathrm{~Hz}}{\mathrm{~s}}$
- Compression factor: $\rho=\Delta f \tau_{0}=100 \cdot 10^{6} \mathrm{~Hz} \cdot 100 \cdot 10^{-9} \mathrm{~s}=10$
- Target distance: $R=30 \mathrm{~m}$
- Transmitted peak power: $P_{\mathrm{t}}=1 \mathrm{~W}$
- Echo power delivered by the antenna: $\quad P_{\mathrm{r}}=\frac{P_{\mathrm{t}} G^{2} \sigma \lambda^{2}}{(4 \pi)^{3} R^{4} L}$
- Target RCS (Radar Cross Section): $\sigma=1 \mathrm{~m}^{2}$
- Antenna gain: $G=20 \mathrm{~dB}$
- Losses: $L=6 \mathrm{~dB}$

Hereafter, the script steps are provided:

1. Declare constants.
2. Define the time step which has to satisfy Nyquist, so that $T_{\max }=\frac{1}{B}=\frac{1}{\Delta f}$. Oversample the sampling frequency $\times 2$ or $\times 4$ (better) for better performance.
3. Obtain the transmitted pulse $\widetilde{\mathrm{s}_{\mathrm{e}}}(t)$ and plot its amplitude and phase.
4. Obtain and plot the instantaneous frequency of the transmitted pulse to see the FM linear sweep. $f_{\mathrm{i}}(t)=\frac{1}{2 \pi} \frac{d \phi_{\text {pulse }}}{d t}$.
5. Obtain and plot the spectrum of the transmitted signal. $\widetilde{S_{\mathrm{e}}}(f)=\mathrm{FFT}\left\{\widetilde{\mathrm{S}_{\mathrm{e}}}(t)\right\}$.
6. Obtain the matched filter in the frequency domain and plot its amplitude and phase. $\widetilde{H_{\mathrm{m}}}(f)=$ $\widetilde{S}_{\mathrm{e}}{ }^{*}(f)$. Check whether the phase is inverted with respect to the pulse phase.
7. Obtain and plot the radar matched filter output $\tilde{y}(t)$ and compare it to Figure 2.3 (Levanon, 1988: Figure 7.4).
8. Check the phase at the peak of the compressed pulse. It should be $-2 k_{0} R$.

Figure 2.3: A zero-Doppler cut of the ambiguity function of a linear FM pulse with $\rho=10$.

SOLUTION:

A Matlab script has been used in order to solve this example. Here, in this solution, the main results obtained will be shown as well as the main steps to achieve them will also be explained.

Once the radar and target parameters have been defined into the script, the following step is to define the sample time. We know that Nyquist must be satisfied and it must be done with an oversampling factor $\alpha=4$. Since the sample time is just the inverse of the sampling frequency,

$$
\begin{equation*}
f_{\mathrm{s}}=\alpha B=\alpha \Delta f=4 \cdot 100 \cdot 10^{6} \mathrm{~Hz}=400 \mathrm{MHz} \tag{2.13}
\end{equation*}
$$

we can obtain the sample time as

$$
\begin{equation*}
T_{\mathrm{s}}=\frac{1}{f_{\mathrm{s}}}=\frac{1}{400 \cdot 10^{6} \mathrm{~Hz}}=2.5 \mathrm{~ns} \tag{2.14}
\end{equation*}
$$

From this sample time, we can build a time axis large enough to cover the transmitted pulse and the target echo. We can now plot the amplitude and phase of the low pass equivalent of the transmitted signal via Equation (2.2) (see Figure 2.4).

Figure 2.4: Amplitude and phase of the low pass equivalent of the transmitted signal.

Note that the amplitude and phase have been plotted in a centred format to provide a better view of the results. However, all the calculations done into the script have been carried out using an FFT format.

In order to obtain the instantaneous frequency, we must solve the following derivative

$$
\begin{equation*}
f_{\mathrm{i}}(t)=\frac{1}{2 \pi} \frac{d \phi_{\text {pulse }}}{d t} \tag{2.15}
\end{equation*}
$$

where $\phi_{\text {pulse }}=\pi \gamma t^{2}$. Thus,

$$
\begin{equation*}
f_{\mathrm{i}}(t)=\frac{1}{2 \pi} \frac{d\left(\pi \gamma t^{2}\right)}{d t}=\frac{1}{2 \pi} \cdot 2 \pi \gamma t=\gamma t \tag{2.16}
\end{equation*}
$$

In Figure 2.5, we can see the shape of the instantaneous frequency along the transmitted signal. If we zoom in the pulse area, we can notice the linear behaviour of the transmitted pulse. The straight
line of slope γ sweeps all bandwidth Δf of the transmitted pulse during the pulse duration τ_{0} (see Figure 2.6).

Figure 2.5: Instantaneous frequency of the transmitted signal.

Figure 2.6: Instantaneous frequency of the transmitted signal (zoom in).

Now, we need to obtain the matched filter. Therefore, we have to compute the transmitted signal spectrum by using the Fast Fourier Transform (FFT) in Equation (2.2).

$$
\begin{equation*}
\widetilde{S_{\mathrm{e}}}(f)=\operatorname{FFT}\left\{\widetilde{S_{\mathrm{e}}}(t)\right\} \tag{2.17}
\end{equation*}
$$

We can see the amplitude and phase of the transmitted signal spectrum in Figure 2.7.

Figure 2.7: Amplitude and phase of the transmitted signal spectrum.

From Equation (2.11), we can compute the matched filter in the frequency domain. Thus, the amplitude and phase of the matched filter spectrum are plotted in Figure 2.8.

Figure 2.8: Amplitude and phase of the matched filter spectrum.

Note that the matched filter phase (from Figure 2.8) is inverted with respect to the phase of the transmitted signal spectrum.

At this point, we can compute the radar matched filter output from Equation (2.12) and plot its amplitude (see Figure 2.9). Before using Equation (2.12), you must take into account to compute the spectrum of the target echo.

Figure 2.9: Amplitude of the radar matched filter output.

In order to compare the result obtained in Figure 2.9 to Figure 2.3, the radar matched filter output has been normalized with respect to its maximum value (peak value), and centred to the time origin (i.e., the delay between the transmitted and received signals has been removed). Thus, you can see the resulting signal in Figure 2.10.

Figure 2.10: Normalized and centred amplitude of the radar matched filter output.

From Figures 2.10 and 2.3., we can see the similarity between both signals, which validates the calculations.

Finally, we have to check whether the phase at the peak of the compressed pulse is equal to the theoretical phase (i.e., $-2 k_{0} R$). Hence, let us first compute this theoretical phase.

$$
\phi_{\text {peak }}=-2 k_{0} R=-2 \frac{2 \pi f_{0}}{c} R=-2 \cdot \frac{2 \cdot \pi \cdot 9.65 \cdot 10^{9} \mathrm{~Hz}}{3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}} \cdot 30 \mathrm{~m} \approx 12126.55 \mathrm{rad}
$$

In order to compare this result to the phase at the peak of the compressed pulse, we have to compute $\phi_{\text {peak }}$ modulo 2π. Thus, the theoretical phase becomes $\phi_{\text {peak }}=0 \mathrm{rad}$, and therefore, as the phase of the compressed pulse is $\phi_{\text {com.pulse }}=2.3 \cdot 10^{-13} \mathrm{rad}$ (result given in Matlab), we can conclude that both phases are practically equal.

Since the signal obtained in Figure 2.10 has an abrupt shape compared to the signal of Figure 2.3, make use of the interpolation to smooth the radar matched filter output by means of zero padding its spectrum. Use an interpolation factor $\alpha_{i}=8$.

SOLUTION:

In order to obtain the interpolated radar matched filter output, we have to define a new vector of the radar matched filter output spectrum (e.g., Y^{\prime}). The length of this new vector must be α_{i} times the length of the same vector without interpolation (e.g., Y) used in the previous section. Then, vector Y^{\prime} must be filled of zeros. And, finally, the first half of vector Y must be copied at the beginning of vector Y^{\prime}, and the second half of vector Y must be copied at the end of vector Y^{\prime}. In this way, the zero padding interpolation has been performed.

After computing the inverse Fourier transform of Y^{\prime}, we can obtain and plot the interpolated radar matched filter output (see Figure 2.11).

Figure 2.11: Amplitude of the interpolated radar matched filter output.

Now, we can proceed as the previous section in order to plot the radar matched filter output on a normalized and centred way. Hence,

Figure 2.12: Amplitude of the interpolated, normalized and centred radar matched filter output.

In Figure 2.12, we can note that the signal has smoothed with respect to the signal from Figure 2.10. Now, the signals of Figures 2.12 and 2.3 are practically equal.

In order to conclude this example, we want to reduce the side lobes of the radar matched filter output. Therefore, we suggest adding a window in the radar receiver. Do it for two different windows (e.g., a triangular window and a Hanning window).

SOLUTION:

The suggested solution is to multiply the matched filter by the window in the frequency domain to achieve a new filter $\widetilde{H^{\prime}}(f)$. We will use this new filter, which will not be the matched filter, in order to obtain the radar filter output $\widetilde{y^{\prime}}(t)$ from the target echo $\widetilde{s_{\mathrm{r}}}(t)$.

In Figures 2.13 and 2.14, we can see the amplitudes of: (a) the matched filter, (b) the window used in each case, and (c) the resulting filter.

Finally, the radar filter outputs are shown altogether in Figure 2.15 on a normalized and centred way for easier comparison. We can note how the side lobes have diminished with respect to the radar matched filter output case.

Figure 2.13: Amplitudes of: (a) the matched filter, (b) the triangular window and (c) the resulting filter.

Figure 2.14: Amplitudes of: (a) the matched filter, (b) the Hanning window and (c) the resulting filter.

Figure 2.15: Radar filter outputs.

2.3. SAR PROCESSOR EXAMPLE

The aim of this example is to achieve a radar reflectivity image $\Psi_{\mathrm{I}}(z, x)$ of a set of single points spread over an area $\Psi(z, x)$. You can see a sketch of the example in Figure 2.16. The radar is moving along axis x^{\prime} in a straight line and constant speed, and the distance R_{0} shows the closest approach between the radar and the origin of axes z, x.

Figure 2.16: Raw data acquisition of an area $\Psi(z, x)$.

In order to obtain the image $\Psi_{\mathrm{I}}(z, x)$, we will use a Back Propagation algorithm into the radar SAR processor. Taking into account superposition, the algorithm is designed to focus the data over every single point of the scene $\Psi(z, x)$.

Figure 2.17: Image acquisition from raw data.

In order to perform the SAR processor, we will first need to know the cause-and-effect relationship (i.e., the scattered fields over the measured geometry that a single target would cause). This is what we call "the direct problem of scattering" (see Figure 2.18).

Figure 2.18: Direct problem of scattering.

In order to cope the direct problem of scattering, let us consider the transmitted signal $s_{\mathrm{e}}(t) a$ chirp pulse given by

$$
\begin{equation*}
s_{\mathrm{e}}(t)=\operatorname{Re}\left\{\prod\left(\frac{t}{\tau_{0}}\right) e^{j 2 \pi f_{0} t} e^{j \pi \gamma t^{2}}\right\} \tag{2.19}
\end{equation*}
$$

where τ_{0} is the pulse duration, f_{0} is the carrier frequency, and γ is the linear $F M$ rate. Equation (2.19) can be also written on its low pass equivalent expression as

$$
\begin{equation*}
\widetilde{S_{\mathrm{e}}}(t)=\prod\left(\frac{t}{\tau_{0}}\right) e^{j \pi \gamma t^{2}} \tag{2.20}
\end{equation*}
$$

The received signal on the radar antenna depends on: (a) the position of the radar along the axis x^{\prime}, (b) the time between the transmitted and received signals (this variable may also be expressed as a spatial variable), and (c) the position of each target along the axes z, x. Hence, we can write the expression of the received signal as

$$
\begin{equation*}
s_{\mathrm{r}}\left(t, x^{\prime} ; \mathbf{r}\right)=\operatorname{Re}\left\{\prod\left(\frac{t-t_{\mathrm{r}}}{\tau_{0}}\right) \frac{\sqrt{\sigma}}{4 \pi R^{2}\left(x^{\prime} ; \mathbf{r}\right)} G\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right] e^{j 2 \pi f_{0}\left(t-t_{\mathrm{r}}\right)} e^{j \pi \gamma\left(t-t_{\mathrm{r}}\right)^{2}}\right\} \tag{2.21}
\end{equation*}
$$

where σ is the radar cross section of the target, $G\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right]$ is the radiation diagram of the radar antenna, and t_{r} is the delay between the transmitted and received pulse given by

$$
\begin{equation*}
t_{\mathrm{r}}=\frac{2 R\left(x^{\prime} ; \mathbf{r}\right)}{c} \tag{2.22}
\end{equation*}
$$

where c is the speed of light.

The collected echo signals described by Equation (2.21) along the radar track are stored in a $2 D$ matrix, which is usually named "raw data". If we now write the raw data on its low pass equivalent expression, we obtain

$$
\begin{equation*}
\widetilde{s_{\mathbf{r}}}\left(t, x^{\prime} ; \mathbf{r}\right)=\prod\left(\frac{t-\frac{2 R\left(x^{\prime} ; \mathbf{r}\right)}{c}}{\tau_{0}}\right) \frac{\sqrt{\sigma} G\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right]}{4 \pi R^{2}\left(x^{\prime} ; \mathbf{r}\right)} e^{-j 2 k_{0} R\left(x^{\prime} ; \mathbf{r}\right)} e^{j \pi \gamma\left(t-\frac{2 R\left(x^{\prime} ; \mathbf{r}\right)}{c}\right)^{2}} \tag{2.23}
\end{equation*}
$$

where k_{0} is the wave number given by

$$
\begin{equation*}
k_{0}=\frac{\omega_{0}}{c}=\frac{2 \pi f_{0}}{\lambda_{0} f_{0}}=\frac{2 \pi}{\lambda_{0}} \tag{2.24}
\end{equation*}
$$

where λ_{0} is the carrier wavelength.

Now, our objective is to recover the point reflectivity from the measured fields. We must do an "inverse problem".

Figure 2.19: Inverse problem.

Therefore, we need to design a SAR processor that gets the radar reflectivity image from the acquired raw data fulfilling the following condition

$$
\begin{equation*}
\Psi_{\mathrm{I}}(\mathbf{r}) \approx \Psi(\mathbf{r}) \tag{2.25}
\end{equation*}
$$

In this way, our SAR processor will consist of two blocks: (a) the range compressor and (b) the azimuth compressor (see Figure 2.20).

The range compressor must compress the raw data along the axis t by using a matched filter. Thus, the range compressed signal must be

$$
\begin{equation*}
\widetilde{s_{\mathrm{r}}^{\prime}}\left(x^{\prime} ; \mathbf{r}\right)=\frac{1}{2} \widetilde{s_{\mathrm{r}}}\left(t, x^{\prime} ; \mathbf{r}\right) * \widetilde{h_{\mathrm{m}}}(t) \tag{2.26}
\end{equation*}
$$

or, if we write the expression above in a range frequency domain to avoid the convolution computation costly, we obtain

$$
\begin{equation*}
\widetilde{S_{\mathrm{r}}^{\prime}}\left(x^{\prime} ; \mathbf{r}\right)=\frac{1}{2} \widetilde{S_{\mathrm{r}}}\left(f, x^{\prime} ; \mathbf{r}\right) \widetilde{H_{\mathrm{m}}}(f) \tag{2.27}
\end{equation*}
$$

where

$$
\begin{align*}
& \widetilde{S_{\mathrm{r}}}\left(f, x^{\prime} ; \mathbf{r}\right)=\mathcal{F}\left\{\widetilde{\mathrm{r}_{\mathrm{r}}}\left(t, x^{\prime} ; \mathbf{r}\right)\right\} \tag{2.28}\\
& \widetilde{H_{\mathrm{m}}}(f)=\mathcal{F}\left\{{\widetilde{S_{\mathrm{e}}}}^{*}(-t)\right\}=\widetilde{\mathrm{S}_{\mathrm{e}}}(f) \tag{2.29}
\end{align*}
$$

Figure 2.20: SAR processor blocks.

In Figure 2.21, we can see an example of the range compressed signal of a point target derived from Equation (2.26) where the horizontal axis can be expressed either in time or spatial domain ($z=c t / 2$).

Figure 2.21: Example of range compressed signal of a single target.

Now, we must transform the range compressed signal of 2 dimensions in an image that fulfils Equation (2.25). That is what we will obtain after the back propagation algorithm implementation into the azimuth compressor will be performed. The BPA algorithm is based on a coherent addition of the measured data (pixel) by compensating the amplitude and phase lost in the direct problem.

Although the range compressed signal has 2 dimensions, every scene point in the range compressed domain generates a hyperbolic line of data (curved line of Figure 2.21). Thus, we can integrate the compensated amplitude and phase data along this measured compressed data line and derive the final image $\Psi_{\mathrm{I}}(\mathbf{r})$ as

$$
\begin{equation*}
\Psi_{\mathrm{I}}(\mathbf{r})=\int_{x^{\prime}} \widetilde{s_{\mathrm{r}}^{\prime}}\left[l\left(x^{\prime} ; \mathbf{r}\right) ; \mathbf{r}\right] \frac{4 \pi l^{2}\left(x^{\prime} ; \mathbf{r}\right)}{\sqrt{\sigma} G\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right]} e^{j 2 k_{0} l\left(x^{\prime} ; \mathbf{r}\right)} d x^{\prime} \tag{2.30}
\end{equation*}
$$

In Figure 2.22, we can see the geometry used to solve Equation (2.30).

Figure 2.22: Geometry used in Equation (2.30).

The image will contain NxM pixels. The N and M values will depend on the size of the evaluated area $\Psi(\mathbf{r})$, and the desired range and azimuth resolutions. The distance l must be computed for each radar antenna position and pixel of the image, and must be used to achieve the appropriate value of the range compressed signal on each case. Therefore, interpolation is needed on this latter step for better accuracy in the result of Equation (2.30).

In order to avoid errors in the integral computation, the inverse of the radiation diagram of the radar antenna $F\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right]$ may be computed as

$$
F\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right]=\frac{1}{G\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right]}=\left\{\begin{array}{cl}
0 & \text { if } G\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right]=0 \tag{2.31}\\
\frac{1}{G\left[\varphi\left(x^{\prime} ; \mathbf{r}\right)\right]} & \text { other case }
\end{array}\right.
$$

Once the direct problem for a simple target has been successfully solved, the same problem with a scene of multiple targets should not be difficult to deal with. Therefore, you are asked to solve the direct and inverse problems for a simple target located at the origin of the axes z, x.

Radar and target specifications:

- Carrier frequency: $f_{0}=9.65 \mathrm{GHz}$ (X-Band radar)
- Oversampling factor: $\alpha=4$ (To satisfy Nyquist $\times 4$)
- Pulse duration: $\tau_{0}=100 \mathrm{~ns}$
- Bandwidth: $\Delta f=1 \mathrm{GHz}$
- Linear FM rate: $\gamma=\frac{\Delta f}{\tau_{0}}=\frac{10^{9} \mathrm{~Hz}}{100 \cdot 10^{-9} \mathrm{~s}}=10^{16} \frac{\mathrm{~Hz}}{\mathrm{~s}}$
- Range compression ratio: $\rho=\Delta f \tau_{0}=10^{9} \mathrm{~Hz} \cdot 100 \cdot 10^{-9} \mathrm{~s}=100$
- Radar-target closest approach: $R_{0}=3000 \mathrm{~m}$
- Antenna length: $L_{\mathrm{a}}=0.3 \mathrm{~m}$
- Azimuth beam width: $\quad \theta_{\mathrm{bw}}=\frac{\lambda_{0}}{L_{\mathrm{a}}}=\frac{c}{f_{0} L_{\mathrm{a}}}=\frac{3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{9.65 \cdot 10^{9} \mathrm{~Hz} \cdot 0.3 \mathrm{~m}}=0.1036 \mathrm{rad}$
- Synthetic aperture: $L_{\mathrm{s}}=\theta_{\mathrm{bw}} R_{0}=0.1036 \mathrm{rad} \cdot 3000 \mathrm{~m}=310.88 \mathrm{~m}$
- Nominal azimuth resolution: $\Delta x^{\prime}=\frac{L_{\mathrm{a}}}{2}=0.15 \mathrm{~m}$
- Target RCS: $\sigma=1 \mathrm{~m}^{2}$
- Radiation diagram of the radar antenna (see Figure 2.23).

Figure 2.23: Radiation diagram of the radar antenna.

Hereafter, the steps of the Back Propagation Algorithm are provided:

- For every r point (2 loops: one for coordinate x and another for coordinate Z).
- For every antenna position (x^{\prime}).
$>$ Compute the range of the travel signal $l\left(x^{\prime} ; \mathbf{r}\right)$.
$>$ Obtain $\widetilde{s_{\mathrm{r}}^{\prime}}\left[l\left(x^{\prime} ; \mathbf{r}\right) ; \mathbf{r}\right]$ by linear interpolation.
$>$ Apply amplitude and phase corrections.
$>$ Sum the integral results in the same variable pixel.
- Save the value of the variable pixel into the matrix image.
- Reset the value of the variable pixel.

SOLUTION:

As in the previous section, it has been used a Matlab script in order to solve this example. The solution will show the main results obtained as well as the main steps to achieve them.

After the radar and target parameters have been defined into the script, we must build all the coordinate systems ${ }^{1}$ we need to obtain the image of the single target. First, we must delimit the length of the range and azimuth axes of the image which we define as $t_{-} i$ (time axis) or $z_{-} i$ (space axis) and $x_{-} i$ respectively. There are two options for expressing the length of these axes: (a) by means of a number of meters or (b) by means of a number of pixels. Second, we must build the axes of the radar antenna. The azimuth radar antenna axis (defined as x) must be large enough for being able to depict the curved line of Figure 2.21. Thus, in Figure 2.24, we can see that the required minimum length is L_{s}. In order to add a little margin at the upper and lower parts of the curve, let us set the length of axis $x, 1.5 \cdot L_{\mathrm{s}}$. In order to obtain the range radar antenna axis (defined as t), we need to know the maximum time delay corresponding to the farthest pixel of the image (in Figure 2.25, we can see the geometry of this problem). Thus, we can derive the maximum time $t_{\text {max }}$ as

$$
\begin{equation*}
t_{\max }=\frac{2 \sqrt{\left(x_{\min }-x_{-} i_{\max }\right)^{2}+\left(R_{0}+z_{-} i_{\max }\right)^{2}}}{c} \tag{2.32}
\end{equation*}
$$

Therefore, we could obtain the length of axis t doubling the value $t_{\text {max }}$. However, if our target is far from the radar, we will need many samples to depict signals on axis t and many of these samples will not provide us useful information. So that, let us delimit the length of axis t to the subtraction between $t_{\text {max }}$ and $t_{\text {min }}$, where $t_{\text {min }}$ can be expressed as

$$
\begin{equation*}
t_{\min }=\frac{2\left(R_{0}-\left|x_{-} i_{\min }\right|\right)}{c} \tag{2.33}
\end{equation*}
$$

Figure 2.24: Minimum length of axis x.

[^0](2) telecom

Figure 2.25: $t_{\min }$ and $t_{\max }$.

Now, we can derive the last coordinate system to depict the raw data. We will use the same coordinate system as for the radar antenna case, but the origin of the time axis will be changed to take into account the delay. Thus,

$$
\begin{equation*}
t_{-} r a w=t+\frac{2 R_{0}}{c} \tag{2.34}
\end{equation*}
$$

To conclude the definition of the coordinate systems, we must build the slant range array R to compute the distance between the radar antenna and target on each radar antenna location along axis x. Hence,

$$
\begin{equation*}
R=\sqrt{R_{0}^{2}+x^{2}} \tag{2.35}
\end{equation*}
$$

Once the example geometry is defined, let us deal with the transmitted and received signals. As the problem definition says, the transmitted signal is a chirp pulse given by Equation (2.20). In order to obtain the raw data from this transmitted signal, we will compute the target echo at each radar antenna location following Equation (2.23). In this way, we will achieve a good approximation in modelling a real radar acquisition. Since the angle between the radar and target on each radar location may not match to a sample value of the radiation diagram, a nearest neighbour approximation has been used.

In Figure 2.26, we can see the amplitude and phase of the raw data obtained following all the steps mention above.

Figure 2.26: Amplitude and phase of the raw data.

At this point, we must process the raw data using the described SAR processor in order to achieve the range compressed signal first, and then the final image. Thus, we can proceed following the steps shown in the previous section (Range Compression Example) in order to obtain the range compressed signal. However, in this case, we have more than one signal along axis x, so that the range FFT must be performed on each radar antenna location along axis x. In Figure 2.27, we can see the amplitude and phase of the compressed signal of the data, as expressed by Equation (2.27).

Figure 2.27: Amplitude and phase of the range compressed signal.

The next step is to implement the back propagation algorithm on the range compressed signal, which has been described in the problem definition. Therefore, we must first compute the distance $l(x ; \mathbf{r})$ of each pixel of the image. Since the range axis of the range compressed signal is in seconds, we will also obtain the distance $l(x ; \mathbf{r})$ in seconds. Thus,

$$
\begin{equation*}
l(x ; \mathbf{r})=\frac{2 \sqrt{\left(x-x_{-} i\right)^{2}+\left(R_{0}+z_{-} i\right)^{2}}}{c} \tag{2.36}
\end{equation*}
$$

Then, we must derive the value of the signal $\widetilde{s_{r}^{\prime}}[l(x ; \mathbf{r}) ; \mathbf{r}]$ per each pixel and time $l(x ; \mathbf{r})$. In Figure 2.28 , we can see a sketch of the linear interpolation to be done on, for example, the amplitude of the signal. However, this kind of interpolation may be extended to whole signal. In this way, the value for each radar antenna location of signal $\widetilde{s_{r}^{\prime}}[l(x ; \mathbf{r}) ; \mathbf{r}]$ can be obtained as

$$
\begin{equation*}
\widetilde{s_{\mathrm{r}}^{\prime}}\left[l\left(x_{0} ; \mathbf{r}\right) ; \mathbf{r}\right]=\widetilde{s_{\mathrm{r}}^{\prime}}\left(x_{0}, t_{\mathrm{n}+1}\right) \frac{d}{T_{\mathrm{s}}}+\widetilde{s_{\mathrm{r}}^{\prime}}\left(x_{0}, t_{\mathrm{n}}\right) \frac{T_{\mathrm{s}}-d}{T_{\mathrm{s}}} \tag{2.37}
\end{equation*}
$$

Figure 2.28: Linear interpolation computation of the signal range compressed amplitude.

Next, we must apply the amplitude and phase corrections to fulfil Equation (2.30) and we must compute the integral per each radar antenna location. Finally, we must sum all the integral results of one pixel and restart the algorithm for another pixel. Once all pixels have been computed, we can obtain the image of the single target as it is shown in Figure 2.29.

Figure 2.29: Amplitude and phase of the image $\Psi_{\mathrm{I}}(z, x)$.

As we can see in the amplitude plot of Figure 2.29, the point target placed at the scene centre has appeared. Therefore, the example seems to be correctly solved. However, in order to evaluate the quality of this result, we must compute the resolutions of the range cut and azimuth cut on the target location, and compare them to the theoretical ones.

Let us first obtain the theoretical resolutions on both range and azimuth directions.

$$
\begin{aligned}
& \text { Theoretical range resolution: } \quad \Delta R=\frac{c}{2 B}=\frac{c}{2 \Delta f}=\frac{3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}{2 \cdot 10^{9} \mathrm{~Hz}}=0.15 \mathrm{~m} \\
& \text { Theoretical azimuth resolution: } \quad \Delta x=\frac{L_{\mathrm{a}}}{2}=\frac{0.3 \mathrm{~m}}{2}=0.15 \mathrm{~m}
\end{aligned}
$$

In Figures 2.30 and 2.31 , we can see the image range and azimuth cuts on the target location respectively. In order to obtain both resolutions, we must compute the main lobe width at 3 dB below its peak $(1 / \sqrt{2} \approx 0.707$ in amplitude). As very few samples depict both main lobes, both target lobe range and azimuth cuts have been interpolated in order to obtain a better approximation of the range and azimuth resolutions. Thus, a zero padding interpolation has been used with an interpolation factor of 32 .

In Figures 2.32 and 2.33 , we can see the final results after the interpolation and also normalization have been done. From the main lobe labels, we can now obtain the approximate range and azimuth resolutions as

$$
\begin{aligned}
\text { Approximate range resolution: } & \Delta R^{\prime} \approx 2 \cdot 0.06797 \mathrm{~m}=0.136 \mathrm{~m} \\
\text { Approximate azimuth resolution: } & \Delta x^{\prime} \approx 2 \cdot 0.06328 \mathrm{~m}=0.127 \mathrm{~m}
\end{aligned}
$$

Figure 2.30: Amplitude and phase of the image range cut on the target location.

Figure 2.31: Amplitude and phase of the image azimuth cut on the target location.

Figure 2.32: Interpolated and normalized amplitude of the image range cut on the target location.

Figure 2.33: Interpolated and normalized amplitude of the image azimuth cut on the target location.
(2) telecom

From Figures 2.32 and 2.33, we can also compute the Side Lobe Level (SLL) of both cuts. Thus,

$$
\begin{aligned}
& \text { Range cut } S L L: \\
& \text { Azimuth cut } S L L L_{\mathrm{rg}} \approx 20 \cdot \log \left(\frac{1}{0.2249}\right)=12.96 \mathrm{~dB} \\
& \\
& \hline \mathrm{az} \approx 20 \cdot \log \left(\frac{1}{0.2156}\right)=13.33 \mathrm{~dB}
\end{aligned}
$$

As we can see, the approximate range and azimuth resolutions are very close to the theoretical ones. In addition, the SLL of both cuts are also very close for a rectangular aperture antenna having a uniform amplitude distribution (i.e. $\sim 13.26 \mathrm{~dB}$). Therefore, we can conclude that the example has been correctly solved.

2.4. REAL RANGE HISTORY EXAMPLE

In the previous section, the SAR processor has been applied to data simulated from a radar moving in a straight line. However, in the GEOSAR mission case, the radar hosted by the satellite in the GEO orbit does not follow a rectilinear movement. Thus, the signal of Equation (2.36) cannot be obtained from such a straightforward way. As seen in the previous example, this signal plays a major role when performing the image focusing by means of the BPA algorithm, so that it must be calculated precisely. Such signal will be called range history from now on since it collects the distances between the radar antenna and every point of the observed scene over time.

The following example will illustrate a real range history that could be obtained from a satellite orbiting in a GEO orbit. In this way, the reader will have an overview of the real movement between the satellite and one point of the scene. On the other hand, the example will introduce the reader to the explanation of the satellite orbital determination methods and techniques of next chapters.

The satellite that is going to be used is located on longitude $19.2^{\circ} \mathrm{E}$ and is operated by SES S.A. (Société Européenne des Satellites) providing Satellite TV and Telecommunication Data services with the commercial name ASTRA. In order to place the satellite in a certain point in the space at a given time, a Two-Line Element set ${ }^{1}$ (TLE) is going to be used. TLEs are periodically published in the Space Track program website [19], which keeps track of the vast majority of the objects orbiting the Earth. From a TLE, one may obtain the satellite position and velocity vectors with regard to a proper coordinate frame, which has its origin on the Earth's centre. However, the location error of the satellite from such TLEs is well beyond the precision requirement of GEOSAR mission. Anyway, the TLE can still be used as a first approximation of iterative methods such as Least Squares technique. The methods and techniques explained in the following chapters will determine the satellite orbit more precisely.

Having located the satellite, the next step is to place a site (i.e., a base station) over the Earth's surface in order for being able to calculate the range history between the satellite and the site. At this point, one must consider that there is visibility of the satellite from the site. In this way, a base station

[^1]placed in Barcelona city (Spain) has been chosen. Table 2.1 summarizes the location parameters needed to obtain the position and velocity vectors of Barcelona site in a particular coordinate frame. This coordinate frame may not be the same coordinate frame which locates the satellite, so that some relations between both coordinate frames are needed to be found in order not to calculate the range history in a wrong way. Such relations involve perturbations, such as nutation, precession or polar motion, which affect the Earth's motion, and whose effects will not be considered within the example. Thus, the position of the site with regard to the position of the satellite will only be calculated by means of time.

Location parameters of the base station placed in Barcelona	
Geodetic Latitude	$41^{\circ} 23^{\prime} 20.0^{\prime \prime} \mathrm{N}$
Longitude	$2^{\circ} 9^{\prime} 20.0^{\prime \prime} \mathrm{E}$
Altitude	0.020 km

Table 2.1: Location parameters of a base station placed in the city of Barcelona (Spain).

The time is given into the TLE, so that the satellite position and velocity vectors calculated are specific of this time. Chapter 3 shows how to calculate time for a particular site via Equation (3.8). In this example, as time is given as a date (i.e., year, month, day, hour, minutes and seconds), the Greenwich Mean Sidereal Time (GMST), θ_{GMST}, can be obtained as

$$
\begin{gather*}
\theta_{\mathrm{GMST}}=67310.54841 \mathrm{~s}+(876600 \mathrm{~h}+8640184.812866 \mathrm{~s}) \cdot T_{\mathrm{UT} 1} \\
+0.093104 \cdot T_{\mathrm{UT} 1}^{2}-6.2 \times 10^{-6} \cdot T_{\mathrm{UT} 1}^{3} \tag{2.38}
\end{gather*}
$$

where $T_{\text {UT1 }}$ is the number of Julian centuries from a particular epoch (i.e. J2000.0 ${ }^{1}$) in UT1 ${ }^{2}$ (Universal Time 1) time scale. The general formula referencing J2000.0 is

$$
\begin{equation*}
T_{\mathrm{UT} 1}=\frac{J D_{\mathrm{UT} 1}-2451545.0}{36525} \tag{2.39}
\end{equation*}
$$

where $J D_{\mathrm{UT} 1}$ is the Julian Date (i.e., the interval of time measured in days from the epoch January 1, 4713 в.C., 12:00) in UT1 time scale. The reader may consult (Vallado, 2013) for further information about this topic.

In order to be more precise when computing the GMST, one must take into account that the time given in a TLE is in UTC 3 (Coordinated Universal Time) time system. Thus, a conversion between UTC and UT1 must consequently be performed since Equation (2.38) is in UT1. The relation between both time scales follows Equation (2.40)

$$
\begin{equation*}
\Delta U T 1=U T 1-U T C \tag{2.40}
\end{equation*}
$$

where $\Delta U T 1$ value can be achieved from [7]. Since the example will show the range history between the satellite and the base station during the first week of January 2012, the value of $\Delta U T 1$ is -0.4 s . One can see that this value is not high; however, it is required for precise computations.

[^2](2)) telecom

Once the position of the satellite and the site has been obtained in the same coordinate frame and time, the range observation can be calculated via Equation (3.14). Thus, using different TLEs of the first week of January 2012, one may compute different values of range, and therefore the range history of the site.

Figure 2.34 illustrates a general overview of the satellite orbit around the Earth along all week. From this figure, one can perfectly see the GEO orbit described by the satellite. In order to notice the minor differences among consecutive satellite orbits around the Earth, Figure 2.35 plots these orbits alone (i.e., without the Earth). As seen in the figure, the satellite orbits do not remain fixed because the satellite is affected by many perturbations during its movement around the Earth. Examples of such perturbations are the asphericity of the Earth, the solar-radiation pressure, the third body effects... These perturbations can cause important deviations on the satellite orbit (Vallado, 2013), sometimes comparable to the primary attracting force (i.e., the two-body gravitation).

