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ABSTRACT 
 

 

Multiple applications such as land stability control, natural risks prevention or accurate numerical 

weather prediction models from water vapour atmospheric mapping would substantially benefit from 

permanent radar monitoring given their fast evolution is not observable with present Low Earth Orbit 

based systems. In order to overcome this drawback, GEOstationary Synthetic Aperture Radar missions 

(GEOSAR) are presently being studied. 

 

GEOSAR missions are based on operating a radar payload hosted by a communication satellite in 

a geostationary orbit. Due to orbital perturbations, the satellite does not follow a perfectly circular 

orbit, but has a slight eccentricity and inclination that can be used to form the synthetic aperture 

required to obtain images. 

 

Several sources affect the along-track phase history in GEOSAR missions causing unwanted 

fluctuations which may result in image defocusing. The main expected contributors to azimuth phase 

noise are orbit determination errors, radar carrier frequency drifts, the Atmospheric Phase Screen 

(APS), and satellite attitude instabilities and structural vibration. In order to obtain an accurate image 

of the scene after SAR processing, the range history of every point of the scene must be known. This 

fact requires a high precision orbit modeling and the use of suitable techniques for atmospheric phase 

screen compensation, which are well beyond the usual orbit determination requirement of satellites in 

GEO orbits. The other influencing factors like oscillator drift and attitude instability, vibration, etc., 

must be controlled or compensated. 

 

In order to determine the satellite orbit, GEOSAR mission propose a group of Active Radar 

Calibrators (ARCs). These ARCs will be placed in well-known positions of the observed scene 

providing range and range-rate measurements. From such measurements, the satellite position and 

velocity may be initially calculated. Then, the initial state may be refined by means of differential 

correction techniques such as Least Squares or Kalman filter techniques. In this way, the satellite orbit 

may be calculated more precisely, which is crucial in order to achieve well focused images. 

 

This document will present the methods for computing the initial state of the satellite orbit, and 

will study the use of Least Squares technique as a method to determine the satellite orbit precisely. 

Since there is no real data available, ideal data will be created in order to perform different simulations 

of all methods and techniques presented within this document. Thus, the results will be used as a first 

approximation to the future satellite orbit determination. 
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GEOstationary Synthetic Aperture Radar (GEOSAR) missions are presently being studied in order to 

provide continuous monitoring of the Earth on a continental scale (Tomiyasu, 1983). Nowadays, 

LEOSAR (Low Earth Orbit Synthetic Aperture Radar) missions offer Earth imaging, but they cannot 

provide continuous information about events that suffers rapid changes in short periods of time (LEO 

satellites have a revisit time of 11-14 days). This permanent monitoring will allow GEOSAR missions 

to cover a new set of applications that will be discussed in this chapter (Wadge et al., 2014). 

 

GEOSAR missions are based on operating a radar payload hosted by a communication satellite in 

a geostationary orbit. One can think that a satellite located in a geostationary orbit remains fixed from 

an Earth observer. In practice, residual inclination and eccentricity of the satellite orbit results in a 

small elliptical motion relative to Earth. This fact will allow the radar to form the synthetic aperture 

required to obtain images. The shape of this synthetic aperture and other important parameters of 

GEOSAR missions will be explained in this chapter. 

 

As the radar payload will be placed on a platform over 42 000 km from the Earth’s centre, some 

limitations will affect the design of the system in order to get well focused images. One of these 

limitations arises from the fact that the satellite orbit is not known with the required precision. That 

lack of knowledge will affect the range history of the signal received by the radar, and therefore will 

produce image defocusing. In this chapter, the main limitations of GEOSAR missions will be 

described paying more attention on the limitation about the satellite orbit determination. In this way, 

the starting point of this document will be introduced. 

 

Once the mission has been introduced and in order to conclude the chapter, the objective of this 

project will be explained as well as the main aspects of the following chapters will be discussed. 

 

 

 

1.1. GEOSAR Mission: Applications 

 

The major scientific advantage in geostationary radar is the ability to provide an early warning and 

monitor short-lived (less than a day) phenomena that would otherwise be missed, aliased or confused 

with noise. Many of such short-lived phenomena represent hazards at the Earth’s surface (e.g., 

earthquakes, volcanic eruptions, flooding), and others may be hazardous only at certain times (e.g., 

landslides, urban subsidence). On the other hand, there are some phenomena that do not entail a risk at 

the Earth’s surface but require short-interval radar measurements in order to reveal valuable 

information (e.g., snow mass, agricultural events). 

 

Hereafter, the main applications of GEOSAR missions will be listed and briefly explained. 

 

Atmospheric Phase Screen (APS) 

In SAR acquisition, particularly in interferometry, the APS is an undesired artefact that affects the 

target phase estimation. The APS variations are related to the changes in the atmospheric properties 

such as water vapour content, temperature and pressure. These parameters cause a change in the 

refractivity index, mostly in the tropospheric layer, and produce an undesired atmospheric phase delay. 

 



 

 

Chapter 1: GEOSAR Mission 

 

 
 

4 Projecte Final de Carrera (PFC)   

In typical LEOSAR missions, with integration times around 1 s, the atmospheric phase map is 

considered invariant during the acquisition. However, in GEOSAR missions, the atmospheric phase 

decorrelation during the integration time (up to hours) must be characterized and compensated from 

the acquired raw data in order to avoid image defocusing. 

 

In Figure 1.1, an example of an input phase map and the retrieved one is shown (Ruiz Rodon et 

al., 2014). 

 

 
Figure 1.1: Phase map estimation considering a grid of stable targets with APS correlation of 2 km. 

 

 

The APS data can be also used in Numerical Weather Prediction (NWP) by means of the 

information about water vapour content in the atmosphere (Monti Guarnieri et al., 2011). 

 

Flooding 

Hydrological flood models can be run to predict inundation if the topography, the water flux, the 

nature of the surface, and the flow paths taken are known. Images showing the flood boundary every 2 

hours would be a major advance on current and planned capabilities, though they would not be 

available at all times. Thus, this boundary information could then be assimilated into hydrological 

models. 

 

Hydrology 

Soil moisture is an essential climate variable with major satellites dedicated to its measurement. 

However, these measurements are too coarse and infrequent to record good quality data from 

precipitation events. A backscatter-based retrieval of soil moisture at a scale of 1 km/1 h is required to 

do this. Therefore, continuous monitoring is needed. 

 

Agriculture 

Field-to-field comparisons when farming activities will be provided by using geostationary radar. 

Such data would feed into farming-centric concerns and management on the one hand, and land 

surface vegetation models and hydrological, small catchment-scale models on the other. 
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Cryosphere 

The motion of glaciers can be measured by the advance or retreat of the glacier front and by the 

vectors of motion on the flow surface. The speed of many glaciers (metres/day) cannot be daily 

monitored by LEO satellites. In addition, the much more frequent observations from geostationary 

radar will enable studies of even fast moving glaciers to be made. 

 

With two radars using different frequencies, the snow mass can also be estimated. They could be 

together used to retrieve the mass of dry snow and the location of the region over which snow was 

melting. 

 

Earthquakes 

The damage done to buildings when an earthquake occurs (the main determinant of deaths and 

injuries) may take a long time to discover due to a lack of communications, remoteness and darkness. 

On the other hand, the elastic part of the Earth’s crust slowly deforms over distances of hundreds of 

kilometres between earthquakes. Mapping these phenomena will be important in order to support the 

emergency services response and help forecast future major earthquakes. 

 

Volcanoes 

LEO satellites cannot capture the complex pattern of deformation that magma makes prior to and 

during an eruption. To understand the location, motion and threat posed of lava flows, pyroclastic 

flows and ash falls is vital to advice the civil authorities on evacuations and other mitigation measures. 

 

In Figure 1.2, an example of displacement due to volcanic activity in Tenerife (Canary Islands) is 

shown. This image was taken by ENVISAT (Environmental Satellite) satellite during 2005-2008. 

 

 
Figure 1.2: Displacement due to volcanic activity in Tenerife (2005-2008). 
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Landslides 

Continuous monitoring and detection of soil displacements would help to asses and prevent landslides. 

After debris avalanches and landslides have produced, a timely map covering an area from hundreds to 

thousands of square kilometres in extent is required. Some individual landslides can be monitored by 

ground-based InSAR (Interferometric Synthetic Aperture Radar) but regional surveillance requires 

satellite-based methods. 

 

Subsidence 

The removal of liquids from the pore spaces of rocks or the rocks themselves cause the surrounding 

rock mass to subside. LEO radars are good at monitoring the long-term secular deformation signal 

from regional subsidence; however, the more rapidly accelerating deformation due to sinkhole 

formation (e.g., in building structures) is missed. This local deformation will be measured by means of 

geostationary radar. 

 

 

 

1.2. Synthetic aperture 

 

The Geostationary Earth Orbit (GEO) is a circular orbit located in the Earth’s equatorial plane with a 

radius over 42 000 km from the Earth’s centre. The peculiarity of this orbit is that a satellite placed 

into this orbit has a period of one sidereal day (i.e. the satellite follows the Earth’s rotation about its 

axis). Hence, the geostationary orbit clearly offers unique advantages for global communications. Its 

primary attribute is that the sub-satellite point is fixed at a selected longitude with 0° latitude. GEO 

satellites may therefore provide fixed-point to fixed-point communications to any site within the beam 

of their antennas. In this way, an almost complete global coverage (except for the intermediate polar 

regions) may be achieved from merely three satellites, and with no need for the ground antenna to 

switch between satellites.  