Figure 2.34: Satellite orbit around the Earth during the first week of January 2012.

Finally, in Figure 2.36, the range history between the satellite and the base station placed in Barcelona has been depicted. Two facts can be derived from this latter figure. The first one is that the satellite orbit is not perfectly circular as an ideal GEO orbit should be, but it has a small eccentricity. One can see this from the fact that the range history is not a constant straight line. The non-circularity of the satellite orbit was already known from the data given in the TLEs since all of them had an eccentricity different to 0 . However, this fact was unknown for the reader. The second issue that can be derived from Figure 2.36 is related to consecutive satellite orbits are not equal, which it could already be seen from Figure 2.35 . Thus, the degradation suffered by the satellite orbit along time and how it affects the range history determination can be observed in another way. Table 2.2 lists the maximum and minimum ranges calculated per orbit in order to notice such degradation more clearly.

Figure 2.35: Satellite orbit alone during the first week of January 2012.

Figure 2.36: Satellite-Barcelona range history during the first week of January 2012.

Maximum and minimum ranges per satellite orbit		
Orbit number	Maximum range $[\mathbf{k m}]$	Minimum range $[\mathbf{k m}]$
1	37856.644	37827.290
2	37856.858	37827.061
3	37857.072	37826.886
4	37857.283	37826.794
5	37857.420	37826.773
6	37857.508	37826.745
7	37857.510	37826.702

Table 2.2: Maximum and minimum ranges per orbit between the satellite and base station.

The examples shown in this chapter give a basic overview of how a SAR works. In this way, well-focused images can be obtained by means of the BPA algorithm of the SAR processor. GEOSAR orbit determination requirements are well beyond those used in other applications such as telecommunications or TV Broadcasting. In the following chapters, different methods and techniques suitable for satellite high precision orbit estimation are assessed.

Initial Orbit Determination

3.1. COORDINATE SYSTEMS

3.2. SATELDITE STATE REPREESENTATIONS

3.3. PROPOSED METHODS 'TO INITIALLY DETEERMINE THE SATELLITE ORBIT

3.4. OB'TAINING 'THE IDEAL DATA

3.5. TRILATERATION AND GIBBS METHODS ANALYSES

3.6. NOISE OF RANGE AND RANGE-RATE OBSERVATIONS

3.7. TRILATERATION AND GIBBS METHODS ANALYSES ADIDING NOISE

3.8. STA'IISTICAL ANALYSES OF TRILATERATION AND GIBBS METHODS

3.9. RESULTS SUMMARY

Initial orbit determination involves various analytical methods that relate observation data produced by sensor sites to orbital elements describing the movement of a body in motion in space. These observation data may be of different types depending on the observations that the sensor performs of the body in movement. Thus, angular data, range measurements, rates of each measurement, etc., may be used for determining initial orbits. One could not process data in order to calculate the satellite orbit without the individual vectors determined through one of the techniques used for initial orbit determination.

In the context of GEOSAR mission, the radar payload hosted by a communications satellite in a geostationary orbit will provide range and range-rate measurements thanks to well-located ARCs (Active Radar Calibrators) over the Earth's surface. Such measurements will be used to track the satellite orbit around the Earth. However, the position of the satellite in space will remain unknown unless the range and range-rate measurements are processed into orbital elements.

Escobal (1965) suggests a method called Trilateration, which converts simultaneous range and range-rate information coming from different sensor sites to an initial position and velocity vectors of the satellite under study. This chapter will analyse this method and will also discuss Gibbs method in case the sensor site may only provide range measurements.

In order to perform such analysis, ideal data must be created since there is no real measured data available yet. In this way, the first part of this chapter will be dedicated to explain the fundamentals of how the ideal data is built. This ideal data involves the design of a satellite orbit that fulfils a geostationary orbit from which ideal range and range-rate observations may be calculated. In addition, some basic Astrodynamics concepts will be introduced first in order to better understand all parameters that are going to be used along the text.

Once the ideal data is obtained, the analysis of Trilateration and Gibbs will be performed. To this end, some Matlab simulations will be discussed in order to have an extensive description of the precision of both methods on determining the satellite orbit. In this way, Trilateration and Gibbs methods will be analysed ideally first (i.e., only using the ideal data) to conclude the study of both methods adding noise to the ideal data.

At the end of the chapter, a summary of all results obtained will be shown. Thus, the reader will easily compare the performance of all simulations evaluated.

This chapter aims to be as complete as possible, but the reader is encourage to consult Bate, Mueller and White (1971), Escobal (1965), and Vallado (2013) for further explanations about topics discussed along this text or other concepts related to Astrodynamics.

3.1. COORDINATE SYSTEMS

Before starting to describe all orbit elements and methods in order to find the satellite orbit, one must know the coordinate systems that are going to be considered in order to locate the satellite with regard to an Earth position. This document will take into account three coordinate systems: two of them are Earth-based systems and the third one is a satellite-based system.

a) Geocentric Equatorial Coordinate System, IJK

This system originates at the centre of the Earth and is generically designated with the letters $I J K$. The fundamental plane contains the Earth's equator as shown in Figure 3.1a. The I axis points towards the vernal equinox ${ }^{1}$; the J axis is 90° to the east in the equatorial plane; and the K axis extends through the North Pole.

Figure 3.1: a) ECI Coordinate System, and b) ECEF Coordinate System.

The geocentric frame, $I J K$, is often used interchangeably with an Earth-Centred Inertial (ECI) nomenclature. The equinox and plane of the equator move very slightly over time so that the term "inertial" can cause confusion. J2000 is an example of a quasi-inertial frame realized in the IAU-76/FK5 system (Vallado, 2013), which was the standard pseudo-inertial system for geocentric coordinates for many years.

b) Body-Fixed Coordinate System, ITRF

A geocentric coordinate system fixed to the rotating Earth results in the Body-Fixed (BF) or International Terrestrial Reference Frame (ITRF) coordinate system. Its origin is at the centre of the Earth and the axes are realized by the adopted coordinates of defining stations on the Earth's surface. Confusion may exist because the ITRF system is frequently called the Earth-Centred, Earth-Fixed (ECEF) coordinate frame. The term "Earth-Fixed" describes a terrestrial reference system whose net global orientation remains unchanged over time with respect to the crust of the Earth.

[^3]In order to simplify complexity, this document will use the ECEF coordinate system. Its fundamental plane contains the Earth's equator (see Figure 3.1b). The I axis points towards the Greenwich meridian $\left(0^{\circ}\right)$; the J axis is 90° to the east in the equatorial plane; and the K axis extends through the North Pole. ECEF system rotates with the Earth, and therefore coordinates of a point fixed on the Earth's surface do not change.

In addition, this document will not take into account precession and nutation effects of the Earth's equatorial plane as well as polar motion, which affect the movement of the Earth around the Sun. In this way, the I axis of the ECEF coordinate system and the previous ECI coordinate system will always remain fixed and the conversion between both systems will be performed as finding the angle between both I axes in a given time (see Section 3.4).

c) Perifocal Coordinate System, $P Q W$

In this system, the fundamental plane is the satellite orbit, and the origin is at the centre of the Earth. The P axis points towards perigee ${ }^{1}$; the Q axis is 90° from the P axis in the direction of the satellite motion; and the W axis is normal to the orbit (see Figure 3.2).

Figure 3.2: Perifocal Coordinate System, PQW.

The perifocal frame, $P Q W$, will be needed when defining some orbital elements that are going to be used to describe the satellite orbit in the following section.

3.2. SATELDITE STATE REPRESENTATIONS

The state of a satellite in space is defined by six quantities, which may take many equivalent forms. Whatever the form, the collection of these six quantities can be called either a state vector, \mathbf{X}, or an element set. The state vector is usually associated with position and velocity vectors. Thus, the state of

[^4]a satellite in space can be defined by the Cartesian coordinates of both vectors ($r_{x 0}, r_{y 0}, r_{z 0}, v_{x 0}, v_{y 0}$, and $v_{z 0}$) completing a set of six quantities (see Figure 3.3). The subscript 0 refers to the time where the state vector is given since, as the time changes, so does the state vector. On the other hand, an element set is a collection of scalar magnitudes and angular representations of the orbit, which are called orbital elements. The most common element sets are the Classical Orbital Elements (COE), also called Keplerian elements, two-body elements or osculating elements. However, several other element sets have been developed (e.g., two-line, equinoctial, Delaunay, and Poincaré) for convenience or to avoid the difficulties the classical orbital elements suffer for certain orbital geometries. As seen, there are many ways to define the state of a satellite in space; but this document will only address the state vector in Cartesian coordinates, which will also be called satellite state vector, and elements sets of classical orbital elements.

Figure 3.3: Satellite state vector at time t_{0}, \mathbf{X}_{0}, and satellite state vector at time t_{1}, \mathbf{X}_{1}.

There are many classical orbital elements in order to perform the element set. The fact of choosing one or another will mainly depend on the satellite orbit that is going to be analysed. For example, the most common way to represent the classical orbital elements in an element set is the semi-major axis, a; eccentricity, e; inclination, i; right ascension of the ascending node, Ω; argument of perigee, ω; and true anomaly, v. All of these orbital elements are going to be defined below as well as other important elements that are going to be used in the following sections. As seen in Chapter 1, the satellite orbit of GEOSAR mission will describe a geostationary orbit, which is a case of special orbit since it is equatorial and nearly circular. For this reason, it is necessary to add more orbital elements in the explanation in order to define the satellite orbit correctly.

The first classical orbital elements shown are related to the shape of the satellite orbit. As commented before, the satellite describes a near circular orbit so that the explanations will only consider circular and elliptical orbits, and will not talk about parabolic and hyperbolic orbits. In this way, the orbital elements that are going to be used are:

- The semi-major axis, a : it is the radius of an orbit at the orbit two most distant points (see Figure 3.4). If the orbit is circular, then the semi-major axis is simply the radius of the orbit. The semimajor axis always has a positive value for circular and elliptical orbits.
a)

Figure 3.4: a, e, and p orbital elements of \boldsymbol{a}) circular orbit, and \boldsymbol{b}) elliptical orbit.

- The eccentricity, e : it indicates the shape of the orbit, i.e. its "roundness" or "flatness". Its value is zero for circular orbits and varies from zero to one for elliptical orbits.
- The semi-latus rectum (also called semi-parameter), p : it describes the size of the orbit by defining the width at the primary focus ${ }^{1}$. If the orbit is circular, then the semi-latus rectum coincides with the radius of the orbit. Instead of using the semi-major axis, one can choose the semi-latus rectum following Equation (3.1).

$$
\begin{equation*}
p=a\left(1-e^{2}\right) \tag{3.1}
\end{equation*}
$$

- The mean motion, n : it describes the satellite average angular rate of motion over one orbit. The mean motion can be used instead of the semi-major axis following Equation (3.2),

$$
\begin{equation*}
n=\sqrt{\frac{\mu}{a^{3}}} \tag{3.2}
\end{equation*}
$$

where μ is the gravitational parameter, which value is

$$
\begin{gathered}
\mu=G\left(m_{\oplus}+m_{\text {sat }}\right) \approx G m_{\oplus}=3.986004418 \times 10^{5} \frac{\mathrm{~km}^{3}}{\mathrm{~s}^{2}} \\
G=6.673 \times 10^{-20} \pm 0.001 \times 10^{-20} \frac{\mathrm{~km}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}} \quad m_{\oplus} \cong 5.9733320 \times 10^{24} \mathrm{~kg}
\end{gathered}
$$

where G is the gravitational constant, m_{\oplus} is the mass of the Earth, and $m_{\text {sat }}$ is the mass of the satellite. As seen, the satellite mass can be neglected because it is too small relative to the Earth's mass. The values of μ and G are subtracted from WGS- 84^{2}, whereas m_{\oplus} is a derived quantity.

[^5]From the orbital elements described above, one must choose between to of them in order to form the element set. The shape of the orbit is usually expressed through the semi-major axis and eccentricity; however, one can select the semi-latus rectum or mean motion instead of a.

The second group of classical orbital elements relates the Earth-based system to the satellitebased system. In particular, the coordinate systems that are going to be related are the Geocentric Equatorial Coordinate System $(I J K)$ and the Perifocal Coordinate System ($P Q W$). Thus, the classical orbital elements that relate both coordinate systems are:

- The inclination, i : it is the angle measured from the unit vector \widehat{K} to the angular momentum vector \mathbf{h}^{1}. The inclination refers to the tilt of the orbit plane and ranges from 0° to 180°. Inclinations of 0° and 180° are equatorial orbits, whereas all others are inclined orbits.
- The right ascension of the ascension node, Ω : it is the angle in the equatorial plane measured positive eastward from the unit vector \hat{I} to the location of the ascending node ${ }^{2}$. The right ascension of the ascending node values may range from 0° to 360° since all locations in the $I-J$ plane must be taken into account.
- The argument of periapsis (also called argument of perigee when the central body attracting the satellite is the Earth), ω : it is the angle measured from the ascending node to the periapsis point ${ }^{3}$ in the direction of the satellite motion and in the plane of the satellite orbit. The argument of periapsis may vary from 0° to 360°.

In order to form the element set, three orbital elements that relate the Earth-based system to the satellite-based system are needed. The three orbital element introduced above are the usual ones to this fact (see Figure 3.5).

The third group of classical orbital elements locates the satellite into the $P Q W$ coordinate system. These orbital elements are:

- The true anomaly, v : it is the angle, in the plane of the satellite orbit, that determines the satellite current position relative to the location of the periapsis. The true anomaly may vary from 0° to 360°.
- The time of periapsis passage, t_{p} : it is the time when the satellite was at periapsis. This orbital element can be used instead of the true anomaly.

[^6]The element set is completed with one of the two orbital elements described above, which is usually the true anomaly. However, it may also be used the time of perigee passage or the mean anomaly (introduced later) instead of v.

Figure 3.5: i, Ω, ω, and v orbital elements.

As the satellite orbit of GEOSAR mission is equatorial, there is a need to define other orbital elements. In this particular case, the line of nodes does not exist (i.e., both the equatorial plane and the satellite plane are the same plane) and orbital elements such as the right ascension of the ascending node and the argument of periapsis remain undefined. In addition, the satellite orbit is near circular meaning that the periapsis point could not exist and the true anomaly could be undefined. Thus, some other orbital elements can replace the use of Ω, ω, and v to better describe the satellite orbit such as:

- The true longitude of periapsis, $\widetilde{\omega}_{\text {true }}$: it is the angle measured eastward from the unit vector \hat{I} in the geocentric coordinate system to the periapsis point. The true longitude of periapsis is used when the line of nodes does not exist and the orbit is not circular. It may vary from 0° to 360°.
- The argument of latitude, u : it is the angle measured between the ascending node and the satellite position vector in the direction of the satellite motion. The argument of latitude is used in circular inclined orbits where there is no periapsis point to measure ω, and v. It may vary from 0° to 360°.
- The true longitude, $\lambda_{\text {true }}$: it is the angle measured eastward from the unit vector \hat{I} to the position of the satellite. It may vary from 0° to 360°. The true longitude can be calculated via Equation (3.3) of different ways depending on whether the line of nodes and the perigee are defined or not.

$$
\begin{equation*}
\lambda_{\text {true }}=\Omega+\omega+v=\widetilde{\omega}_{\text {true }}+v=\Omega+u \tag{3.3}
\end{equation*}
$$

Figure 3.6 illustrates the angles mentioned above in order to clarify their definitions.

Figure 3.6: $\widetilde{\omega}_{\text {true }}, u$, and $\lambda_{\text {true }}$ orbital elements.

Finally, the two last orbital parameters must be introduced. As it will be seen later, there is a need to determine the relation of the time and angular displacement within an orbit. This is solved by the so-called Kepler's equation (see Equation [3.4]), which includes two new orbital elements that must be defined.

$$
\begin{equation*}
M=E-e \sin (E)=n\left(t-t_{\mathrm{p}}\right) \tag{3.4}
\end{equation*}
$$

- The eccentric anomaly, E : it is an angle related to the true anomaly and the circle drawn around the ellipse of the satellite orbit, which is called the auxiliary circle (see Figure 3.7). The eccentric anomaly may vary from 0° to 360° as the true anomaly does.
- The mean anomaly, M : it is an angle measured from the periapsis point corresponding to uniform angular motion on a circle of radius a. The mean anomaly may vary from 0° to 360°.

Figure 3.7: Eccentric anomaly, E.

Kepler's equation can be solved in two different ways. First, determining eccentric (and true) anomaly given the mean anomaly is a transcendental operation and is the form most commonly identified as Kepler's equation. The inverse problem (i.e., determining mean anomaly, and therefore time, when the eccentric anomaly or true anomaly and eccentricity are given) is a straightforward operation. In order to solve the transcendental operation, the Newton-Raphson iteration is usually used. Equation (3.5) must be solved in an iterative way until some tolerance is achieved. In addition, it must be considered that initial estimates must be close enough to the true solution in order not to violate the linear assumption of the Newton-Raphson method.

$$
\begin{equation*}
E_{n+1}=E_{n}+\frac{M-E_{n}+e \sin \left(E_{n}\right)}{1-e \cos \left(E_{n}\right)} \quad \text { until }\left|E_{n+1}-E_{n}\right|<\text { tolerance } \tag{3.5}
\end{equation*}
$$

To conclude this section, it must be said that finding the satellite state vector from an element set of classical orbital elements or vice versa is quite straightforward but implies several equations and requirements depending on the satellite orbit. When doing the transformation, it must be taken into account that the state vector must be given or will be given in the Geocentric Equatorial Coordinate System (IJK). The reader can find more information about this topic in the references listed at the introduction of the chapter. In addition, there are algorithms available online in Matlab and other programming languages, for example on the web of Vallado (2013), which perform such operations.

3.3. PROPOSED METHODS 'TO INITIALLY DETTERMINE THE SATELLITE ORBIT

In Chapter 1, it has been explained which measurements GEOSAR mission will provide in order to determine the satellite orbit. As seen in this chapter, the proposed ARC system will offer range and range-rate measurements.

Escobal (1965) discusses a method of Trilateration. This method utilizes as data the range and range-rate (ρ_{i} and $\dot{\rho}_{i}$) of a satellite from a minimum of three observation stations (i.e., $i=1,2,3$) that are in contact with each other. The main requirement is that all these measurements must be obtained at the same time. Trilateration method is exact and yields a precise orbit due to the fact that only geometric principles are involved.

Figure 3.8: Sketch of Trilateration method.

The complete algorithm is given in Escobal (1965) so that this document will only show the main inputs and the final outputs that the algorithm uses. Figure 3.8 illustrates the initial conditions of Trilateration method. The algorithm needs the coordinates of each observing base (i.e., the Geodetic latitude ${ }^{1}, \phi_{i}$, the longitude, λ_{i}, and the altitude, h_{i}), and their range and range-rate measurements (ρ_{i} and $\dot{\rho}_{i}$). All of these parameters must be provided at a given time, t. Then, by using geometric relationships, the algorithm is capable to obtain a satellite state vector, which is given in the $I J K$ coordinate system (see Figure 3.9).

Figure 3.9: Obtaining the satellite state vector by using Trilateration method.

It may happen that the observing stations can only provide range measurements. In that case, Trilateration method could also be used to obtain the satellite state vector. If only range measurements of three different observing stations were given, Trilateration method would only provide a position satellite state vector at the time of range measurements. Repeating the same operation at another time, a new position state vector can be obtained, and so forth. There are some methods that calculate a velocity state vector from two or three different position state vectors; however, this document will only use Gibbs method because of its simplicity and geometrical solution. Thus, by using Trilateration and Gibbs methods when range-rate measurements are not available, the satellite state vector may also be obtained. It must be taken into account that Gibbs method fails when the position vectors are closely spaced due to its geometrical solution, so that one must take care of it before implementing Gibbs method.

[^7]The reader can find the complete explanation of Gibbs method in Bate, Mueller, and White (1971). The Gibbs method needs three nonzero, coplanar position vectors, which represent three timesequential vectors of a satellite in its orbit. Then, from these three vectors, a velocity vector at the time of the second position vector is calculated. In this way, the satellite state vector is provided (see Figure 3.10).

Figure 3.10: Obtaining the satellite state vector by using Trilateration and Gibbs methods.

Once the methods to obtain the satellite state vector have been introduced, the next step is to evaluate the precision of these methods. From Chapter 1, it has been explained that the precision expected in GEOSAR mission in order to obtain focused images is in the order of magnitude of the radar wavelength, λ (i.e., $\lambda \approx 3 \mathrm{~cm}$ taking into account the most restrictive case, the X -band). As there are not real measured data available, there is a need to simulate ideal range and range-rate observations in order to assess the suitability of Trilateration and Gibbs methods. In this way, the measurement of precision may be calculated comparing the initial ideal satellite state vector and the one obtained after the implementation of both methods.

In the following sections, it will be explained the methodology used in order to build the ideal observations and the results that will be obtained after using Trilateration and Gibbs methods. Thus, the structure of the following sections can be summarized as follows:

1) Create an ideal simulated satellite orbit.
2) From this simulated orbit, obtain all ideal observations.
3) Do the inverse operation, i.e. obtain the satellite state vector and the satellite orbit from these ideal observations.
4) Obtain the precision comparing both the ideal and retrieved observations.

3.4. DB'TAINING THE IDEAL DATA

This section will cover the explanation of how the ideal observations will be calculated. It will start defining the model of the Earth that is going to be used as well as how the time will be computed. Both topics are important in order to place the observing bases over the Earth's surface. Then, this section will define the parameters related to the initial position of the satellite and the position of the observing bases over the Earth's surface. These observing bases will be called sites from now on. Finally, the ideal simulated satellite orbit will be created and all ideal observations will be calculated.

Since GEOSAR orbit determination is required for a short interval of few hours, the satellite orbit will first be modelled based on the unperturbed two-body problem. The possible impact of perturbations from third bodies, atmospheric drag, solar radiation pressure, etc. is left for a future extension of this analysis.

a) The Earth Model

This document will follow WGS- 84^{1} in order to define the Earth's size, shape, and gravity and geomagnetic fields. WGS-84 defines four parameters, which are listed in Table 3.1.

WGS-84		
Parameter	Notation	Value
Semi-major axis (Equatorial Earth's radius)	a $\left(R_{\text {eq }}\right)$	6378.137 km
Flattening of the Earth	$\frac{1}{f}$	$\frac{1}{298.257223563}$
Earth's mean angular rotation	ω_{\oplus}	$7.292115 \times 10^{-5} \frac{\mathrm{rad}}{\mathrm{s}}$
Earth's gravitational parameter	μ	$398600.4418 \frac{\mathrm{~km}^{3}}{\mathrm{~s}^{2}}$

Table 3.1: Defining parameters of WGS-84.

The Earth is not a perfect geometric sphere. In order to increase the accuracy of the calculations, a model for the geometric shape of the Earth must consequently be adopted. WGS-

[^8]84 defines the shape of the Earth as an oblate spheroid ${ }^{1}$ whose semi-major axis and flattening ${ }^{2}$ values are listed in Table 3.1. The Earth's mean angular rotation, ω_{\oplus}, will be assumed to be constant and will be used when computing time between the ECI and ECEF coordinate systems. Finally, the Earth's gravitational parameter, μ, has previously been defined in section 3.2 and it will be needed, for example, to compute the COE when the satellite state vector is known.

After describing the shape of the Earth, the location of different sites over the Earth's surface can now be explained. Remember that three sites are needed in order to compute the satellite state vector, so that the parameters in order to locate a site over the Earth's surface must be described.

Figure 3.11: Longitude, λ, and geodetic latitude, ϕ.

First, one must know the longitude, λ, of the site. The longitude is defined as the east-west angular displacement measured positive to the east from a primary meridian ${ }^{3}$ in a plane (see Figure 3.11). The second parameter needed is the geodetic latitude, ϕ, of the site. The geodetic latitude is the angle between the equatorial plane and the normal to the surface of the ellipsoid. One must be careful not to confuse this angle with the geocentric latitude, ϕ_{gc}, which is the angle measured at the Earth's centre from the plane of the equator to the point of interest. Figure 3.12 illustrates the difference between both angles. Finally, the third parameter is the height, h, above the ellipsoid. By means of these three parameters, one may calculate the Cartesian coordinates of any site located over the Earth's surface in an ECEF system following Equations (3.6).

$$
\begin{align*}
& r_{x_{\mathrm{ECEF}}}=\left(\frac{R_{\mathrm{eq}}}{\sqrt{1-e_{\oplus}^{2} \sin ^{2}(\phi)}}+h\right) \cos (\phi) \cos (\lambda) \tag{3.6}\\
& r_{y_{\mathrm{ECEF}}}=\left(\frac{R_{\mathrm{eq}}}{\sqrt{1-e_{\oplus}^{2} \sin ^{2}(\phi)}}+h\right) \cos (\phi) \sin (\lambda)
\end{align*}
$$

[^9]$$
r_{\mathrm{ZECEF}}=\left(\frac{R_{\mathrm{eq}}\left(1-e_{\oplus}^{2}\right)}{\sqrt{1-e_{\oplus}^{2} \sin ^{2}(\phi)}}+h\right) \sin (\phi)
$$

The parameter e_{\oplus} is the eccentricity of the Earth whose value is related to the flattening of the Earth via Equation (3.7).

$$
\begin{equation*}
e_{\oplus}=\sqrt{2 \frac{1}{f}-\left(\frac{1}{f}\right)^{2}} \tag{3.7}
\end{equation*}
$$

Figure 3.12: Geodetic latitude, ϕ, vs. Geocentric latitude, ϕ_{gc} -

b) Time

The moment of a phenomenon must be defined precisely. This moment will be called the epoch of the event and will designate a particular instant described as a date. Nowadays, there are four time scales providing timekeeping for scientific, engineering, and general purposes: sidereal time, solar (universal time), dynamical time, and atomic time. The complexity on determining the epoch of an event will be simplified within this document by using the sidereal time as follows.

Sidereal time is a direct measure of the Earth's rotation and it is measured positively in the anti-clockwise direction when viewed from the North Pole. Specifically, the sidereal time will be defined as the hour angle of the vernal equinox relative to the local meridian. Since the vernal equinox is the reference point, the sidereal time associated with the Greenwich meridian is termed Greenwich Mean Sidereal Time (GMST), θ_{GMST}. The sidereal time at a particular longitude is called Local Sidereal Time (LST), $\theta_{\text {LST }}$. In this context, time is an angle measured from the observer's longitude to the equinox (see Figure 3.13).

The conversion between GMST and LST at a particular longitude, λ, can be performed by means of Equation (3.8).

$$
\begin{equation*}
\theta_{\mathrm{LST}}=\theta_{\mathrm{GMST}}+\lambda \tag{3.8}
\end{equation*}
$$

This formula requires a convention for east and west longitudes. The convention for this document is positive for east longitudes, and negative for west longitudes. Remember that the vernal equinox direction will be considered fixed into this document, as precession is not taken into account. Thus, the local sidereal time will provide the exact longitudes of each site in the ECI coordinate system, IJK. Equations (3.6) may consequently be reformulated now considering the LST. In this way, the ECI Cartesian coordinates of any site over the Earth's surface can now be obtained via Equations (3.9).

$$
\begin{gather*}
r_{I}=\left(\frac{R_{\mathrm{eq}}}{\sqrt{1-e_{\oplus}^{2} \sin ^{2}(\phi)}}+h\right) \cos (\phi) \cos \left(\theta_{\mathrm{LST}}\right) \\
r_{J}=\left(\frac{R_{\mathrm{eq}}}{\sqrt{1-e_{\oplus}^{2} \sin ^{2}(\phi)}}+h\right) \cos (\phi) \sin \left(\theta_{\mathrm{LST}}\right) \tag{3.9}\\
r_{K}=\left(\frac{R_{\mathrm{eq}}\left(1-e_{\oplus}^{2}\right)}{\sqrt{1-e_{\oplus}^{2} \sin ^{2}(\phi)}}+h\right) \sin (\phi)
\end{gather*}
$$

(γ)
Figure 3.13: Greenwich Mean Sidereal Time, θ_{GMST}, and Local Sidereal Time, θ_{LST}.

Equation (3.8) relates LST to GMST but do not provide information of how to calculate GMST. The GMST will be defined as follows:

$$
\begin{equation*}
\theta_{\mathrm{GMST}}(t)=\theta_{\mathrm{GMST} \text { oh }}+\omega_{\oplus} t \tag{3.10}
\end{equation*}
$$

where θ_{GMST} oh is the Greenwich Mean Sidereal Time at 0 h in radians or degrees, ω_{\oplus} is the Earth's mean angular rotation in radians per second or degrees per second, and t will be the elapsed time from the initial epoch (i.e., $\theta_{\text {GMST oh }}$).

In this way, setting an initial value to θ_{GMST} oh , and knowing the location parameters of each site (i.e., λ, ϕ, and h), one will be able to calculate the ECI Cartesian coordinates of the site at different epochs by means of changing the values of the variable t.

Now, the location parameters of each site may be defined. Remember that an ideal orbit must be created, so that the initial location of the satellite must also be described. Then, from the satellite-sites locations, the ideal range and range-rate observations will be obtained.

c) Satellite Parameters

The initial satellite parameters that are going to be used in order to create the satellite orbit are listed in Table 3.2. The term "initial" refers to the fact that the satellite orbit will not describe a perfect circular orbit, so that the satellite longitude will slightly vary over time when an ECEF coordinate system is considered. Having mentioned this fact, the initial satellite longitude chosen is $19.2^{\circ} \mathrm{E}$, which is related to a longitude of one of the satellites of SES ASTRA company. On the other hand, the ideal simulated satellite orbit will be completely equatorial. Thus, the geodetic latitude will be 0° all the time.

SATELLITE PARAMITLERS		
Parameter	Notation	Value
Initial longitude	$\lambda_{\text {sat }}$	$19^{\circ} 12^{\prime} 0.0^{\prime \prime} \mathrm{E} \approx 0.335 \mathrm{rad}$
Geodetic latitude	$\phi_{\text {sat }}$	$0^{\circ} 0^{\prime} 0.0^{\prime \prime}=0.0 \mathrm{rad}$

Table 3.2: Satellite parameters.

d) Site Parameters

Three sites are needed in order to calculate the satellite state vector from range and range-rate observations. These three sites have been chosen accordingly to places where the ARCs of GEOSAR mission might be located. Thus, Barcelona (Spain), Betzdorf (Luxemburg), and Milan (Italy) are places that fulfil such requirement and complete the main configuration of this document. The specific location parameters of these places are listed in Table 3.3. In addition, all these sites are placed in a map in red colour (see Figure 3.14) in order to have a better overview of their locations.

As Trilateration method is geometric, it will also be studied how the separation of the sites affects to the satellite state vector calculation. For this reason, a second configuration, which includes specific locations of Las Palmas de Gran Canaria (Spain), Reykjavik (Iceland), and Ankara (Turkey) have also being added in Table 3.3 and Figure 3.14 (yellow colour) despite not being under the proposed satellite L-band beam coverage.

Finally, it has also been listed other specific locations of different places of Europe in order to evaluate the errors in the range and range-rate observations when either the main or the second configurations are chosen. This third group of places has been plotted in purple in Figure 3.14.

SITE LOCATION PARAMETERS				
$\begin{gathered} \text { Map } \\ \text { number } \end{gathered}$	Site	Longitude ($\boldsymbol{\lambda}_{\boldsymbol{i}}$)	Geodetic latitude $\left(\phi_{i}\right)$	Height ($\boldsymbol{h}_{\boldsymbol{i}}$)
01	Barcelona (Spain)	$\begin{gathered} 2^{\circ} 9^{\prime} 20.0^{\prime \prime} \mathrm{E} \\ (\approx 0.038 \mathrm{rad}) \end{gathered}$	$\begin{gathered} 41^{\circ} 23^{\prime} 20.0^{\prime \prime} \mathrm{N} \\ (\approx 0.722 \mathrm{rad}) \end{gathered}$	0.020 km
02	Betzdorf (Luxemburg)	$\begin{aligned} & 6^{\circ} 19^{\prime} 47.8^{\prime \prime} \mathrm{E} \\ & (\approx 0.110 \mathrm{rad}) \end{aligned}$	$\begin{gathered} 49^{\circ} 41^{\prime} 34.6^{\prime \prime} \mathrm{N} \\ (\approx 0.867 \mathrm{rad}) \end{gathered}$	0.288 km
03	Milan (Italy)	$\begin{gathered} 9^{\circ} 9^{\prime} 56.3^{\prime \prime} \mathrm{E} \\ (\approx 0.160 \mathrm{rad}) \end{gathered}$	$\begin{gathered} 45^{\circ} 30^{\prime} 19.9^{\prime \prime} \mathrm{N} \\ (\approx 0.794 \mathrm{rad}) \\ \hline \end{gathered}$	0.120 km
04	Las Palmas de Gran Canaria (Spain)	$\begin{aligned} & 15^{\circ} 25^{\prime} 41.1^{\prime \prime} \mathrm{W} \\ & (\approx-0.269 \mathrm{rad}) \end{aligned}$	$\begin{aligned} & 28^{\circ} 7^{\prime} 59.4^{\prime \prime} \mathrm{N} \\ & (\approx 0.491 \mathrm{rad}) \end{aligned}$	0.000 km
05	Reykjavik (Iceland)	$\begin{aligned} & 21^{\circ} 49^{\prime} 3.6^{\prime \prime} \mathrm{W} \\ & (\approx-0.381 \mathrm{rad}) \end{aligned}$	$\begin{aligned} & 64^{\circ} 7^{\prime} 29.7^{\prime \prime} \mathrm{N} \\ & (\approx 1.119 \mathrm{rad}) \\ & \hline \end{aligned}$	0.000 km
06	Ankara (Turkey)	$\begin{gathered} 32^{\circ} 41^{\prime} 46.9^{\prime \prime} \mathrm{E} \\ (\approx 0.571 \mathrm{rad}) \\ \hline \end{gathered}$	$\begin{gathered} 39^{\circ} 44^{\prime} 33.8^{\prime \prime} \mathrm{N} \\ (\approx 0.694 \mathrm{rad}) \\ \hline \end{gathered}$	0.020 km
07	Bern (Switzerland)	$\begin{gathered} 7^{\circ} 27^{\prime} 1.7^{\prime \prime} \mathrm{E} \\ (\approx 0.130 \mathrm{rad}) \end{gathered}$	$\begin{gathered} 46^{\circ} 56^{\prime} 52.0^{\prime \prime} \mathrm{N} \\ (\approx 0.819 \mathrm{rad}) \end{gathered}$	0.540 km
08	Lisbon (Portugal)	$\begin{gathered} 9^{\circ} 8^{\prime} 36.2^{\prime \prime} \mathrm{W} \\ (\approx-0.160 \mathrm{rad}) \end{gathered}$	$\begin{gathered} 38^{\circ} 42^{\prime} 38.1^{\prime \prime} \mathrm{N} \\ (\approx 0.676 \mathrm{rad}) \end{gathered}$	0.040 km
09	London (United Kingdom)	$\begin{gathered} 0^{\circ} 7^{\prime} 41.3^{\prime \prime} \mathrm{W} \\ (\approx-0.002 \mathrm{rad}) \end{gathered}$	$\begin{gathered} 51^{\circ} 30^{\prime} 29.6^{\prime \prime} \mathrm{N} \\ (\approx 0.899 \mathrm{rad}) \end{gathered}$	0.035 km
10	Berlin (Germany)	$\begin{gathered} 13^{\circ} 22^{\prime} 43.4^{\prime \prime} \mathrm{E} \\ (\approx 0.234 \mathrm{rad}) \end{gathered}$	$\begin{gathered} 52^{\circ} 30^{\prime} 59.2^{\prime \prime} \mathrm{N} \\ (\approx 0.917 \mathrm{rad}) \end{gathered}$	0.034 km
11	Warsaw (Poland)	$\begin{aligned} & 21^{\circ} 0^{\prime} 44.0^{\prime \prime} \mathrm{E} \\ & (\approx 0.367 \mathrm{rad}) \end{aligned}$	$\begin{gathered} 52^{\circ} 14^{\prime} 58.8^{\prime \prime} \mathrm{N} \\ (\approx 0.912 \mathrm{rad}) \end{gathered}$	0.100 km
12	Athens (Greece)	$\begin{gathered} 23^{\circ} 43^{\prime} 36.3^{\prime \prime} \mathrm{E} \\ (\approx 0.414 \mathrm{rad}) \end{gathered}$	$\begin{gathered} 37^{\circ} 58^{\prime} 17.0^{\prime \prime} \mathrm{N} \\ (\approx 0.663 \mathrm{rad}) \end{gathered}$	0.100 km

Table 3.3: Location parameters of each site.

Once the initial satellite parameters and the location parameters of each site have been described and the theoretical bases have been explained, let us define the ideal simulated satellite orbit and obtain the ideal range and range-rate observations.

e) Ideal Simulated Satellite Orbit

A geostationary orbit must be circular $(e=0)$, equatorial $(i=0)$ and a satellite orbiting this kind of orbit must have a period of one sidereal day. A sidereal day is defined as the time between successive transits of the stars over a particular meridian. The reader should not confuse sidereal time with solar time, which is defined as the time between successive transits of the Sun over a particular meridian. Figure 3.15 shows the difference between both times. Thus, one sidereal day has $23^{\mathrm{h}} 56^{\mathrm{m}} 4.09^{\mathrm{s}}$ whereas a solar day has 24^{h}.

However, as seen in the example of Section 2.4, the geostationary satellite does not perfectly match a geostationary orbit since the orbit described by the satellite has a slight eccentricity and inclination. For this reason, the satellite must be relocated in order not to escape from the geostationary orbit from time to time.

Figure 3.14: Sites location.

Figure 3.15: Sidereal day vs. Solar day (exaggerated view).

The ideal simulated satellite orbit that is going to be created will have a slight eccentricity $\left(e=2.0 \times 10^{-4}\right)$, so that the synthetic aperture may be performed. In addition, it will be perfectly equatorial ($i=0.0 \mathrm{rad}$) and it will have a period of one sidereal day. From this initial point, let us define the remaining orbital elements in order to complete the element set of classical orbital elements.

The period, T, of a satellite orbit is related to the semi-major axis, a, via Equation (3.11).

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{a^{3}}{\mu}} \tag{3.11}
\end{equation*}
$$

Isolating a from Equation (3.11), one can obtain the value of the semi-major axis as follows

$$
\begin{aligned}
a & =\left(\left(\frac{T}{2 \pi}\right)^{2} \mu\right)^{1 / 3}=\left(\left(\frac{(23 \times 3600+56 \times 60+4.09) \mathrm{s}}{2 \pi}\right)^{2} \times 398600.4418 \frac{\mathrm{~km}^{3}}{\mathrm{~s}^{2}}\right)^{1 / 3}= \\
& =42164.169 \mathrm{~km}
\end{aligned}
$$

Then, the semi-latus rectum, p, can be calculated via Equation (3.1)

$$
p=a\left(1-e^{2}\right)=42164.169 \mathrm{~km} \times\left(1-\left(2 \times 10^{-4}\right)^{2}\right)=42164.168 \mathrm{~km}
$$

As the orbit has been defined as perfectly equatorial, the angles right ascension of the ascending node, Ω, argument of perigee, ω, and argument of latitude, u, will remain undefined. In order to calculate the true anomaly, v, and the true longitude of perigee, $\widetilde{\omega}_{\text {true }}$, the perigee point of the orbit must be defined. Let us put the perigee point on the intersection between the satellite orbit and the axis I of the ECI coordinate system. Thus, the value of the true longitude of perigee is

$$
\widetilde{\omega}_{\text {true }}=0.0 \mathrm{rad}
$$

Now, the initial epoch of the entire system must also be defined in order to find the value of the true anomaly. Let us consider the initial epoch called t_{0} and its value be

$$
t_{0}=00: 00: 00 \mathrm{~h}=0 \mathrm{~s}
$$

At this initial epoch, it is defined that the Greenwich meridian match the direction of the axis I, so that θ_{GMST} oh $=0.0 \mathrm{rad}$, and therefore $\theta_{\mathrm{GMST}}\left(t_{0}\right)=0.0 \mathrm{rad}$. In this case, the true anomaly at t_{0}, i.e. v_{0}, is defined equal to the initial satellite longitude, $\lambda_{\text {sat }}$.

$$
v_{0}=\lambda_{\text {sat }}=0.335 \mathrm{rad}=19.2^{\circ}
$$

Note the use of the subscript 0 in order to define the epoch t_{0} of the true anomaly. As the value of the true anomaly changes along the period of the satellite orbit, it must be clarified the epoch where v is given. This also happens to other orbital elements such as $u, \lambda_{\text {true }}, E$, or M.

Finally, the last orbital element needed to complete the element set is the true longitude at t_{0}, $\lambda_{\text {true }_{0}}$. It can be calculated following one of the expressions of Equation (3.4).

$$
\lambda_{\text {true }_{0}}=\widetilde{\omega}_{\text {true }}+v_{0}=\lambda_{\text {sat }}=0.335 \mathrm{rad}=19.2^{\circ}
$$

Table 3.4 summarizes all COE computed from the ideal satellite orbit at epoch t_{0}. This table also highlights those orbital elements that can be used, as an element set, to compute all points of the satellite orbit. The procedure to obtain these points is as follows: a) calculate the satellite state vector from this initial element set (see Section 3.2), b) change the value of v and recalculate the satellite state vector using this new value of v, and c) repeat b) until completing one revolution of the values of v (i.e., from 0 to $2 \pi \mathrm{rad}$). These steps are correct because the system used fulfills a two-body problem and no perturbations have been taken into account. Vallado (2013) provides further information when perturbations are considered. Figure 3.16 illustrates the ideal simulated satellite orbit obtained by using the classical orbital elements of Table 3.4.

Orbital element	Notation	Value
Semi-major axis	a	42164.169 km
Eccentricity	e	2.0×10^{-4}
Semi-latus rectum	\boldsymbol{p}	42164.168 km
Inclination	i	$0.0 \mathrm{rad}\left(0.0^{\circ}\right)$
Right ascension of the ascending node	Ω	undefined
Argument of perigee	ω	undefined
True anomaly	v_{0}	$0.335 \mathrm{rad}\left(19.2^{\circ}\right.$)
True longitude of perigee	$\widetilde{\omega}_{\text {true }}$	$0.0 \mathrm{rad}\left(0.0^{\circ}\right)$
Argument of latitude	u_{0}	undefined
True longitude	$\lambda_{\text {true }}^{0}$	$0.335 \mathrm{rad}\left(19.2^{\circ}\right.$)

Table 3.4: COE computed for the ideal simulated satellite orbit (in bold, the element set).

In order to conclude the definition of the ideal simulated satellite orbit, the relationship between a particular epoch and the position of the satellite at this particular epoch must be established. In the previous paragraph, it has been described how one may plot the satellite orbit from an element set; however, as true anomaly changes along the satellite orbit, which is the true anomaly value that corresponds at one particular epoch? The location of a satellite in orbit after certain amount of time is so-called Kepler's problem or more generally, propagation.

The simplest way to solve Kepler's problem involves classical orbital elements. In the time between successive positions in the orbit, the only variable to change when no perturbations are included is the true anomaly, v, or associated parameters for the special orbits ($u, \widetilde{\omega}_{\text {true }}, \lambda_{\text {true }}$). Knowing the conversion between the anomalies and the mean motion solved with Kepler's equation (see Equation [3.4]), the individual anomalies can be updated, and then the position and
velocity vectors can also be updated. Below, it is shown the procedure in order to solve Kepler's problem via classical orbital elements.

Figure 3.16: Different views of the ideal simulated satellite orbit around the Earth from COE of Table 3.4.

First, obtain the COE from the initial satellite state vector. Let us call this initial epoch t_{0}. Second, calculate the eccentric anomaly at t_{0}, E_{0}, via Equations (3.12).

$$
\begin{align*}
& \sin (E)=\frac{\sqrt{1-e^{2}} \sin (v)}{1+e \cos (v)} \tag{3.12}\\
& \cos (E)=\frac{e+\cos (v)}{1+e \cos (v)}
\end{align*}
$$

One of the two formulas above can be used to find the value of E_{0} by using v_{0}, taking care of resolving the angle to the proper quadrant. Third, find the mean anomaly at t_{0}, M_{0}, via Equation (3.4) (Kepler's equation).

$$
M_{0}=E_{0}-e \sin \left(E_{0}\right)
$$

Forth, calculate the mean anomaly at new epoch. Let us call this new epoch t_{1}, so that the mean anomaly at t_{1} is M_{1}.

$$
M_{1}=M_{0}+n \Delta t
$$

Δt corresponds to the elapsed time between the initial and new epochs ($\Delta t=t_{1}-t_{0}$). Fifth, obtain the eccentric anomaly at t_{1}, E_{1}, by solving the transcendental operation of Kepler's equation by means of the Newton-Raphson iteration (Equation [3.5]).

$$
M_{1}=E_{1}-e \sin \left(E_{1}\right) \Rightarrow E_{1_{n+1}}=E_{1_{n}}+\frac{M_{1}-E_{1_{n}}+e \sin \left(E_{1_{n}}\right)}{1-e \cos \left(E_{1_{n}}\right)}
$$

Sixth, find the true anomaly at t_{1}, v_{1}, via one of the two Equations below considering the eccentric anomaly value obtained in the previous step.

$$
\begin{align*}
\sin (v) & =\frac{\sqrt{1-e^{2}} \sin (E)}{1-e \cos (E)} \\
\cos (v) & =\frac{\cos (E)-e}{1-e \cos (E)} \tag{3.13}
\end{align*}
$$

Finally, calculate the satellite state vector at t_{1} by using the same classical orbital elements of epoch t_{0}, but substituting the initial true anomaly, v_{0}, by the new value obtained at t_{1}, v_{1}.

All this procedure can be repeated for all epochs where the ideal satellite state vector must be computed. As an example, Figures 3.17 and 3.18 show the evolution that the ideal satellite state vector obtained from Table 3.4 suffers along one orbit (i.e., one sidereal day). This evolution has been depicted for all six Cartesian components forming the satellite state vector in order to have a different view of Figure 3.16.

In this way, the ideal simulated satellite orbit has been completely described. Let us now explain how to obtain the ideal range and range-rate observations from the satellite state vectors in the following sub-section.

Figure 3.17: Ideal satellite position state vector evolution along one satellite orbit.

Figure 3.18: Ideal satellite velocity state vector evolution along one satellite orbit.

f) Ideal Range and Range-rate Observations

Figure 3.19 illustrates the geometry involved on the range observations computation.

Figure 3.19: Geometry of range observations computation.

The ideal range observations of each site, ρ, can be calculated as the Euclidean norm of its corresponding vector range, $\boldsymbol{\rho}$, which is the subtraction between the satellite position state vector, \mathbf{r}, and the site position state vector, $\mathbf{r}_{\text {site }}$.

$$
\begin{equation*}
\rho=\|\boldsymbol{\rho}\|=\left\|\mathbf{r}-\mathbf{r}_{\text {site }}\right\|=\sqrt{\left(r_{x}-r_{\text {site }_{x}}\right)^{2}+\left(r_{y}-r_{\text {site }_{y}}\right)^{2}+\left(r_{z}-r_{\text {site }_{z}}\right)^{2}} \tag{3.14}
\end{equation*}
$$

Having specified an epoch (e.g., $t_{0}=0 \mathrm{~s}$), the satellite position state vector can be found following the steps of the previous sub-section whereas the site position state vector can be calculated via Equations (3.9). This latter set of equations need both the Local Sidereal Time, θ_{LST}, which can be obtained by using Equation (3.8), and the Greenwich Mean Sidereal Time at $t_{0}, \theta_{\mathrm{GMST}}\left(t_{0}\right)$, which is calculated via Equation (3.10). Remember that θ_{GMST} oh has been defined to be equal to 0.0 rad. In this way, all ideal range observations of different sites needed at t_{0} can be obtained. Note that the ECI coordinate system is the coordinate system used to provide both \mathbf{r} and $\mathbf{r}_{\text {site }}$ vectors.

On the other hand, in order to calculate the ideal range-rate observations, two definitions must be given. First, the range-rate will be defined as the dot product between the relative velocity of the satellite to the site, $\mathbf{v}_{\mathbf{r e l}}$, and the unit range vector, $\widehat{\boldsymbol{\rho}}$ (see Equation [3.15]).

$$
\begin{equation*}
\dot{\rho}=\mathbf{v}_{\text {rel }} \cdot \widehat{\boldsymbol{\rho}}=\mathbf{v}_{\mathbf{r e l}} \cdot \frac{\boldsymbol{\rho}}{\rho} \tag{3.15}
\end{equation*}
$$

Second, $\mathbf{v}_{\text {rel }}$ will be defined as

$$
\begin{equation*}
\mathbf{v}_{\text {rel }}=\mathbf{v}-\mathbf{v}_{\text {site }} \tag{3.16}
\end{equation*}
$$

where \mathbf{v} is the satellite velocity state vector, and $\mathbf{v}_{\text {site }}$ is the site velocity state vector. Both vectors are given in the ECI coordinate system. \mathbf{v} can be calculated following the steps of the previous sub-section whereas $\mathbf{v}_{\text {site }}$ can be obtained via Equation (3.17),

$$
\mathbf{v}_{\text {site }}=\omega_{\oplus}\left[\begin{array}{c}
-r_{J} \tag{3.17}\\
r_{I} \\
0
\end{array}\right]
$$

where ω_{\oplus} is the Earth's mean angular rotation (see Table 3.1) and the r components are obtained from Equations (3.9). Thus, the relative velocity can be defined as the satellite velocity in an ECEF coordinate system. Figure 3.20 shows all the geometry involved in the range-rate observations computation in order to clarify all equations used.

In addition, Figures 3.21 and 3.22 illustrate the ideal range and range-rate histories respectively that, for example, the Barcelona location will provide from the ideal simulated satellite orbit created. Thus, one may have an overview of the shape and order of magnitude of range and range-rate curves along time. Both figures start at epoch $t_{0}=0 \mathrm{~s}$ and last one satellite orbit.

At this point, all theoretical bases and ways to obtain the ideal parameters have already been explained. This ideal system may now provide valuable information of how Trilateration and Gibbs methods work. The following sections analyse both methods, first from the ideal range and range-rate observations, and, second, adding noise to these ideal observations. This latter step will show a more real case of the precision obtained by using both methods.

Figure 3.20: Geometry of range-rate observations computation.

Figure 3.21: Ideal range history of Barcelona location along one satellite orbit.

Figure 3.22: Ideal range-rate history of Barcelona location along one satellite orbit.

3.5. TRILATERATION AND GIBBS METHODS ANALYSES

As commented in section 3.2, Trilateration method may calculate a satellite state vector, which will be called approximate satellite state vector from now on, from range and range-rate observations of three different sites at the same epoch. It has also been explained that if only range observations were available, the approximate satellite state vector would be provided from range observations of three different sites at three different epochs by using both Trilateration and Gibbs methods.

This section will analyse the results obtained in both cases taking into account that Gibbs method will fail if consecutive range observations are given in two epochs that are very close in time (i.e., a few seconds of difference). Thus, as GEOSAR mission may need long integration times in order to obtain higher resolution images (i.e., $4-6 \mathrm{~h}$), epochs distanced 9000 s will be used when range observations are only given.

Table 3.5 summarizes all conditions taken into account when the simulation of both cases (settings) has been run. The reader may consult Appendix A for further information about all Matlab functions used to perform such simulations.

The important thing when evaluating all settings is their precision, especially in the range history. Thus, considering the worst case of GEOSAR mission (i.e., the X-band, $\lambda \sim 3 \mathrm{~cm}$), the error in range history of each location site under the L-band coverage (see Figure 3.14 and Table 3.3) should be maintained over 3 cm during all synthetic aperture. For this reason, the error will be obtained at two
()) telecom
different epochs: a) the initial epoch when the approximate satellite state vector is given, and b) an epoch 6 h later from the initial epoch, t_{f}. In this way, the errors at the beginning and end of the radar synthetic aperture will be shown. Remember that, on the other hand, autofocus synthetic aperture techniques can be used to refine the range history predicted from the orbital model, so that the precision requirement could be relaxed in the order of magnitude of tens of centimetres.

Setting A

Location of the three sites:
(01) Barcelona (Spain)
(02) Betzdorf (Luxemburg)
(03) Milan (Italy)

IDEAL DATA

- Type of observations generated:

RANGE.

- Epoch/s when the observations are generated:
$t_{0}=0 \mathrm{~s}$,
$t_{1}=9000 \mathrm{~s}$, and
$t_{2}=18000 \mathrm{~s}$.
APPROXIMATE DATA
Method/s used:
TRILATERATION and GIBBS.
Epoch when the approximate satellite state vector is given:
$t_{1}=9000 \mathrm{~s}$.

Setting B

Location of the three sites:
(01) Barcelona (Spain)
(02) Betzdorf (Luxemburg)
(03) Milan (Italy)

IDEAL DATA

- Type of observations generated: RANGE and RANGE-RATE.
- Epoch/s when the observations are generated:

$$
t_{0}=0 \mathrm{~s} .
$$

APPROXIMATE DATA

Method/s used:
TRILATERATION.
Epoch when the approximate satellite state vector is given:

$$
t_{0}=0 \mathrm{~s}
$$

Table 3.5: Summary of all conditions considered on settings A and B.

The error, ξ, will be calculated following Equation 3.18, so that all interesting approximate values obtained from settings of Table 3.5 will be compared to the ideal ones. As said before, the most important parameters to be compared are range observations ${ }^{1}$; however, the satellite state vector values and their errors will also be studied since they directly affect the determination of range observations. In addition, the range-rate observation values and their errors will also be shown when the evaluated setting uses these observations in order to obtain the initial approximate state vector. Finally, the classical orbital elements values and their errors will also be considered as an alternative view of the satellite state vector.

$$
\begin{equation*}
\xi=\text { approximate value }- \text { ideal value } \tag{3.18}
\end{equation*}
$$

The results will be organised in tables that the reader may consult in Appendix B. All values shown in these tables will be presented with many decimal figures in order to better quantify the precision of each setting used. In this section, the main results will be depicted by means of different plots, which will show either the comparison between ideal and approximate values of a specific

[^10]parameter or the evolution of the errors of one particular parameter. In any case, the results will be plotted along one satellite orbit from the initial epoch of each setting.

a) Results Analysis of Setting A

In this case, plots of errors have been selected since there are no visual differences between ideal and approximate parameters. In this way, Figures 3.23 and 3.24 show the errors on each satellite state vector component, and Figure 3.25 illustrates the error in range history of Barcelona location (one of the sites used to calculate the initial approximate satellite state vector).

As seen from the figures below, the errors in the satellite state vector are quite smooth during the first hours, and then they begin to disturb. This fact affects the errors in range history, which its values are less predictable in the last 12 hours. However, one can see from the tables of Appendix A or from the figures shown here that the order of magnitude of all errors is very small. For example, the errors in range observations of each site evaluated are less than nanometres at t_{1} (initial epoch), and less than micrometres at t_{f} (6 hours after the initial epoch). Therefore, one may conclude that the precision of the whole system when using both Trilateration and Gibbs methods is very high. Remember that all system built is an ideal case where perturbations and noise are not taking into account, so that this precision could be expected.

Figure 3.23: Errors in the satellite position state vector along one satellite orbit (setting A).

Figure 3.24: Errors in the satellite velocity state vector along one satellite orbit (setting A).

Figure 3.25: Errors in the range history of Barcelona location along one satellite orbit (setting A).

b) Results Analysis of Setting B

This setting provides similar order of magnitude errors than setting A, so that the use of ideal range and range-rate observations does not improve the precision of the system obtained in the previous subsection where range observations were only used. In this way, both settings A and B work in a very similar way when perturbations and noise are not considered.

Figure 3.26 illustrates an example of the error in range-rate history of Barcelona location. As seen from the figure, the errors are of the order of magnitude of tens of picometres per second. They are therefore really small.

Figure 3.26: Errors in the range-rate history of Barcelona location along one satellite orbit (setting B).

Trilateration method alone or combined with Gibbs method almost provides the same and very high precision results when all parameters are considered ideal. As commented before, this is an ideal case that has been useful to evaluate the order of magnitude of errors of all Matlab functions used during both simulations. In order to get closer to reality, let us add noise to the ideal range and rangerate observations and see how the precision of both settings is affected. In this way, the quantity of noise to be added must consequently be calculated. Next section shows how to calculate and what value acquires this noise quantity by using the parameters of GEOSAR mission. After that, section 3.7 will show the new results obtained when adding such noise on ideal range and range-rate observations.

3.6. NOISE OF RANGE AND RANGE-RATE OBSERVATIONS

Levanon (1988) develops the Cramer-Rao lower bounds for both time delay and frequency estimations. From these lower bounds, the standard deviation of range and range-rate observations may be derived. Thus, knowing some specific parameters of GEOSAR mission, one may calculate the quantity of noise to be added to the ideal range and range-rate observations of the previous section. Let us see how these quantities are obtained.

Assuming that the delay measurement is performed after synchronous detection when the signal is at baseband, the Cramer-Rao lower bound for delay estimation can be calculated as

$$
\begin{equation*}
\sigma_{\tau}^{2}=\frac{N_{0}}{2 E \beta^{2}} \tag{3.19}
\end{equation*}
$$

where E / N_{0} is the Signal-to-Noise Ratio and β is called the RMS (Root Mean Square) bandwidth, which can be expressed as the Fourier transform of the envelope of the complex signal as

$$
\begin{equation*}
\beta^{2}=\frac{(2 \pi)^{2} \int_{-\infty}^{\infty} f^{2}|G(f)|^{2} d f}{\int_{-\infty}^{\infty}|G(f)|^{2} d f} \tag{3.20}
\end{equation*}
$$

Now, considering a linear FM signal (i.e., the GEOSAR mission case), the Fourier transform of the signal envelope can be approximated by

$$
G(f)= \begin{cases}1, & B / 2 \leq f \leq B / 2 \\ 0, & \text { elsewhere }\end{cases}
$$

where B is the band-limited width of the signal. Using this $G(f)$ in Equation (3.20), the value of β^{2} of a linear FM signal can be obtained as

$$
\beta^{2}=\frac{(2 \pi)^{2} \int_{-B / 2}^{B / 2} f^{2} d f}{\int_{-B / 2}^{B / 2} d f}=\frac{(2 \pi)^{2}\left[\frac{f^{3}}{3}\right]_{-B / 2}^{B / 2}}{[f]_{-B / 2}^{B / 2}}=\frac{(2 \pi)^{2}\left(\frac{B^{3}}{8}+\frac{B^{3}}{8}\right)}{3\left(\frac{B}{2}+\frac{B}{2}\right)}=\frac{(2 \pi)^{2} 2 B^{3}}{24 B}=\frac{1}{3} \pi^{2} B^{2}
$$

which yields the Cramer-Rao lower bound for time delay of a FM signal.

$$
\begin{equation*}
\sigma_{\tau}^{2}=\frac{3}{\pi^{2} B^{2}\left(2 \frac{E}{N_{0}}\right)} \tag{3.21}
\end{equation*}
$$

Knowing that the relation between range resolution, $\Delta \rho$, and time delay, τ, in a radar case can be obtained as

$$
\begin{equation*}
\Delta \rho=\frac{c \tau}{2} \tag{3.22}
\end{equation*}
$$

where c is the speed of light, the standard deviation of range measurements, σ_{ρ}, can consequently be calculated as

$$
\begin{equation*}
\sigma_{\rho}=\sqrt{\sigma_{\rho}^{2}}=\sqrt{\frac{c^{2}}{4} \sigma_{\tau}^{2}}=\frac{c}{2} \sqrt{\frac{3}{\pi^{2} B^{2}\left(2 \frac{E}{N_{0}}\right)}} \tag{3.23}
\end{equation*}
$$

On the other hand, Levanon defines the Cramer-Rao lower bound on frequency estimation as

$$
\begin{equation*}
\sigma_{f_{D}}^{2}=\frac{1}{\alpha^{2}\left(2 \frac{E}{N_{0}}\right)} \tag{3.24}
\end{equation*}
$$

where E / N_{0} is the Signal-to-Noise Ratio and α is called the RMS time duration, which is defined as

$$
\begin{equation*}
\alpha^{2}=\frac{(2 \pi)^{2} \int_{-\infty}^{\infty} t^{2}|q(t)|^{2} d t}{\int_{-\infty}^{\infty}|q(t)|^{2} d t} \tag{3.25}
\end{equation*}
$$

where $q(t)$ is the complex representation of the signal. Now, considering the linear FM signal of a single-frequency pulse of duration T and envelope A (i.e., the GEOSAR mission case), the signal envelope $q(t)$ can be approximated by

$$
q(t)= \begin{cases}A, & T / 2 \leq t \leq T / 2 \\ 0, & \text { elsewhere }\end{cases}
$$

Substituting this $q(t)$ in Equation (3.25), the value of α^{2} of a linear FM signal can be obtained as

$$
\alpha^{2}=\frac{(2 \pi)^{2} \int_{-T / 2}^{T / 2} t^{2} A^{2} d t}{\int_{-T / 2}^{T / 2} A^{2} d t}=\frac{(2 \pi)^{2}\left[\frac{t^{3}}{3}\right]_{-T / 2}^{T / 2}}{[t]_{-T / 2}^{T / 2}}=\frac{(2 \pi)^{2}\left(\frac{T^{3}}{8}+\frac{T^{3}}{8}\right)}{3\left(\frac{T}{2}+\frac{T}{2}\right)}=\frac{(2 \pi)^{2} 2 T^{3}}{24 T}=\frac{1}{3} \pi^{2} T^{2}
$$

which yields the Cramer-Rao lower bound for frequency of a FM signal

$$
\begin{equation*}
\sigma_{f_{D}}^{2}=\frac{3}{\pi^{2} T^{2}\left(2 \frac{E}{N_{0}}\right)} \tag{3.26}
\end{equation*}
$$

As in the previous case, a relation between the frequency Doppler, f_{D}, and the range-rate, $\dot{\rho}$, must be established. This is done via Equation (3.27),

$$
\begin{equation*}
v_{\mathrm{r}}=-\frac{\lambda}{2} f_{D} \tag{3.27}
\end{equation*}
$$

where λ is the signal wavelength, and v_{r} is the radial speed between the radar and the target. Both v_{r} and $\dot{\rho}$ can be considered the same value. Thus, the standard deviation of range-rate observations, $\sigma_{v_{\mathrm{r}}}$, can consequently be calculated as

$$
\begin{equation*}
\sigma_{v_{\mathrm{r}}}=\sqrt{\sigma_{v_{\mathrm{r}}}^{2}}=\sqrt{\frac{\lambda^{2}}{4} \sigma_{f_{D}}^{2}}=\frac{\lambda}{2} \sqrt{\frac{3}{\pi^{2} T^{2}\left(2 \frac{E}{N_{0}}\right)}} \tag{3.28}
\end{equation*}
$$

Once both standard deviations have been defined, let us calculate their value on the particular context of GEOSAR mission. In Casado (2016), all parameters needed to calculate σ_{ρ} and $\sigma_{v_{r}}$ are provided, which are summarized in Table 3.6. It has been considered the worst case, so that all parameters have been selected from the frequency at lower band (i.e., the L-band) and no subapertures ${ }^{1}$ have been taken into account.

[^11]| PARAMIETERS OF GEOSAR MISSION | | |
| :--- | :---: | :---: |
| Parameter | Notation | Value |
| Frequency (L-band) | f | $1.27 \times 10^{9} \mathrm{~Hz}$ |
| Signal-to-Noise Ratio | E / N_{0} | 24.8 dB |
| Bandwidth | B | 3.6 MHz |
| Pulse duration | T | 0.763 s |

Table 3.6: Parameters of GEOSAR mission needed to obtain σ_{ρ} and $\sigma_{v_{r}}$.

Thus, from parameters of Table 3.6, the standard deviation values of range and range-rate observations yield

$$
\begin{gathered}
\sigma_{\rho}=\frac{c}{2} \sqrt{\frac{3}{\pi^{2} B^{2}\left(2 \frac{E}{N_{0}}\right)}}=\frac{3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{2} \sqrt{\frac{3}{\pi^{2} \times\left(3.6 \times 10^{6} \mathrm{~Hz}\right)^{2} \times 2 \times 10^{2.48}}}=0.935 \mathrm{~m} \\
\sigma_{v_{\mathrm{r}}}=\frac{\lambda}{2} \sqrt{\frac{3}{\pi^{2} T^{2}\left(2 \frac{E}{N_{0}}\right)}}=\frac{3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{2 \times 1.27 \times 10^{9} \mathrm{~Hz}} \sqrt{\frac{3}{\pi^{2} \times(0.763 \mathrm{~s})^{2} \times 2 \times 10^{2.48}}}=3.47 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Therefore, the precision of Trilateration and Gibbs methods can now be re-evaluated taking into account both standard deviation values. However, in order to introduce a little margin in the numbers obtained above and work with simpler numbers, let us round σ_{ρ} and $\sigma_{v_{r}}$, and choose the values of Table 3.7.

STANDARD DEVIATION OF RANGE AND RANGE-RATE OBSERVATIONS			
Parameter	Notation	Value	
Standard deviation of range observations	σ_{ρ}	1 m	
Standard deviation of range-rate observations	$\sigma_{v_{\mathrm{r}}}$	$5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	

Table 3.7: Standard deviation of range and range-rate observations.

3.7. TRILATERATION AND GIBBS METHODS ANALYSES ADIDING NOISE

This section will analyse how the effect of adding noise to the ideal range and range-rate observations will affect the approximate satellite state vector calculation, and therefore the range values acquisition. This noise will follow a normal distribution with mean equal to 0 for all observations, and standard deviation equal to one of the two values of Table 3.7. In addition, each quantity of noise added to each
range and range-rate observation will be different. Thus, for example, the ideal range observation of Barcelona location at epoch t_{1} will contain a different quantity of noise that the same observation at epoch t_{2} or the range observation of Betzdorf location at epoch t_{1}. In this way, all samples will be independent of one another. Once the noisy observations have been created, then the approximate satellite state vector will be found and all errors will be computed in the same way as Section 3.5.

Repeating the same simulation different times will provide different results since the noise is randomly added to the observations. For this reason, this section will show the results of only one simulation using the same configuration of setting B (Section 3.5), but with noisy observations. Thus, the reader may have an overview of the effect of adding noise on the initial orbit determination. In order to better quantify the effect of noise, a statistical simulation must be performed. This will be done in the following section.

As in Section 3.5, the reader may consult the numerical results in Appendix B. Here, some plots will be depicted in the following figures showing either the evolution of the errors or the comparison between the ideal and approximate values of one particular parameter along one satellite orbit.

Figure 3.27: Ideal (in green) and approximate (in red) satellite orbits around the Earth (setting $B+$ noise).

From Figure 3.27, one can start to differentiate between the ideal (in green) and approximate (in red) satellite orbits. The approximate satellite orbit is no longer strictly equatorial since it has a little inclination (see Table B.12). In addition, the eccentricity value has increased more than four times the ideal value. All of this is due to the fact that the errors in the approximate satellite state vectors are becoming higher. One may also appreciate the magnitude of such errors in Figures 3.28 and 3.29.

Figure 3.28: Errors in the satellite position state vector along one satellite orbit (setting $B+$ noise).

Figure 3.29: Errors in the satellite velocity state vector along one satellite orbit (setting $B+$ noise).

At the initial epoch, t_{0}, the magnitude of the errors between the ideal and approximate satellite position state vectors are of tens and hundreds of metres, whereas, at final epoch, t_{f}, the magnitude of the errors increases up to tens of kilometres. For the satellite velocity state vector case, the errors are more constant and in the order of magnitude of metres per second. Such errors obviously affect the range history of each site becoming around 1 m at t_{0} and reaching the 30 km at t_{f} (see Appendix B). This fact is illustrated in Figure 3.30, where the ideal and approximate range histories of Barcelona location have been depicted. As seen in this figure, there is a significant difference between both curves mainly due to the difference in the eccentricities of both satellite orbits.

Figure 3.30: Ideal (in green) and approximate (in red) range histories of Barcelona location along one satellite orbit (setting $B+$ noise).

One thing to highlight is that the same noise added to the ideal range and range-rate observations is obtained when computing the error in the range and range-rate observations after the approximate satellite state vector is calculated at the initial epoch (see Table 3.8). This fact ensures that the system built works properly since Trilateration and Gibbs methods are geometric methods and provide exact results.

In order to conclude the analysis of adding noise in a single simulation, Figure 3.31 shows the ideal and approximate range-rate histories of Barcelona location along one satellite orbit. From this figure, one may also see the difference between both curves. However, the range-rate history suffers less degradation due to noise compared to the range history. After one satellite orbit, the ideal and approximate range-rate observations are very similar, whereas this fact does not occur between the final values of the ideal and approximate range observations. Therefore, in order not to exceed the amount of figures shown, only those figures that affect the satellite state vector and range history will be depicted in the following sections.

RANGE OBSERVATIONS [km]

01	BCN	0.000537667140	0.000537667147
02	BET	-0.000433592022	-0.000433592017
03	MIL	0.000725404225	0.000725404243

0.000000000007
0.000000000005
0.000000000018

RANGE-RATE OBSERVATIONS [km/s]

01	BCN	0.000004310867	0.000004310867
02	BET	0.000013847185	0.000013847185
03	MIL	-0.000001024830	-0.000001024830

0.000000000000
0.000000000000
0.000000000000

Table 3.8: Difference between the noises added to the ideal ρ and $\dot{\rho}$ observations and the error obtained between the ideal and approximate ρ and $\dot{\rho}$ observations at epoch t_{0}.

Figure 3.31: Ideal (in green) and approximate (in red) range-rate histories of Barcelona location along one satellite orbit (setting $B+$ noise).

3.8. STATISTICAL ANALYSES OF TRIIATERATION AND GIBBS METHODS

Since every simulation run when adding noise to the ideal range and range-rate observations gives similar but different results, there is a need to perform a statistical analysis in order to better delimit all results obtained and to better evaluate the precision of the system.