 

However, perturbations such as the force exerted by the Earth’s equatorial bulge, the solar 

radiation pressure and the gravitational attraction of the Sun and the Moon affect the satellite 

trajectory in the GEO orbit. Due to these perturbations, the satellite orbit is no longer circular and 

equatorial. A slight eccentricity and inclination appear in the orbit that both have to be corrected from 

time to time in order to keep the satellite into the GEO orbit. 

 

GEOSAR missions can take benefit of this slightly elliptical orbit in order to form the synthetic 

aperture needed to obtain images (Ruiz Rodon et al., 2014). In Figure 1.3, an example of this elliptical 

movement for an observer on the Earth’s surface is shown. The satellite used in the figure is located in 

19.2° E longitude to cover, for example, Europe. Thus, the green line of the satellite orbit could be 

used as a synthetic aperture in order to obtain images from the European region. 

 

Up to now, it has only been described the advantages of placing a radar payload in a GEO orbit; 

however, as the radar will be far away from the Earth’s surface, some limitations must be overcome 

(see Section 1.4). Before seeing them, another important aspect of GEOSAR missions will be 

explained in the next section. 
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Figure 1.3: Typical GEO satellite-Earth relative motion. A portion of the track (in green) can be used to form a 

radar synthetic aperture. 

 

 

 

1.3. L-band and x-band radars 

 

A dual band GEOSAR mission has been recently proposed: one working at L-band and the other at X-

band (Wadge et al., 2014). 

 

The L-band wide coverage beam will offer continental coverage (~3 000 km) with coarse 1 km 

resolution considering an integration time of 20-30 minutes. Thus, low resolution water vapour maps 

will be obtained in order to provide interesting meteorological information for weather forecast. At the 

same time, these atmospheric maps will be important in order to compensate the tropospheric delay in 

the higher resolution X-band images acquisition. As it will be explained in Section 1.4 in more detail, 

GEOSAR missions will need long integration time (up to hours) in order to obtain higher resolution 

images. Under these conditions, the atmosphere cannot be considered invariant. The L-band radar will 

consequently have to monitor continuously the atmosphere in order to retrieve its temporal evolution 

(Ruiz Rodon et al., 2012). 

 

On the other hand, the X-band radar will be used to cover smaller areas (~ 500 km). With 

observation times of few hours, medium resolution images (10-20 metres) will be obtained. 

 

In Figure 1.4, the geometry of the system acquisition in GEOSAR missions, for example over 

Europe, is shown. The red circle represents the L-band beam coverage covering most of Europe, 

whereas the yellow circles show the X-band beam coverage covering smaller areas. 
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Figure 1.4: GEOSAR L-band beam coverage (red circle) and X-band beam coverage (yellow circles). 

 

 

 

1.4. Geosar mission Limitations 

 

Once the advantages and suitability of GEOSAR missions have been explained, let us consider the 

difficulties and limitations of the mission. 

 

As it has been said, GEOSAR missions will place a radar payload in a satellite platform of a GEO 

orbit. The radar payload will consequently be far away from the Earth’s surface receiving a low power 

echo from the targets and resulting in a low Signal-to-Noise Ratio (SNR). In order to increase the 

SNR, a first option could be to increase the transmitted power and use larger antennas; however, this 

fact would suppose higher development and exploitation costs. Therefore, the possibility to launch 

GEOSAR missions working with typical LEOSAR power and antenna parameters is being studied. In 

this case, SNR can be increased using along-track oversampling with a PRF (Pulse Repetition 

Frequency) well above the Doppler bandwidth, and operating the radar with a long integration time.  

 

In order to obtain medium resolution images (10-20 metres) by means of the X-band radar, the 

integration time should be increased up to hours; thus, the illumination energy can substantially 

increase. However, what is the problem of using this long integration time? During this time, the 

atmosphere changes and radar signals can be decorrelated significantly. The effect of the atmosphere 

on radar signals cannot be considered invariant as it is in LEOSAR missions where the integration 

time is around 1 s. The temporal evolution of the atmosphere must consequently be compensated 

before doing the azimuth SAR compression in order to avoid image defocusing. This atmosphere 

retrieval will be performed by means of the atmospheric phase screen maps obtained by using the L-

band radar (Ruiz Rodon et al., 2013). 
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Besides the APS, several sources affect the along-track phase history in GEOSAR missions 

causing unwanted fluctuations which may result in image defocusing. Thus, the main expected 

contributors to azimuth phase noise are: 

 

 Atmospheric Phase Screen. 

 Radar carrier frequency drifts. 

 Satellite attitude instabilities and structural vibration. 

 Orbit determination errors. 

 

In order to obtain an accurate image of the scene after SAR processing, the range history of every 

point of the scene must be known. This fact requires a high precision orbit modelling and the use of 

suitable techniques for atmospheric phase screen compensation. The other influencing factors such as 

carrier frequency drifts or satellite attitude or structural fluctuations must be controlled or 

compensated. 

 

It has to be considered that the processes responsible of the synthetic aperture phase changes are 

slow in comparison to the pulse duration. For this reason, no degradation is expected in the processor 

pulse compression task in GEOSAR missions. 

 

The usual orbit modelling requirements to manage repositioning of satellites in GEO orbits are 

well beyond of the exposed orbital determination requirements for this mission. Such expected 

precision is in the order of magnitude of the radar wavelength. As GEOSAR missions will work in the 

X-band, the expected errors in the range history of every location under the satellite L-band beam 

coverage must be less than or equal to centimetres during the radar synthetic aperture. 

 

The methods and techniques used to find such precision are discussed later in the following 

chapters. First, it has to be explained the radar measurements that are going to be used in order to 

determine the satellite orbit in GEOSAR missions. Such measurements will be the starting point to 

develop all theory of this document. 

 

 

 

1.5. Radar observables and proposed systems to obtain them 

 

Assuming a group of suitable radar reflectors are deployed at well-known Earth surface positions, 

radar observables can be of three types: 

 

 Pointing Angles: Direction of arrival of reflected signals (with respect to the radar antenna using 

an appropriate reference system). This direction is defined in the 3 dimension space by a couple 

of angles. 

 

 Range: Distance from radar antenna to reflectors deployed on the Earth’s surface, computed from 

the echo time delay. 

 



 

 

Chapter 1: GEOSAR Mission 

 

 
 

10 Projecte Final de Carrera (PFC)   

 Range-rate: Line-of-sight radial velocity component of the relative motion of reflectors as 

observed by the radar antenna. It can be easily derived from the Doppler shift measured from the 

received signal. 

 

Two possible systems in order to obtain precise measurements suitable for accurate orbit 

determination are presently being studied in GEOSAR missions. First, a group of Active Radar 

Calibrators (ARCs) will provide range and range-rate measurements by means of a well-located 

transponders network. These transponders will act as active reflectors by using the known transmitted 

signal of the radar (Casado, 2016). On the other hand, an alternative or complementary technique 

based on ground interferometric measurements of the radar transmissions is also being studied 

(Martín, 2016). Such system will provide high resolution angular data using a VLBI (Very Large 

Baseline Interferometer) configuration. 

 

This document will study the precise orbit determination from range and range-rate 

measurements. In Figure 1.5, a block diagram of a proposed ARC system for GEOSAR missions is 

shown. Such system consists in a linear transponder that includes a receiver antenna, a high gain 

amplifier and a transmitter antenna plus complementary electronics. Consult Casado (2016) for further 

information about the ARC system. 

 

 
Figure 1.5: Block diagram of a proposed ARC system for GEOSAR missions. 

 

 

 

1.6. PROJECT OBJECTIVE 

 

The aim of this project is to perform a first study on the satellite determination methods and 

techniques available in the literature in order to calculate the satellite orbit of GEOSAR mission from 

range and range-rate measurements. These methods or techniques must consider the requirements of 

the mission, so that the expected relative errors in the range history of every location under the satellite 

L-band beam coverage must be less than or equal to centimetres (i.e., the radar X-band wavelength). It 
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is worth mentioning that bias errors in range history have no impact on the synthetic aperture focusing, 

which means high precision is needed but not high accuracy. In addition, autofocus synthetic aperture 

techniques can be used to refine the range history predicted from the orbital model. Taking into 

account the small magnitude of orbital perturbations, in practice, the precision requirement could be 

relaxed in the order of magnitude of tens of centimetres. 

 

In the following chapters, the methodology to determine the satellite orbit from range and range-

rate measurements will be explained. This methodology will be accompanied by theoretical and 

practical results obtained from Matlab simulations. The errors found in each section will also be 

discussed since the magnitude of these errors will play a major role on the focused image acquisition. 

In this way, the structure of this document has been designed as follows. 

 

Chapter 2 will introduce the Synthetic Aperture Radar to the reader. It will explain the reason 

why the synthetic aperture is needed. In addition, two basic examples will illustrate how a SAR forms 

a well-focused image from the received echoes and the accurate knowledge of the acquisition 

geometry. Then, this chapter will conclude including a third example reproducing the GEOSAR data 

acquisition case over the city of Barcelona (Spain). 

 

Chapter 3 will begin the introduction and study of the initial orbit determination methods from 

range and range-rate measurements given by an ideal ARC system. As there is no real data available 

yet, an ideal simulated system will be designed in order to provide ideal data without considering any 

kind of perturbations involving the satellite movement around the Earth (i.e., only taking into account 

the interaction between the satellite and the Earth). Once the ideal data is achieved, the precision of the 

initial orbit determination methods evaluated will be assessed by Matlab simulations considering two 

different environments: a) initial range and range-rate data completely ideal, and b) adding expected 

noise to such initial data. All the results within this chapter will be shown by means of numerical 

results and the use of different plots. 