This section will provide these statistics showing the results of the different parameters analysed by means of histograms. The numerical results will also be given in tables as previous sections showing the mean and standard deviation of the errors in each parameter (consult Appendix B). The main parameters to be analysed will be the satellite state vector and range observations of different locations; however, the range-rate observations will also be discussed if needed. Following the same criteria as Section 3.5, the results will be shown at two different epochs simulating the initial and final epochs of the radar synthetic aperture (i.e., t_{0} and $t_{\mathrm{f}}=t_{0}+6 \mathrm{~h}$ respectively).

First, the precision of settings A and B plus noise, which will be called setting C and D respectively from now on (see Table 3.9), will be studied. Then, as both settings will not achieve the required precision, other settings will be evaluated. Thus, a complete overview of the Trilateration and Gibbs methods performance will be acquired. Finally, the most important results will be collected all together and shown in a table in Section 3.9. As last remark, it has been considered to repeat the simulation of each setting 1000 times in order to perform such statistics.

Setting C

Location of the three sites:

(01) Barcelona (Spain)
(02) Betzdorf (Luxemburg)
(03) Milan (Italy)

IDEAL DATA

- Type of observations generated: RANGE.
- Epoch/s when the observations are generated:
$t_{0}=0 \mathrm{~s}$,
$t_{1}=9000 \mathrm{~s}$, and $t_{2}=18000 \mathrm{~s}$.

NOISE ADDED

- Range observations:

MEAN: $0 \mathrm{~m} / \mathrm{STD} .: 1 \mathrm{~m}$.

APPROXIMATE DATA

Method/s used

TRILATERATION and GIBBS.
Epoch when the approximate satellite state vector is given:

$$
t_{1}=9000 \mathrm{~s} .
$$

Setting D

Location of the three sites:

(01) Barcelona (Spain)
(02) Betzdorf (Luxemburg)
(03) Milan (Italy)

IDEAL DATA
Type of observations generated:
RANGE and RANGE-RATE.

- Epoch/s when the observations are generated:

$$
t_{0}=0 \mathrm{~s} .
$$

NOISE ADDED

- Range observations:

MEAN: $0 \mathrm{~m} / \mathrm{STD} .: 1 \mathrm{~m}$.

- Range-rate observations:

MEAN: $0 \mathrm{~mm} / \mathrm{s} /$ STD.: $5 \mathrm{~mm} / \mathrm{s}$.
APPROXIMATE DATA
Method/s used:
TRILATERATION.
Epoch when the approximate
satellite state vector is given:

$$
t_{0}=0 \mathrm{~s} .
$$

Table 3.9: Summary of all conditions considered on settings C and D.

a) Results Analysis of Setting C

Adding noise to the ideal range observations obviously affect the initial satellite state vector determination. In this case, 1 m of standard deviation noise in range observations lead to locate the initial satellite position state vector with errors of 50 to 150 metres on each of its components compared to the initial ideal values. On the other hand, the errors in each component of the initial satellite velocity state vector are around 10 millimetres per second (see Figure 3.32).

Such errors in the satellite state vector will degrade over time. After 6 h, some errors have increased, especially those relating to the satellite position state vector, whereas the other errors have similar values (see Figure 3.33). Although the augmented quantity is not very high, the impact on the final range observations is severe. One may see from tables of Appendix B that the errors on range values of the different locations are of few metres at initial epoch, and become more than 100 m at final epoch. This fact highlights the importance of determining the initial satellite sate vector on a very precise way.

One may have realised that setting C does not fulfil the precision requirements of GEOSAR mission; however, it has been useful to evaluate the performance of Trilateration and Gibbs methods when the initial parameters (range observations) are noisy. Remember that only three observations of Barcelona, three of Betzdorf and three of Milan locations have been used in order to calculate the satellite state vector.

Figure 3.32: Statistical errors in the satellite state vector at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting C).

Figure 3.33: Statistical errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=30600 \mathrm{~s}$ (setting C).

As commented in the previous section, the same initial noise, added to the ideal range observations of Barcelona, Betzdorf and Milan locations, is obtained after computing the initial range errors (i.e., the difference between the ideal and approximate values) of these three sites. This fact is illustrated in the following figures. In this way, another sign is obtained in order to ensure the proper functionality of whole simulation.

Figure 3.34: Statistical noise added to the ideal ρ observations and errors obtained between the ideal and approximate ρ observations of Barcelona location at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting C).

Figure 3.35: Statistical noise added to the ideal ρ observations and errors obtained between the ideal and approximate ρ observations of Betzdorf location at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting C).

Figure 3.36: Statistical noise added to the ideal ρ observations and errors obtained between the ideal and approximate ρ observations of Milan location at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting C).

b) Results Analysis of Setting D

Now, noisy range-rate observations of the three sites are also used. In this case, all observations are provided at same initial epoch, and Trilateration is the only method used in order to calculate the initial satellite state vector.

Figure 3.37: Errors in the satellite state vector at initial epoch, $t_{0}=0 \mathrm{~s}($ setting $D)$.

Figure 3.38: Errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=21600 \mathrm{~s}$ (setting D).
(2) telecom

The results obtained by the simulation show similar order of magnitude errors in the initial satellite position state vector compared to setting C; however, the errors in the initial satellite velocity state vector are two orders of magnitude above (see Figure 3.37). This fact does not degrade the initial range observations obtained by setting C since such values are related to the position of the satellite state vector. But, on the other hand, having a less precise initial state vector, lead to a worse propagation of it over time (see Figure 3.38), and therefore higher errors in the obtained range observations at final epoch. Thus, setting C provided errors of 100 m in range observations at final epoch, and setting D gives now errors of 17 km per each site.

As regards the range-rate observations, they start with errors of a few millimetres per second at initial epoch, and reach around 1.2 metres per second error in each site at final epoch. Again, the errors are too high. If setting C did not fulfil the precision requirements of GEOSAR mission, neither does setting D, which has even greater errors. Both settings, specifically Trilateration and Gibbs methods, are not designed to calculate the satellite orbit with precision in presence of perturbations or noise. They are used as methods to initially determine the satellite orbit. Then, from this initial point and more observations from the satellite orbit, other methods or techniques may improve substantially the initial point precision, and therefore the satellite orbit estimation around the Earth. One of these techniques will be discussed in Chapter 4.

At this point, the correct functionality of the whole system built can finally be proved by showing some statistics related to range-rate observations. Thus, Figures 3.39, 3.40 and 3.41 illustrate the statistics of the noise added to the ideal range-rate observations of Barcelona, Betzdorf and Milan locations at initial epoch compared to the errors obtained (i.e., the difference between the ideal and approximate values) in these observations at these three locations at same initial epoch. As seen in the figures, the statistics are the same so that the system works properly.

Figure 3.39: Statistical noise added to the ideal $\dot{\rho}$ observations and errors obtained between the ideal and approximate $\dot{\rho}$ observations of Barcelona location at initial epoch, $t_{0}=0 \mathrm{~s}($ setting $D)$.

Figure 3.40: Statistical noise added to the ideal $\dot{\rho}$ observations and errors obtained between the ideal and approximate $\dot{\rho}$ observations of Betzdorf location at initial epoch, $t_{0}=0 \mathrm{~s}(\operatorname{setting} D)$.

Figure 3.41: Statistical noise added to the ideal $\dot{\rho}$ observations and errors obtained between the ideal and approximate $\dot{\rho}$ observations of Milan location at initial epoch, $t_{0}=0 \mathrm{~s}($ setting $D)$.

Before concluding Trilateration and Gibbs methods analyses, let us evaluate two more situations. First, let us see how the precision of the system is affected when adding a different quantity of noise to the initial observations. In particular, if range observations are degraded with noise of 1 km standard deviation instead of 1 m , how will the errors of the different parameters be? Second, the three sites selected to initially determine the satellite orbit are very close from the satellite point of view. If the triangle forming these three sites is enlarged, how will the initial satellite state vector precision change? Both questions will be discussed in the following subsections.

c) Results Analysis of Setting E

This sub-section will analyse how the errors in the satellite state vector and range observations are affected if the initial ideal range observations of the three sites are degraded with 1 km standard deviation Gaussian noise. Table 3.10 summarizes all conditions considered in the simulation.

Setting E

Location of the three sites:
(01) Barcelona (Spain)
(02) Betzdorf (Luxemburg)
(03) Milan (Italy)

IDEAL DATA

- Type of observations generated:

RANGE.

- Epoch/s when the observations are generated:
$t_{0}=0 \mathrm{~s}$,
$t_{1}=9000 \mathrm{~s}$, and
$t_{2}=18000 \mathrm{~s}$.

NOISE ADDED

Range observations:
MEAN: $0 \mathrm{~m} / \mathrm{STD} .: 1 \mathrm{~km}$.
APPROXIMATE DATA
Method/s used:
TRILATERATION and GIBBS.
Epoch when the approximate satellite state vector is given:

$$
t_{1}=9000 \mathrm{~s}
$$

Table 3.10: Summary of all conditions considered on setting E.

Figures 3.42 and 3.43 show the statistical results of the errors obtained in the satellite state vector at initial and final epochs respectively. Increasing three orders of magnitude the quantity of noise added to range observations with regard to setting $\mathrm{C}\left(\sigma_{\rho}=1 \mathrm{~m}\right)$ lead to errors three order of magnitude higher in setting E . In setting C , the errors in the initial satellite position state vector were of 50 to 150 metres, whereas, in setting D, these errors become 50 to 150 kilometres. The same rule happens to the other parameters at both initial and final epochs.

As commented in Section 3.3, Trilateration and Gibbs methods are both geometrical methods, so that the order of magnitude of the errors given into the analysis of setting E could be expected. Thus, when determining the initial position of the satellite vector, it will be of the utmost importance the quality of observations (i.e., range and range-rate observations) in order to use them on Trilateration and Gibbs methods.

Figure 3.42: Errors in the satellite state vector at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting E).

Figure 3.43: Errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=30600 \mathrm{~s}$ (setting E).
(2) telecom

d) Results Analysis of Setting F

This sub-section and the following one will show how the enlargement of the triangle forming the three sites affects the errors obtained in the satellite state vector, and range and range-rate observations. The selection of these new three sites has been done considering locations that are on the edges of Europe although they are out of the satellite L-band beam coverage. For this reason, Las Palmas de Gran Canaria (Spain), Reykjavik (Iceland), and Ankara (Turkey) locations have been chosen.

The simulations of setting F (this sub-section) and setting G (next sub-section) will be performed considering noise values of settings C and D respectively (i.e., $\sigma_{\rho}=1 \mathrm{~m}$ and $\sigma_{v_{\mathrm{r}}}=$ $5 \mathrm{~mm} / \mathrm{s}$). All conditions taken into account in the simulation of both settings are summarized in Table 3.11.

Setting F

Location of the three sites:
(04) Las Palmas de Gran Canaria (Spain)
(05) Reykjavik (Iceland)
(06) Ankara (Turkey)

IDEAL DATA

- Type of observations generated: RANGE.
- Epoch/s when the observations are generated:
$t_{0}=0 \mathrm{~s}$,
$t_{1}=9000 \mathrm{~s}$, and
$t_{2}=18000 \mathrm{~s}$.
NOISE ADDED
- Range observations:

MEAN: $0 \mathrm{~m} / \mathrm{STD} .: 1 \mathrm{~m}$.

APPROXIMATE DATA

Method/s used:
TRILATERATION and GIBBS.
Epoch when the approximate satellite state vector is given:

$$
t_{1}=9000 \mathrm{~s}
$$

Setting G

Location of the three sites:
(04) Las Palmas de Gran Canaria (Spain)
(05) Reykjavik (Iceland)
(06) Ankara (Turkey)

IDEAL DATA

- Type of observations generated:

RANGE and RANGE-RATE.

- Epoch/s when the observations are generated:

$$
t_{0}=0 \mathrm{~s}
$$

NOISE ADDED

- Range observations:

MEAN: $0 \mathrm{~m} /$ STD.: 1 m .
Range-rate observations:
MEAN: $0 \mathrm{~mm} / \mathrm{s} /$ STD.: $5 \mathrm{~mm} / \mathrm{s}$.

APPROXIMATE DATA

Method/s used:
TRILATERATION.
Epoch when the approximate satellite state vector is given:

$$
t_{0}=0 \mathrm{~s} .
$$

Table 3.11: Summary of all conditions considered on settings F and G.

Using this new triangle of sites, the errors in the initial satellite state vector have decreased one order of magnitude. The results of setting C showed, for example, satellite position state vector errors between 50 and 150 metres, whereas setting F obtains errors of 5 to 25 metres (see Figure 3.44). This improvement in the satellite state vector initial determination allows that the initial range observation errors of all sites under the satellite L-band beam coverage remain below 1 metre. Such error was only provided in Bern location when analysing setting C. That is to say,
the only site evaluated whose location is inside the triangle formed by Barcelona, Betzdorf and Milan sites.

Figure 3.44: Errors in the satellite state vector at initial epoch, $t_{1}=9000 \mathrm{~s}$ (setting F).

Figure 3.45: Errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=30600 \mathrm{~s}$ (setting F).
(2) telacom

In addition, this better determination of the initial satellite state vector leads to fewer errors in the satellite propagation (see Figure 3.45), and therefore the final range observations are closer to the ideal values. However, the precision requirements of GEOSAR mission are far to be fulfilled by means of setting F . One may see from tables of Appendix B that the range observation errors at final epoch are around 14 metres, which are a great improvement with regard to those achieved in setting $\mathrm{C}(\sim 100$ metres $)$, but not sufficient.

e) Results Analysis of Setting G

Setting G is the last configuration that is going to be simulated. This setting includes range-rate observation errors as setting D does.

The simulation results can be summarized in two points. On one hand, there is an improvement of one order of magnitude on the errors of all parameters evaluated of setting G with regard to the errors obtained in setting D , which is the same as happened in the previous subsection. On the other hand, the errors of setting G at final epoch are higher than those obtained in setting F. This fact also happened between settings D and C. Therefore, setting G does not fulfil GEOSAR mission requirements as one could expect from the simulations of previous settings.

Figure 3.46: Errors in the satellite state vector at initial epoch, $t_{0}=0 \mathrm{~s}($ setting $G)$.

Figure 3.47: Errors in the satellite state vector at final epoch, $t_{\mathrm{f}}=21600 \mathrm{~s}($ setting $G)$.

3.9. RESULTS SUMMARY

Table 3.12 summarizes the main results obtained of all settings evaluated along Chapter 3. Thus, the reader can compare the performance of the different settings.

As a conclusion of the chapter, Trilateration and Gibbs methods are required to initially calculate one satellite state vector from observation data. They perform such operation through very few observations of different sites, so that a poor precision on the final result could be expected. On the other hand, GEOSAR mission requirements are very high with respect actual orbit positioning of GEO satellites. Therefore, other techniques must be studied, which use a large amount of observation data, in order to refine the initial orbit determination offered by Trilateration and Gibbs methods. One of these techniques is discussed and evaluated in the following chapter, which is based on differential correction.

RESULTS SUMMARY OF ALL SETTINGS OF CHAPTER 3

						Serrors in satellite	Errors in Range observations (ρ)	Errors in Range-rate observations $(\dot{\rho})$

INITIAL EPOCH

\mathbf{A}	$80 \mathrm{pm}-550 \mathrm{pm}$	less than $\frac{\mathrm{pm}}{\mathrm{s}}$	less than $\frac{\mathrm{pm}}{\mathrm{s}}-30 \mathrm{pm}$	-
\mathbf{B}	$140 \mathrm{pm}-870 \mathrm{pm}$	less than $\frac{\mathrm{pm}}{\mathrm{s}}$	less than $\frac{\mathrm{pm}}{\mathrm{s}}-10 \mathrm{pm}$	less than $\frac{\mathrm{pm}}{\mathrm{s}}$
\mathbf{C}	$50 \mathrm{~m}-160 \mathrm{~m}$	$5 \frac{\mathrm{~mm}}{\mathrm{~s}}-15 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.5 \mathrm{~m}-7 \mathrm{~m}$	-
\mathbf{D}	$50 \mathrm{~m}-160 \mathrm{~m}$	$0.2 \frac{\mathrm{~m}}{\mathrm{~s}}-0.8 \frac{\mathrm{~m}}{\mathrm{~s}}$	$0.5 \mathrm{~m}-7 \mathrm{~m}$	$3 \frac{\mathrm{~mm}}{\mathrm{~s}}-35 \frac{\mathrm{~mm}}{\mathrm{~s}}$
\mathbf{E}	$50 \mathrm{~km}-160 \mathrm{~km}$	$6 \frac{\mathrm{~m}}{\mathrm{~s}}-15 \frac{\mathrm{~m}}{\mathrm{~s}}$	$0.5 \mathrm{~km}-7 \mathrm{~km}$	-
\mathbf{F}	$5 \mathrm{~m}-25 \mathrm{~m}$	$0.7 \frac{\mathrm{~mm}}{\mathrm{~s}}-2.1 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.5 \mathrm{~m}-1.1 \mathrm{~m}$	-
\mathbf{G}	$5 \mathrm{~m}-25 \mathrm{~m}$	$25 \frac{\mathrm{~mm}}{\mathrm{~s}}-125 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.5 \mathrm{~m}-1.1 \mathrm{~m}$	$2.8 \frac{\mathrm{~mm}}{\mathrm{~s}}-5.1 \frac{\mathrm{~mm}}{\mathrm{~s}}$

FINAL EPOCH

\mathbf{A}	$140 \mathrm{pm}-870 \mathrm{pm}$	less than $\frac{\mathrm{pm}}{\mathrm{s}}$	$150 \mathrm{pm}-230 \mathrm{pm}$	-
\mathbf{B}	$1 \mathrm{pm}-300 \mathrm{pm}$	less than $\frac{\mathrm{pm}}{\mathrm{s}}$	$250 \mathrm{pm}-270 \mathrm{pm}$	less than $\frac{\mathrm{pm}}{\mathrm{s}}$
\mathbf{C}	$110 \mathrm{~m}-180 \mathrm{~m}$	$5 \frac{\mathrm{~mm}}{\mathrm{~s}}-15 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$101 \mathrm{~m}-110 \mathrm{~m}$	-
\mathbf{D}	$1 \mathrm{~km}-20 \mathrm{~km}$	$10 \frac{\mathrm{~mm}}{\mathrm{~s}}-2 \frac{\mathrm{~m}}{\mathrm{~s}}$	$17.0 \mathrm{~km}-17.5 \mathrm{~km}$	$1.1 \frac{\mathrm{~m}}{\mathrm{~s}}-1.4 \frac{\mathrm{~m}}{\mathrm{~s}}$
\mathbf{E}	$110 \mathrm{~km}-180 \mathrm{~km}$	$7 \frac{\mathrm{~m}}{\mathrm{~s}}-12 \frac{\mathrm{~m}}{\mathrm{~s}}$	$104 \mathrm{~km}-110 \mathrm{~km}$	-
\mathbf{F}	$14 \mathrm{~m}-28 \mathrm{~m}$	$0.9 \frac{\mathrm{~mm}}{\mathrm{~s}}-1.8 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$14.2 \mathrm{~m}-14.6 \mathrm{~m}$	-
\mathbf{G}	$0.3 \mathrm{~km}-1.8 \mathrm{~km}$	$1 \frac{\mathrm{~mm}}{\mathrm{~s}}-180 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$1.65 \mathrm{~km}-1.74 \mathrm{~km}$	$110 \frac{\mathrm{~mm}}{\mathrm{~s}}-135 \frac{\mathrm{~mm}}{\mathrm{~s}}$

Table 3.12: Summary of all simulation results performed in Chapter 3. This table shows the value range of the errors between ideal and approximate values of different parameters.

Differential Correction Techniques

4.1. LEAST' SQUARES FUNDAMENTALS

4.2. APPYING LEAST' SQUARES TECHNIQUE TO ORBIT DETERMINATION

4.3. RESULIS ANALYSES OF LEAST' SQUARES TECHNIOUE
4.4. RESULTS SUMMARY
(2) telecom

Orbit determination requires estimation, which is intimately tied to initial orbit determination (studied in the previous chapter), prediction, and uncertainty estimates. Regardless of the observational data source used for orbit determination, one should make the algorithms general enough to process them. In other words, estimation must be versatile in predicting, filtering, and smoothing data. For estimation, predicting is simply using existing observations to find future states. One must consider that estimation techniques are intimately tied to propagation methods. On the other hand, filtering is determining the current state using current (and past) observations. And, finally, smoothing techniques improve previous state solutions by combining them with future data.

The techniques presented in this chapter are often referred to as differential correction techniques since the methods of solution require iteration or incremental updates to the state. On the one hand, Least Squares techniques use all data available in order to improve the determination of the initial state. On the other, Kalman Filter techniques compute the best estimate of the state of a time-varying process by using a predictor-corrector technique ideally suited for computer applications, given imperfect observations and uncertain dynamics. The selection of using a Least Squares vs. a Kalman Filter evokes tremendous discussion. Ultimately, the requirements are the deciding factor. If the need is for continuous near real-time updates, Kalman Filter approaches are preferred. If the objective is for routine position determination, the Least Squares techniques suffice.

Comparisons of the two techniques are limited, however, Montenbruck et al. (2000) compare Least Squares and Kalman Filter approaches to orbit determination. While they note differences and conclude that the Least Squares approach is better, the positional comparisons are shown to be remarkably close.

This document will only use Least Squares techniques in order to determine the satellite orbit of GEOSAR mission. All data will be available after the radar synthetic aperture and there is no need to continuously monitor the satellite position. In addition, some problems arising from the covariance propagation when using Kalman Filter techniques will be avoided.

Chapter 4 will begin introducing the Least Squares techniques to the reader. Then, these techniques will be particularized to orbit determination and specially to orbit determination for the GEOSAR mission. Remember that GEOSAR mission will provide either range and range-rate measurements or only range measurements, so that both cases will be considered when explaining the final algorithm. Finally, such algorithm will be evaluated performing different statistical simulations and showing their results. As in the previous chapter, the objective is looking for precision. Thus, the results will show how the errors in range history of different sites under the satellite L-band beam coverage evolve along the radar synthetic aperture.

As there is no real data available since the satellite of GEOSAR mission is not in orbit, the simulations performed during this chapter will use the ideal observations built by the same configuration of Chapter 3. Therefore, the Least Squares algorithm developed within this chapter will only consider the interaction between the Earth and the satellite (i.e., no perturbations will be taken into account).

The explanations of this chapter will follow Vallado (2013). The reader is address to it in order to complete all concepts discussed within Chapter 4.

4.1. LEAST SQUARES FUNDAMENTALS

Least Squares techniques are defined as an optimization problem, which fits the measurements to an appropriate mathematical model minimizing the sum of the squares of the residuals. The residuals will be the difference in the actual observations and those obtained using the state vector solution. Thus, defining the residuals as

$$
\bar{r}=y_{0}-y_{\mathrm{c}}
$$

where y_{0} are the observed values of the dependent variable, and y_{c} are the computed values of the dependent variable, the Least Squares criterion (for N observations) satisfies

$$
\begin{equation*}
J=\sum_{i=1}^{N} \bar{r}_{i}^{2}=\text { a minimum } \tag{4.1}
\end{equation*}
$$

where J is also known as cost function.
In order to better understand the Least Squares technique, let us first obtain a solution for a linear mathematical model.

a) Linear Least Squares

Linear unweighted Least Squares is the simplest estimation technique. It assumes that all data is given equal weighting or importance and defines the mathematical model in a linear way. Thus, the computed value of the dependent variable per each data point, $y_{\mathrm{c}_{\mathrm{i}}}$, is defined as

$$
y_{c_{i}}=\alpha+\beta x_{0_{i}}
$$

where $x_{0_{i}}$ are the observed values of the independent variable per each data point, and α and β are the values to be estimated such that the sum of the squares of the residuals, \bar{r}_{i}^{2}, is a minimum.

$$
J=\sum_{i=1}^{N} \bar{r}_{i}^{2}=\sum_{i=1}^{N}\left(y_{0_{i}}-y_{\mathrm{c}_{i}}\right)^{2}=\sum_{i=1}^{N}\left[y_{0_{i}}-\left(\alpha+\beta x_{0_{i}}\right)\right]^{2}=f(\alpha, \beta)=\text { a minimum }
$$

In order to find this minimum, the first derivative with respect to α and β parameters of the cost function to zero must be performed. The function above has two variables whose both partial derivatives are equal to 0 at the minimum, so that the equation can be split in two:

$$
\begin{gathered}
\frac{\partial}{\partial \alpha} J=\frac{\partial}{\partial \alpha} \sum_{i=1}^{N} \bar{r}_{i}^{2}=\sum_{i=1}^{N} \frac{\partial \bar{r}_{i}^{2}}{\partial \alpha}=\sum_{i=1}^{N} 2 \bar{r}_{i} \frac{\partial \bar{r}_{i}}{\partial \alpha}=0 \Rightarrow \sum_{i=1}^{N} \bar{r}_{i} \frac{\partial \bar{r}_{i}}{\partial \alpha}=0 \\
\frac{\partial}{\partial \beta} J=\frac{\partial}{\partial \beta} \sum_{i=1}^{N} \bar{r}_{i}^{2}=\sum_{i=1}^{N} \frac{\partial \bar{r}_{i}^{2}}{\partial \beta}=\sum_{i=1}^{N} 2 \bar{r}_{i} \frac{\partial \bar{r}_{i}}{\partial \beta}=0 \Rightarrow \sum_{i=1}^{N} \bar{r}_{i} \frac{\partial \bar{r}_{i}}{\partial \beta}=0
\end{gathered}
$$

By using the residual definition, the previous equations become

$$
\begin{gathered}
\sum_{i=1}^{N} \bar{r}_{i} \frac{\partial \bar{r}_{i}}{\partial \alpha}=\sum_{i=1}^{N} \bar{r}_{i} \frac{\partial\left(y_{0_{i}}-\alpha-\beta x_{0_{i}}\right)}{\partial \alpha}=\sum_{i=1}^{N} \bar{r}_{i}(-1)=-\bar{r}_{1}-\bar{r}_{2}-\cdots-\bar{r}_{N}=0 \\
\sum_{i=1}^{N} \bar{r}_{i} \frac{\partial \bar{r}_{i}}{\partial \beta}=\sum_{i=1}^{N} \bar{r}_{i} \frac{\partial\left(y_{0_{i}}-\alpha-\beta x_{0_{i}}\right)}{\partial \beta}=\sum_{i=1}^{N} \bar{r}_{i}\left(-x_{0_{i}}\right)=-\bar{r}_{1} x_{0_{1}}-\bar{r}_{2} x_{0_{2}}-\cdots-\bar{r}_{N} x_{0_{N}}=0
\end{gathered}
$$

which can be expressed in matrix notation as

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{0_{1}} & x_{0_{2}} & \cdots & x_{0_{N}}
\end{array}\right]\left[\begin{array}{c}
\bar{r}_{1} \\
\bar{r}_{2} \\
\vdots \\
\bar{r}_{N}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now, substituting the definition of the residual, \bar{r}_{i}, yield

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{4.2}\\
x_{0_{1}} & x_{0_{2}} & \cdots & x_{0_{N}}
\end{array}\right]\left[\begin{array}{c}
y_{0_{1}}-\left(\alpha+\beta x_{0_{1}}\right) \\
y_{0_{2}}-\left(\alpha+\beta x_{0_{2}}\right) \\
\vdots \\
y_{0_{N}}-\left(\alpha+\beta x_{0_{N}}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

where α and β parameters have appeared. Applying the distributive law to the second matrix and separating α and β result in

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{0_{1}} & x_{0_{2}} & \cdots & x_{0_{N}}
\end{array}\right]\left[\begin{array}{c}
y_{0_{1}} \\
y_{0_{2}} \\
\vdots \\
y_{0_{N}}
\end{array}\right]-\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{0_{1}} & x_{0_{2}} & \cdots & x_{0_{N}}
\end{array}\right]\left[\begin{array}{cc}
1 & x_{0_{1}} \\
1 & x_{0_{2}} \\
\vdots & \vdots \\
1 & x_{0_{N}}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Notice, in this case, that α and β parameters can be separated because the selected mathematical model is linear.

The next step is to rearrange the matrix addition in order to place the α and β parameters on one side

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{0_{1}} & x_{0_{2}} & \cdots & x_{0_{N}}
\end{array}\right]\left[\begin{array}{cc}
1 & x_{0_{1}} \\
1 & x_{0_{2}} \\
\vdots & \vdots \\
1 & x_{0_{N}}
\end{array}\right]\left[\begin{array}{cccc}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & \cdots \\
x_{0_{1}} & x_{0_{2}} & \cdots \\
x_{0_{N}}
\end{array}\right]\left[\begin{array}{c}
y_{0_{1}} \\
y_{0_{2}} \\
\vdots \\
y_{0_{N}}
\end{array}\right]
$$

The equation above can be defined in a symbolic form as

$$
\mathbf{A}^{T} \mathbf{A} \widehat{\mathbf{X}}=\mathbf{A}^{T} \mathbf{b}
$$

where \mathbf{A} is the partial-derivative matrix $(N \times 2), \widehat{\mathbf{X}}$ is the solution, state vector or state space (2×1), and \mathbf{b} is the observation matrix ($N \times 1$). These equations are called the normal equations. Although \mathbf{A} and \mathbf{A}^{T} are not usually square matrices, the matrix product $\mathbf{A}^{T} \mathbf{A}$ is always square. Thus, the matrix product may be inverted provided it is positive definite (not singular) ${ }^{1}$.

[^12]Finally, solving for $\widehat{\mathbf{X}}$, the general solution of Least Squares technique for the linear unweighted case is provided.

$$
\begin{equation*}
\widehat{\mathbf{X}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b} \tag{4.3}
\end{equation*}
$$

The overall process is sometimes called parameter estimation because the final objective is to determine the α and β parameters.

In order to account for differences in the accuracy of measurements, weights, w_{i}, must be introduced. The residuals are weighted using the inverses of the standard deviations of each observation classes, usually by a sensor type or location. Thus, all the observations (of the same type) from a particular sensor are assumed to have similar characteristics. Applying the Least Squares criterion (i.e., Equation [4.1]) to the weighted residuals produces the cost function

$$
J=\sum_{i=1}^{N} w_{i}^{2} \bar{r}_{i}^{2}=\overline{\mathbf{r}}^{T} \mathbf{W} \overline{\mathbf{r}}=(\mathbf{b}-\mathbf{A X})^{T} \mathbf{W}(\mathbf{b}-\mathbf{A X})
$$

where

$$
\overline{\mathbf{r}}=\left[\begin{array}{c}
y_{0_{1}}-y_{\mathrm{c}_{1}} \\
y_{0_{2}}-y_{\mathrm{c}_{2}} \\
\vdots \\
y_{0_{N}}-y_{\mathrm{c}_{N}}
\end{array}\right], \mathbf{A}=\left[\begin{array}{cc}
1 & x_{0_{1}} \\
1 & x_{0_{2}} \\
\vdots & \vdots \\
1 & x_{0_{N}}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cccc}
\alpha \\
\beta
\end{array}\right] \text {, and } \mathbf{W}=\left[\begin{array}{cccc}
w_{1}^{2} & 0 & \ldots & 0 \\
0 & w_{2}^{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & w_{N}^{2}
\end{array}\right]
$$

The matrix \mathbf{W} is called the weighting matrix whose diagonal elements are defined as

$$
w_{i}=\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma_{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \frac{1}{\sigma_{M}}
\end{array}\right]
$$

where M refers to the total number of observation classes (i.e., range measurements, angular measurements, measurements of different sensors...) related to one observation (time epoch).

Before finding the minimum, let us expand the cost function

$$
J=(\mathbf{b}-\mathbf{A X})^{T} \mathbf{W}(\mathbf{b}-\mathbf{A X})=\mathbf{b}^{T} \mathbf{W} \mathbf{b}-2 \mathbf{b}^{T} \mathbf{W} \mathbf{A X}+\mathbf{X}^{T} \mathbf{A}^{T} \mathbf{W} \mathbf{A X}
$$

In this way, setting the derivative with respect to \mathbf{X} of the cost function equal to zero, one can obtain the best estimate of the state.

$$
\frac{\partial J}{\partial \mathbf{X}}=-2 \mathbf{b}^{T} \mathbf{W} \mathbf{A}+2 \widehat{\mathbf{X}}^{T} \mathbf{A}^{T} \mathbf{W} \mathbf{A}=0
$$

After a few matrix operations, the solution state can be calculated as

$$
\begin{equation*}
\widehat{\mathbf{X}}=\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \mathbf{b} \tag{4.4}
\end{equation*}
$$

where it has been assumed that $\mathbf{A}^{T} \mathbf{W A}$ is invertible (the observability criteria). Note also that $\mathbf{W}^{T}=\mathbf{W}$.
()) relacom

Equation (4.4) provides the general solution of linear Least Squares technique. However, orbit determination is not a linear case. Least Squares method can be applied to nonlinear problems by linearizing the problem, obtaining an approximate solution, and iterating in order to refine the answer. Next subsection introduces the nonlinear Least Squares technique.

b) Nonlinear Least Squares

In this case, the measurement-state relationship (i.e., the mathematical model used) is a nonlinear function of the state (e.g., $y=f(x)=\alpha \sin (x+\beta)$ where, in this case, α and β are again the parameters to be estimated). Thus, when applying the derivative to the cost function and rearranging all parameters as the previous subsection (Equation [4.2]), one may realise that α and β, or at least one of them, cannot be separated, so that the solution state, $\widehat{\mathbf{X}}$, cannot be reached.

Fortunately, the nonlinear equations can be approximated to linear equations by means of Taylor series, provided that one can neglect the higher order terms in the Taylor series. In this way, if the measurement-state relationship is calculated as a function $y=f(\alpha, \beta)$ about a nominal α_{n} and β_{n}, the computed value of the dependent variable, y_{c}, can be obtained as

$$
y_{\mathrm{c}}=f\left(\alpha, \beta, x_{0}\right)=g(\alpha, \beta) \text { for any given } x_{0}
$$

whose Taylor series is

$$
\begin{aligned}
y_{\mathrm{c}}= & \left.y\right|_{\alpha_{n}, \beta_{n}}+\left.\left(\alpha-\alpha_{n}\right) \frac{\partial y}{\partial \alpha}\right|_{\alpha_{n}, \beta_{n}}+\left.\left(\beta-\beta_{n}\right) \frac{\partial y}{\partial \beta}\right|_{\alpha_{n}, \beta_{n}}+\left.\frac{\left(\alpha-\alpha_{n}\right)^{2}}{2!} \frac{\partial^{2} y}{\partial \alpha^{2}}\right|_{\alpha_{n}, \beta_{n}} \\
& +\left.\frac{\left(\beta-\beta_{n}\right)^{2}}{2!} \frac{\partial^{2} y}{\partial \beta^{2}}\right|_{\alpha_{n}, \beta_{n}}+\cdots
\end{aligned}
$$

Because higher power (second order and above) of $\left(\alpha-\alpha_{n}\right)$ and $\left(\beta-\beta_{n}\right)$ are neglected in the linearization, the formulation provides corrections to a known state as $\Delta \alpha=\alpha-\alpha_{n}$ and $\Delta \beta=\beta-\beta_{n}$. The nonlinear Least Squares problem consequently requires an a priori estimate of the state for solution, which will be called nominal state vector.

At this point, the computed value of the dependent variable per each data point, $y_{\mathrm{c}_{i}}$, can be obtained as

$$
y_{c_{i}}=y_{n_{i}}+\Delta \alpha \frac{\partial y_{n_{i}}}{\partial \alpha}+\Delta \beta \frac{\partial y_{n_{i}}}{\partial \beta}
$$

where

$$
y_{n_{i}}=\left.y_{i}\right|_{\alpha_{n}, \beta_{n}}, \quad \frac{\partial y_{n_{i}}}{\partial(a)}=\left.\frac{\partial y_{i}}{\partial(a)}\right|_{a=\alpha_{n}, \beta_{n}}
$$

Now, the values of the observations and the partial derivatives can be calculated by using the initial estimates of the state $\left(\alpha_{n}, \beta_{n}\right)$ from above. Thus, Equation (4.2) for a nonlinear Least Squares problem, which has been linearized, becomes

$$
\mathbf{A}^{T}\left[\begin{array}{r}
y_{0_{1}}-\left(y_{n_{1}}+\Delta \alpha \frac{\partial y_{n_{1}}}{\partial \alpha}+\Delta \beta \frac{\partial y_{n_{1}}}{\partial \beta}\right) \\
y_{0_{2}}-\left(y_{n_{2}}+\Delta \alpha \frac{\partial y_{n_{2}}}{\partial \alpha}+\Delta \beta \frac{\partial y_{n_{2}}}{\partial \beta}\right) \\
\vdots \\
y_{0_{N}}-\left(y_{n_{N}}+\Delta \alpha \frac{\partial y_{n_{N}}}{\partial \alpha}+\Delta \beta \frac{\partial y_{n_{N}}}{\partial \beta}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

In the linear case, the partial-derivative matrix, \mathbf{A}, contained partial derivatives of the residuals, $\partial r_{i} / \partial \alpha$; however, in this case, it contains partials of the measurements, $\partial y_{n_{i}} / \partial \alpha$.

Applying the distributive law and separating the state parameters ($\Delta \alpha, \Delta \beta$), the equation above results in

$$
\mathbf{A}^{T}\left[\begin{array}{c}
y_{0_{1}}-y_{n_{1}} \\
y_{0_{2}}-y_{n_{2}} \\
\vdots \\
y_{0_{N}}-y_{n_{N}}
\end{array}\right]-\mathbf{A}^{T}\left[\begin{array}{cc}
\frac{\partial y_{n_{1}}}{\partial \alpha} & \frac{\partial y_{n_{1}}}{\partial \beta} \\
\frac{\partial y_{n_{2}}}{\partial \alpha} & \frac{\partial y_{n_{2}}}{\partial \beta} \\
\vdots & \vdots \\
\frac{\partial y_{n_{N}}}{\partial \alpha} & \frac{\partial y_{n_{N}}}{\partial \beta}
\end{array}\right]\left[\begin{array}{l}
\Delta \alpha \\
\Delta \beta
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Some features of this equation must be considered. First, the matrix containing $y_{0_{i}}-y_{n_{i}}$ looks like the \mathbf{b} matrix, except it contains differences between the measured and nominal y values. It will be called residual matrix and will be noted with symbol $\tilde{\mathbf{b}}$. Second, the matrix containing the observation partials is the transpose of \mathbf{A}^{T}, so that it is the \mathbf{A} matrix. Finally, the matrix containing $\Delta \alpha$ and $\Delta \beta$ corresponds to the $\widehat{\mathbf{X}}$ matrix, except it is now the corrections to α and β. For this reason, it will be called $\delta \tilde{\mathbf{x}}$. Substituting the newly defined matrices, the equation above becomes

$$
\mathbf{A}^{T} \tilde{\mathbf{b}}-\mathbf{A}^{T} \mathbf{A} \delta \tilde{\mathbf{x}}=0
$$

and assuming observability, the estimated corrections to the state are

$$
\begin{equation*}
\delta \hat{\mathbf{x}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \tilde{\mathbf{b}} \tag{4.5}
\end{equation*}
$$

Equation (4.5) is identical to the linear Least Squares equation, except that

1) $\mathbf{A}, \tilde{\mathbf{b}}$, and $\delta \hat{\mathbf{x}}$ are defined in the derivation.
2) $\mathbf{A}, \mathbf{A}^{T}$, and $\delta \hat{\mathbf{x}}$ use the previous estimates of α_{n} and β_{n}.
3) It is an approximate solution due to the use of a truncated Taylor series.
4) An initial nominal state (α_{n} and β_{n} in this case) must be calculated. This is important because the initial nominal value must be near the global minimum value. Otherwise, the iteration may diverge or, in some cases, converge on an incorrect value.

Points (2) and (3) imply the need to iterate in order to improve the estimates whereas, in the linear case, the solutions of α and β were obtained directly.

The steps for the most general form of differential correction using Gaussian Least Squares ${ }^{1}$ are:

1) Compute $y_{n_{i}}$ corresponding to each $x_{0_{i}}$.
2) Compute each residual $\bar{r}_{i}=y_{0_{i}}-y_{n_{i}}$.
3) Compute each partial derivative, $\partial y_{n_{i}} / \partial \alpha$ and $\partial y_{n_{i}} / \partial \beta$, using α_{n}, β_{n}.
4) Form $\mathbf{A}, \mathbf{A}^{T}$, and $\tilde{\mathbf{b}}$.
5) Solve for $\Delta \alpha$ and $\Delta \beta$ using Equation (4.5).
6) Find $\alpha_{n_{\text {new }}}=\alpha_{n_{\text {old }}}+\Delta \alpha$ and $\beta_{n_{\text {new }}}=\beta_{n_{\text {old }}}+\Delta \beta$.
7) If the stopping criterion is reached, quit. Otherwise, return to step (1). A specific criterion for stopping the algorithm will not be used when performing the Least Squares technique in the following simulations. It will be used a certain number of iterations in order to evaluate the algorithm performance. Consult Vallado (2013) for stopping criterions.

All this process is termed differential correction since the state is corrected each iteration.

Weighting the observations may also be addressed. Weighting appears in the solution of the nonlinear problem exactly as it does in the linear case. Thus, the differential-correction equation for nonlinear, weighted Least Squares becomes

$$
\begin{equation*}
\delta \hat{\mathbf{x}}=\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \tilde{\mathbf{b}} \tag{4.6}
\end{equation*}
$$

where \mathbf{W} is again the weighting matrix of dimension $N \times N$.

4.2. APPYING LEAS'I SQUARES 'TECHNIQUE 'TO ORBI'T DETTERMINATION

The differential-correction technique described previously (i.e, the nonlinear Least Squares) is a powerful tool, which can accurately estimate an orbit state from radar, optical, or other measurements of the motion.

When applying differential correction to orbit determination, several situations must be handled:

1) Several element sets may be chosen in order to define the state space, $\widehat{\mathbf{X}}$, such as the position and velocity vectors, $\left\{r_{I}, r_{J}, r_{K}, v_{I}, v_{J}, v_{K}\right\}$, or an element set composed of Classical Orbital Elements

[^13](see Section 3.2). The simulations performed within this document will use the position and velocity vectors since they work well for special orbits such as circular and elliptical equatorial orbits (i.e., GEOSAR mission case).
2) More than one observation is required at each observation time. GEOSAR mission fulfils this requirement since at least three observations (i.e., one range observation for each of the three sites) are provided at each epoch. Remember that the sites may also offer range-rate observations. In this latter case, six observations would be provided at each observation time.
3) The measurements are nonlinear, complex functions of the state.

Considering such requirements, let us formulate the Least Squares technique to the context of GEOSAR mission. It has been said that each site can provide only range measurements or range and range-rate measurements at each time t_{i}. Thus, the observed values of the dependent variable at time $t_{i}, y_{0_{i}}$, can be expressed as

$$
y_{0_{i}}=\left[\begin{array}{l}
\rho_{1_{0}} \\
\rho_{2_{0}} \\
\rho_{3_{0}}
\end{array}\right] \text { at } t_{i} \quad \text { or } \quad y_{0_{i}}=\left[\begin{array}{l}
\rho_{1_{0}} \\
\dot{\rho}_{1_{0}} \\
\rho_{2_{0}} \\
\dot{\rho}_{2_{0}} \\
\rho_{3_{0}} \\
\dot{\rho}_{3_{0}}
\end{array}\right] \text { at } t_{i}
$$

In order to calculate the residuals, some predicted measurements from the position and velocity vectors must be obtained:

$$
y_{c_{i}}=\left[\begin{array}{l}
\rho_{1_{\mathrm{c}}} \\
\rho_{2_{\mathrm{c}}} \\
\rho_{3_{\mathrm{c}}}
\end{array}\right] \text { at } t_{i} \quad \text { or } \quad y_{\mathrm{c}_{i}}=\left[\begin{array}{l}
\rho_{1_{\mathrm{c}}} \\
\dot{\rho}_{1_{\mathrm{c}}} \\
\rho_{2_{c}} \\
\dot{\rho}_{2_{c}} \\
\rho_{3_{c}} \\
\dot{\rho}_{3_{\mathrm{c}}}
\end{array}\right] \text { at } t_{i}
$$

Because $y_{\mathrm{c}_{i}}$ is a nonlinear function of the position and velocity vectors, it must be expressed using a first-order Taylor series. In this approach, the computed measurement must be obtained as a Taylorseries expansion about a nominal trajectory. Thus, vector $y_{c_{i}}$ becomes

$$
y_{c_{i}}=y_{n_{i}}+\Delta r_{I} \frac{\partial y_{n_{i}}}{\partial r_{I}}+\Delta r_{J} \frac{\partial y_{n_{i}}}{\partial r_{J}}+\Delta r_{K} \frac{\partial y_{n_{i}}}{\partial r_{K}}+\Delta v_{I} \frac{\partial y_{n_{i}}}{\partial v_{I}}+\Delta v_{J} \frac{\partial y_{n_{i}}}{\partial v_{J}}+\Delta v_{K} \frac{\partial y_{n_{i}}}{\partial v_{K}}
$$

The nominal trajectory is $y_{n_{i}}=f\left(r_{I}, r_{J}, r_{K}, v_{I}, v_{J}, v_{K}, t_{i}\right)$, a function of the nominal state vector at each observation time ${ }^{1}$.

Once $y_{0_{i}}$ and $y_{c_{i}}$ have been defined, the residuals, \bar{r}_{i}, can be calculated as

$$
\bar{r}_{i}=y_{0_{i}}-y_{c_{i}}=y_{0_{i}}-\left(y_{n_{i}}+\Delta r_{I} \frac{\partial y_{n_{i}}}{\partial r_{I}}+\cdots+\Delta v_{K} \frac{\partial y_{n_{i}}}{\partial v_{K}}\right)
$$

[^14]Assuming that each measurement is weighted using its appropriate standard deviation,

$$
w_{\rho_{j}}=\frac{1}{\sigma_{\rho_{j}}}, w_{\dot{\rho}_{j}}=\frac{1}{\sigma_{\dot{\rho}_{j}}} \text { where } j=1,2,3
$$

the cost function, J, can be formulated

$$
J=\sum_{i=1}^{N}\left(w_{i} \bar{r}_{i}\right)^{T}\left(w_{i} \bar{r}_{i}\right)
$$

where

$$
w_{i}=\left[\begin{array}{lll}
w_{\rho_{1}} & 0 & 0 \\
0 & w_{\rho_{2}} & 0 \\
0 & 0 & w_{\rho_{3}}
\end{array}\right] \text { or } w_{i}=\left[\begin{array}{llllll}
w_{\rho_{1}} & 0 & 0 & 0 & 0 & 0 \\
0 & w_{\dot{\rho}_{1}} & 0 & 0 & 0 & 0 \\
0 & 0 & w_{\rho_{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & w_{\dot{\rho}_{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & w_{\rho_{3}} & 0 \\
0 & 0 & 0 & 0 & 0 & w_{\dot{\rho}_{3}}
\end{array}\right]
$$

At this point, the cost function minimum must be obtained. Therefore, the first derivative with respect to all state parameters ($\Delta r_{I}, \Delta r_{J}, \Delta r_{K}, \Delta v_{I}, \Delta v_{J}$, and Δv_{K}) to zero must be calculated, which produces six scalar equations:

$$
\begin{gathered}
\sum_{i=1}^{N} w_{i}^{2} \bar{r}_{i} \frac{\partial \bar{r}_{i}}{\partial \Delta r_{I}}=\sum_{i=1}^{N} w_{i}^{2} \bar{r}_{i} \frac{\partial}{\partial \Delta r_{I}}\left(y_{0_{i}}-y_{n_{i}}-\Delta r_{I} \frac{\partial y_{n_{i}}}{\partial r_{I}}-\cdots-\Delta v_{K} \frac{\partial y_{n_{i}}}{\partial v_{K}}\right)=\sum_{i=1}^{N} w_{i}^{2} \bar{r}_{i}\left(-\frac{\partial y_{n_{i}}}{\partial r_{I}}\right)=0 \\
\vdots \\
\sum_{i=1}^{N} w_{i}^{2} \bar{r}_{i} \frac{\partial \bar{r}_{i}}{\partial \Delta v_{K}}=\sum_{i=1}^{N} w_{i}^{2} \bar{r}_{i} \frac{\partial}{\partial \Delta v_{K}}\left(y_{0_{i}}-y_{n_{i}}-\Delta r_{I} \frac{\partial y_{n_{i}}}{\partial r_{I}}-\cdots-\Delta v_{K} \frac{\partial y_{n_{i}}}{\partial v_{K}}\right)=\sum_{i=1}^{N} w_{i}^{2} \bar{r}_{i}\left(-\frac{\partial y_{n_{i}}}{\partial v_{K}}\right)=0
\end{gathered}
$$

Setting the equations above in matrix form results in

$$
(-1)\left[\begin{array}{cccc}
\frac{\partial y_{n_{1}}}{\partial r_{I}} & \frac{\partial y_{n_{2}}}{\partial r_{I}} & \cdots & \frac{\partial y_{n_{N}}}{\partial r_{I}} \\
\frac{\partial y_{n_{1}}}{\partial r_{J}} & \frac{\partial y_{n_{2}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{N}}}{\partial r_{J}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y_{n_{1}}}{\partial v_{K}} & \frac{\partial y_{n_{2}}}{\partial v_{K}} & \cdots & \frac{\partial y_{n_{N}}}{\partial v_{K}}
\end{array}\right]\left[\begin{array}{c}
w_{1}^{2} \bar{r}_{1} \\
w_{2}^{2} \bar{r}_{2} \\
\vdots \\
w_{N}^{2} \bar{r}_{N}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

Now, substituting the definition of the residual, \bar{r}_{i}, yield

$$
\left[\begin{array}{cccc}
\frac{\partial y_{n_{1}}}{\partial r_{I}} & \frac{\partial y_{n_{2}}}{\partial r_{I}} & \cdots & \frac{\partial y_{n_{N}}}{\partial r_{I}} \\
\frac{\partial y_{n_{1}}}{\partial r_{J}} & \frac{\partial y_{n_{2}}}{\partial r_{I}} & \cdots & \frac{\partial y_{n_{N}}}{\partial r_{J}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y_{n_{1}}}{\partial v_{K}} & \frac{\partial y_{n_{2}}}{\partial v_{K}} & \cdots & \frac{\partial y_{n_{N}}}{\partial v_{K}}
\end{array}\right]\left[\begin{array}{c}
w_{1}^{2}\left[y_{0_{1}}-\left(y_{n_{1}}+\Delta r_{I} \frac{\partial y_{n_{1}}}{\partial v_{K}}\right)\right] \\
w_{2}^{2}\left[y_{0_{2}}-\left(y_{n_{2}}+\Delta r_{I} \frac{\partial y_{n_{2}}}{\partial r_{I}}+\cdots+\Delta v_{K} \frac{\partial y_{n_{2}}}{\partial v_{K}}\right)\right] \\
\vdots \\
w_{N}^{2}\left[y_{0_{N}}-\left(y_{n_{N}}+\Delta r_{I} \frac{\partial y_{n_{N}}}{\partial r_{I}}+\cdots+\Delta v_{K} \frac{\partial y_{n_{N}}}{\partial v_{K}}\right)\right]
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

Finally, rearranging the matrices, Equation (4.6) is obtained.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\frac{\partial y_{n_{1}}}{\partial r_{I}} & \frac{\partial y_{n_{2}}}{\partial r_{I}} & \cdots & \frac{\partial y_{n_{N}}}{\partial r_{I}} \\
\frac{\partial y_{n_{1}}}{\partial r_{J}} & \frac{\partial y_{n_{2}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{N}}}{\partial r_{J}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y_{n_{1}}}{\partial v_{K}} & \frac{\partial y_{n_{2}}}{\partial v_{K}} & \cdots & \frac{\partial y_{n_{N}}}{\partial v_{K}}
\end{array}\right]\left[\begin{array}{cccc}
w_{1}^{2} & 0 & \cdots & 0 \\
0 & w_{2}^{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & w_{N}^{2}
\end{array}\right]\left[\begin{array}{cccc}
\frac{\partial y_{n_{1}}}{\partial r_{I}} & \frac{\partial y_{n_{1}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{1}}}{\partial v_{K}} \\
\frac{\partial y_{n_{2}}}{\partial r_{I}} & \frac{\partial y_{n_{2}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{2}}}{\partial v_{K}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y_{n_{N}}}{\partial r_{I}} & \frac{\partial y_{n_{N}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{N}}}{\partial v_{K}}
\end{array}\right]\left[\begin{array}{c}
\Delta r_{I} \\
\Delta r_{J} \\
\vdots \\
\Delta v_{K}
\end{array}\right]=} \\
& \\
& =\left[\begin{array}{ccccc}
\frac{\partial y_{n_{1}}}{\partial r_{I}} & \frac{\partial y_{n_{2}}}{\partial r_{I}} & \cdots & \frac{\partial y_{n_{N}}}{\partial r_{I}} \\
\frac{\partial y_{n_{1}}}{\partial r_{J}} & \frac{\partial y_{n_{2}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{N}}}{\partial r_{J}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y_{n_{1}}}{\partial v_{K}} & \frac{\partial y_{n_{2}}}{\partial v_{K}} & \cdots & \frac{\partial y_{n_{N}}}{\partial v_{K}}
\end{array}\right]\left[\begin{array}{cccc}
w_{1}^{2} & 0 & \cdots & 0 \\
0 & w_{2}^{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & w_{N}^{2}
\end{array}\right]\left[\begin{array}{cc}
y_{0_{1}}-y_{n_{1}} \\
y_{0_{2}}-y_{n_{2}} \\
y_{0_{N}}-y_{n_{N}}
\end{array}\right]
\end{aligned}
$$

where

$$
\delta \hat{\mathbf{x}}=\left[\begin{array}{c}
\Delta r_{I} \\
\Delta r_{J} \\
\Delta r_{K} \\
\Delta v_{I} \\
\Delta v_{J} \\
\Delta v_{K}
\end{array}\right], \mathbf{A}=\left[\begin{array}{cccc}
\frac{\partial y_{n_{1}}}{\partial r_{I}} & \frac{\partial y_{n_{1}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{1}}}{\partial v_{K}} \\
\frac{\partial y_{n_{2}}}{\partial r_{I}} & \frac{\partial y_{n_{2}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{2}}}{\partial v_{K}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y_{n_{N}}}{\partial r_{I}} & \frac{\partial y_{n_{N}}}{\partial r_{J}} & \cdots & \frac{\partial y_{n_{N}}}{\partial v_{K}}
\end{array}\right], \mathbf{W}=\left[\begin{array}{cccc}
w_{1}^{2} & 0 & \cdots & 0 \\
0 & w_{2}^{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & w_{N}^{2}
\end{array}\right] \text {,and } \tilde{\mathbf{b}}=\left[\begin{array}{c}
y_{0_{1}}-y_{n_{1}} \\
y_{0_{2}}-y_{n_{2}} \\
\vdots \\
y_{0_{N}}-y_{n_{N}}
\end{array}\right]
$$

In order to clarify the dimension of each vector and matrix above and its elements, Figures 4.1, 4.2 and 4.3 illustrates the structure of all of them, except for vector $\delta \hat{\mathbf{x}}$ whose dimensions are 6×1. The vectors and matrices structure takes into account the two possible cases of GEOSAR mission: a) only range measurements, and b) range and range-rate measurements. Thus, one may see an overview of how each observation is split in M measurements (observed values).

Figure 4.1: Dimensions and structure of vector $\tilde{\mathbf{b}}$.

Figure 4.2: Dimensions and structure of matrix \mathbf{A}.

Figure 4.3: Dimensions and structure of matrix \mathbf{W}.

Now, it must be explained how to calculate matrix A. The A matrix describes how changes in the initial state (position and velocity vectors) affect the computed observations (measurements). These are sometimes called sensitivity partial derivatives. In order to find these nonlinear, time-dependent derivatives, the first step is to break up the partial derivative using the chain rule:

$$
\begin{equation*}
\mathbf{A}=\frac{\partial \text { observations }}{\partial \widehat{\mathbf{X}}_{0}}=\frac{\partial \text { observations }}{\partial \widehat{\mathbf{X}}} \frac{\partial \widehat{\mathbf{X}}}{\partial \widehat{\mathbf{X}}_{0}}=\mathbf{H} \boldsymbol{\Phi} \tag{4.7}
\end{equation*}
$$

Equation (4.7) distinguishes the observation partial derivatives, \mathbf{H}, from the partial derivative of the state over time. This latter matrix, $\boldsymbol{\Phi}$, is called the matrix of variational equations, or the error state transition matrix, and it relates the state errors at time $t(\boldsymbol{\delta} \widehat{\mathbf{x}})$, to the state errors at time $t_{0}\left(\boldsymbol{\delta} \hat{\mathbf{x}}_{\mathbf{0}}\right)$. Both matrices, \mathbf{H} and $\boldsymbol{\Phi}$, can be calculated using analytical or numerical integration techniques, or by finite differencing. This document will use finite differencing, so that the reader may consult Vallado (2013) or Montenbruck et al. (2000) for further information about analytical or numerical integration techniques, which consider perturbations.

It is fairly simple to approximate the complete matrix \mathbf{A} using finite differencing. This technique takes small differences of the state in order to determine their effect on the system. In addition, the technique is independent of any particular propagation method.

$$
\begin{equation*}
\frac{\partial \text { observations }}{\partial \widehat{\mathbf{X}}_{0}} \cong \frac{f\left(\widehat{\mathbf{X}}+\delta_{i}\right)-f(\widehat{\mathbf{X}})}{\delta_{i}} \tag{4.8}
\end{equation*}
$$

Figure 4.4: Determination of the first modified orbit when using finite differencing.

The main idea is to take the partial derivative of the observations (at the observation times) with respect to the state at the epoch time. In order to do this, one must proceed as follows:

1) Generate position and velocity vectors at the times of the observations from the nominal state at epoch t_{0}. Although one can choose any epoch time, the beginning or the end of the data are most common.
2) Determine six additional trajectories varying each component of the position and velocity vectors. Figure 4.4 illustrates the first modified trajectory when the first component of the nominal state vector, $r_{I_{0}}$, is perturbed.
3) Compute each partial derivative from the observations and each varied trajectories. Thus, an approximation to the partial derivative is achieved.

Step (2) must be performed modifying each state element with a percentage of the vector magnitude rather than a fixed delta. Thus, the value of δ_{i} of Equation (4.8) can be determined as the modified state minus the nominal state,

$$
\delta_{i}=\widehat{\mathbf{X}}_{\bmod _{i}}-\widehat{\mathbf{X}}_{\mathrm{nom}_{i}}
$$

and each observation can be calculated as the modified observation minus the nominal observation. As a result, the approximation of the derivative of each observation with respect to an element of the state becomes

$$
\frac{\partial \text { observations }}{\partial \widehat{\mathbf{X}}_{0}} \cong \frac{\mathrm{obs}_{\mathrm{mod}}-\mathrm{obs}_{\mathrm{nom}}}{\delta_{i}}
$$

Figure 4.5 shows how the partial derivatives are calculated when using finite differencing in the first possible case of GEOSAR mission (i.e., when only range measurements are provided).

Figure 4.5: Partial derivatives calculation when using finite differencing.

In order to conclude the explanation of finite differencing technique, Table 4.1 summarizes all steps performed by this technique in algorithm form.

```
                    FINITE DIFFERENCING ALGORITHM
FOR \(j=1\) to 6 (i.e., number of state vector components)
1) Propagate the nominal state vector from \(t_{0}\) (i.e., the epoch where the nominal state vector is given) to the observation time \(t_{i}\).
2) Compute all observed values from the nominal state vector at \(t_{i}\) (i.e., \(\rho_{1_{\text {nom }_{i}}}\), \(\dot{\rho}_{1_{\text {nom }_{i}}}, \ldots\) ).
3) Calculate the modified state vector at \(t_{0}\).
- \(\delta_{j}=\widehat{\mathbf{X}}_{\text {nom }_{j}} \times 0.01\) (i.e., modify by \(1 \%\) the original component value).
- \(\widehat{\mathbf{X}}_{\text {mod }_{j}}=\widehat{\mathbf{X}}_{\text {nom }_{j}}+\delta_{j}\).
4) Propagate the modified state vector from \(t_{0}\) to \(t_{i}\).
5) Compute all observed values from the modified state vector at \(t_{i}\) (i.e., \(\rho_{1_{\text {mod }_{j}}}\), \(\left.\dot{\rho}_{1_{\text {mod }_{j}}}, \ldots\right)\).
6) Compute the \(\mathbf{A}\) matrix elements for each observed value.
- \(\frac{\partial \mathrm{obs}}{\partial \text { component }} \approx \frac{\text { obs }_{j}}{\delta_{j}}=\frac{\mathrm{obs}_{\text {mod }}-\mathrm{obs}_{\mathrm{nom}}}{\delta_{j}}\).
7) Reset the modified component \(\widehat{\mathbf{X}}_{\text {mod }_{j}}\) to its original value \(\widehat{\mathbf{X}}_{\text {nom }_{j}}\).
```


END LOOP

Table 4.1: Finite differencing algorithm.

Once the calculation of \mathbf{A} matrix has been explained, Equation (4.6) can be performed. The resulting $\delta \hat{\mathbf{x}}$ value must be added to the nominal state vector. At this point, the convergence must be checked. The simulations performed into this document will not follow any convergence criteria, so that the final algorithm will iterate a fixed number of iterations in order to evaluate its performance.

Table 4.2 shows the complete Least Squares algorithm related to orbit determination in the GEOSAR mission context, which will be used in the simulations of the following section.

In order to conclude this section, it must be said that Least Squares may process successive batches of data in order not to redo all calculations performed when new data is provided. Such technique is called sequential batch Least Squares and uses Bayes estimation. The reader may consult Vallado (2013) for further information about this technique since it will not be used within the simulations of this document.

LEAST SQUARES ALGORITHM
Compute the nominal state vector at time $t_{0}, \widehat{\mathbf{X}}_{\text {nom }_{0}}$ by using one of the methods of Chapter 3.

FOR $i=1$ to 100 (i.e., total number of Least Squares iterations)
FOR $j=1$ to N (i.e., total number of observations)

1) Propagate the nominal state vector from t_{0} to the observation time t_{j}.
2) Compute all observed values from the nominal state vector at t_{j} (i.e., $\rho_{1_{\text {nom }_{j}}}$, $\dot{\rho}_{1_{\text {nom }_{j}}}, \ldots$. .
3) Find vector $\tilde{\mathbf{b}}$ corresponding to observation j, $\tilde{\mathbf{b}}_{j}$.

- $\tilde{\mathbf{b}}_{j}=\left[y_{\mathrm{obs}_{j}}-y_{\mathrm{nom}_{j}}\right]=\left[\begin{array}{l}\rho_{1_{\mathrm{obs}_{j}}-\rho_{1_{\mathrm{nom}_{j}}}} \\ \rho_{2_{\mathrm{obs}_{j}}}-\rho_{2_{\mathrm{nom}_{j}}} \\ \rho_{3_{\mathrm{obs}_{j}}}-\rho_{3_{\mathrm{nom}_{j}}}\end{array}\right]$, or
- $\tilde{\mathbf{b}}_{j}=\left[y_{\mathrm{obs}_{j}}-y_{\mathrm{nom}_{j}}\right]=\left[\begin{array}{l}\rho_{1_{\mathrm{obs}_{j}}}-\rho_{1_{\mathrm{nom}_{j}}} \\ \dot{\rho}_{1_{\mathrm{obs}_{j}}}-\dot{\rho}_{1_{\mathrm{nom}_{j}}} \\ \rho_{2_{\mathrm{obs}_{j}}}-\rho_{2_{\mathrm{nom}_{j}}} \\ \dot{\rho}_{2_{\mathrm{obs}_{j}}}-\dot{\rho}_{2_{\mathrm{nom}_{j}}} \\ \rho_{3_{\mathrm{obs}_{j}}}-\rho_{3_{\mathrm{nom}_{j}}} \\ \dot{\rho}_{3_{\mathrm{obs}_{j}}}-\dot{\rho}_{3_{\mathrm{nom}_{j}}}\end{array}\right]$

4) Perform Finite Differencing for the \mathbf{A} matrix corresponding to observation j, \mathbf{A}_{j}.
END FOR
5) Concatenate all vectors $\tilde{\mathbf{b}}_{j}$ and matrices \mathbf{A}_{j} in order to build vector $\tilde{\mathbf{b}}$ and matrix A.
6) Compute the transpose of matrix $\mathbf{A}, \mathbf{A}^{T}$.
7) Compute the weighting matrix, \mathbf{W}.
8) Compute $\left(\mathbf{A}^{T} \mathbf{W A}\right)^{-1}$.
9) Find $\delta \hat{\mathbf{x}}$ from Equation (4.6).
10) Update the nominal state vector.

- $\widehat{\mathbf{X}}_{\mathrm{nom}_{0}}=\widehat{\mathbf{X}}_{\mathrm{nom}_{0}}+\delta \widehat{\mathbf{x}}$

END LOOP

Table 4.2: Least Squares algorithm.

4.3. RESUL'S ANALYSES OF LEAST' SQUARES TECHNIQUE

This section will analyse the precision of Least Squares technique when different simulations of the Least Squares algorithm of the previous section are performed. Each simulation will be independent of the other since the quantity of noise added to the ideal range and range-rate observations will be random and delimited by the same standard deviation calculated in Section 3.6. Thus, the results obtained in each simulation will be different, and therefore there is a need to perform statistical
simulations. All Matlab functions and scripts used in such simulations are listed and briefly explained in Appendix A.

The simulations proceeding will be similar to those performed in Chapter 3. First, different settings will be analysed considering either range and range-rate observations or only range observations. Second, each statistical simulation will use 1000 samples (i.e., the complete Least Squares algorithm will be repeated 1000 times on each statistical simulation). Third, the noisy observations will be provided equally spaced in a time span of 6 h , which will simulate the radar synthetic aperture duration. Forth, the amount of observations given will be 1000 in all simulations, so that the interval of time between observations will be of 20 seconds approximately. During the simulation of the first setting, 10 and 100 observations will also be used. In this way, the reader will see how the available number of observations affects the final precision of Least Squares technique. Finally, the initial state vector will be given at $t_{0}=0 \mathrm{~s}$ for all settings used. Thus, in this section, there will not be distinction in the initial epoch selected depending on the initial observations provided. Remember that Least Squares technique uses all available data in order to improve the initial state.

In Chapter 3, it has been explained the methods used in order to obtain the initial nominal state vector when range and range-rate observations are given. Now, in Chapter 4, more than 3 observations are available ${ }^{1}$, so that the determination of the initial state may be improved by means of averaging the initial state vectors calculated when using different observations of different epochs. Imagine that range and range-rate observations are available. One state vector can be calculated at each observation epoch by means of Trilateration method. Propagating all of them to the same epoch, let us say the initial epoch t_{0}, and performing an average of all of these vectors, the initial state vector estimate is improved. Thus, Least Squares technique needs less iterations in order to converge. However, it may happen that the initial estimate is too close to the real one (e.g., a few metres of difference in the satellite position state vector), and this fact entails problems when the partial-derivative matrix, \mathbf{A}, is calculated (i.e., matrix \mathbf{A} is not full rank, so that $\left(\mathbf{A}^{T} \mathbf{W A}\right)^{-1}$ cannot be calculated). Therefore, there is no need to obtain a very precise initial nominal state vector when using Least Squares technique.

In order to see better how Least Squares technique works, the initial nominal state vector has been chosen manually. That is to say, as the ideal satellite state vector value at epoch t_{0} is known, one may vary its values in an appropriate way in order to obtain the initial nominal state vector. Table 4.3 shows the initial nominal state vector used as a starting point for all settings that are going to be simulated.

Previous to show the results, it must be said that the Least Squares algorithm has been set to iterate 100 times per each sample of the statistical simulation. Thus, some intermediate results will also be collected in order to evaluate the Least Squares performance. The results will show the errors in the approximate satellite state vector (i.e., how the initial nominal state vector errors vary along the Least Squares iterations), and the errors in the range and range-rate observations of the same locations evaluated in the simulations of the previous chapter.

[^15]| | SATELLITE STATE VECTOR AT $t_{0}=0 \mathrm{~s}$ | | |
| :---: | :---: | :---: | :---: |
| | Ideal value | Initial nominal value | Initial error |
| $r_{x}[\mathrm{~km}]$ | 39811.324342080086 | 39861.324342080086 | 50.000000000000 |
| $r_{y}[\mathrm{~km}]$ | 13863.769945143404 | 13813.769945143402 | -50.000 000000002 |
| $r_{z}[\mathrm{~km}]$ | 0.000000000000 | 50.000000000000 | 50.000000000000 |
| $v_{x}[\mathrm{~km} / \mathrm{s}]$ | -1.011 153178968 | -1.611 153178968 | -0.600 000000000 |
| $v_{y}[\mathrm{~km} / \mathrm{s}]$ | 2.904251340218 | 3.304251340218 | 0.400000000000 |
| $v_{z}[\mathrm{~km} / \mathrm{s}]$ | 0.000000000000 | -0.500000000000 | -0.500 000000000 |

Table 4.3: Initial nominal state vector at $t_{0}=0 \mathrm{~s}$.

a) Results Analysis of Setting H

Table 4.4 summarizes all conditions taken into account when performing the statistical simulation of setting H .

Setting H

Location of the three sites in order to obtain the initial nominal state vector:
(01) Barcelona (Spain) / (02) Betzdorf (Luxemburg) / (03) Milan (Italy).

IDEAL DATA

Type of observations generated: RANGE.

- Number of observations generated per type and site: 1000.
- Time span: 6 h .

NOISE ADDED
Range observations: MEAN: $0 \mathrm{~m} /$ STD.: 1 m .
APPROXIMATE DATA

- Technique used: LEAST SQUARES.
- Epoch when the approximate satellite state vector is given: $t_{0}=0 \mathrm{~s}$.

Table 4.4: Summary of all conditions considered on setting H.

As setting H is the first simulation to be analysed, some issues of the Least Squares algorithm will be evaluated in order to achieve a better understanding of how it works. In this way, first, it will be studied the algorithm convergence considering the use of 10,100 , and 1000 range observations per site. Then, it will be shown the statistical simulations of these three cases in order to evaluate the Least Squares performance depending on the number of observations used. Finally, it will be discussed the need of using the matrix weighting, \mathbf{W}.