 

Chapter 4 will conclude the explanation of orbit determination methods and techniques of this 

document introducing the Least Squares technique. The methods presented in Chapter 3 do not fulfil 

the GEOSAR mission requirements, so that there is the need to study the use of differential correction 

techniques in order to increase the precision of the satellite orbit determination. As in Chapter 3, the 

theoretical fundamentals of such technique will be accompanied by numerical results and different 

plots performed by Matlab simulations in order to show the Least Squares feasibility on GEOSAR 

mission. 

 

Finally, the conclusions and future work of this document will be addressed. Some appendices are 

also added, so that the reader may have a complete description of the results obtained and the Matlab 

functions involved in all simulations performed throughout this document. 
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This chapter aims to provide the fundamental basis of a Synthetic Aperture Radar (SAR) and some 

techniques that it uses in order to form images. In this way, the chapter is organised as follows. 

Section 2.1 will introduce the reader to SAR explaining the basic operation principles. Then, two basic 

examples related to SAR are shown in Sections 2.2 and 2.3 in order to complement the explanations 

done in Section 2.1. Finally, Section 2.4 will show a real range history example between a satellite 

located in a geostationary orbit and one site placed over the Earth’s surface. Thus, the reader will be 

familiarized with the main aspects involved in the SAR image acquisition. 

 

The reader may consult Cumming and Wong (2005) in order to complete all explanations given 

into this chapter about Synthetic Aperture Radar and related techniques. 

 

 

 

2.1. Synthetic Aperture Radar (SAR) Introduction 

 

The objective of Synthetic Aperture Radar is to obtain high-resolution images. This resolution for 

Earth Observation applications is in the order of magnitude of metres both in distance (or range) 

resolution and lateral (or azimuth) resolution. 

 

The radar can easily obtain metre resolutions in distance since it implies working with an 

appropriate pulse bandwidth and matched filter. In addition, distance resolution is not degraded by the 

operating distance (i.e., the same distance resolution is obtained whether the radar is closer or further 

to the scene where the radar is taking an image). However, problems appear when considering lateral 

resolution. Such resolution is determined by the antenna beam-width projected to the ground, and 

therefore lateral resolution degrades with the operating distance. The further the radar is from the 

scene, the coarser the lateral resolution will be. For instance, considering the radar at a distance of 

hundreds of kilometres, the achieved lateral resolution would be in the order of magnitude of 

kilometres in spite of using large antennas in the order of 10 m long. Thus, there is a need to improve 

the lateral resolution in order to obtain lateral or cross-range resolutions in the order of metres, 

required for remote sensing applications from aircraft and satellites. 

 

Reducing the lateral beam-width of an antenna can be realised by replicating a small antenna at 

regular intervals. Thus, an array of antennas may be built with much larger dimensions compared to a 

single element antenna. However, such big antennas cannot be placed in a satellite since an array of 

kilometres of length will be needed in order to obtain metric resolutions. 

 

In order to circumvent this limitation, if the radar is installed on a moving platform it is possible 

to record the radar echoes obtained with a single antenna along the track in order to combine them 

later on with appropriate focusing weights. This array is called synthetic array since it does not exist 

physically. Therefore, high radar resolutions can be obtained by using a small antenna and large 

synthetic apertures. This kind of instruments is named Synthetic Aperture Radars (SAR). 

 

The synthetic aperture is usually limited by the antenna beam-width, which results in a synthetic 

aperture length proportional to scene to radar distance. This fact will compensate the distance impact 

over the radar lateral resolution discussed above. 
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In order to form high-resolution images, two orthogonal dimensions of the imaged surface must 

be sensed with similar spatial resolution. Using broadband transmitted pulses and matched receiving 

filters, radars can maximize both Signal-to-Noise Ratio (SNR) and time-delay resolution in the echo 

waveform. Since the time delay of each scene scattering object is proportional to the distance from the 

radar, the required range resolution orthogonal to the lateral synthetic aperture resolution can be 

obtained with appropriate transmitted pulse design and subsequent filtering in the receiver. 

 

The Chirp signal is the most used radar pulse in SAR systems in order to obtain high range 

resolution images. It has the particularity that both pulse time duration and bandwidth can be very 

large resulting in a high-energy pulse. By processing a Chirp with a matched filter, a narrow impulse 

is obtained, being ideal for high range resolution applications. This technique is known as pulse 

compression. 

 

In order to form the synthetic aperture, the pulse transmission is repeated regularly during the 

flight, and the echoes stored in a 2D matrix are called raw-data. The matrix dimensions are the echo 

time delay and flight distance (also called slow-time). Every point of the scene generates a two-

dimensional holographic patch on the raw-data matrix, which is not directly interpretable. From this 

hologram, a focused image is obtained by means of a SAR processor, which performs two 

compressions on the received raw-data: a) pulse range compression, and b) azimuth compression (see 

Figure 2.20). 

 

The first compression is implemented along the range direction. It uses a matched filter in order 

to achieve the best possible SNR of the signal at the output of the filter. This matched filter is the 

optimal one and provides the signal autocorrelation at its output. The following section will illustrate 

an example of pulse compression considering a static radar and a point target. Thus, the reader will be 

able to understand better how the pulse compression works since mathematical formulation and 

intermediate results are given. 

 

The second compression of SAR processor is performed in a similar way to the previous one but 

now along the azimuth direction. In this case, the signal is compressed by using a SAR algorithm. 

Section 2.3 will show a basic and complete SAR processor example. In this case, it has been 

considered to use a Back Propagation Algorithm (BPA) in order to address the azimuth compression 

due to its flexibility (Soumekh, 1999). BPA, compared to other algorithms, is suitable for synthetic 

aperture curved tracks, which is the case of GEOSAR mission. As in the pulse compression example, 

Section 2.3 will provide all mathematical formulation used and will show many figures in order to 

illustrate the geometry of the example and the intermediate results obtained. In this way, the reader 

will have a better understanding of how a SAR processor works. 

 

Once the bases of the SAR processor have been explained, Figure 2.1 illustrates a real SAR 

image of Barcelona city (Spain), which is a composite of ERS (European Remote Sensing satellite) 

and ENVISAT (Environmental Satellite) satellites. 
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Figure 2.1: SAR image of Barcelona city (Spain). 

 

 

 

2.2. Pulse compression example 

 

We have a target at distance 𝑅 from a radar antenna and we want to derive and plot the matched filter 

output after a pulse compression is performed. In Figure 2.2, we can see the sketch of the example. 

 

The transmitted signal 𝑠𝑒(𝑡) is a chirp pulse given by 

 𝑠e(𝑡) = Re { ∏(
𝑡

𝜏0
)  𝑒𝑗2π𝑓0𝑡  𝑒𝑗π𝛾𝑡2

} (2.1) 

where 𝜏0 is the pulse duration, 𝑓0 is the carrier frequency, and 𝛾 is the linear FM rate. 

 

If we now write the low pass equivalent of the transmitted signal (i.e., we get rid of the carrier 

term 𝑒𝑗2𝜋𝑓0𝑡), Equation (2.1) becomes 

 𝑠ẽ(𝑡) = ∏(
𝑡

𝜏0
)  𝑒𝑗π𝛾𝑡2

 (2.2) 
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Figure 2.2: (a) Transmitted signal 𝑠e(𝑡), and (b) Target echo 𝑠r(𝑡) and matched filter output 𝑦(𝑡). 

 

 

Assuming an isolated point target, the target echo received on the radar can be expressed as 

 𝑠r(𝑡) = Re { ∏(
𝑡 − 𝑡r

𝜏0
)  𝑒𝑗2π𝑓0(𝑡−𝑡r) 𝑒𝑗π𝛾(𝑡−𝑡r)

2
} (2.3) 

where 𝑡r is the delay between the transmitted and received pulse given by 

 𝑡r =
2𝑅

𝑐
 (2.4) 

where 𝑐 is the speed of light. 

 

If we now write Equation (2.3) on its low pass equivalent expression, we obtain 

 𝑠r̃(𝑡) = ∏(
𝑡 − 𝑡r

𝜏0
)   𝑒−𝑗2π𝑓0𝑡r  𝑒𝑗π𝛾(𝑡−𝑡r)

2
= ∏(

𝑡 −
2𝑅
𝑐

𝜏0
)   𝑒−𝑗2𝑘0𝑅 𝑒𝑗π𝛾(𝑡−

2𝑅
𝑐

)
2

 (2.5) 

where 𝑘0 is the wave number given by 

 𝑘0 =
𝜔0

𝑐
=

2π𝑓0
𝜆0𝑓0

=
2π

𝜆0
 (2.6) 

where 𝜆0 is the carrier wavelength. 

 

The matched filter of the receiver performs the pulse compression. Hence, the matched filter 

output �̃�(𝑡) is simply the convolution between the target echo and matched filter. 

 
 

Then, the matched filter output can be expressed as 

 �̃�(𝑡) =
1

2
 𝑠r̃(𝑡) ∗ ℎm̃(𝑡) (2.7) 
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where the matched filter ℎm̃(𝑡) is the time-reversed, complex conjugate of the transmitted signal 𝑠ẽ(𝑡) 

 ℎm̃(𝑡) = 𝑠ẽ
∗(−𝑡) = ∏(

𝑡

𝜏0
)  𝑒−𝑗π𝛾𝑡2

 (2.8) 

Note that the convolution is multiplied by 1 2⁄  because it is shown on low pass equivalent terms. 

 

A convolution is computationally costly since an integral must be computed for every 𝑡. 