Least Squares Algorithm Convergence

The convergence of Least Squares algorithm will be first evaluated by means of the values that the vector corrections to the state vector, $\delta \widehat{\mathbf{x}}$, will take along the 100 iterations of the algorithm. Remember that vector $\delta \hat{\mathbf{x}}$ stands for the quantities to add or subtract to the initial nominal state vector in order to meet the ideal (or real) state vector value. Therefore, the algorithm convergence will be achieved when all components of $\delta \hat{\mathbf{x}}$ tend to zero. Table 4.5 shows these values related to
the first, last, and two intermediate algorithm iterations when 10,100 , and 1000 observations are available.

10 observations

$\Delta r_{I}[\mathrm{~km}]$	-3398.688743392164	7.551466757265	-0.000000005521	0.000000014671
$\Delta r_{J}[\mathrm{~km}]$	7404.570041511945	-22.351284190081	0.000000047278	-0.000000004605
$\Delta r_{K}[\mathrm{~km}]$	-3763.973795325485	48.420613556557	0.000000102210	0.000000100552
$\Delta v_{I}[\mathrm{~km} / \mathrm{s}]$	-0.137931905765	0.000952662549	-0.000000000004	0.000000000001
$\Delta v_{J}[\mathrm{~km} / \mathrm{s}]$	-0.897575778875	0.000431719380	-0.000000000003	-0.000000000001
$\Delta v_{k}[\mathrm{~km} / \mathrm{s}]$	-0.847552955657	-0.003174745293	-0.000000000015	-0.000000000004

100 observations

$\Delta r_{I}[\mathrm{~km}]$	-2797.376035418503	-0.724838847395	-0.000000023078	0.000000027056
$\Delta r_{J}[\mathrm{~km}]$	6083.544042823009	-1.014973379256	0.000000127740	-0.000000078793
$\Delta r_{K}[\mathrm{~km}]$	-2528.329262221871	2.425283473699	0.000000202795	-0.000000021910
$\Delta v_{I}[\mathrm{~km} / \mathrm{s}]$	0.021368880662	0.000280478520	-0.000000000012	0.000000000008
$\Delta v_{J}[\mathrm{~km} / \mathrm{s}]$	-0.785378631189	-0.000026171636	-0.000000000006	0.000000000003
$\Delta v_{k}[\mathrm{~km} / \mathrm{s}]$	-0.571238823219	0.000022713295	-0.000000000039	0.000000000019

1000 observations

$\Delta r_{I}[\mathrm{~km}]$	-2727.787691748790	-1.331548925731	-0.000000072754	-0.000000024384
$\Delta r_{J}[\mathrm{~km}]$	5921.967312268461	0.011342024704	0.000000058583	0.000000021923
$\Delta r_{K}[\mathrm{~km}]$	-2412.261924791630	-0.031730686798	-0.000000396257	-0.000000126927
$\Delta v_{I}[\mathrm{~km} / \mathrm{s}]$	0.040031559759	0.000182871545	-0.000000000006	-0.000000000002
$\Delta v_{J}[\mathrm{~km} / \mathrm{s}]$	-0.771984625893	-0.000031330161	0.000000000002	0.000000000000
$\Delta v_{k}[\mathrm{~km} / \mathrm{s}]$	-0.538811531308	0.000125882791	0.000000000005	0.000000000001

Table 4.5: Initial, final, and two intermediate values of vector $\delta \widehat{\mathbf{x}}$ considering 10, 100, and 1000 observations.

From the table above, one may say that the algorithm converges to one point in all three cases provided that all components of $\delta \hat{\mathbf{x}}$ tend to zero. In addition, one may conclude that the more observations are available, the more rapidly the algorithm will converge. This fact can also be seen in Figure 4.6 where the evolution of all $\delta \hat{\mathbf{x}}$ components has been depicted. This figure only shows the first 10 iterations since the evolution of $\delta \hat{\mathbf{x}}$ components is very little from iteration 10 and cannot be observable in all plots.

Up to now, it has been proved that all $\delta \hat{\mathbf{x}}$ components tend to zero; however, nothing has been said about the point where the algorithm has converged. This fact is illustrated in Figures 4.7 and 4.8 where the evolution of the initial nominal position and velocity vectors along the Least Squares algorithm iterations have been depicted respectively. As in Figure 4.6, only the first 10 iterations have been plotted.

Figure 4.6: Evolution of $\delta \hat{\mathbf{x}}$ components along the first 10 iterations of Least Squares algorithm considering 10 (in red), 100 (in blue), and 1000 (in orange) observations.

Figure 4.7: Evolution of the initial nominal position state vector along the first 10 iterations of Least Squares algorithm considering 10 (in red), 100 (in blue), and 1000 (in orange) observations.

Figure 4.8: Evolution of the initial nominal velocity state vector along the first 10 iterations of Least Squares algorithm considering 10 (in red), 100 (in blue), and 1000 (in orange) observations.

Figure 4.9: Evolution of the errors between the ideal and nominal state vectors along the first 10 iterations of Least Squares algorithm and considering 10 (in red), 100 (in blue), and 1000 (in orange) observations.

From Figures 4.7 and 4.8, one may see that all components converge to the ideal value, and therefore the algorithm convergence has been totally proved.

Finally, Figure 4.9 shows the evolution of the errors obtained between the ideal and nominal state vector values. From this figure, one may see the magnitude of the errors. However, in order to better analyse such errors, a statistical simulation must be performed since each Least Squares algorithm simulation provides different results.

Statistical Simulation of Setting H (10, 100, and 1000 Observations)

Appendix C shows the main results obtained during each statistical simulation of setting H. First, the evolution of the errors in the nominal state vector is listed, and then, the final errors in the range observations are provided. Both set of errors are calculated at two different epochs simulating the initial and final epochs of the radar synthetic aperture.

Least Squares algorithm needs a few iterations in order to converge to the final state vector. During the first iteration, the nominal state vector is moved far away from its ideal position; however, from this distant point, the algorithm is able to meet the ideal position more precisely than the methods used in Chapter 3. It must also be said that, from iteration 10, the Least Squares algorithm achieve very little or no gain with respect to the precision obtained. Thus, the tolerance of iteration 10 would be used as an escape criterion when performing Least Squares technique in a more real case.

ORDER OF MAGNITUDE OF THE ERRORS OF SETTING H AT $\boldsymbol{t}_{\mathbf{0}}$ AND $\boldsymbol{t}_{\mathrm{f}}$			
$\mathbf{3}$ observations (setting C)	$\mathbf{1 0}$ observations	$\mathbf{1 0 0}$ observations	$\mathbf{1 0 0 0}$ observations

\mathbf{r}	t_{0}	$117 / 56 / 151 \mathrm{~m}$	$15 / 30 / 52 \mathrm{~m}$	$4 / 9 / 17 \mathrm{~m}$	$1 / 3 / 5 \mathrm{~m}$
	t_{f}	$143 / 114 / 169 \mathrm{~m}$	$44 / 22 / 63 \mathrm{~m}$	$14 / 7 / 21 \mathrm{~m}$	$4 / 2 / 7 \mathrm{~m}$

\mathbf{v}	t_{0}	$9 / 6 / 12 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$1 / 2 / 5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.8 / 0.3 / 1.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.2 / 0.1 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$
	t_{f}	$7 / 8 / 11 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$1 / 3 / 4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.2 / 1 / 1.2 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$

ρ	t_{0}	0.6 to 6.7 m	0.4 to 1.7 m	0.2 to 0.5 m	5.6 to 17 cm
	t_{f}	102 to 108 m	0.4 to 2.5 m	0.2 to 0.8 m	5.4 to 26 cm

Table 4.6: Summary of the order of magnitude errors of setting H. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated.

Table 4.6 summarizes the errors obtained (i.e., their standard deviations) when using 10,100 , and 1000 observations. The errors calculated when setting C was simulated have also been added. In this way, one may compare the precision of all same configurations. As seen from the table, the errors in the satellite state vector decrease one order of magnitude when using 1000
telecom
observations instead of 10 , and are two orders of magnitude below of those errors obtained when simulating setting C . This fact clearly affect the precision of range observations, which goes from a few metres on setting C to a few centimetres on setting H when using 1000 observations.

In order to better see how the final range observation errors are distributed among all locations studied, it has been considered adding Figures 4.10, 4.11, and 4.12.

By using Least Squares technique, the precision requirement of GEOSAR mission may be fulfilled. All locations under the satellite L-band beam coverage, except those at the edges, have a range observation precision of the same order of magnitude of the radar X-band wavelength. In addition, such requirement is achieved at both initial and final epochs. However, one must consider that the simulation has been performed without taking into account any kind of perturbations, so that some precision deterioration could be expected when adding third body effects, solar radiation pressure, etc. But, on the other hand, more observations might be used in order to increase the precision obtained. For instance, one could use 10000 observations (time epochs) instead of 1000 . This fact has not been proved within this document since the statistical simulation was computationally expensive.

Figure 4.10: Precision of setting H when using 10 observations. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}.

Figure 4.11: Precision of setting H when using 100 observations. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}.

Figure 4.12: Precision of setting H when using 1000 observations. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}.

Matrix Weighting, W

In order to conclude the analysis of setting H, it has been tested without setting the matrix \mathbf{W}. The reason to do this is that all ideal range observations coming from different sites have been perturbed considering the same level of noise (i.e., $\sigma_{\rho_{i}}=1 \mathrm{~m}$ where $i=1,2,3$). Thus, the use or not of matrix \mathbf{W} for improving the precision of the Least Squares algorithm will be evaluated in this case of study. Table 4.7 shows a comparison of the errors found in setting H .

		ERRORS OF SETTING H AT t_{0} AND t_{f}	
		$\mathbf{1 0 0 0}$ observations (using \mathbf{W})	$\mathbf{1 0 0 0}$ observations (without using \mathbf{W})
\mathbf{r}	t_{0}	$1 / 3 / 5 \mathrm{~m}$	$1 / 3 / 5 \mathrm{~m}$
	t_{f}	$4 / 2 / 7 \mathrm{~m}$	$4 / 2 / 7 \mathrm{~m}$

	t_{0}	$0.2 / 0.1 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.3 / 0.09 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$
	t_{f}	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$

	t_{0}	5.6 to 17 cm	5.6 to 17 cm
	t_{f}	5.4 to 26 cm	5.3 to 26 cm

Table 4.7: Summary of the errors of setting H (matrix \mathbf{W} use). This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated.

As seen from the table above, the use of matrix \mathbf{W} does not improve the precision of Least Squares algorithm. Although matrix \mathbf{W} is not useful in this case, it must be taken into account when performing the algorithm in a real case.

b) Results Analysis of Setting I

The next setting to be analysed considers range and range-rate observations. Let us see whether the use of range-rate observations improve the precision acquired in the previous sub-section. All conditions taken into account within the simulation are summarized in Table 4.8.

The simulation of Least Squares algorithm adding range-rate observations is run similarly than the one only using range observations. That is to say, after the first iteration, the initial nominal state vector is moved far away. Then, from this distant point, the algorithm converges a few iterations later. One can see this fact from the tables of Appendix C.

Table 4.9 compares the results between settings D and I , which have similar configurations. It has also been added setting H in order to compare its precision to the one obtained through setting I. As seen from the table, setting I improves the precision of setting D in two, three or even in four order of magnitudes. However, it does not improve the precision of setting H since similar or almost identical results are obtained.

Setting I

Location of the three sites in order to obtain the initial nominal state vector:
(01) Barcelona (Spain) / (02) Betzdorf (Luxemburg) / (03) Milan (Italy).

IDEAL DATA

- Type of observations generated: RANGE and RANGE-RATE.

Number of observations generated per type and site: 1000.
Time span: 6 h.

NOISE ADDED

Range observations: MEAN: $0 \mathrm{~m} /$ STD.: 1 m .
Range-rate observations: MEAN: $0 \mathrm{~mm} / \mathrm{s} /$ STD.: $5 \mathrm{~mm} / \mathrm{s}$.

APPROXIMATE DATA

Technique used: LEAST SQUARES.

- Epoch when the approximate satellite state vector is given: $t_{0}=0 \mathrm{~s}$.

Table 4.8: Summary of all conditions considered on setting I.

		COMPARISON BETWEEN ERRORS OF SETTINGS D, H, I		
		$\begin{gathered} \text { Setting D } \\ \text { (3 observations) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Setting H } \\ (1000 \text { observations }) \\ \hline \end{gathered}$	$\begin{gathered} \text { Setting I } \\ (1000 \text { observations }) \\ \hline \end{gathered}$
r	t_{0}	62 / 120 / 150 m	$1 / 3 / 5 \mathrm{~m}$	$2 / 3 / 6 \mathrm{~m}$
	t_{f}	$2 / 17 / 10 \mathrm{~km}$	4/2/7m	4/2/6m

\mathbf{v}	t_{0}	$0.3 / 0.6 / 0.7 \frac{\mathrm{~m}}{\mathrm{~s}}$	$0.2 / 0.1 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.3 / 0.09 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$
	t_{f}	$0.02 / 1.7 / 0.01 \frac{\mathrm{~m}}{\mathrm{~s}}$	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$

ρ	t_{0}	0.6 to 6.9 m	5.6 to 17 cm	5.6 to 17 cm
	t_{f}	17.0 to 17.5 km	5.4 to 26 cm	5.4 to 25 cm

Table 4.9: Comparison between the errors of settings D, H, and I. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated.

Therefore, the precision requirement of GEOSAR mission is also fulfilled by means of setting I, especially for those locations in the centre of the satellite L-band beam coverage. Figure 4.13 shows how the errors in range observations are distributed among all sites evaluated.

Before concluding Chapter 4, it has been considered to add the analysis of two more settings. Setting J will reduce the error added in the ideal range observations one order of magnitude. On the other hand, setting K will do the same but in the range-rate observations. In this way, it will
be shown which case offers better capabilities for improving the precision required on GEOSAR mission.

Figure 4.13: Precision of setting I. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}.

c) Results Analysis of Setting J

Table 4.10 summarizes all conditions taken into account in the simulation of setting J, which they are the same of those used for setting H, but the standard deviation noise to the range observations has reduced one order of magnitude.

Setting J

Location of the three sites in order to obtain the initial nominal state vector: (01) Barcelona (Spain) / (02) Betzdorf (Luxemburg) / (03) Milan (Italy).

IDEAL DATA

- Type of observations generated: RANGE.
- Number of observations generated per type and site: 1000.
- Time span: 6 h .

NOISE ADDED

- Range observations: MEAN: $0 \mathrm{~m} / \mathrm{STD} .: 0.1 \mathrm{~m}$.

APPROXIMATE DATA

Technique used: LEAST SQUARES.

- Epoch when the approximate satellite state vector is given: $t_{0}=0 \mathrm{~s}$.

Table 4.10: Summary of all conditions considered on setting J.

		ERRORS OF SETTINGS H AND J	
		Setting H $(1000$ observations $)$	
\mathbf{r}	t_{0}	1000 observations $)$	

\mathbf{v}	t_{0}	$0.2 / 0.1 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$27 / 10 / 49 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$
	t_{f}	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$8 / 35 / 39 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$

	t_{0}	5.6 to 17 cm	5.7 to 17 mm
	t_{f}	5.4 to 26 cm	5.5 to 27 mm

Table 4.11: Comparison between settings H and J. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated.

Figure 4.14: Precision of setting J. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}.

The simulation results show a reduction of one order of magnitude of the errors obtained in the satellite state vector as well as in the range observations with respect to setting H (see Table 4.11). Thus, the precision requirement of GEOSAR mission is completely fulfilled in all locations under the satellite L-band beam coverage. Therefore, it is highlighted the need of being provided of very precise range observations.

Following the same format of previous sub-sections, Figure 4.14 illustrates how the range observation errors are distributed along all sites evaluated.

d) Results Analysis of Setting K

The analyses of different settings will conclude studying setting K. One may find the information of all conditions considered in the simulation of setting K in Table 4.12.

Setting K

Location of the three sites in order to obtain the initial nominal state vector:
(01) Barcelona (Spain) / (02) Betzdorf (Luxemburg) / (03) Milan (Italy).

IDEAL DATA

- Type of observations generated: RANGE and RANGE-RATE.
- Number of observations generated per type and site: 1000.
- Time span: 6 h .

NOISE ADDED

Range observations: MEAN: $0 \mathrm{~m} / \mathrm{STD} .: 1 \mathrm{~m}$.

- Range-rate observations: MEAN: $0 \mathrm{~mm} / \mathrm{s} /$ STD.: $0.5 \mathrm{~mm} / \mathrm{s}$.

APPROXIMATE DATA
Technique used: LEAST SQUARES.
Epoch when the approximate satellite state vector is given: $t_{0}=0 \mathrm{~s}$.

Table 4.12: Summary of all conditions considered on setting K.

The simulation results (see Table 4.13) show a very little error decrease in the satellite state vector with respect to setting I. This fact implies a small improvement in the precision of setting K ; however, it does not achieve the precision obtained by using setting J , which is one order of magnitude below. Therefore, it has been shown that decreasing the errors of the range observations provides better precision results than only decreasing the errors of the range-rate observations.

Finally, the range observation errors are shown in Figure 4.15.

		COMPARISON BETWEEN ERRORS OF SETTINGS I, J, K		
		Setting I $(1000$ observations $)$	Setting J $(1000$ observations $)$	Setting K $(1000$ observations $)$
\mathbf{r}	t_{0}	$2 / 3 / 6 \mathrm{~m}$	$0.1 / 0.3 / 0.5 \mathrm{~m}$	$1 / 3 / 5 \mathrm{~m}$
	t_{f}	$4 / 2 / 6 \mathrm{~m}$	$0.4 / 0.2 / 0.7 \mathrm{~m}$	$4 / 2 / 6 \mathrm{~m}$

\mathbf{v}	t_{0}	$0.3 / 0.09 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$27 / 10 / 49 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$	$0.3 / 0.09 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$
	t_{f}	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	$8 / 35 / 39 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$

ρ	t_{0}	5.6 to 17 cm	5.7 to 17 mm	4.9 to 17 cm
	t_{f}	5.4 to 25 cm	5.5 to 27 mm	4.7 to 25 cm

Table 4.13: Comparison between the errors of settings I, J, and K. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ observations of all sites evaluated.

Figure 4.15: Precision of setting K. Red and purple squares illustrate ρ errors at initial epoch, t_{0}, whereas black squares show ρ errors at final epoch, t_{f}.

4.4. RESULTS SUMMARY

The following table summarizes the main results obtained of all simulated settings along Chapter 4.

RESULTS SUMMARY OF ALL CHAPTER 4 SETTINGS					
Set.	Errors in satellite Postion SV (\mathbf{r})	Errors in satellite Velocity $S V(v)$	Errors in Range observations (ρ)	Errors in Range-rate observations $(\dot{\rho})$	

INITIAL EPOCH $\left(t_{0}=0 \mathrm{~s}\right)$

$\underset{(10)}{\mathbf{H}}$	$15 / 30 / 52 \mathrm{~m}$	$1 / 2 / 5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	0.4 to 1.7 m	-
$\underset{(100)}{\mathbf{H}}$	$4 / 9 / 17 \mathrm{~m}$	$0.8 / 0.3 / 1.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	0.2 to 0.5 m	-
$\underset{(1000)}{\mathbf{H}}$	$1 / 3 / 5 \mathrm{~m}$	$0.2 / 0.1 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	5.6 to 17 cm	-
$\underset{(1000)}{\mathbf{I}}$	$2 / 3 / 6 \mathrm{~m}$	$0.3 / 0.09 / 0.5 \frac{\mathrm{~mm}}{\mathrm{~s}}$	5.6 to 17 cm	11 to $14 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$
$\underset{(1000)}{\mathbf{J}}$	$0.1 / 0.3 / 0.5 \mathrm{~m}$	$27 / 10 / 49 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$	5.7 to 17 mm	-
$\underset{(1000)}{\mathbf{K}}$	$1 / 3 / 5 \mathrm{~m}$	$0.3 / 0.09 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	4.9 to 17 cm	8.7 to $12 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$

FINAL EPOCH $\left(t_{\mathrm{f}}=21600 \mathrm{~s}\right)$

$\underset{(10)}{\mathbf{H}}$	$44 / 22 / 63 \mathrm{~m}$	$1 / 3 / 4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	0.4 to 2.5 m	-
$\underset{(100)}{\mathbf{H}}$	$14 / 7 / 21 \mathrm{~m}$	$0.2 / 1 / 1.2 \frac{\mathrm{~mm}}{\mathrm{~s}}$	0.2 to 0.8 m	-
$\underset{(1000)}{\mathbf{H}}$	$4 / 2 / 7 \mathrm{~m}$	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	5.4 to 26 cm	-
$\underset{(1000)}{\mathbf{I}}$	$4 / 2 / 6 \mathrm{~m}$	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	5.4 to 25 cm	11 to $14 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$
$\underset{(1000)}{\mathbf{J}}$	$0.4 / 0.2 / 0.7 \mathrm{~m}$	$8 / 35 / 39 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$	5.5 to 27 mm	-
$\underset{(1000)}{\mathbf{K}}$	$4 / 2 / 6 \mathrm{~m}$	$0.08 / 0.3 / 0.4 \frac{\mathrm{~mm}}{\mathrm{~s}}$	4.7 to 25 cm	8.5 to $12 \frac{\mu \mathrm{~m}}{\mathrm{~s}}$

Table 4.14: Summary of all simulation results performed in Chapter 4. This table shows the error obtained on each \mathbf{r} and \mathbf{v} components as well as the range values of the error in ρ and $\dot{\rho}$ observations of all sites evaluated.
(2) telecom

CONCLUSIONS

This document has introduced the topic of orbit determination methods and techniques to the reader in the context of GEOSAR mission.

First, Chapter 1 has explained the GEOSAR mission main features. In this way, the advantages of the mission versus LEOSAR missions, and the new set of application that this fact involves have been listed. However, GEOSAR mission introduces some constraints. One of these limitations lies on the lack of knowledge with precision about the orbit that the satellite describes around the Earth. Such precision is related to the range history between the radar antenna and each scene point under the satellite L-band beam coverage. Therefore, in order to obtain well-focused images, the range history of every site must remain in the order of magnitude of the radar X-band wavelength (i.e., $\lambda \sim 3 \mathrm{~cm}$). Thus, this document has introduced different methods and techniques in order to determine the satellite orbit with such precision.

After Chapter 2 has shown how a SAR radar works with some examples, Chapter 3 has started to present methods for orbit determination from range and range-rate measurements. In this way, Trilateration and Gibbs methods have been discussed. On the one hand, Trilateration method alone may calculate an initial satellite state vector if both types of measurements are available. On the other hand, Gibbs method may help Trilateration method in order to find the initial state vector if only range measurements are given. Many simulations have been performed in order to evaluate the precision of both methods. Such simulations have shown that the combination of both methods results to be the best approach to initially determine the satellite orbit. However, the required precision is far to be accomplished, so that other techniques had to be studied.

Finally, Chapter 4 has introduced Least Squares and Kalman filter techniques, which are called differential correction techniques. At the beginning of the chapter, it has been discussed the pros and cons of both techniques resulting Least Squares the technique to be used in order to determine the satellite orbit. In this way, the complete formulation of Least Squares technique has been explained, and then, it has been adapted to the orbit determination problem. At this point, some simulations have been performed in order to evaluate the precision of Least Squares technique. Such simulations have resulted in range observation errors of the same order of magnitude than the required precision of GEOSAR mission. However, all errors found are above the 3 centimetres of the radar X-band wavelength. This fact implies that the Least Squares technique must be used in collaboration to other techniques, for instance, autofocusing techniques. In this way, the mission precision for the satellite orbit determination may be completely ensured.

As a final remark, it had been shown that decreasing the errors in the range observations used in Least Squares technique provide better precision results than reducing the errors in the range-rate observations. N

Future work

This document may be used as a first overview of satellite orbit determination in GEOSAR mission. All methods and techniques explained within the document are clearly useful for orbit determination. However, some modifications in the algorithms must be performed in order to take into account perturbations. Since there were no real data available, the precision of all methods has been evaluated from an ideal simulated orbit, which presented similar issues of a real GEO orbit but did not consider perturbations. One must know that perturbations affect the satellite movement along its orbit, and does the estimation of its orbit more difficult to calculate in a precise way.

On the other hand, care must be taken when defining time. Since there were no specific dates of real observables, time has treated in a more easy way. But, the appearance of real data will imply to define time by using time references described briefly in Section 2.4. Knowing the time, one may locate one site over the Earth's surface more precisely, and therefore the range measurement between the satellite and site will be calculated with less error.

Since GEOSAR mission has no launching date yet, it will be difficult to achieve real data soon in order to prove the methods and techniques discussed within this document. However, this real data may be obtained from the alternative system based on a ground-based interferometer, which has been presented in Chapter 1. An interferometer will provide different measurements, so that all methods and techniques explained along this document must be adapted to such system.

Finally, the feasibility of Kalman filter techniques in the context of GEOSAR mission may also be proved instead of using Least Squares techniques. And, in case that the precision requirements are not obtained, autofocusing techniques may also be studied.

APPENDIX A

A.1. MATLLAB SCRIP'IS AND FUNCIIONS OF SECTIONS 3.5 AND 3.7

A.2. MATTLAB SCRIP'IS AND FUNCTIONS OF SECTION 3.8

A.3. MATTLAB SCRIP'IS AND FUNCTIONS OF SECTION 4.3

A.4. SUMMARY OF ALL MATIAB FUNCTIONS AND SCRIP'TS USED

Appendix A illustrates the block diagram of all Matlab scripts and functions involved on each group of simulations performed along this document. At the end of this Appendix, a brief explanation of every script or function used into the simulations is provided.

A.1. MATILAB SCRIP'IS AND FUNCTIONS OF SECTIONS 3.5 AND 3.7

MAIN

Figure A.1: Block diagram of Matlab scripts and functions used in Sections 3.5 and 3.7.

A.2. MATTLAB SCRIP'IS AND FUNCTIONS OF SECTION 3.8

MAIN statistical

Figure A.2: Block diagram of Matlab scripts and functions used in Section 3.8.

A.3. MATILAB SCRIP'IS AND FUNCIIONS OF SECTION 4.3

MAIN statistical LS

Figure A.3: Block diagram of Matlab scripts and functions used in Section 4.3.

A.4. SUMMARY OF ALL MATLAB FUNCTIONS AND SCRIP'IS USEDD

Script/Function name	Summary
add_errors2ranges (script)	It adds uniform or Gaussian noise to the range and range-rate observations generated by script observations_generator.
angl (function)	It calculates the angle between two vectors.
coe2rv (function)	It finds the position and velocity vectors in a geocentric equatorial system, $I J K$, given the Classical Orbital Elements.
dms2rad (function)	It converts degrees, minutes and seconds into radians.
errors_statistical_LS (script)	It computes the statistical errors obtained in the satellite state vector, and in range and range-rate observations when the Least Squares technique is performed.

$\begin{aligned} & \text { errors_SV_ranges_COE } \\ & \text { (script) } \end{aligned}$	It computes the errors between ideal and approximate values of the satellite state vector, range and range-rate observations, and Classical Orbital Elements.
findc2c3 (function)	It calculates the c2 and c3 functions in order for using them in the universal variable calculation of z.
finitediff (function)	It perturbs the components of the state vector in order to obtain matrix A when performing Least Squares technique.
gibbs (function)	It performs the Gibbs' method of orbit determination, i.e. it determines the velocity at the middle epoch of the 3 given position vectors.
hgibbs (function)	It implements the Herrick-Gibbs approximation for orbit determination, and finds the middle velocity vector for the 3 given position vectors.
kepler (function)	It solves Kepler's problem for orbit determination and returns a future geocentric equatorial, $I J K$, position and velocity vector. The solution uses universal variables.
least_squares (script)	It performs the complete Least Squares algorithm by using finite differencing.
Istime (function)	It finds the Local Sidereal Time, θ_{LST}, at a given location.
mag (function)	It finds the magnitude of a vector.
MAIN (script)	It performs the complete simulation of the initial orbit determination of Chapter 3.
MAIN_statistical (script)	It performs the complete statistical simulation of the initial orbit determination of Chapter 3.
MAIN_statistical_LS (script)	It performs the complete statistical simulation of Least Squares algorithm of Chapter 4.
newtonnu (function)	It solves Kepler's equation when the true anomaly is known. The mean and eccentric, parabolic, or hyperbolic anomaly are also found.
observations_generator (script)	It generates N range and range-rate (if chosen) observations of three different sites selected by the user from an ideal simulated geostationary satellite orbit. It also provides the ideal parameters generated of this satellite orbit.
orbit_ranges_plots (script)	It calculates the evolution of the ideal and approximate satellite orbits, and range and range-rate histories. Then it plots the results.
plot_statistical (script)	It plots the statistical results performed within the script results_statistical.
plot_statistical_LS (script)	It plots the statistical results calculated within the script results_statitical_LS.
ranges2rv (function)	It computes the satellite state vector from a set of range and range-rate observations of three different sites by using Trilateration, Gibbs or Herrick-Gibbs methods.
ranges_calculation (function)	It computes the range and range-rate observations given the satellite and site state vectors.
results_Command_Window (script)	It shows, by Command Window, some results obtained in scripts: observations_generator, add_errors2ranges, SVs_from_ranges, errors_SV_ranges_COE, and orbit_ranges_plot.

results_LS_CW (script)	It shows, by Command Window, some results related to script least_squares.
results_statistical (script)	It shows, by Command Window, the results obtained within the script MAIN_statistical.
results_statistical_LS (script)	It computes the statistical results of Least Squares algorithm when performing the statistical simulation of it.
results_statistical_LS_CW (script)	It shows, by Command Window, the statistical results obtained within the script results_statistical_LS.
rot1 (function)	It performs a rotation about the first axis.
rot3 (function)	It performs a rotation about the third axis.
ry2coe (function)	It finds the Classical Orbital Elements given the geocentric equatorial, $I J K$, position and velocity vectors.
rv2ranges (function)	It computes the range and range-rate observations of different sites given the satellite state vector at epoch t.
satellite_parameters (function)	It returns the location parameters that define the initial satellite position with respect to the initial Greenwich Mean Sidereal Time (GMST) at epoch $t_{0}=00: 00: 00$.
site_parameters (function)	It returns the location parameters of one of the sites defined within the function.
site_SVs (function)	It computes the site state vectors given the location parameters of each site and the epochs when these state vectors must be calculated.
SVs_from_ranges (script)	It computes the approximate satellite state vector from a set of observations containing range and range-rate observations of three different sites.
theoretical_parameters (function)	It computes the ideal range and range-rate observations at each epoch of variable t between one site located over the Earth's surface and a satellite located in a near-circular geostationary orbit.
Trilateration (function)	It calculates the satellite state vector at the epoch when the range and range-rate observations of three different sites are provided.
unit (function)	It calculates a unit vector given the original vector.

Table A.1: Summary of all Matlab functions and scripts used along the PFC.

APPENDIX B

B.1. RESULTS OF SECTION 3.5: SETTIING A

B.2. RESULTS OF SECTION 3.5: SETTIING B

B.3. RESULIS OF SECTION 3.7: SETTING B + NOISE
B.4. RESULTS OF SECTION 3.8: SETTIING C
B.5. RESULIS OF SECTION 3.8: SETIIING D
B.6. RESULTS OF SECTION 3.8: SETTING E
B.7. RESULTS OF SECTION 3.8: SETTIING F
B.8. RESULTS OF SECTION 3.8: SETYTING G

Appendix B shows the numerical results obtained in all Matlab simulations performed in Chapter 3. These results are related to ideal and approximate values and errors of: the satellite state vector, the Classical Orbital Elements, and the range and range-rate observations. In case of statistical simulations, the results show the ideal value, and the mean and standard deviation of the errors obtained in the satellite state vector, and the range and range-rate observations.

B.1. RESULIS OF SECTION 3.5: SETTING A

SATELLITE STATE VECTOR	
Ideal value	Approximate value

Error

EPOCH $\boldsymbol{t}_{1}=9000 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	23076.206106788981	23076.206106788715
$r_{y}[\mathrm{~km}]$	35283.375426893952	35283.375426894039
$r_{z}[\mathrm{~km}]$	0.000000000000	-0.000000000531
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.573186442040	-2.573186442040
$v_{y}[\mathrm{~km} / \mathrm{s}]$	1.683542939042	1.683542939042
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000	0.000000000000

-0.000000000266
0.000000000087
-0.000000000531
-0.000000000000
-0.000000000000
-0.000000000000

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{3 0 6 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	-35389.419322388858	-35389.419322389018
$r_{y}[\mathrm{~km}]$	22934.754421927479	22934.754421926620
$r_{z}[\mathrm{~km}]$	0.000000000000	-0.000000001146
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.672148279220	-1.672148279220
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-2.579589570438	-2.579589570438
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000000000000	0.000000000000

-0.000000000160
-0.000000000859
-0.000000001146
0.000000000000
-0.000000000000
0.000000000000

Table B.1: Numerical results of satellite state vector (setting A).

$|$| RANGE OBSERVATIONS $(\boldsymbol{\rho})$ | | | |
| :---: | :---: | :---: | :---: |
| Num. | Site | Ideal value $[\mathrm{km}]$ | Approximate value $[\mathrm{km}]$ |

EPOCH $\boldsymbol{t}_{\mathbf{1}}=\mathbf{9} \mathbf{0 0 0} \mathbf{~ s}$			
01	BCN	37837.696026402111	37837.696026402111
02	BET	38446.575954225314	38446.575954225314
03	MIL	38028.921622176684	38028.921622176684
07	BRN	38182.029368749914	38182.029368749914
08	LIS	38042.328754617185	38042.328754617192
09	LON	38742.205915905528	38742.205915905528
10	BRL	38622.189255594414	38622.189255594414
11	WAR	38576.603473887648	38576.603473887641
12	ATH	37347.330742545055	37347.330742545033

0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000007
0.000000000000
0.000000000000
-0.000000000007
-0.000000000022

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{3 0 6 0 0} \mathbf{s}$

01	BCN	37849.125818200402	37849.125818200220	-0.000 000000182
02	BET	38458.054469152936	38458.054469152768	-0.000 000000167
03	MIL	38040.427889373103	38040.427889372928	-0.000 000000175
07	BRN	38193.517922760664	38193.517922760497	-0.000 000000167
08	LIS	38053.631863541596	38053.631863541428	-0.000 000000167
09	LON	38753.630333962217	38753.630333962057	-0.000 000000160
10	BRL	38633.731442392957	38633.731442392789	-0.000 000000167
11	WAR	38588.212889795912	38588.212889795737	-0.000 000000175
12	ATH	37359.011566637222	37359.011566637004	-0.000 000000218

Table B.2: Numerical results of range observations (setting A).