 �̃�(𝑡) =
1

2
 ∫ 𝑠r̃(𝜏) ℎm̃(𝑡 − 𝜏) 𝑑𝜏 (2.9) 

Thus, it is appropriate to obtain the filter output in the spectral domain (fast convolution technique) in 

order to gain computational efficiency, 

 

 �̃�(𝑓) =
1

2
 𝑆r̃(𝑓) 𝐻m̃(𝑓) (2.10) 

where the matched filter spectrum 𝐻m̃(𝑓) is the complex conjugate of the transmitted signal spectrum. 

 𝐻m̃(𝑓) = ℱ{𝑠ẽ
∗(−𝑡)} = 𝑆ẽ

∗
(𝑓) (2.11) 

 

Finally, to derive the expression of the matched filter output in the time domain, an inverse 

Fourier transform must be performed. 

 �̃�(𝑡) = ℱ−1{�̃�(𝑓)} = ℱ−1 {
1

2
 𝑆r̃(𝑓) 𝐻m̃(𝑓)} (2.12) 

 

 

Radar and target specifications: 

 Carrier frequency:   𝑓0 = 9.65 GHz (X-Band radar) 

 Pulse duration:   𝜏0 = 100 ns 

 Bandwidth:   ∆𝑓 = 100 MHz 

 Linear FM rate:   𝛾 =
∆𝑓

𝜏0
=

100·106 Hz

100·10−9 s
= 1015  

Hz

s
 

 Compression factor:   𝜌 = ∆𝑓 𝜏0 = 100 · 106 Hz · 100 · 10−9 s = 10 

 Target distance:   𝑅 = 30 m 

 Transmitted peak power:   𝑃t = 1 W 

 Echo power delivered by the antenna:   𝑃r =
𝑃t 𝐺

2 𝜎 𝜆2

(4π)3 𝑅4 𝐿
 

 Target RCS (Radar Cross Section):   𝜎 = 1 m2 

 Antenna gain:   𝐺 = 20 dB 

 Losses:   𝐿 = 6 dB 
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Hereafter, the script steps are provided: 

1. Declare constants. 

2. Define the time step which has to satisfy Nyquist, so that 𝑇max =
1

𝐵
=

1

∆𝑓
. Oversample the 

sampling frequency × 2 or × 4 (better) for better performance.  

3. Obtain the transmitted pulse 𝑠ẽ(𝑡) and plot its amplitude and phase. 

4. Obtain and plot the instantaneous frequency of the transmitted pulse to see the FM linear sweep. 

𝑓i(𝑡) =
1

2π
 
𝑑𝜙pulse

𝑑𝑡
 . 

5. Obtain and plot the spectrum of the transmitted signal. 𝑆ẽ(𝑓) = FFT{𝑠ẽ(𝑡)} . 

6. Obtain the matched filter in the frequency domain and plot its amplitude and phase. 𝐻m̃(𝑓) =

𝑆ẽ
∗
(𝑓). Check whether the phase is inverted with respect to the pulse phase.  

7. Obtain and plot the radar matched filter output �̃�(𝑡) and compare it to Figure 2.3 (Levanon, 

1988: Figure 7.4). 

8. Check the phase at the peak of the compressed pulse. It should be −2𝑘0𝑅. 

 

 
Figure 2.3: A zero-Doppler cut of the ambiguity function of a linear FM pulse with 𝜌 = 10. 

 

 

SOLUTION: 

A Matlab script has been used in order to solve this example. Here, in this solution, the main results 

obtained will be shown as well as the main steps to achieve them will also be explained. 

 

Once the radar and target parameters have been defined into the script, the following step is to 

define the sample time. We know that Nyquist must be satisfied and it must be done with an 

oversampling factor 𝛼 = 4. Since the sample time is just the inverse of the sampling frequency, 

 𝑓s = 𝛼 𝐵 = 𝛼 ∆𝑓 = 4 · 100 · 106 Hz = 400 MHz (2.13) 

we can obtain the sample time as 
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 𝑇s =
1

𝑓s
=

1

400 · 106 Hz
= 2.5 ns (2.14) 

 

From this sample time, we can build a time axis large enough to cover the transmitted pulse and 

the target echo. We can now plot the amplitude and phase of the low pass equivalent of the transmitted 

signal via Equation (2.2) (see Figure 2.4). 

 

 
Figure 2.4: Amplitude and phase of the low pass equivalent of the transmitted signal. 

 

 

Note that the amplitude and phase have been plotted in a centred format to provide a better view 

of the results. However, all the calculations done into the script have been carried out using an FFT 

format. 

 

In order to obtain the instantaneous frequency, we must solve the following derivative 

 𝑓i(𝑡) =
1

2π
 
𝑑𝜙pulse

𝑑𝑡
 (2.15) 

where 𝜙pulse = π𝛾𝑡2. Thus, 

 𝑓i(𝑡) =
1

2π
 
𝑑(π𝛾𝑡2)

𝑑𝑡
=

1

2π
· 2π𝛾𝑡 = 𝛾𝑡 (2.16) 

 

In Figure 2.5, we can see the shape of the instantaneous frequency along the transmitted signal. If 

we zoom in the pulse area, we can notice the linear behaviour of the transmitted pulse. The straight 
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line of slope 𝛾 sweeps all bandwidth ∆𝑓 of the transmitted pulse during the pulse duration 𝜏0 (see 

Figure 2.6). 

 

 
Figure 2.5: Instantaneous frequency of the transmitted signal. 

 

 

 
Figure 2.6: Instantaneous frequency of the transmitted signal (zoom in). 

 

 

Now, we need to obtain the matched filter. Therefore, we have to compute the transmitted signal 

spectrum by using the Fast Fourier Transform (FFT) in Equation (2.2). 

 𝑆ẽ(𝑓) = FFT{𝑠ẽ(𝑡)} (2.17) 

We can see the amplitude and phase of the transmitted signal spectrum in Figure 2.7. 
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Figure 2.7: Amplitude and phase of the transmitted signal spectrum. 

 

 

From Equation (2.11), we can compute the matched filter in the frequency domain. Thus, the 

amplitude and phase of the matched filter spectrum are plotted in Figure 2.8. 

 

 
Figure 2.8: Amplitude and phase of the matched filter spectrum. 
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Note that the matched filter phase (from Figure 2.8) is inverted with respect to the phase of the 

transmitted signal spectrum. 

 

At this point, we can compute the radar matched filter output from Equation (2.12) and plot its 

amplitude (see Figure 2.9). Before using Equation (2.12), you must take into account to compute the 

spectrum of the target echo. 

 

 
Figure 2.9: Amplitude of the radar matched filter output. 

 

 

In order to compare the result obtained in Figure 2.9 to Figure 2.3, the radar matched filter output 

has been normalized with respect to its maximum value (peak value), and centred to the time origin 

(i.e., the delay between the transmitted and received signals has been removed). Thus, you can see the 

resulting signal in Figure 2.10. 

 

 
Figure 2.10: Normalized and centred amplitude of the radar matched filter output. 
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From Figures 2.10 and 2.3., we can see the similarity between both signals, which validates the 

calculations.  

 

Finally, we have to check whether the phase at the peak of the compressed pulse is equal to the 

theoretical phase (i.e., −2𝑘0𝑅). Hence, let us first compute this theoretical phase. 

𝜙peak = −2𝑘0𝑅 = −2 
2π𝑓0

𝑐
 𝑅 = −2 ·

2 · π · 9.65 · 109 Hz

3 · 108  
m
s

· 30 m ≈ 12126.55 rad 

In order to compare this result to the phase at the peak of the compressed pulse, we have to compute 

𝜙peak modulo 2π. Thus, the theoretical phase becomes 𝜙peak = 0 rad, and therefore, as the phase of 

the compressed pulse is 𝜙com.pulse = 2.3 · 10−13 rad (result given in Matlab), we can conclude that 

both phases are practically equal.  

 

 

Since the signal obtained in Figure 2.10 has an abrupt shape compared to the signal of Figure 2.3, 

make use of the interpolation to smooth the radar matched filter output by means of zero padding its 

spectrum. Use an interpolation factor 𝛼i = 8. 

 

SOLUTION: 

In order to obtain the interpolated radar matched filter output, we have to define a new vector of the 

radar matched filter output spectrum (e.g., 𝑌′). The length of this new vector must be 𝛼i times the 

length of the same vector without interpolation (e.g., 𝑌) used in the previous section. Then, vector 𝑌′ 

must be filled of zeros. And, finally, the first half of vector 𝑌 must be copied at the beginning of vector 

𝑌′, and the second half of vector 𝑌 must be copied at the end of vector 𝑌′. In this way, the zero 

padding interpolation has been performed. 

 

After computing the inverse Fourier transform of 𝑌′, we can obtain and plot the interpolated radar 

matched filter output (see Figure 2.11). 

 

 
Figure 2.11: Amplitude of the interpolated radar matched filter output. 
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Now, we can proceed as the previous section in order to plot the radar matched filter output on a 

normalized and centred way. Hence, 

 

 
Figure 2.12: Amplitude of the interpolated, normalized and centred radar matched filter output. 

 

 

In Figure 2.12, we can note that the signal has smoothed with respect to the signal from Figure 

2.10. Now, the signals of Figures 2.12 and 2.3 are practically equal. 

 

 

In order to conclude this example, we want to reduce the side lobes of the radar matched filter output. 

Therefore, we suggest adding a window in the radar receiver. Do it for two different windows (e.g., a 

triangular window and a Hanning window).  

 

SOLUTION: 

The suggested solution is to multiply the matched filter by the window in the frequency domain to 

achieve a new filter 𝐻′̃(𝑓). We will use this new filter, which will not be the matched filter, in order to 

obtain the radar filter output 𝑦′̃(𝑡) from the target echo 𝑠r̃(𝑡). 