CLASSICAL ORBITAL ELEMIENTS (COE)				Error
COE	Unit	Ideal value	Approximate value	
EPOCH $\boldsymbol{t}_{1}=9000 \mathrm{~s}$				
a	[km]	42164.169460970334	42164.169460970174	-0.000 000000160
\boldsymbol{e}	-	0.000200000000	0.000200000000	-0.000 000000000
\boldsymbol{p}	[km]	42164.167774403555	42164.167774403410	-0.000 000000145
i	$\left[^{\circ}\right]$	0.000000000000	0.000000000000	0.000000000000
Ω	[${ }^{\circ}$]	undefined	undefined	-
ω	[${ }^{\circ}$]	undefined	undefined	-
v_{0}	$\left[^{\circ}\right]$	56.814314616910	56.814314616744	-0.000 000000166
$\widetilde{\omega}_{\text {true }}$	[${ }^{\circ}$]	0.000000000000	0.000000000000	0.000000000000
\boldsymbol{u}_{0}	[${ }^{\circ}$]	undefined	undefined	-
$\lambda_{\text {true }_{0}}$	$\left[^{\circ}\right]$	56.814314616910	56.814314616744	-0.000 000000166

(2) telecom

EPOCH $t_{\text {f }}=\mathbf{3 0 6 0 0} \mathbf{s}$

\boldsymbol{a}	$[\mathrm{km}]$	42164.169460970334	42164.169460970166
\boldsymbol{e}	-	0.000200000000	0.000200000000
\boldsymbol{p}	$[\mathrm{~km}]$	42164.167774403555	42164.167774403395
\boldsymbol{i}	$\left[^{\circ}\right]$	0.000000000000	0.000000000000
$\boldsymbol{\Omega}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{\omega}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{\nu}_{\mathbf{0}}$	$\left[^{\circ}\right]$	147.054013879961	147.054013879872
$\widetilde{\boldsymbol{\omega}}_{\text {true }}$	$\left[^{\circ}\right]$	0.000000000000	0.000000000000
$\boldsymbol{u}_{\mathbf{0}}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{\lambda}_{\text {true }_{\mathbf{0}}}$	$\left[^{\circ}\right]$	147.054013879961	147.054013879872

-0.000000000167
-0.000000000000
-0.000000000160
0.000000000000
-
-
-0.000000000089
0.000000000000
-
-0.000000000089

Table B.3: Numerical results of Classical Orbital Elements (setting A).

B.2. RESULTS OF SECTION 3.5: SEITIING B

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$

$r_{x}[\mathrm{~km}]$	39811.324342080086	39811.324342080072
$r_{y}[\mathrm{~km}]$	13863.769945143404	13863.769945143476
$r_{z}[\mathrm{~km}]$	-0.000000000015	0.000000000073
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.011153178968	-1.011153178968
$v_{y}[\mathrm{~km} / \mathrm{s}]$	2.904251340218	2.904251340218
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000	0.000000000000

-0.000000000015
0.000000000036
0.000000000036
0.000000000000
-0.000000000000
0.000000000000

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	-14048.210875367075	-14048.210875367071		
$r_{y}[\mathrm{~km}]$	39758.040138460929	39758.040138460681		
$r_{z}[\mathrm{~km}]$	0.000000000004	-0.000000000247		
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899009362761	-2.899009362761		
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023728690437	-1.023728690437		
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000000000000	-0.000000000000	$\quad$$\quad$	0.000000000004
---:				

Table B.4: Numerical results of satellite state vector (setting B).

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

| 01 | BCN | 37834.053693001108 | 37834.053693001115 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 02 | BET | 38443.051174980268 | 38443.051174980275 |
| 03 | MIL | 38025.423177105964 | 38025.423177105971 |
| 07 | BRN | 38178.508556331370 | 38178.508556331377 |
| 08 | LIS | 38038.478209228619 | 38038.478209228626 |
| 09 | LON | 38738.600812036675 | 38738.600812036675 |
| 10 | BRL | 38618.783379768545 | 38618.783379768553 |
| 11 | WAR | 38573.312333845846 | 38573.312333845854 |
| 12 | ATH | 37344.093302991045 | 37344.093302991045 |

0.000000000007
0.000000000007
0.000000000007
0.000000000007
0.000000000007
0.000000000000
0.000000000007
0.000000000007
0.000000000000

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

01	BCN	37845.136629696470	37845.136629696208
02	BET	38453.982609793478	38453.982609793216
03	MIL	38036.328990781658	38036.328990781396
07	BRN	38189.439026046719	38189.439026046457
08	LIS	38049.809535903398	38049.809535903143
09	LON	38749.625490385479	38749.625490385210
10	BRL	38629.568681622295	38629.568681622033
11	WAR	38583.959484721621	38583.959484721352
12	ATH	37354.695527400443	37354.695527400181
	-0.000000000262		
	-0.00000000000262		
	-0.00000000000262		
	-0.000000000269		
	-0.00000000000262		

Table B.5: Numerical results of range observations (setting B).

CLASSICAL ORBITAL ELEMIENTS (COE)			
COE	Unit	Ideal value	Approximate value

EPOCH $\boldsymbol{t}_{0}=0 \mathrm{~s}$

\boldsymbol{a}	$[\mathrm{km}]$	42164.169460970312	42164.169460970064
\boldsymbol{e}	-	0.000200000000	0.000200000000
\boldsymbol{p}	$[\mathrm{~km}]$	42164.167774403555	42164.167774403279
\boldsymbol{i}	$\left[^{\circ}\right]$	0.000000000000	0.000000000000
$\boldsymbol{\Omega}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{\omega}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{v}_{\mathbf{0}}$	$\left[^{\circ}\right]$	19.200000000009	19.200000000836
$\widetilde{\boldsymbol{\omega}}_{\text {true }}$	$\left[^{\circ}\right]$	0.000000000000	0.000000000000
$\boldsymbol{u}_{\mathbf{0}}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{\lambda}_{\text {true }_{\mathbf{0}}}$	$\left[^{\circ}\right]$	19.200000000009	19.200000000836

-0.000000000247
-0.000000000000
-0.000000000276
0.000000000000
-
-
0.000000000827
0.000000000000
-
0.000000000827

(2) telecom

EPOCH $t_{f}=21600 \mathrm{~s}$

\boldsymbol{a}	$[\mathrm{km}]$	42164.169460970304	42164.169460970086
\boldsymbol{e}	-	0.000200000000	0.000200000000
\boldsymbol{p}	$[\mathrm{~km}]$	42164.167774403526	42164.167774403300
\boldsymbol{i}	$\left[^{\circ}\right]$	0.000000000000	0.000000000000
$\boldsymbol{\Omega}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{\omega}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{v}_{\mathbf{0}}$	$\left[^{\circ}\right]$	109.460486499160	109.460486499685
$\widetilde{\boldsymbol{\omega}}_{\text {true }}$	$\left[^{\circ}\right]$	0.000000000000	0.000000000000
$\boldsymbol{u}_{\mathbf{0}}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{\lambda}_{\text {true }_{\mathbf{0}}}$	$\left[^{\circ}\right]$	109.460486499160	109.460486499685

-0.000000000218
-0.000000000000
-0.000000000226
0.000000000000
-
-
0.000000000524
0.000000000000
-
0.000000000524

Table B.6: Numerical results of Classical Orbital Elements (setting B).

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$

01	BCN	0.000243981046	0.000243981046
02	BET	0.000228394049	0.000228394049
03	MIL	0.000224589431	0.000224589431
07	BRN	0.000227712055	0.000227712055
08	LIS	0.000272339131	0.000272339131
09	LON	0.000239431262	0.000239431262
10	BRL	0.000212360938	0.000212360938
11	WAR	0.000196782202	0.000196782202
12	ATH	0.000188748825	0.000188748825

-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
0.000000000000

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

01	BCN	0.000560626939	0.000560626939
02	BET	0.000565211901	0.000565211901
03	MIL	0.000567152627	0.000567152627
07	BRN	0.000565822125	0.000565822125
08	LIS	0.000550314761	0.000550314761
09	LON	0.000560950171	0.000560950171
10	BRL	0.000570630327	0.000570630327
11	WAR	0.000576172939	0.000576172939
12	ATH	0.000580934546	0.000580934546

-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000
-0.000000000000

Table B.7: Numerical results of range-rate observations (setting B).

B.3. RESUL'TS OF SECTION 3.7: SETTING B + NOISE

NOISE ADDEID TO RANGE OBSERVATIONS AT $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$			
Num.	Site	Mean $[\mathrm{km}]$	Standard deviation $[\mathrm{km}]$
01	BCN	0.000000000000	0.000537667140
02	BET	0.000000000000	-0.000433592022
03	MIL	0.000000000000	0.000725404225

Table B.8: Numerical results of the noise added to range observations at initial epoch (setting $B+$ noise).

NOISE ADDED TO RANGE-RATE OBSERVATIONS AT $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$			
Num.	Site	Mean $[\mathrm{km} / \mathrm{s}]$	Standard deviation $[\mathrm{km} / \mathrm{s}]$
01	BCN	0.000000000000	0.000004310867
02	BET	0.000000000000	0.000013847185
03	MIL	0.000000000000	-0.000001024830

Table B.9: Numerical results of the noise added to range-rate observations at initial epoch (setting B+noise).

SATELLITE STATE VECTOR	
Ideal value	Approximate value

Error

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$

$r_{x}[\mathrm{~km}]$	39811.324342080086	39811.365775960876
$r_{y}[\mathrm{~km}]$	13863.769945143404	13863.704826079083
$r_{z}[\mathrm{~km}]$	0.000000000000	0.128662579438
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.011153178968	-1.011713812592
$v_{y}[\mathrm{~km} / \mathrm{s}]$	2.904251340218	2.905228419887
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000	-0.001581919610

0.041433880790
-0.065119064320
0.128662579438
-0.000560633624
0.000977079669
-0.001581919610

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	-14048.210875367075	-14052.447524146140
$r_{y}[\mathrm{~km}]$	39758.040138460929	39785.824830923550
$r_{z}[\mathrm{~km}]$	0.000000000000	-21.697656431888
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899009362761	-2.899022545707
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023728690437	-1.020975865168
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000000000000	-0.000003827423

-4.236648779066
27.784692462621
-21.697656431888
-0.000013182946
0.002752825269
-0.000003827423

Table B.10: Numerical results of satellite state vector (setting B+noise).

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

| 01 | BCN | 37834.053693001108 | 37834.054230668255 |
| :--- | :---: | :---: | :---: | :---: |
| 02 | BET | 38443.051174980268 | 38443.050741388251 |
| 03 | MIL | 38025.423177105964 | 38025.423902510207 |
| 07 | BRN | 38178.508556331370 | 38178.508755516385 |
| 08 | LIS | 38038.478209228619 | 38038.477744405391 |
| 09 | LON | 38738.600812036675 | 38738.599345585506 |
| 10 | BRL | 38618.783379768545 | 38618.783389391559 |
| 11 | WAR | 38573.312333845846 | 38573.313393922865 |
| 12 | ATH | 37344.093302991045 | 37344.098271158415 |

0.000537667147
-0.000433592017
0.000725404243
0.000199185015
-0.000464823228
-0.001466451169
0.000009623014
0.001060077018
0.004968167370

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

01	BCN	37845.136629696470	37874.770851403351	
02	BET	38453.982609793478	38483.973901242141	29.634221706881
03	MIL	38036.328990781658	38066.214892452292	29.991291448663
07	BRN	38189.439026046719	38219.353441842606	29.885901670634
08	LIS	38049.809535903398	38079.158423171444	29.914415795887
09	LON	38749.625490385479	38779.601111043070	29.348887268046
10	BRL	38629.568681622295	38659.720734556664	29.975620657591
11	WAR	38583.959484721621	38614.177746458212	30.152052934369
12	ATH	37354.695527400443	37384.479588293689	30.218261736591
	29.784060893246			

Table B.11: Numerical results of range observations (setting $B+$ noise).

CLASSICAL ORBITAL ELEMENTS (COE)				
COE	Unit	Ideal value	Approximate value	Error

EPOCH $\boldsymbol{t}_{\mathbf{0}}=0 \mathrm{~s}$

\boldsymbol{a}	$[\mathrm{km}]$	42164.169460970312	42194.613477875355
\boldsymbol{e}	-	0.000200000000	0.000909845318
\boldsymbol{p}	$[\mathrm{~km}]$	42164.167774403555	42194.578548393642
\boldsymbol{i}	$\left[^{\circ}\right]$	0.000000000000	0.029463150371
$\boldsymbol{\Omega}$	$\left[^{\circ}\right]$	undefined	199.539960718384
$\boldsymbol{\omega}$	$\left[^{\circ}\right]$	undefined	179.893028161531
$\boldsymbol{v}_{\mathbf{0}}$	$\left[^{\circ}\right]$	19.200000000009	359.766908973045
$\widetilde{\boldsymbol{\omega}}_{\text {true }}$	$\left[^{\circ}\right]$	0.000000000000	undefined
$\boldsymbol{u}_{\mathbf{0}}$	$\left[^{\circ}\right]$	undefined	undefined
$\boldsymbol{\lambda}_{\text {true }_{\mathbf{0}}}$	$\left[^{\circ}{ }^{\circ}\right]$	19.200000000009	undefined

30.444016905043
0.000709845318
30.410773990086
0.029463150371
199.539960718384
179.893028161531
340.566908973035
-
-
-

EPOCH $t_{f}=21600 \mathrm{~s}$

\boldsymbol{a}	$[\mathrm{km}]$	42164.169460970304	42194.613477875333	30.444016905029
\boldsymbol{e}	-	0.000200000000	0.000909845318	0.000709845318
\boldsymbol{p}	$[\mathrm{~km}]$	42164.167774403526	42194.578548393612	30.410773990086
\boldsymbol{i}	$\left[^{\circ}\right]$	0.000000000000	0.029463150371	0.029463150371
$\boldsymbol{\Omega}$	$\left[^{\circ}\right]$	undefined	199.539960718384	199.539960718384
$\boldsymbol{\omega}$	$\left[^{\circ}{ }^{\circ}\right]$	undefined	179.893028161473	179.893028161473
$\boldsymbol{v}_{\mathbf{0}}$	$\left[^{\circ}\right]$	109.460486499160	90.020352336123	-19.440134163037
$\widetilde{\boldsymbol{\omega}}_{\text {true }}$	$\left[^{\circ}\right]$	0.000000000000	undefined	-
$\boldsymbol{u}_{\mathbf{0}}$	$\left[^{\circ}\right]$	undefined	undefined	-
$\boldsymbol{\lambda}_{\text {true }}$	$\left[^{\circ}{ }^{\circ}\right]$	109.460486499160	undefined	-

Table B.12: Numerical results of Classical Orbital Elements (setting B+noise).

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$

01	BCN	0.000243981046	0.000248291913
02	BET	0.000228394049	0.000242241234
03	MIL	0.000224589431	0.000223564601
07	BRN	0.000227712055	0.000233656531
08	LIS	0.000272339131	0.000293435693
09	LON	0.000239431262	0.000267723969
10	BRL	0.000212360938	0.000218254665
11	WAR	0.000196782202	0.000187315570
12	ATH	0.000188748825	0.000129890237

0.000004310867
0.000013847185
-0.000001024830
0.000005944476
0.000021096562
0.000028292707
0.000005893727
-0.000009466632
-0.000058858588

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

01	BCN	0.000560626939	0.002654130867
02	BET	0.000565211901	0.002694071148
03	MIL	0.000567152627	0.002708050691
07	BRN	0.000565822125	0.002697928254
08	LIS	0.000550314761	0.002571307098
09	LON	0.000560950171	0.002660561661
10	BRL	0.000570630327	0.002738766736
11	WAR	0.000576172939	0.002783622972
12	ATH	0.000580934546	0.002816550615

0.002093503928	
0.002128859	247
0.002140898	064
0.002132106	129
0.002020992337	
0.002099611490	
0.002168136409	
0.002207450033	
0.002	235

Table B.13: Numerical results of range-rate observations (setting $B+$ noise).

B.4. RESULTS OF SECTION 3.8: SETTIING C

NOISE ADDED TO RANGE OBSERVATIONS AT $t_{1}=9000 \mathrm{~s}$			
Num.	Site	Mean $[\mathrm{km}]$	Standard deviation $[\mathrm{km}]$
01	BCN	-0.000020794635	0.001001491045
02	BET	0.000065381263	0.000990369202
03	MIL	-0.000010505824	0.000999585034

Table B.14: Statistical results of the noise added to range observations at initial epoch (setting C).

RANGE OBSERVATIONS (ρ)

EPOCH $t_{1}=9000 \mathrm{~s}$

01	BCN	37837.696026402111
02	BET	38446.575954225314
03	MIL	38028.921622176684
07	BRN	38182.029368749914
08	LIS	38042.328754617185
09	LON	38742.205915905528
10	BRL	38622.189255594414
11	WAR	38576.603473887648
12	ATH	37347.330742545055

-0.000020794636	0.001001491045
0.000065381261	0.000990369203
-0.000010505826	0.000999585034
0.000022277605	0.000647420212
0.000014524901	0.003088182987
0.000123810304	0.002220811393
0.000053819387	0.001487446178
-0.000000487978	0.002826341719
-0.000262248383	0.006701227195

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{3 0 6 0 0} \mathbf{~ s}$

01	BCN	37849.125818200402
02	BET	38458.054469152936
03	MIL	38040.427889373103
07	BRN	38193.517922760664
08	LIS	38053.631863541596
09	LON	38753.630333962217
10	BRL	38633.731442392957
11	WAR	38588.212889795912
12	ATH	37359.011566637222

0.003229178696	0.106116551598
0.003236956763	0.104823979930
0.003168286400	0.104747398201
0.003203213421	0.104880971769
0.003353629527	0.108007819194
0.003318412393	0.105453419099
0.003171451640	0.103747735929
0.003076117304	0.102815631311
0.002856473494	0.103004113990

Table B.15: Statistical results of range observations (setting C).

SATELLITE STATE VECTOR

Ideal value

Error	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{1}=\mathbf{9 0 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	23076.206106788981
$r_{y}[\mathrm{~km}]$	35283.375426893952
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.573186442040
$v_{y}[\mathrm{~km} / \mathrm{s}]$	1.683542939042
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000

-0.003842348683	0.116666925830
0.001119548941	0.056142626758
-0.008971507131	0.150660482757
-0.000000360000	0.000008633632
-0.000000182964	0.000006246387
-0.000000499875	0.000012300785

EPOCH $\boldsymbol{t}_{\mathbf{f}}=\mathbf{3 0 6 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	-35389.419322388858
$r_{y}[\mathrm{~km}]$	22934.754421927479
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.672148279220
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-2.579589570438
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000000000000

-0.005656660153	0.142900699936
-0.004628160410	0.114204786750
-0.006816147554	0.168727153936
0.000000184632	0.000007073899
-0.000000064263	0.000007518829
0.000000656216	0.000010983308

Table B.16: Statistical results of satellite state vector (setting C).

B.5. RESULTS OF SECTION 3.8: SETTING D

NOISE ADDED TO RANGE OBSERVATIONS AT $t_{0}=0 \mathrm{~s}$			
Num.	Site	Mean $[\mathrm{km}]$	Standard deviation $[\mathrm{km}]$
01	BCN	0.000007075273	0.000954952523
02	BET	-0.000016803836	0.000999457606
03	MIL	-0.000003828291	0.001013639293

Table B.17: Statistical results of the noise added to range observations at initial epoch (setting D).

NOISE ADDED TO RANGE-RATE OBSERVATIONS AT $t_{0}=\mathbf{0} \mathbf{s}$			
Num.	Site	Mean $[\mathrm{km} / \mathrm{s}]$	Standard deviation $[\mathrm{km} / \mathrm{s}]$
01	BCN	-0.000000124367	0.000004894309
02	BET	0.000000294824	0.000005057132
03	MIL	-0.000000149263	0.000005094707

Table B.18: Statistical results of the noise added to range-rate observations at initial epoch (setting D).

RANGE OBSERVATIONS (ρ)

Num.	Site	Ideal value $[\mathrm{km}]$

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

0.000007075277	0.000954952523
-0.000016803831	0.000999457606
-0.000003828284	0.001013639293
-0.000008756149	0.000648793275
0.000013303092	0.003172591514
-0.000023070197	0.002300991661
-0.000021902804	0.001476513832
-0.000018486489	0.002908291393
0.000028636768	0.006940341927

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

01	BCN	37845.136629696470
02	BET	38453.982609793478
03	MIL	38036.328990781658
07	BRN	38189.439026046719
08	LIS	38049.809535903398
09	LON	38749.625490385479
10	BRL	38629.568681622295
11	WAR	38583.959484721621
12	ATH	37354.695527400443

0.710064597740	17.194602433949
0.720554883344	17.343079403691
0.716680203892	17.318322025947
0.717916902765	17.320408916631
0.703313125439	17.035369200413
0.721053566825	17.313093709566
0.724510770026	17.428527444918
0.725387526973	17.481859284098
0.710219078426	17.360789159842

Table B.19: Statistical results of range observations (setting D).

RANGE-RATE OBSERVATIONS ($\dot{\rho}$)

Error $[\mathrm{km} / \mathrm{s}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

01	BCN	0.000243981046
02	BET	0.000228394049
03	MIL	0.000224589431
07	BRN	0.000227712055
08	LIS	0.000272339131
09	LON	0.000239431262
10	BRL	0.000212360938
11	WAR	0.000196782202
12	ATH	0.000188748825

-0.000000124367	0.000004894309
0.000000294824	0.000005057132
-0.000000149263	0.000005094707
0.000000048884	0.000003383013
0.000000196579	0.000015646600
0.000000671420	0.000011101081
0.000000161363	0.000007752932
-0.000000210994	0.000014541946
-0.000001720667	0.000033562133

EPOCH $t_{\text {f }}=21600 \mathrm{~s}$

01	BCN	0.000560626939
02	BET	0.000565211901
03	MIL	0.000567152627
07	BRN	0.000565822125
08	LIS	0.000550314761
09	LON	0.000560950171
10	BRL	0.000570630327
11	WAR	0.000576172939
12	ATH	0.000580934546

0.000050351944	0.001215446991
0.000051140778	0.001236985820
0.000051416697	0.001244283557
0.000051216883	0.001238944948
0.000048716844	0.001171383486
0.000050478906	0.001219213403
0.000052023622	0.001260891744
0.000052909712	0.001284814369
0.000053558613	0.001301879697

Table B.20: Statistical results of range-rate observations (setting D).

SATELLITE STATE VECTOR

Error	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$

$r_{x}[\mathrm{~km}]$	39811.324342080086
$r_{y}[\mathrm{~km}]$	13863.769945143404
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.011153178968
$v_{y}[\mathrm{~km} / \mathrm{s}]$	2.904251340218
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000

0.000268174643	0.061898243421
-0.000131102625	0.120189082665
0.001752361514	0.150967284766
-0.000015081728	0.000298147864
0.000022838521	0.000581275665
-0.000050439729	0.000743176478

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	-14048.210875367075
$r_{y}[\mathrm{~km}]$	39758.040138460929
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899009362761
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023728690437
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000000000000

-0.138466305982	2.098900569503
0.629012483030	17.040050731314
-0.692942617556	10.190570394388
-0.000000702934	0.000016477585
0.000062031977	0.001688435116
-0.000000186739	0.000011417112

Table B.21: Statistical results of satellite state vector (setting D).

B.6. RESULIS OF SECTION 3.8: SETIIING E

NOISE ADDED TO RANGE OBSERVATIONS AT $\boldsymbol{t}_{1}=9000 \mathrm{~s}$			
Num.	Site	Mean $[\mathrm{km}]$	Standard deviation $[\mathrm{km}]$
01	BCN	-0.032512355075	0.990224081084
02	BET	0.000624884542	1.009062541120
03	MIL	-0.050884426181	0.985956913669

Table B.22: Statistical results of the noise added to range observations at initial epoch (setting E).

RANGE OBSERVATIONS (ρ)

Num.	Site	Ideal value $[\mathrm{km}]$

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $t_{1}=9000 \mathrm{~s}$

01	BCN	37837.696026402111
02	BET	38446.575954225314
03	MIL	38028.921622176684
07	BRN	38182.029368749914
08	LIS	38042.328754617185
09	LON	38742.205915905528
10	BRL	38622.189255594414
11	WAR	38576.603473887648
12	ATH	37347.330742545055

-0.032512355076	0.990224081084
0.000624884540	1.009062541120
-0.050884426182	0.985956913668
-0.026534838313	0.646554965419
0.022914666003	3.221222236165
0.050216339532	2.324621277815
-0.028523882592	1.433944953140
-0.083828924968	2.862158601816
-0.258454672248	6.878881439188

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{3 0 6 0 0 ~ s}$

01	BCN	37849.125818200402
02	BET	38458.054469152936
03	MIL	38040.427889373103
07	BRN	38193.517922760664
08	LIS	38053.631863541596
09	LON	38753.630333962217
10	BRL	38633.731442392957
11	WAR	38588.212889795912
12	ATH	37359.011566637222

-6.288550770242	107.882405765730
-6.428043535146	106.688345838139
-6.435099219613	106.495591077952
-6.420953108421	106.681669485819
-6.087339942798	109.875074665772
-6.362939492749	107.420794498492
-6.544132085281	105.570111606237
-6.644503999983	104.535524397077
-6.632765425843	104.335352709917

Table B.23: Statistical results of range observations (setting E).

SATELLITE STATE VECTOR

Ideal value

Error	
Mean	Standard deviation

EPOCH $t_{1}=9000 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	23076.206106788981
$r_{y}[\mathrm{~km}]$	35283.375426893952
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.573186442040
$v_{y}[\mathrm{~km} / \mathrm{s}]$	1.683542939042
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000

-4.124581228867	121.720532918644
1.015302556406	58.588548994502
-6.144603168485	149.234382398849
0.000034960719	0.008978175308
-0.000353135071	0.006529509732
0.000176505538	0.012673089619

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{3 0 6 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	-35389.419322388858
$r_{y}[\mathrm{~km}]$	22934.754421927479
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.672148279220
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-2.579589570438
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000000000000

1.697418123979	147.521768475264
-10.353228819781	118.069957282002
2.591282794655	173.760712319894
0.000714119301	0.007264669915
-0.000707565863	0.007445796793
0.000456036687	0.010884328392

Table B.24: Statistical results of satellite state vector (setting E).

B.7. RESULTS OF SECTION 3.8: SETTIING F

NOISE ADDED TO RANGE OBSERVATIONS AT $\boldsymbol{t}_{1}=9000 \mathrm{~s}$			
Num.	Site	Mean $[\mathrm{km}]$	Standard deviation $[\mathrm{km}]$
04	LPG	0.000030256899	0.001002632811
05	REY	-0.000007978140	0.001022218217
06	ANK	0.000046053714	0.000993014698

Table B.25: Statistical results of the noise added to range observations at initial epoch (setting F).

SATELLITE STATE VECTOR

Error	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{1}=\mathbf{9 0 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	23076.206106788981
$r_{y}[\mathrm{~km}]$	35283.375426893952
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.573186442040
$v_{y}[\mathrm{~km} / \mathrm{s}]$	1.683542939042
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000

0.000359133482	0.010999995561
-0.000085138000	0.006209583964
0.000826007842	0.024072703630
0.000000029162	0.000000882855
0.000000011014	0.000000732739
0.000000001979	0.000002008423

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{3 0 6 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	-35 389.419322388858	0.000488610291	0.015299427680
$r_{y}[\mathrm{~km}]$	22934.754421927479	0.000281858699	0.014176421690
$r_{z}[\mathrm{~km}]$	0.000000000000	0.000023545211	0.027540061269
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.672 148279220	-0.000 000012722	0.000000970585
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-2.579589570 438	-0.000 000003055	0.000001175189
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000 000000000	-0.000 000060237	0.000001755614

Table B.26: Statistical results of satellite state vector (setting F).

RANGE OBSERVATIONS (ρ)

Num.	Site	Ideal value $[\mathrm{km}]$

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $t_{1}=9000 \mathrm{~s}$

01	BCN	37837.696026402111
02	BET	38446.575954225314
03	MIL	38028.921622176684
04	LPG	37730.308575272822
05	REY	40447.716714274029
06	ANK	37620.731260024579
07	BRN	38182.029368749914
08	LIS	38042.328754617185
09	LON	38742.205915905528
10	BRL	38622.189255594414
11	WAR	38576.603473887648
12	ATH	37347.330742545055

0.000019998491	0.000598104638
0.000011968222	0.000714705975
0.000018954116	0.000646144337
0.000030256903	0.001002632811
-0.000007978142	0.001022218218
0.000046053716	0.000993014698
0.000015943760	0.000663886005
0.000016867671	0.000680957206
0.000006628946	0.000757257889
0.000012953037	0.000792970410
0.000017883284	0.000836272936
0.000041999290	0.000832316292

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{3 0 6 0 0 ~ s}$

01	BCN	37849.125818200402
02	BET	38458.054469152936
03	MIL	38040.427889373103
04	LPG	37741.515485508971
05	REY	40459.065252813991
06	ANK	37632.500945118300
07	BRN	38193.517922760664
08	LIS	38053.631863541596
09	LON	38753.630333962217
10	BRL	38633.731442392957
11	WAR	38588.212889795912
12	ATH	37359.011566637222

-0.000276227181	0.014439621250
-0.000269610712	0.014408347978
-0.000267961806	0.014396681592
-0.000298549309	0.014561379407
-0.000279222399	0.014478627518
-0.000242363041	0.014267309424
-0.000269308119	0.014404692650
-0.000288240213	0.014502245076
-0.000274336964	0.014436335634
-0.000262730222	0.014372494319
-0.000256006235	0.014334869038
-0.000252436373	0.014319784911

Table B.27: Statistical results of range observations (setting F).

B.8. RESULTS OF SECTION 3.8: SETTING G

NOISE ADDED TO RANGE OBSERVATIONS AT $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$			
Num.	Site	Mean $[\mathrm{km}]$	Standard deviation $[\mathrm{km}]$
04	LPG	-0.000011590789	0.001018744790
05	REY	0.000090799603	0.001049616126
06	ANK	-0.000018023079	0.001003659869

Table B.28: Statistical results of the noise added to range observations at initial epoch (setting G).

NOISE ADDED TO RANGE-RATE OBSERVATIONS AT $t_{0}=\mathbf{0} \mathbf{~ s}$			
Num.	Site	Mean $[\mathrm{km} / \mathrm{s}]$	Standard deviation $[\mathrm{km} / \mathrm{s}]$
04	LPG	-0.000000031771	0.000004990862
05	REY	0.000000098369	0.000004970079
06	ANK	-0.000000385005	0.000005014528

Table B.29: Statistical results of the noise added to range-rate observations at initial epoch (setting G).

RANGE OBSERVATIONS (ρ)

Error [km]	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
04	LPG	37726.272782221386
05	REY	40444.031239730401
06	ANK	37617.666306731175
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

0.000025764508	0.000598561248
0.000048604630	0.000712547116
0.000032848830	0.000639097012
-0.000011590789	0.001018744789
0.000090799606	0.001049616126
-0.000018023079	0.001003659869
0.000039289394	0.000659000053
0.000026442025	0.000694987184
0.000058720357	0.000764302752
0.000050025138	0.000785163598
0.000041913691	0.000823628922
-0.000013724601	0.000838438661

EPOCH $\boldsymbol{t}_{\mathrm{f}}=21600 \mathrm{~s}$

01	BCN	37845.136629696470
02	BET	38453.982609793478
03	MIL	38036.328990781658
04	LPG	37737.833258773469
05	REY	40455.138465738593
06	ANK	37628.054814066825
07	BRN	38189.439026046719
08	LIS	38049.809535903398
09	LON	38749.625490385479
10	BRL	38629.568681622295
11	WAR	38583.959484721621
12	ATH	37354.695527400443

0.113154989828	1.701901589788
0.114255313435	1.713109098993
0.113976397583	1.712893791970
0.110186517018	1.665902722591
0.114559076988	1.707171595565
0.114392373306	1.733537119433
0.114041031403	1.712193853289
0.112172788264	1.686343783715
0.114150409778	1.708828059552
0.114792879207	1.721206807406
0.115055184762	1.727483140005
0.113854944790	1.723842226669

Table B.30: Statistical results of range observations (setting G).

RANGE-RATE OBSERVATIONS ($\dot{\rho}$)

Error $[\mathrm{km} / \mathrm{s}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$

01	BCN	0.000243981046
02	BET	0.000228394049
03	MIL	0.000224589431
04	LPG	0.000297263023
05	REY	0.000250880941
06	ANK	0.000165555535
07	BRN	0.000227712055
08	LIS	0.000272339131
09	LON	0.000239431262
10	BRL	0.000212360938
11	WAR	0.000196782202
12	ATH	0.000188748825

-0.000000078524	0.000002829472
-0.000000062611	0.000003386262
-0.000000110872	0.000003054289
-0.000000031771	0.000004990862
0.000000098369	0.000004970079
-0.000000385005	0.000005014528
-0.000000087145	0.000003135776
-0.000000003826	0.000003305663
-0.000000009610	0.000003607503
-0.000000100028	0.000003784186
-0.000000159483	0.000004027778
-0.000000315837	0.000004157103

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

01	BCN	0.000560626939
02	BET	0.000565211901
03	MIL	0.000567152627
04	LPG	0.000542035994
05	REY	0.000555506558
06	ANK	0.000588604579
07	BRN	0.000565822125
08	LIS	0.000550314761
09	LON	0.000560950171
10	BRL	0.000570630327
11	WAR	0.000576172939
12	ATH	0.000580934546

0.000008084726	0.000120170862
0.000008220009	0.000122372946
0.000008268125	0.000123112684
0.000007571614	0.000111937348
0.000007968441	0.000118436842
0.000008858204	0.000132470260
0.000008233427	0.000122570039
0.000007803142	0.000115683478
0.000008105566	0.000120563874
0.000008372392	0.000124812180
0.000008525751	0.000127251771
0.000008639959	0.000128978427

Table B.31: Statistical results of range-rate observations (setting G).

SATELLITE STATE VECTOR

Ideal value

Error	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$

$r_{x}[\mathrm{~km}]$	39811.324342080086
$r_{y}[\mathrm{~km}]$	13863.769945143404
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.011153178968
$v_{y}[\mathrm{~km} / \mathrm{s}]$	2.904251340218
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000

-0.000387366344	0.005959348757
0.000454205423	0.011730818246
-0.001984728364	0.024854585822
-0.000002180298	0.000029332037
0.000003790617	0.000058548037
-0.000004761136	0.000120527136

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

$r_{x}[\mathrm{~km}]$	-14048.210875367075
$r_{y}[\mathrm{~km}]$	39758.040138460929
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899009362761
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023728690437
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000000000000

-0.016556064088	0.302695363054
0.108028284059	1.764757959772
-0.065276042319	1.652626790413
-0.000000008128	0.000003784674
0.000010674790	0.000174989687
0.000000164641	0.000001882529

Table B.32: Statistical results of satellite state vector (setting G).

APPENDIX C

C.1. RESULIS OF SECTION 4.3: SETTIING H

C.2. RESULTS OF SECTION 4.3: SETYTING I
C.3. RESULTS OF SECIION 4.3: SETTIING J
C.4. RESULIS OF SECTION 4.3: SETTIING K

Appendix C shows the numerical results obtained in all Matlab statistical simulations performed in Chapter 4. These results are related to the mean and standard deviation of the errors in the satellite state vector, and the range and range-rate observations.