 

 𝐻′̃(𝑓) = 𝐻m̃(𝑓) 𝑊(𝑓) (2.18) 

 

In Figures 2.13 and 2.14, we can see the amplitudes of: (a) the matched filter, (b) the window 

used in each case, and (c) the resulting filter. 

 

Finally, the radar filter outputs are shown altogether in Figure 2.15 on a normalized and centred 

way for easier comparison. We can note how the side lobes have diminished with respect to the radar 

matched filter output case. 
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Figure 2.13: Amplitudes of: (a) the matched filter, (b) the triangular window and (c) the resulting filter. 

 

 

 

 

 
Figure 2.14: Amplitudes of: (a) the matched filter, (b) the Hanning window and (c) the resulting filter. 
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Figure 2.15: Radar filter outputs. 

 

 

 

2.3. SAR PROCESSOR example 

 

The aim of this example is to achieve a radar reflectivity image 𝛹I(𝑧, 𝑥) of a set of single points 

spread over an area 𝛹(𝑧, 𝑥). You can see a sketch of the example in Figure 2.16. The radar is moving 

along axis 𝑥′ in a straight line and constant speed, and the distance 𝑅0 shows the closest approach 

between the radar and the origin of axes 𝑧, 𝑥. 

 

 
Figure 2.16: Raw data acquisition of an area  𝛹(𝑧, 𝑥). 

 

 

In order to obtain the image 𝛹I(𝑧, 𝑥), we will use a Back Propagation algorithm into the radar 

SAR processor. Taking into account superposition, the algorithm is designed to focus the data over 

every single point of the scene 𝛹(𝑧, 𝑥). 
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Figure 2.17: Image acquisition from raw data. 

 

 

In order to perform the SAR processor, we will first need to know the cause-and-effect 

relationship (i.e., the scattered fields over the measured geometry that a single target would cause). 

This is what we call “the direct problem of scattering” (see Figure 2.18). 

  

 
Figure 2.18: Direct problem of scattering. 

 

 

In order to cope the direct problem of scattering, let us consider the transmitted signal 𝑠e(𝑡) a 

chirp pulse given by 

 𝑠e(𝑡) = Re { ∏(
𝑡

𝜏0
)  𝑒𝑗2π𝑓0𝑡  𝑒𝑗π𝛾𝑡2

} (2.19) 

where 𝜏0 is the pulse duration, 𝑓0 is the carrier frequency, and 𝛾 is the linear FM rate. Equation 

(2.19) can be also written on its low pass equivalent expression as 

 𝑠ẽ(𝑡) = ∏(
𝑡

𝜏0
)  𝑒𝑗π𝛾𝑡2

 (2.20) 

 

The received signal on the radar antenna depends on: (a) the position of the radar along the axis 

𝑥′, (b) the time between the transmitted and received signals (this variable may also be expressed as a 

spatial variable), and (c) the position of each target along the axes 𝑧, 𝑥. Hence, we can write the 

expression of the received signal as 

 𝑠r(𝑡, 𝑥
′ ;  𝐫) = Re { ∏(

𝑡 − 𝑡r
𝜏0

) 
√𝜎

4 π 𝑅2(𝑥′ ;  𝐫)
 𝐺[𝜑(𝑥′ ;  𝐫)] 𝑒𝑗2π𝑓0(𝑡−𝑡r) 𝑒𝑗π𝛾(𝑡−𝑡r)

2
} (2.21) 

where 𝜎 is the radar cross section of the target, 𝐺[𝜑(𝑥′ ;  𝐫)] is the radiation diagram of the radar 

antenna, and 𝑡r is the delay between the transmitted and received pulse given by 



 

 

Chapter 2: Synthetic Aperture Radar Techniques. Examples 

 

 
 

30 Projecte Final de Carrera (PFC)   

 𝑡r =
2 𝑅(𝑥′ ;  𝐫)

𝑐
 (2.22) 

where 𝑐 is the speed of light. 

 

The collected echo signals described by Equation (2.21) along the radar track are stored in a 2D 

matrix, which is usually named “raw data”. If we now write the raw data on its low pass equivalent 

expression, we obtain 

 𝑠r̃(𝑡, 𝑥
′ ;  𝐫) =  ∏(

𝑡 −
2 𝑅(𝑥′ ;  𝐫)

𝑐
𝜏0

) 
√𝜎 𝐺[𝜑(𝑥′ ;  𝐫)]

4 π 𝑅2(𝑥′ ;  𝐫)
  𝑒−𝑗2𝑘0𝑅(𝑥′; 𝐫) 𝑒

𝑗π𝛾(𝑡− 
2 𝑅(𝑥′; 𝐫)

𝑐 )

2

 (2.23) 

where 𝑘0 is the wave number given by 

 𝑘0 =
𝜔0

𝑐
=

2π𝑓0
𝜆0𝑓0

=
2π

𝜆0
 (2.24) 

where 𝜆0 is the carrier wavelength. 

 

Now, our objective is to recover the point reflectivity from the measured fields. We must do an 

“inverse problem”. 

  

 
Figure 2.19: Inverse problem. 

 

 

Therefore, we need to design a SAR processor that gets the radar reflectivity image from the 

acquired raw data fulfilling the following condition 

 𝛹I(𝐫) ≈ 𝛹(𝐫) (2.25) 

In this way, our SAR processor will consist of two blocks: (a) the range compressor and (b) the 

azimuth compressor (see Figure 2.20). 

 

The range compressor must compress the raw data along the axis 𝑡 by using a matched filter. 

Thus, the range compressed signal must be 

 𝑠r ′̃(𝑥
′ ;  𝐫) =

1

2
 𝑠r̃(𝑡, 𝑥

′ ;  𝐫) ∗  ℎm̃(𝑡) (2.26) 

or, if we write the expression above in a range frequency domain to avoid the convolution 

computation costly, we obtain 
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 𝑆r ′̃(𝑥
′ ;  𝐫) =

1

2
 𝑆r̃(𝑓, 𝑥′ ;  𝐫) 𝐻m̃(𝑓) (2.27) 

where 

 𝑆r̃(𝑓, 𝑥′ ;  𝐫) = ℱ{𝑠r̃(𝑡, 𝑥
′ ;  𝐫)} (2.28) 

 𝐻m̃(𝑓) = ℱ{𝑠ẽ
∗(−𝑡)} = 𝑆ẽ

∗
(𝑓) (2.29) 

 

 
Figure 2.20: SAR processor blocks. 

 

 

In Figure 2.21, we can see an example of the range compressed signal of a point target derived 

from Equation (2.26) where the horizontal axis can be expressed either in time or spatial domain 

(𝑧 = 𝑐 𝑡 2⁄ ). 

 

 
Figure 2.21: Example of range compressed signal of a single target. 

 

 

Now, we must transform the range compressed signal of 2 dimensions in an image that fulfils 

Equation (2.25). That is what we will obtain after the back propagation algorithm implementation into 

the azimuth compressor will be performed. The BPA algorithm is based on a coherent addition of the 

measured data (pixel) by compensating the amplitude and phase lost in the direct problem. 

 

Although the range compressed signal has 2 dimensions, every scene point in the range 

compressed domain generates a hyperbolic line of data (curved line of Figure 2.21). Thus, we can 

integrate the compensated amplitude and phase data along this measured compressed data line and 

derive the final image 𝛹I(𝐫) as 
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 𝛹I(𝐫) = ∫ 𝑠r ′̃[𝑙(𝑥
′ ;  𝐫) ;  𝐫]  

4 π 𝑙2(𝑥′ ;  𝐫)

√𝜎 𝐺[𝜑(𝑥′ ;  𝐫)]
 𝑒𝑗2𝑘0𝑙(𝑥′; 𝐫) 𝑑𝑥′

𝑥′

  (2.30) 

 

In Figure 2.22, we can see the geometry used to solve Equation (2.30). 

 

 
Figure 2.22: Geometry used in Equation (2.30). 

 

 

The image will contain 𝑁x𝑀 pixels. The 𝑁 and 𝑀 values will depend on the size of the evaluated 

area 𝛹(𝐫), and the desired range and azimuth resolutions. The distance 𝑙 must be computed for each 

radar antenna position and pixel of the image, and must be used to achieve the appropriate value of 

the range compressed signal on each case. Therefore, interpolation is needed on this latter step for 

better accuracy in the result of Equation (2.30). 

 

In order to avoid errors in the integral computation, the inverse of the radiation diagram of the 

radar antenna 𝐹[𝜑(𝑥′ ;  𝐫)] may be computed as 

 𝐹[𝜑(𝑥′ ;  𝐫)] =
1

𝐺[𝜑(𝑥′ ;  𝐫)]
= {

0

1

𝐺[𝜑(𝑥′ ;  𝐫)]

  if   𝐺[𝜑(𝑥′ ;  𝐫)] = 0 

other case                 
  (2.31) 

 

Once the direct problem for a simple target has been successfully solved, the same problem with 

a scene of multiple targets should not be difficult to deal with. Therefore, you are asked to solve the 

direct and inverse problems for a simple target located at the origin of the axes 𝑧, 𝑥. 
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Radar and target specifications: 

 Carrier frequency:   𝑓0 = 9.65 GHz (X-Band radar) 

 Oversampling factor:   𝛼 = 4  (To satisfy Nyquist × 4) 

 Pulse duration:   𝜏0 = 100 ns 

 Bandwidth:   ∆𝑓 = 1 GHz 

 Linear FM rate:   𝛾 =
∆𝑓

𝜏0
=

109 Hz

100·10−9 s
= 1016  

Hz

s
 

 Range compression ratio:   𝜌 = ∆𝑓 𝜏0 = 109 Hz · 100 · 10−9 s = 100 

 Radar-target closest approach:   𝑅0 = 3000 m 

 Antenna length:   𝐿a = 0.3 m 

 Azimuth beam width:   𝜃bw =
𝜆0

𝐿a
=

𝑐

𝑓0 𝐿a
=

3·108 
m

s

9.65·109 Hz · 0.3 m 
= 0.1036 rad 

 Synthetic aperture:   𝐿s = 𝜃bw 𝑅0 = 0.1036 rad · 3000 m = 310.88 m 

 Nominal azimuth resolution:   ∆𝑥′ =
𝐿a

2
= 0.15 m 

 Target RCS:   𝜎 = 1 m2 

 Radiation diagram of the radar antenna (see Figure 2.23). 

 

 
Figure 2.23: Radiation diagram of the radar antenna. 

 

 

Hereafter, the steps of the Back Propagation Algorithm are provided: 

 For every 𝐫 point (2 loops: one for coordinate 𝑥 and another for coordinate 𝑧). 

o For every antenna position (𝑥′). 

 Compute the range of the travel signal 𝑙(𝑥′ ;  𝐫). 

 Obtain 𝑠r ′̃[𝑙(𝑥
′ ;  𝐫) ;  𝐫] by linear interpolation. 

 Apply amplitude and phase corrections. 

 Sum the integral results in the same variable 𝑝𝑖𝑥𝑒𝑙. 

o Save the value of the variable 𝑝𝑖𝑥𝑒𝑙 into the matrix 𝑖𝑚𝑎𝑔𝑒. 

o Reset the value of the variable 𝑝𝑖𝑥𝑒𝑙. 
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SOLUTION: 

As in the previous section, it has been used a Matlab script in order to solve this example. The solution 

will show the main results obtained as well as the main steps to achieve them. 

 

After the radar and target parameters have been defined into the script, we must build all the 

coordinate systems1 we need to obtain the image of the single target. First, we must delimit the length 

of the range and azimuth axes of the image which we define as 𝑡_𝑖 (time axis) or 𝑧_𝑖 (space axis) and 

𝑥_𝑖 respectively. There are two options for expressing the length of these axes: (a) by means of a 

number of meters or (b) by means of a number of pixels. Second, we must build the axes of the radar 

antenna. The azimuth radar antenna axis (defined as 𝑥) must be large enough for being able to depict 

the curved line of Figure 2.21. Thus, in Figure 2.24, we can see that the required minimum length is 

𝐿s. In order to add a little margin at the upper and lower parts of the curve, let us set the length of axis 

𝑥, 1.5 · 𝐿s. In order to obtain the range radar antenna axis (defined as 𝑡), we need to know the 

maximum time delay corresponding to the farthest pixel of the image (in Figure 2.25, we can see the 

geometry of this problem). Thus, we can derive the maximum time 𝑡max as 

 𝑡max =
2 √(𝑥min − 𝑥_𝑖max)

2 + (𝑅0 + 𝑧_𝑖max)
2

𝑐
  (2.32) 

Therefore, we could obtain the length of axis 𝑡 doubling the value 𝑡max. However, if our target is far 

from the radar, we will need many samples to depict signals on axis 𝑡 and many of these samples will 

not provide us useful information. So that, let us delimit the length of axis 𝑡 to the subtraction between 

𝑡max and 𝑡min, where 𝑡min can be expressed as 

 𝑡min =
2 (𝑅0 − |𝑥_𝑖min|)

𝑐
  (2.33) 

 

 
Figure 2.24: Minimum length of axis 𝑥. 

 

                                                      
1 All the coordinate systems we will use in this example are built in an FFT format. Therefore, this format will be 

taken into account on the derived expressions from now on. 
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Figure 2.25: 𝑡min and 𝑡max. 

 

 

Now, we can derive the last coordinate system to depict the raw data. We will use the same 

coordinate system as for the radar antenna case, but the origin of the time axis will be changed to take 

into account the delay. Thus, 

 𝑡_𝑟𝑎𝑤 = 𝑡 +
2 𝑅0

𝑐
  (2.34) 

 

To conclude the definition of the coordinate systems, we must build the slant range array 𝑅 to 

compute the distance between the radar antenna and target on each radar antenna location along axis 

𝑥. Hence, 

 𝑅 = √𝑅0
2 + 𝑥2  (2.35) 

 

Once the example geometry is defined, let us deal with the transmitted and received signals. As 

the problem definition says, the transmitted signal is a chirp pulse given by Equation (2.20). In order 

to obtain the raw data from this transmitted signal, we will compute the target echo at each radar 

antenna location following Equation (2.23). In this way, we will achieve a good approximation in 

modelling a real radar acquisition. Since the angle between the radar and target on each radar location 

may not match to a sample value of the radiation diagram, a nearest neighbour approximation has 

been used. 

 

In Figure 2.26, we can see the amplitude and phase of the raw data obtained following all the 

steps mention above. 
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Figure 2.26: Amplitude and phase of the raw data. 

 

 

 

At this point, we must process the raw data using the described SAR processor in order to achieve 

the range compressed signal first, and then the final image. Thus, we can proceed following the steps 

shown in the previous section (Range Compression Example) in order to obtain the range compressed 

signal. However, in this case, we have more than one signal along axis 𝑥, so that the range FFT must 

be performed on each radar antenna location along axis 𝑥. In Figure 2.27, we can see the amplitude 

and phase of the compressed signal of the data, as expressed by Equation (2.27). 

 

 
Figure 2.27: Amplitude and phase of the range compressed signal. 
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The next step is to implement the back propagation algorithm on the range compressed signal, 

which has been described in the problem definition. Therefore, we must first compute the distance 

𝑙(𝑥 ;  𝐫) of each pixel of the image. Since the range axis of the range compressed signal is in seconds, 

we will also obtain the distance 𝑙(𝑥 ;  𝐫) in seconds. Thus, 

 𝑙(𝑥 ;  𝐫) =
2 √(𝑥 − 𝑥_𝑖)2 + (𝑅0 + 𝑧_𝑖)2

𝑐
  (2.36) 

 

Then, we must derive the value of the signal 𝑠r ′̃[𝑙(𝑥 ;  𝐫) ;  𝐫] per each pixel and time 𝑙(𝑥 ;  𝐫). In 

Figure 2.28, we can see a sketch of the linear interpolation to be done on, for example, the amplitude 

of the signal. However, this kind of interpolation may be extended to whole signal. In this way, the 

value for each radar antenna location of signal 𝑠r ′̃[𝑙(𝑥 ;  𝐫) ;  𝐫] can be obtained as 

 𝑠r ′̃[𝑙(𝑥0 ;  𝐫) ;  𝐫] =  𝑠r ′̃(𝑥0,  𝑡n+1) 
𝑑

𝑇s
+ 𝑠r ′̃(𝑥0,  𝑡n) 

𝑇s − 𝑑

𝑇s
 (2.37) 

 

 
Figure 2.28: Linear interpolation computation of the signal range compressed amplitude. 

 

 

Next, we must apply the amplitude and phase corrections to fulfil Equation (2.30) and we must 

compute the integral per each radar antenna location. Finally, we must sum all the integral results of 

one pixel and restart the algorithm for another pixel. Once all pixels have been computed, we can 

obtain the image of the single target as it is shown in Figure 2.29. 
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Figure 2.29: Amplitude and phase of the image 𝛹I(𝑧, 𝑥). 

 

 

As we can see in the amplitude plot of Figure 2.29, the point target placed at the scene centre has 

appeared. Therefore, the example seems to be correctly solved. However, in order to evaluate the 

quality of this result, we must compute the resolutions of the range cut and azimuth cut on the target 

location, and compare them to the theoretical ones. 

 

Let us first obtain the theoretical resolutions on both range and azimuth directions. 

Theoretical range resolution: ∆𝑅 =  
𝑐

2 𝐵
=

𝑐

2 ∆𝑓
=

3 · 108  m s⁄

2 · 109 Hz
= 0.15 m  

Theoretical azimuth resolution: ∆𝑥 =
𝐿a

2
=

0.3 m

2
= 0.15 m  

 

In Figures 2.30 and 2.31, we can see the image range and azimuth cuts on the target location 

respectively. In order to obtain both resolutions, we must compute the main lobe width at 3 dB below 

its peak (1 √2⁄ ≈ 0.707 in amplitude). As very few samples depict both main lobes, both target lobe 

range and azimuth cuts have been interpolated in order to obtain a better approximation of the range 

and azimuth resolutions. Thus, a zero padding interpolation has been used with an interpolation factor 

of 32. 

 

In Figures 2.32 and 2.33, we can see the final results after the interpolation and also 

normalization have been done. From the main lobe labels, we can now obtain the approximate range 

and azimuth resolutions as 

Approximate range resolution: ∆𝑅′ ≈ 2 · 0.06797 m = 0.136 m  

Approximate azimuth resolution: ∆𝑥′ ≈ 2 · 0.06328 m = 0.127 m  
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Figure 2.30: Amplitude and phase of the image range cut on the target location. 

 

 

 
Figure 2.31: Amplitude and phase of the image azimuth cut on the target location. 
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Figure 2.32: Interpolated and normalized amplitude of the image range cut on the target location. 