C.1. RESULIS OF SECTION 4.3: SETTING H

a) $\mathbf{1 0}$ observations

RANGE OBSERVATIONS (ρ) AFTER 100 LS ITERATIONS

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

-0.000021985243	0.000630787855
-0.000024767247	0.000560073395
-0.000012878201	0.000503176644
-0.000018808537	0.000471408115
-0.000041892249	0.001214243512
-0.000038287380	0.000734115508
-0.000014660243	0.000807455746
0.000000730986	0.001077123467
0.000038965419	0.001741682544

EPOCH $t_{\text {f }}=21600 \mathrm{~s}$

01	BCN	37845.136629696470
02	BET	38453.982609793478
03	MIL	38036.328990781658
07	BRN	38189.439026046719
08	LIS	38049.809535903398
09	LON	38749.625490385479
10	BRL	38629.568681622295
11	WAR	38583.959484721621
12	ATH	37354.695527400443

-0.000019379361	0.000625846249
-0.000029474680	0.000584067512
-0.000004589864	0.000548007265
-0.000016685846	0.000472987357
-0.000055324092	0.001410584120
-0.000056033121	0.000938104981
-0.000011628733	0.000836314796
0.000017838984	0.001278244541
0.000098969964	0.002546747265

Table C.1: Statistical results of range observations (setting H with 10 observations).

EPOCH $t_{f}=21600 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	-14 048.210875367075	001	-10476.498484 164631	0.035221350209
		005	-0.016 855803350	0.043952521368
		010	0.001899711124	0.043947076870
		100	0.001899615283	0.043947091942
$r_{y}[\mathrm{~km}]$	39758.040138460929	001	-6 486.796924776097	0.019610172239
		005	0.284597148697	0.022489936721
		010	0.001032148676	0.022477374572
		100	0.001032078890	0.022477385589
$r_{z}[\mathrm{~km}]$	0.000000000000	001	-18683.638 722227672	0.087948132827
		005	-0.160 648193583	0.063235958483
		010	0.002508958347	0.063244843499
		100	0.002508702773	0.063244862618
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899 009362761	001	0.166336443981	0.000000708473
		005	-0.000 009622119	0.000000829369
		010	-0.000 000023571	0.000000829261
		100	-0.000 000023570	0.000000829261
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023 728690437	001	-0.360 467995554	0.000003402911
		005	0.000033300418	0.000003341045
		010	0.000000143578	0.000003339718
		100	0.000000143568	0.000003339719
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000 000000000	001	0.186562342948	0.000003592318
		005	-0.000 010816228	0.000003819130
		010	-0.000 000084686	0.000003818667
		100	-0.000 000084691	0.000003818665

Table C.2: Statistical results of satellite state vector (setting H with 10 observations).

b) $\mathbf{1 0 0}$ observations

RANGE OBSERVATIONS (ρ) AFTER 100 LS ITERATIONS

Error [km]	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{0}=0 \mathrm{~s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

0.000011553484	0.000222999071
-0.000001990323	0.000206172160
0.000000018007	0.000183104085
-0.000000015215	0.000177337188
0.000025728903	0.000408104335
0.000001051072	0.000253155197
-0.000010398525	0.000286000491
-0.000016189459	0.000365824870
-0.000006343591	0.000540105173

EPOCH $t_{\text {f }}=21600 \mathrm{~s}$

01	BCN	37845.136629696470	0.000002817166	0.000213144866
02	BET	38453.982609793478	0.000005804237	0.000206021686
03	MIL	38036.328990781658	-0.000 000409032	0.000193601359
07	BRN	38189.439026046719	0.000002576529	0.000172910702
08	LIS	38049.809535903398	0.000011166829	0.000439132920
09	LON	38749.625490385479	0.000012245353	0.000311714674
10	BRL	38629.568681622295	0.000001709606	0.000277384814
11	WAR	38583.959484721621	-0.000 005348105	0.000405393755
12	ATH	37354.695527400443	-0.000 025725529	0.000811046538

Table C.3: Statistical results of range observations (setting H with 100 observations).

EPOCH $t_{f}=21600 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	-14048.210 875367075	001	-8 548.390778414758	0.012133914830
		005	-0.019 060666552	0.013620143714
		010	-0.000 452119889	0.013620356490
		100	-0.000 452160534	0.013620291342
$r_{y}[\mathrm{~km}]$	39758.040138460929	001	-6 532.343 853471367	0.005753698587
		005	0.010077547226	0.007086387543
		010	-0.000 252452032	0.007086806648
		100	-0.000 252465348	0.007086774143
$r_{z}[\mathrm{~km}]$	0.000000000000	001	-14326.473 931763925	0.027692388556
		005	0.041558633499	0.020538101548
		010	-0.000 637403147	0.020537780090
		100	-0.000 637384745	0.020537806848
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899 009362761	001	0.177185347266	0.000000201065
		005	0.000000343279	0.000000254009
		010	0.000000007811	0.000000254019
		100	0.000000007812	0.000000254019
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023 728690437	001	-0.505 585645680	0.000000697863
		005	0.000000464568	0.000001049856
		010	-0.000 000040915	0.000001049909
		100	-0.000 000040917	0.000001049905
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000 000000000	001	0.205791572405	0.000001108719
		005	0.000002105265	0.000001238952
		010	-0.000 000036772	0.000001238951
		100	-0.000 000036764	0.000001238954

Table C.4: Statistical results of satellite state vector (setting H with 100 observations).

c) $\mathbf{1 0 0 0}$ observations

RANGE OBSERVATIONS (ρ) AFTER 100 LS ITERATIONS

Error [km]	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{0}=0 \mathrm{~s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

-0.000001777038	0.000071012805
-0.000001860663	0.000067246589
-0.000001913580	0.000058008732
-0.000001880110	0.000056978953
-0.000001558577	0.000131749702
-0.000001761370	0.000082746150
-0.000001979483	0.000093098695
-0.000002108893	0.000118072018
-0.000002253608	0.000170057396

EPOCH $t_{\text {f }}=21600 \mathrm{~s}$

01	BCN	37845.136629696470
02	BET	38453.982609793478
03	MIL	38036.328990781658
07	BRN	38189.439026046719
08	LIS	38049.809535903398
09	LON	38749.625490385479
10	BRL	38629.568681622295
11	WAR	38583.959484721621
12	ATH	37354.695527400443

0.000000557739	0.000069278537
0.000000557934	0.000064956620
0.000000460472	0.000059577369
0.000000510769	0.000053827942
0.000000751058	0.000142939197
0.000000677961	0.000101756609
0.000000457484	0.000083655145
0.000000316663	0.000123922691
0.000000008972	0.000257925962

Table C.5: Statistical results of range observations (setting H).

	SATELLITE STATE VECTOR			
	Ideal value	$\underset{\text { (Iter.) }}{\mathbf{L S}}$	Error	
			Mean	Standard deviation
	EPOCH $t_{0}=0 \mathrm{~s}$			
$r_{x}[\mathrm{~km}]$	39811.324342080086	001	-2677.786964536734	0.001318997334
		005	-0.010 626476347	0.001438366518
		010	-0.000 005365480	0.001438359759
		100	-0.000 005446527	0.001438368282
$r_{y}[\mathrm{~km}]$	13863.769945143404	001	5871.966257355713	0.003163605546
		005	0.020768959952	0.003012023221
		010	0.000008172583	0.003012052792
		100	0.000008231089	0.003012070365
$r_{z}[\mathrm{~km}]$	0.000000000000	001	-2 362.258797119339	0.005289591483
		005	-0.035 126056733	0.005483035341
		010	-0.000 002130912	0.005483072193
		100	-0.000 002590748	0.005483043009
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.011 153178968	001	-0.559 968250472	0.000000313683
		005	-0.000 001200920	0.000000262389
		010	-0.000 000000482	0.000000262386
		100	-0.000 000000489	0.000000262388
$v_{y}[\mathrm{~km} / \mathrm{s}]$	2.904251340218	001	-0.371984 502881	0.000000232936
		005	-0.000 000344739	0.000000092659
		010	-0.000 000000120	0.000000092664
		100	-0.000 000000118	0.000000092664
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000	001	-1.038 811150367	0.000000622655
		005	0.000003708427	0.000000474169
		010	-0.000 000000661	0.000000474165
		100	-0.000 000000653	0.000000474159

EPOCH $t_{f}=21600 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	-14048.210 875367075	001	-8315.714 256233945	0.003929811676
		005	-0.018 496798384	0.004382018752
		010	-0.000 009250633	0.004381969183
		100	-0.000 009418790	0.004382008881
$r_{y}[\mathrm{~km}]$	39758.040138460929	001	-6 468.689501788756	0.001981644527
		005	-0.004 954134618	0.002282212241
		010	-0.000 004148325	0.002282312448
		100	-0.000 004199171	0.002282323456
$r_{z}[\mathrm{~km}]$	0.000000000000	001	-13 854.833771147956	0.008839328329
		005	0.051010595018	0.006508273915
		010	-0.000 009053048	0.006508216793
		100	-0.000 008937975	0.006508137137
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899 009362761	001	0.176220721205	0.000000064635
		005	0.000000753490	0.000000080385
		010	0.000000000337	0.000000080385
		100	0.000000000341	0.000000080385
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023 728690437	001	-0.514 435890555	0.000000208955
		005	-0.000 001313125	0.000000337747
		010	-0.000 000000751	0.000000337757
		100	-0.000 000000759	0.000000337759
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000 000000000	001	0.204004621229	0.000000359307
		005	0.000002545565	0.000000399340
		010	0.000000000158	0.000000399343
		100	0.000000000192	0.000000399341

Table C.6: Statistical results of satellite state vector (setting H).

d) $\mathbf{1 0 0 0}$ observations (without weighting matrix)

RANGE OBSERVATIONS (ρ) AFTER 100 LS ITERATIONS

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

-0.000001628950	0.000071177743
-0.000000165003	0.000066023878
-0.000000567517	0.000057450768
-0.000000468230	0.000056227648
-0.000002792055	0.000132087723
-0.000000265194	0.000080803802
0.000000552792	0.000092101806
0.000000911101	0.000117310536
-0.000000738031	0.000167360833

EPOCH $t_{\text {f }}=21600 \mathrm{~s}$

01	BCN	37845.136629696470	0.000001397873	0.000069634476
02	BET	38453.982609793478	-0.000 000320364	0.000065575654
03	MIL	38036.328990781658	0.000000970807	0.000059048938
07	BRN	38189.439026046719	0.000000431707	0.000053855658
08	LIS	38049.809535903398	0.000001134534	0.000141822478
09	LON	38749.625490385479	-0.000 001211874	0.000102556738
10	BRL	38629.568681622295	-0.000 000318861	0.000083227715
11	WAR	38583.959484721621	0.000000443080	0.000121552935
12	ATH	37354.695527400443	0.000004961733	0.000255372313

Table C.7: Statistical results of range observations (setting H without weighting matrix).

EPOCH $t_{f}=21600 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	-14 048.210875367075	001	-8315.714 196681018	0.003874792808
		005	-0.018 443966932	0.004315008723
		010	0.000043356914	0.004315027184
		100	0.000042878132	0.004315081414
$r_{y}[\mathrm{~km}]$	39758.040138460929	001	-6 468.689456032478	0.001999247430
		005	-0.004 912305802	0.002262239465
		010	0.000037615802	0.002262354655
		100	0.000037515266	0.002262380757
$r_{z}[\mathrm{~km}]$	0.000000000000	001	-13 854.833547229373	0.008880598667
		005	0.051177442015	0.006571597525
		010	0.000157919908	0.006571514620
		100	0.000158594463	0.006571289358
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899 009362761	001	0.176220721428	0.000000064383
		005	0.000000753072	0.000000079181
		010	-0.000 000000076	0.000000079182
		100	-0.000 000000064	0.000000079181
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023 728690437	001	-0.514 435891777	0.000000203702
		005	-0.000 001307588	0.000000334341
		010	0.000000004775	0.000000334355
		100	0.000000004756	0.000000334357
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000 000000000	001	0.204004627210	0.000000360957
		005	0.000002550416	0.000000393363
		010	0.000000005052	0.000000393365
		100	0.000000005172	0.000000393372

Table C.8: Statistical results of satellite state vector (setting H without weighting matrix).

C.2. RESULTS OF SECTION 4.3: SEITIING I

RANGE OBSERVATIONS (ρ) AFTER 100 LS ITERATIONS

Num.	Site	Ideal value $[\mathrm{km}]$

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

0.000000770829	0.000071608511
-0.000000827931	0.000066955836
-0.000000870510	0.000057835021
-0.000000730115	0.000056476678
0.000003000810	0.000132173830
-0.000000124237	0.000082788634
-0.000002108565	0.000093339633
-0.000003195748	0.000118185093
-0.000002915545	0.000173109336

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

01	BCN	37845.136629696470
02	BET	38453.982609793478
03	MIL	38036.328990781658
07	BRN	38189.439026046719
08	LIS	38049.809535903398
09	LON	38749.625490385479
10	BRL	38629.568681622295
11	WAR	38583.959484721621
12	ATH	37354.695527400443

0.000001027371	0.000069052109
0.000000945505	0.000065130765
0.000000056827	0.000060386400
0.000000521567	0.000054692344
0.000002904514	0.000144387518
0.000002074127	0.000098357362
-0.000000034092	0.000087592215
-0.000001370335	0.000128689257
-0.000004153027	0.000250961703

Table C.9: Statistical results of range observations (setting I).

RANGE-RATE OBSERVATIONS ($\dot{\rho}$) AFTER 100 LS ITERATIONS

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$

01	BCN	0.000243981046
02	BET	0.000228394049
03	MIL	0.000224589431
07	BRN	0.000227712055
08	LIS	0.000272339131
09	LON	0.000239431262
10	BRL	0.000212360938
11	WAR	0.000196782202
12	ATH	0.000188748825

-0.000000000026	0.000000011575
0.000000000066	0.000000011395
0.000000000027	0.000000010889
0.000000000040	0.000000010957
-0.000000000071	0.000000013647
0.000000000077	0.000000011678
0.000000000097	0.000000012488
0.000000000099	0.000000012846
-0.000000000048	0.000000012758

EPOCH $t_{f}=21600 \mathrm{~s}$

01	BCN	0.000560626939
02	BET	0.000565211901
03	MIL	0.000567152627
07	BRN	0.000565822125
08	LIS	0.000550314761
09	LON	0.000560950171
10	BRL	0.000570630327
11	WAR	0.000576172939
12	ATH	0.000580934546

0.000000000048	0.000000011126
0.000000000065	0.000000010996
0.000000000043	0.000000010647
0.000000000053	0.000000010672
0.000000000071	0.000000012439
0.000000000087	0.000000011413
0.000000000055	0.000000011614
0.000000000033	0.000000011780
-0.000000000043	0.000000013471

Table C.10: Statistical results of range-rate observations (setting I).

SATELLITE STATE VECTOR

	Ideal value
	EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$
$r_{x}[\mathrm{~km}]$	39811.324342080086
$r_{y}[\mathrm{~km}]$	13863.769945143404
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.011153178968
$v_{y}[\mathrm{~km} / \mathrm{s}]$	2.904251340218

LS	Error	
	Mean	Standard deviation

001	-2697.830916001658	0.001327320153
005	-0.009379023830	0.001455867350
010	-0.000025446978	0.001455896352
100	-0.000025425499	0.001455899083
001	5919.982215824241	0.003088347545
005	0.019068736037	0.003010298329
010	0.000077815866	0.003010389998
100	0.000077775678	0.003010392880
001	-2382.515465341180	0.005426048743
005	-0.033719771772	0.005656490556
010	0.000034430493	0.005656476292
100	0.000034479023	0.005656492066
001	-0.565160766587	0.000000309688
005	-0.000001249854	0.000000259910
010	-0.000000006193	0.000000259914
100	-0.000000006189	0.000000259914
001	-0.375793434857	0.000000222982
005	-0.000000206094	0.000000092389
010	-0.000000002370	0.000000092393
100	-0.000000002369	0.000000092393
001	-1.047995976807	0.000000588884
005	0.000003549556	0.000000458154
010	-0.000000005757	0.000000458153
100	-0.000000005750	0.000000458151

()) $\operatorname{selecom}$

BCN

EPOCH $t_{f}=21600 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	-14048.210 875367075	001	-8 381.040088224710	0.003874163861
		005	-0.018 548395607	0.004333462606
		010	-0.000 088336892	0.004333527986
		100	-0.000 088262954	0.004333534321
$r_{y}[\mathrm{~km}]$	39758.040138460929	001	-6 490.884587991865	0.001901177357
		005	-0.001 507908604	0.002213002323
		010	-0.000 043356962	0.002213123877
		100	-0.000 043316048	0.002213122347
$r_{z}[\mathrm{~km}]$	0.000000000000	001	-13 987.354693985875	0.008379130683
		005	0.048825735702	0.006290482196
		010	-0.000 079096664	0.006290478631
		100	-0.000 079001334	0.006290446975
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899 009362761	001	0.176608909943	0.000000065102
		005	0.000000656975	0.000000081636
		010	0.000000001765	0.000000081638
		100	0.000000001764	0.000000081638
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023 728690437	001	-0.512 603976081	0.000000208491
		005	-0.000 000901765	0.000000331146
		010	-0.000 000007239	0.000000331162
		100	-0.000 000007233	0.000000331162
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000 000000000	001	0.203805441568	0.000000364693
		005	0.000002443698	0.000000411886
		010	-0.000 000002486	0.000000411885
		100	-0.000 000002489	0.000000411886

Table C.11: Statistical results of satellite state vector (setting I).

C.3. RESULTS OF SECTION 4.3: SEITIING J

RANGE OBSERVATIONS (ρ) AFTER 100 LS ITERATIONS

Num.	Site	Ideal value $[\mathrm{km}]$

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

-0.000000070051	0.000007281977
0.000000118833	0.000006576705
-0.000000023310	0.000005898642
0.000000036060	0.000005682753
-0.000000040721	0.000013668476
0.000000217092	0.000007896027
0.000000118432	0.000009454451
0.000000034352	0.000012264174
-0.000000463065	0.000017173610

EPOCH $t_{\text {f }}=21600 \mathrm{~s}$

01	BCN	37845.136629696470
02	BET	38453.982609793478
03	MIL	38036.328990781658
07	BRN	38189.439026046719
08	LIS	38049.809535903398
09	LON	38749.625490385479
10	BRL	38629.568681622295
11	WAR	38583.959484721621
12	ATH	37354.695527400443

0.000000378377	0.000006741494
0.000000311810	0.000006675618
0.000000223765	0.000006238949
0.000000274143	0.000005564134
0.000000642659	0.000013737852
0.000000447426	0.000010380647
0.000000169470	0.000008603031
-0.000000000508	0.000012659498
-0.000000261115	0.000026855049

Table C.12: Statistical results of range observations (setting J).

SATELLITE STATE VECTOR

Ideal value

LS	Error	
	Mean	Standard deviation

EPOCH $t_{0}=0 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	39811.324342080086
$r_{y}[\mathrm{~km}]$	13863.769945143404
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.011153178968
$v_{y}[\mathrm{~km} / \mathrm{s}]$	2.904251340218
$v_{z}[\mathrm{~km} / \mathrm{s}]$	0.000000000000

001	-2677.786975906893	0.000133956213
005	-0.010624924629	0.000143275899
010	-0.000003969278	0.000143278347
100	-0.000004034020	0.000143268900
001	5871.966278781252	0.000326164517
005	0.020765466505	0.000309343581
010	0.000004770594	0.000309337189
100	0.000004779533	0.000309340067
001	-2362.258840895556	0.000524489887
005	-0.035139969631	0.000540902839
010	-0.000016976777	0.000540920141
100	-0.000017456877	0.000541020771
001	-0.559968253697	0.000000031988
005	-0.000001200966	0.000000026899
010	-0.000000000538	0.000000026898
100	-0.000000000539	0.000000026897
001	-0.371984504797	0.000000023883
005	-0.000000344630	0.000000009735
010	-0.000000000006	0.000000009735
100	-0.000000000002	0.000000009737
001	-1.038811154877	0.000000062718
005	0.000003708568	0.000000049199
010	-0.000000000497	0.000000049198
100	-0.000000000477	0.000000049209

(2) telecom

BCN

EPOCH $t_{f}=21600 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	-14048.210 875367075	001	-8 315.714296721295	0.000400394995
		005	-0.018 498693109	0.000443803587
		010	-0.000 011437950	0.000443796239
		100	-0.000 011526996	0.000443756910
$r_{y}[\mathrm{~km}]$	39758.040138460929	001	-6 468.689506980571	0.000203388262
		005	-0.004 954835409	0.000235259872
		010	-0.000 004930950	0.000235264923
		100	-0.000 004929211	0.000235256287
$r_{z}[\mathrm{~km}]$	0.000000000000	001	-13 854.833837052151	0.000890850710
		005	0.051012592437	0.000675327306
		010	-0.000 006742239	0.000675306439
		100	-0.000 006454379	0.000675467888
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899 009362761	001	0.176220721353	0.000000006421
		005	0.000000753317	0.000000008068
		010	0.000000000171	0.000000008068
		100	0.000000000174	0.000000008068
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023 728690437	001	-0.514 435888504	0.000000020534
		005	-0.000 001313066	0.000000034776
		010	-0.000 000000706	0.000000034776
		100	-0.000 000000707	0.000000034775
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000 000000000	001	0.204004623304	0.000000035826
		005	0.000002546579	0.000000039386
		010	0.000000001240	0.000000039387
		100	0.000000001275	0.000000039394

Table C.13: Statistical results of satellite state vector (setting J).

C.4. RESULIS OF SECTION 4.3: SETTING K

RANGE OBSERVATIONS (ρ) AFTER 100 LS ITERATIONS

Num.	Site	Ideal value $[\mathrm{km}]$

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=0 \mathrm{~s}$

01	BCN	37834.053693001108
02	BET	38443.051174980268
03	MIL	38025.423177105964
07	BRN	38178.508556331370
08	LIS	38038.478209228619
09	LON	38738.600812036675
10	BRL	38618.783379768545
11	WAR	38573.312333845846
12	ATH	37344.093302991045

-0.000000250183	0.000065877713
-0.000000862137	0.000060406739
-0.000001237938	0.000051330092
-0.000000998669	0.000049660534
0.000001318878	0.000127815401
-0.000000149690	0.000076999027
-0.000001722737	0.000087315656
-0.000002657805	0.000113149212
-0.000003684519	0.000168884460

EPOCH $\boldsymbol{t}_{\mathrm{f}}=\mathbf{2 1 6 0 0 ~ s}$

01	BCN	37845.136629696470
02	BET	38453.982609793478
03	MIL	38036.328990781658
07	BRN	38189.439026046719
08	LIS	38049.809535903398
09	LON	38749.625490385479
10	BRL	38629.568681622295
11	WAR	38583.959484721621
12	ATH	37354.695527400443

0.000001304685	0.000062961619
0.000000262023	0.000058656129
0.000000010009	0.000054287302
0.000000217327	0.000047806034
0.000003204583	0.000140075764
0.000000997310	0.000093213854
-0.000000804564	0.000082000817
-0.000001837791	0.000124592351
-0.000002362806	0.000246859596

Table C.14: Statistical results of range observations (setting K).

RANGE-RATE OBSERVATIONS ($\dot{\rho}$) AFTER 100 LS ITERATIONS

Error $[\mathrm{km}]$	
Mean	Standard deviation

EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathrm{s}$

01	BCN	0.000243981046
02	BET	0.000228394049
03	MIL	0.000224589431
07	BRN	0.000227712055
08	LIS	0.000272339131
09	LON	0.000239431262
10	BRL	0.000212360938
11	WAR	0.000196782202
12	ATH	0.000188748825

0.000000000125	0.000000009562
0.000000000115	0.000000009388
0.000000000114	0.000000008792
0.000000000115	0.000000008875
0.000000000141	0.000000011807
0.000000000120	0.000000009729
0.000000000105	0.000000010599
0.000000000097	0.000000010971
0.000000000096	0.000000010956

EPOCH $t_{f}=21600 \mathrm{~s}$

01	BCN	0.000560626939
02	BET	0.000565211901
03	MIL	0.000567152627
07	BRN	0.000565822125
08	LIS	0.000550314761
09	LON	0.000560950171
10	BRL	0.000570630327
11	WAR	0.000576172939
12	ATH	0.000580934546

-0.000000000007	0.000000009147
-0.000000000030	0.000000008966
-0.000000000020	0.000000008578
-0.000000000023	0.000000008602
0.000000000004	0.000000010672
-0.000000000032	0.000000009419
-0.000000000037	0.000000009691
-0.000000000038	0.000000009911
-0.000000000002	0.000000011692

Table C.15: Statistical results of range-rate observations (setting K).

N

SATELLITE STATE VECTOR

	EPOCH $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0} \mathbf{s}$
	Ideal value
$r_{x}[\mathrm{~km}]$	39811.324342080086
$r_{y}[\mathrm{~km}]$	13863.769945143404
$r_{z}[\mathrm{~km}]$	0.000000000000
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-1.011153178968
$v_{y}[\mathrm{~km} / \mathrm{s}]$	2.904251340218

LS	Error	
	Mean	Standard deviation

001	-4145.255430893705	0.001177041479
005	-2.234567985750	0.001442236533
010	-0.000027469233	0.001438465081
100	-0.000027476738	0.001438458445
001	9296.634210249404	0.002728209600
005	3.145995000364	0.002990885288
010	0.000063591839	0.002991743233
100	0.000063678013	0.002991666588
001	-4092.703963651105	0.005190187331
005	-9.691657036666	0.005468711676
010	-0.000019622573	0.005455665516
100	-0.000019423490	0.005455600798
001	-0.934667828621	0.000000269359
005	-0.000297554852	0.000000257813
010	-0.000000004730	0.000000257908
100	-0.000000004738	0.000000257902
001	-0.640724003951	0.000000190848
005	0.000146974540	0.000000090214
010	-0.000000001373	0.000000090538
100	-0.000000001378	0.000000090534
001	-1.677325002805	0.000000514321
005	0.000585291930	0.000000443992
010	0.000000000167	0.000000445421
100	0.000000000138	0.000000445424

EPOCH $t_{f}=21600 \mathrm{~s}$

$r_{x}[\mathrm{~km}]$	-14048.210 875367075	001	-12925.334 680520786	0.003326379109
		005	-4.684 198415642	0.004298025187
		010	-0.000 072073819	0.004298208091
		100	-0.000 072183711	0.004298150078
$r_{y}[\mathrm{~km}]$	39758.040138460929	001	-6 084.549398217307	0.002616983431
		005	3.521434554237	0.002184304485
		010	-0.000 026839579	0.002188589888
		100	-0.000 026934738	0.002188561168
$r_{z}[\mathrm{~km}]$	0.000000000000	001	-24 488.696796761662	0.008841851651
		005	8.070342332343	0.006095477377
		010	0.000002378047	0.006114824736
		100	0.000001978307	0.006114868560
$v_{x}[\mathrm{~km} / \mathrm{s}]$	-2.899 009362761	001	0.126651563028	0.000000089156
		005	0.000133636167	0.000000081072
		010	0.000000001830	0.000000080906
		100	0.000000001831	0.000000080906
$v_{y}[\mathrm{~km} / \mathrm{s}]$	-1.023 728690437	001	-0.179 011162294	0.000000372814
		005	0.000215045428	0.000000327648
		010	-0.000 000005141	0.000000328081
		100	-0.000 000005153	0.000000328075
$v_{z}[\mathrm{~km} / \mathrm{s}]$	-0.000 000000000	001	-0.003 861972197	0.000000432004
		005	0.000704311394	0.000000398278
		010	0.000000001430	0.000000397317
		100	0.000000001416	0.000000397312

Table C.16: Statistical results of satellite state vector (setting K).

REFERENCES

[01] Bate, Roger R., Mueller, Donald D., and White, Jerry E., Fundamentals of Astrodynamics, Dover Publications, Inc., New York, 1971.
[02] Casado, D., Design of an Active Radar Calibrator for Geostationary SAR Missions, Projecte Final de Carrera (PFC), Universitat Politècnica de Catalunya (UPC), Barcelona, 2016.
[03] Cumming, Ian G., and Wong, Frank H., Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House Publishers, New York, 2005.
[04] Curtis, Howard D., Orbital Mechanics for Engineering Students, Elsevier, UK, 2010.
[05] Escobal, Pedro R., Methods of Orbit Determination, John Wiley \& Sons, New York, 1965.
[06] Fortescue, P., Stark, J., and Swinerd, G., Spacecraft Systems Engineering, John Wiley \& Sons, Chichester (England), 2003.
[07] International Earth Rotation and Reference Systems Service. 2013. Announcement of DUT1. [ONLINE] Available at: http://datacenter.iers.org/eop/-/somos/5Rgv/getTX/17/bulletind109.txt. [Accessed 15 February 2016]
[08] Levanon, N., Radar Principles, John Wiley \& Sons, New York, 1988.
[09] Martín, R., Analysis, Design and Implementation of a Compact Interferometer for Geostationary Orbital Tracking, Projecte Final de Carrera (PFC), Universitat Politècnica de Catalunya (UPC), Barcelona, 2016.
[10] Montenbruck, O., and Gill, E., Satellite Orbits: Models, Methods, and Applications, Springer, New York, 2000.
[11] Monti Guarnieri, A., Perletta, L., Rocca, F., Scapin, D., Tebaldini, S., Broquetas, A., and Ruiz, J., Design of a Geosynchronous SAR System for Water-Vapour Maps and Deformation Estimation, ESA Fringe 2011, Frascati, Italy, 19-23 September 2011.
[12] National Aeronautics and Space Administration. Definition of Two-Line Element Set Coordinate System. [ONLINE] Available at: http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle _def.html. [Accessed 15 February 2016]
[13] National Geospatial-Intelligence Agency. Office of Geomatics: World Geodetic System 1984 (WGS 84). [ONLINE] Available at: http://earth-info.nga.mil/GandG/wgs84/. [Accessed 21 March 2016]
[14] Ruiz Rodon, J., Broquetas, A., Makhoul, E., Monti Guarnieri, A., and Rocca, F., Nearly Zero Inclination Geosynchronous SAR Mission Analysis With Long Integration Time for Earth Observation, in Geoscience and Remote Sensing, IEEE Transactions on, vol. 52, no. 10, pp. 6379-6391, October 2014.
[15] Ruiz Rodon, J., Broquetas, A., Makhoul, E., Monti Guarnieri, A., and Rocca, F., Results on Spatial-Temporal Atmospheric Phase Screen Retrieval from Long-Term GEOSAR Acquisition, in Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, vol., no., pp. 3289-3292, 22-27 July 2012.
[16] Ruiz Rodon, J., Broquetas, A., Monti Guarnieri, A., and Rocca, F., Geosyncrhonous SAR Focusing With Atmospheric Phase Screen Retrieval and Compensation, in Geoscience and Remote Sensing, IEEE Transactions on, vol. 51, no. 8, pp. 4397-4404, August 2013.
[17] Soumekh, M., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, John Wiley \& Sons, New York, 1999.
[18] Tomiyasu, K., and Pacelli, J. L., Synthetic Aperture Radar Imaging from an Inclined Geosynchronous Orbit, in IEEE Transactions on Geoscience and Remote Sensing, vol. GE21, no. 3, pp. 324-329, July 1983.
[19] U.S.S. Command. Space-Track. [ONLINE] Available at: https://www.space-track.org. [Accessed 15 February 2016]
[20] Vallado, David A., Fundamentals of Astrodynamics and Applications, Microcosm Press, Hawthorne, CA (USA), 2013.
[21] Wadge, G., Monti Guarnieri, A., Hobbs, S. E., and Schulz, D., Potential atmospheric and terrestrial applications of a geosynchronous radar, 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 946-949, Quebec City, QC, 2014.

[^0]: ${ }^{1}$ All the coordinate systems we will use in this example are built in an FFT format. Therefore, this format will be taken into account on the derived expressions from now on.

[^1]: ${ }^{1}$ A Two-Line Element set (TLE) is a data format encoding a list of orbital elements of an Earth-orbiting object for a given point in time. Consult reference [12] for further information about the TLE format.

[^2]: ${ }^{1}$ J2000.0 refers to January 1, 2000 12:00:00.000.
 ${ }^{2}$ UT1 is a variation of Universal Time (UT), which is based on a fictitious mean Sun in order to define the time of an event.
 ${ }^{3}$ Coordinated Universal Time (UTC), is the most commonly used time system, which is derived from an ensemble of atomic clocks. It is designed to follow UT1 within ± 0.9 s.

[^3]: ${ }^{1}$ A formal definition for the vernal equinox is that it occurs when the Sun's declination is 0° as it changes from negative to positive values. The direction of the vernal equinox is designated \checkmark and often referred as the first point of Aries.

[^4]: ${ }^{1}$ The perigee is the nearest point of an elliptical satellite orbit from the centre of the Earth.

[^5]: ${ }^{1}$ In Astrodynamics, the gravitational centre of attraction coincides with one focus for all orbital motion, called the primary focus.
 ${ }^{2}$ The World Geodetic System 1984 (WGS-84) is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields [13].

[^6]: ${ }^{1}$ The angular momentum vector, \mathbf{h}, is the vector cross product between the satellite position state vector, \mathbf{r}, and the satellite velocity state vector, \mathbf{v}. Therefore, it must lie perpendicular to the plane of the orbit (i.e., following the direction of W axis of the $P Q W$ coordinate system).
 ${ }^{2}$ The ascending node is the point on the equatorial plane at which the satellite crosses the equator from south to north. All inclined orbits also have a descending node, at which the satellite crosses from north to south across the equatorial plane. The line segment connecting both nodes defines a line of nodes.
 ${ }^{3}$ The extreme points of an elliptical orbit are the apoapsis and periapsis, representing the farthest and nearest points in the orbit, respectively, from the centre of attraction. The ending of these words can be changed in order to indicate a particular planet or central body attracting the satellite. They are the aphelion and perihelion in the case of the Sun, the apogee and perigee for the Earth, the aposelenium and periselenium for the Moon, and so forth.

[^7]: ${ }^{1}$ As it will be seen in Section 3.4a, the model of the Earth that this document will follow is WGS-84. Therefore, variables such as the Earth's equatorial radius, the Earth's flatness, etc., will be taken from this model.

[^8]: ${ }^{1}$ WGS-84 is an Earth-Centred, Earth-Fixed terrestrial reference system and geodetic datum. WGS84 is the standard U.S. Department of Defence definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS).

[^9]: ${ }^{1}$ Oblate spheroids result from the revolution of an ellipse around its minor axis.
 ${ }^{2}$ The flattening is a parameter related to the eccentricity of the ellipsoid of revolution.
 ${ }^{3}$ The primary meridian for the Earth is the Greenwich meridian whose longitude is 0°.

[^10]: ${ }^{1}$ The approximate range and range-rate observations can be obtained following section 3.4 f once the approximate satellite state vector is calculated.

[^11]: ${ }^{1}$ During the processing of the radar signal obtained in all synthetic aperture, it may be considered to process the signal into smaller apertures, called sub-apertures, in order to achieve better performance.

[^12]: ${ }^{1}$ A matrix \mathbf{Y} is positive definite when $\mathbf{x}^{T} \mathbf{Y} \mathbf{x}>0$ for all \mathbf{x}. This is also the observability requirement.

[^13]: ${ }^{1}$ Gauss has been credited with discovering the Least Squares method with some help from Legendre.

[^14]: ${ }^{1}$ The requirement for nominal vectors often means that the initial orbit must be determined (see Chapter 3) in order to form each vector from the observations. The vectors are then propagated to a common epoch, where the nominal vector is formed.

[^15]: ${ }^{1}$ Remember that, when only range observations are given, the range observations must be provided at three different epochs in order to calculate the initial state vector.