 

 

 
Figure 2.33: Interpolated and normalized amplitude of the image azimuth cut on the target location. 
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From Figures 2.32 and 2.33, we can also compute the Side Lobe Level (SLL) of both cuts. Thus, 

Range cut SLL: 𝑆𝐿𝐿rg ≈ 20 · log (
1

0.2249
) = 12.96 dB  

Azimuth cut SLL: 𝑆𝐿𝐿az ≈ 20 · log (
1

0.2156
) = 13.33 dB  

 

As we can see, the approximate range and azimuth resolutions are very close to the theoretical 

ones. In addition, the SLL of both cuts are also very close for a rectangular aperture antenna having a 

uniform amplitude distribution (i.e. ~13.26 dB). Therefore, we can conclude that the example has 

been correctly solved. 

 

 

 

2.4. Real Range history example 

 

In the previous section, the SAR processor has been applied to data simulated from a radar moving in 

a straight line. However, in the GEOSAR mission case, the radar hosted by the satellite in the GEO 

orbit does not follow a rectilinear movement. Thus, the signal of Equation (2.36) cannot be obtained 

from such a straightforward way. As seen in the previous example, this signal plays a major role when 

performing the image focusing by means of the BPA algorithm, so that it must be calculated precisely. 

Such signal will be called range history from now on since it collects the distances between the radar 

antenna and every point of the observed scene over time.  

 

The following example will illustrate a real range history that could be obtained from a satellite 

orbiting in a GEO orbit. In this way, the reader will have an overview of the real movement between 

the satellite and one point of the scene. On the other hand, the example will introduce the reader to the 

explanation of the satellite orbital determination methods and techniques of next chapters. 

 

The satellite that is going to be used is located on longitude 19.2° E and is operated by SES S.A. 

(Société Européenne des Satellites) providing Satellite TV and Telecommunication Data services with 

the commercial name ASTRA. In order to place the satellite in a certain point in the space at a given 

time, a Two-Line Element set1 (TLE) is going to be used. TLEs are periodically published in the Space 

Track program website [19], which keeps track of the vast majority of the objects orbiting the Earth. 

From a TLE, one may obtain the satellite position and velocity vectors with regard to a proper 

coordinate frame, which has its origin on the Earth’s centre. However, the location error of the satellite 

from such TLEs is well beyond the precision requirement of GEOSAR mission. Anyway, the TLE can 

still be used as a first approximation of iterative methods such as Least Squares technique. The 

methods and techniques explained in the following chapters will determine the satellite orbit more 

precisely. 

 

Having located the satellite, the next step is to place a site (i.e., a base station) over the Earth’s 

surface in order for being able to calculate the range history between the satellite and the site. At this 

point, one must consider that there is visibility of the satellite from the site. In this way, a base station 

                                                      
1 A Two-Line Element set (TLE) is a data format encoding a list of orbital elements of an Earth-orbiting object 

for a given point in time. Consult reference [12] for further information about the TLE format. 
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placed in Barcelona city (Spain) has been chosen. Table 2.1 summarizes the location parameters 

needed to obtain the position and velocity vectors of Barcelona site in a particular coordinate frame. 

This coordinate frame may not be the same coordinate frame which locates the satellite, so that some 

relations between both coordinate frames are needed to be found in order not to calculate the range 

history in a wrong way. Such relations involve perturbations, such as nutation, precession or polar 

motion, which affect the Earth’s motion, and whose effects will not be considered within the example. 

Thus, the position of the site with regard to the position of the satellite will only be calculated by 

means of time. 

 

Location parameters of the base station 

placed in Barcelona 

Geodetic Latitude 41° 23′ 20.0′′ N 

Longitude 2° 9′ 20.0′′ E 

Altitude 0.020 km 

Table 2.1: Location parameters of a base station placed in the city of Barcelona (Spain). 

 

 

The time is given into the TLE, so that the satellite position and velocity vectors calculated are 

specific of this time. Chapter 3 shows how to calculate time for a particular site via Equation (3.8). In 

this example, as time is given as a date (i.e., year, month, day, hour, minutes and seconds), the 

Greenwich Mean Sidereal Time (GMST), 𝜃GMST, can be obtained as 

 
𝜃GMST = 67310.54841 s + (876600 h + 8640184.812866 s) · 𝑇UT1 

+0.093104 · 𝑇UT1
2 − 6.2 × 10−6 · 𝑇UT1

3
 

(2.38) 

where 𝑇UT1 is the number of Julian centuries from a particular epoch (i.e. J2000.01) in UT12 

(Universal Time 1) time scale. The general formula referencing J2000.0 is 

 𝑇UT1 =
𝐽𝐷UT1 − 2451545.0

36525
 (2.39) 

where 𝐽𝐷UT1 is the Julian Date (i.e., the interval of time measured in days from the epoch January 1, 

4713 B.C., 12:00) in UT1 time scale. The reader may consult (Vallado, 2013) for further information 

about this topic. 

 

In order to be more precise when computing the GMST, one must take into account that the time 

given in a TLE is in UTC3 (Coordinated Universal Time) time system. Thus, a conversion between 

UTC and UT1 must consequently be performed since Equation (2.38) is in UT1. The relation between 

both time scales follows Equation (2.40) 

 ∆𝑈𝑇1 = 𝑈𝑇1 − 𝑈𝑇𝐶 (2.40) 

where ∆𝑈𝑇1 value can be achieved from [7]. Since the example will show the range history between 

the satellite and the base station during the first week of January 2012, the value of ∆𝑈𝑇1 is −0.4 s. 

One can see that this value is not high; however, it is required for precise computations. 

                                                      
1 J2000.0 refers to January 1, 2000 12:00:00.000. 
2 UT1 is a variation of Universal Time (UT), which is based on a fictitious mean Sun in order to define the time 

of an event. 
3 Coordinated Universal Time (UTC), is the most commonly used time system, which is derived from an 

ensemble of atomic clocks. It is designed to follow UT1 within ±0.9 s. 
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Once the position of the satellite and the site has been obtained in the same coordinate frame and 

time, the range observation can be calculated via Equation (3.14). Thus, using different TLEs of the 

first week of January 2012, one may compute different values of range, and therefore the range history 

of the site. 

 

Figure 2.34 illustrates a general overview of the satellite orbit around the Earth along all week. 

From this figure, one can perfectly see the GEO orbit described by the satellite. In order to notice the 

minor differences among consecutive satellite orbits around the Earth, Figure 2.35 plots these orbits 

alone (i.e., without the Earth). As seen in the figure, the satellite orbits do not remain fixed because the 

satellite is affected by many perturbations during its movement around the Earth. Examples of such 

perturbations are the asphericity of the Earth, the solar-radiation pressure, the third body effects… 

These perturbations can cause important deviations on the satellite orbit (Vallado, 2013), sometimes 

comparable to the primary attracting force (i.e., the two-body gravitation). 

 

 
Figure 2.34: Satellite orbit around the Earth during the first week of January 2012. 

 

 

Finally, in Figure 2.36, the range history between the satellite and the base station placed in 

Barcelona has been depicted. Two facts can be derived from this latter figure. The first one is that the 

satellite orbit is not perfectly circular as an ideal GEO orbit should be, but it has a small eccentricity. 

One can see this from the fact that the range history is not a constant straight line. The non-circularity 

of the satellite orbit was already known from the data given in the TLEs since all of them had an 

eccentricity different to 0. However, this fact was unknown for the reader. The second issue that can 

be derived from Figure 2.36 is related to consecutive satellite orbits are not equal, which it could 

already be seen from Figure 2.35. Thus, the degradation suffered by the satellite orbit along time and 

how it affects the range history determination can be observed in another way. Table 2.2 lists the 

maximum and minimum ranges calculated per orbit in order to notice such degradation more clearly. 
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Figure 2.35: Satellite orbit alone during the first week of January 2012. 

 

 

 

 

 
Figure 2.36: Satellite-Barcelona range history during the first week of January 2012. 
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Maximum and minimum ranges per satellite orbit 

Orbit number Maximum range [km] Minimum range [km] 

1 37 856.644 37 827.290 

2 37 856.858 37 827.061 

3 37 857.072 37 826.886 

4 37 857.283 37 826.794 

5 37 857.420 37 826.773 

6 37 857.508 37 826.745 

7 37 857.510 37 826.702 

Table 2.2: Maximum and minimum ranges per orbit between the satellite and base station. 

 

 

The examples shown in this chapter give a basic overview of how a SAR works. In this way, 

well-focused images can be obtained by means of the BPA algorithm of the SAR processor. GEOSAR 

orbit determination requirements are well beyond those used in other applications such as 

telecommunications or TV Broadcasting. In the following chapters, different methods and techniques 

suitable for satellite high precision orbit estimation are assessed. 
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Initial orbit determination involves various analytical methods that relate observation data produced by 

sensor sites to orbital elements describing the movement of a body in motion in space. These 

observation data may be of different types depending on the observations that the sensor performs of 

the body in movement. Thus, angular data, range measurements, rates of each measurement, etc., may 

be used for determining initial orbits. One could not process data in order to calculate the satellite orbit 

without the individual vectors determined through one of the techniques used for initial orbit 

determination. 

 

In the context of GEOSAR mission, the radar payload hosted by a communications satellite in a 

geostationary orbit will provide range and range-rate measurements thanks to well-located ARCs 

(Active Radar Calibrators) over the Earth’s surface. Such measurements will be used to track the 

satellite orbit around the Earth. However, the position of the satellite in space will remain unknown 

unless the range and range-rate measurements are processed into orbital elements. 

 

Escobal (1965) suggests a method called Trilateration, which converts simultaneous range and 

range-rate information coming from different sensor sites to an initial position and velocity vectors of 

the satellite under study. This chapter will analyse this method and will also discuss Gibbs method in 

case the sensor site may only provide range measurements. 

 

In order to perform such analysis, ideal data must be created since there is no real measured data 

available yet. In this way, the first part of this chapter will be dedicated to explain the fundamentals of 

how the ideal data is built. This ideal data involves the design of a satellite orbit that fulfils a 

geostationary orbit from which ideal range and range-rate observations may be calculated. In addition, 

some basic Astrodynamics concepts will be introduced first in order to better understand all 

parameters that are going to be used along the text. 

 

Once the ideal data is obtained, the analysis of Trilateration and Gibbs will be performed. To this 

end, some Matlab simulations will be discussed in order to have an extensive description of the 

precision of both methods on determining the satellite orbit. In this way, Trilateration and Gibbs 

methods will be analysed ideally first (i.e., only using the ideal data) to conclude the study of both 

methods adding noise to the ideal data. 

 

At the end of the chapter, a summary of all results obtained will be shown. Thus, the reader will 

easily compare the performance of all simulations evaluated. 

 

This chapter aims to be as complete as possible, but the reader is encourage to consult Bate, 

Mueller and White (1971), Escobal (1965), and Vallado (2013) for further explanations about topics 

discussed along this text or other concepts related to Astrodynamics. 
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3.1. COORDINATE SYSTEMS 

 

Before starting to describe all orbit elements and methods in order to find the satellite orbit, one must 

know the coordinate systems that are going to be considered in order to locate the satellite with regard 

to an Earth position. This document will take into account three coordinate systems: two of them are 

Earth-based systems and the third one is a satellite-based system. 

 

a) Geocentric Equatorial Coordinate System, 𝑰𝑱𝑲 

This system originates at the centre of the Earth and is generically designated with the letters 𝐼𝐽𝐾. 

The fundamental plane contains the Earth’s equator as shown in Figure 3.1a. The 𝐼 axis points 

towards the vernal equinox1; the 𝐽 axis is 90° to the east in the equatorial plane; and the 𝐾 axis 

extends through the North Pole. 

 

 
Figure 3.1: a) ECI Coordinate System, and b) ECEF Coordinate System. 

 

 

The geocentric frame, 𝐼𝐽𝐾, is often used interchangeably with an Earth-Centred Inertial 

(ECI) nomenclature. The equinox and plane of the equator move very slightly over time so that 

the term “inertial” can cause confusion. 𝐽2000 is an example of a quasi-inertial frame realized in 

the IAU-76/FK5 system (Vallado, 2013), which was the standard pseudo-inertial system for 

geocentric coordinates for many years. 

 

b) Body-Fixed Coordinate System, ITRF 

A geocentric coordinate system fixed to the rotating Earth results in the Body-Fixed (BF) or 

International Terrestrial Reference Frame (ITRF) coordinate system. Its origin is at the centre of 

the Earth and the axes are realized by the adopted coordinates of defining stations on the Earth’s 

surface. Confusion may exist because the ITRF system is frequently called the Earth-Centred, 

Earth-Fixed (ECEF) coordinate frame. The term “Earth-Fixed” describes a terrestrial reference 

system whose net global orientation remains unchanged over time with respect to the crust of the 

Earth. 

                                                      
1 A formal definition for the vernal equinox is that it occurs when the Sun’s declination is 0° as it changes from 

negative to positive values. The direction of the vernal equinox is designated ⥾ and often referred as the first 

point of Aries. 



 

Chapter 3: Initial Orbit Determination 
 

 

 
 

 Projecte Final de Carrera (PFC) 51  

In order to simplify complexity, this document will use the ECEF coordinate system. Its 

fundamental plane contains the Earth’s equator (see Figure 3.1b). The 𝐼 axis points towards the 

Greenwich meridian (0°); the 𝐽 axis is 90° to the east in the equatorial plane; and the 𝐾 axis 

extends through the North Pole. ECEF system rotates with the Earth, and therefore coordinates of 

a point fixed on the Earth’s surface do not change. 

 

In addition, this document will not take into account precession and nutation effects of the 

Earth’s equatorial plane as well as polar motion, which affect the movement of the Earth around 

the Sun. In this way, the 𝐼 axis of the ECEF coordinate system and the previous ECI coordinate 

system will always remain fixed and the conversion between both systems will be performed as 

finding the angle between both 𝐼 axes in a given time (see Section 3.4). 

 

c) Perifocal Coordinate System, 𝑷𝑸𝑾 

In this system, the fundamental plane is the satellite orbit, and the origin is at the centre of the 

Earth. The 𝑃 axis points towards perigee1; the 𝑄 axis is 90° from the 𝑃 axis in the direction of the 

satellite motion; and the 𝑊 axis is normal to the orbit (see Figure 3.2). 

 

 
Figure 3.2: Perifocal Coordinate System, 𝑃𝑄𝑊. 

 

 

The perifocal frame, 𝑃𝑄𝑊, will be needed when defining some orbital elements that are 

going to be used to describe the satellite orbit in the following section. 

 

 

 

3.2. SATELLITE STATE REPRESENTATIONS 

 

The state of a satellite in space is defined by six quantities, which may take many equivalent forms. 

Whatever the form, the collection of these six quantities can be called either a state vector, 𝐗, or an 

element set. The state vector is usually associated with position and velocity vectors. Thus, the state of 

                                                      
1 The perigee is the nearest point of an elliptical satellite orbit from the centre of the Earth. 
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a satellite in space can be defined by the Cartesian coordinates of both vectors (𝑟𝑥0, 𝑟𝑦0, 𝑟𝑧0, 𝑣𝑥0, 𝑣𝑦0, 

and 𝑣𝑧0) completing a set of six quantities (see Figure 3.3). The subscript 0 refers to the time where 

the state vector is given since, as the time changes, so does the state vector. On the other hand, an 

element set is a collection of scalar magnitudes and angular representations of the orbit, which are 

called orbital elements. The most common element sets are the Classical Orbital Elements (COE), also 

called Keplerian elements, two-body elements or osculating elements. However, several other element 

sets have been developed (e.g., two-line, equinoctial, Delaunay, and Poincaré) for convenience or to 

avoid the difficulties the classical orbital elements suffer for certain orbital geometries. As seen, there 

are many ways to define the state of a satellite in space; but this document will only address the state 

vector in Cartesian coordinates, which will also be called satellite state vector, and elements sets of 

classical orbital elements. 

 

 
Figure 3.3: Satellite state vector at time 𝑡0, 𝐗0, and satellite state vector at time 𝑡1, 𝐗1. 

 

 

There are many classical orbital elements in order to perform the element set. The fact of 

choosing one or another will mainly depend on the satellite orbit that is going to be analysed. For 

example, the most common way to represent the classical orbital elements in an element set is the 

semi-major axis, 𝑎; eccentricity, 𝑒; inclination, 𝑖; right ascension of the ascending node, Ω; argument 

of perigee, 𝜔; and true anomaly, 𝜈. All of these orbital elements are going to be defined below as well 

as other important elements that are going to be used in the following sections. As seen in Chapter 1, 

the satellite orbit of GEOSAR mission will describe a geostationary orbit, which is a case of special 

orbit since it is equatorial and nearly circular. For this reason, it is necessary to add more orbital 

elements in the explanation in order to define the satellite orbit correctly. 

 

The first classical orbital elements shown are related to the shape of the satellite orbit. As 

commented before, the satellite describes a near circular orbit so that the explanations will only 

consider circular and elliptical orbits, and will not talk about parabolic and hyperbolic orbits. In this 

way, the orbital elements that are going to be used are:  

 

 The semi-major axis, 𝑎: it is the radius of an orbit at the orbit two most distant points (see Figure 

3.4). If the orbit is circular, then the semi-major axis is simply the radius of the orbit. The semi-

major axis always has a positive value for circular and elliptical orbits. 
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Figure 3.4: 𝑎, 𝑒, and 𝑝 orbital elements of a) circular orbit, and b) elliptical orbit. 

 

 

 The eccentricity, 𝑒: it indicates the shape of the orbit, i.e. its “roundness” or “flatness”. Its value is 

zero for circular orbits and varies from zero to one for elliptical orbits. 

 

 The semi-latus rectum (also called semi-parameter), 𝑝: it describes the size of the orbit by 

defining the width at the primary focus1. If the orbit is circular, then the semi-latus rectum 

coincides with the radius of the orbit. Instead of using the semi-major axis, one can choose the 

semi-latus rectum following Equation (3.1). 

 𝑝 = 𝑎(1 − 𝑒2)  (3.1) 

 

 The mean motion, 𝑛: it describes the satellite average angular rate of motion over one orbit. The 

mean motion can be used instead of the semi-major axis following Equation (3.2), 

 𝑛 = √
𝜇

𝑎3
  (3.2) 

where 𝜇 is the gravitational parameter, which value is 

 
𝜇 = 𝐺(𝑚⊕ + 𝑚sat) ≈ 𝐺𝑚⊕ = 3.986 004 418 × 105  

km3

s2
 

𝐺 = 6.673 × 10−20 ± 0.001 × 10−20  
km3

kg · s2
       𝑚⊕ ≅ 5.973 332 0 × 1024 kg 

 

where 𝐺 is the gravitational constant, 𝑚⊕ is the mass of the Earth, and 𝑚sat is the mass of the 

satellite. As seen, the satellite mass can be neglected because it is too small relative to the Earth’s 

mass. The values of 𝜇 and 𝐺 are subtracted from WGS-842, whereas 𝑚⊕ is a derived quantity. 

 

                                                      
1 In Astrodynamics, the gravitational centre of attraction coincides with one focus for all orbital motion, called 

the primary focus. 
2 The World Geodetic System 1984 (WGS-84) is an Earth-centered, Earth-fixed terrestrial reference system and 

geodetic datum based on a consistent set of constants and model parameters that describe the Earth's size, shape, 

and gravity and geomagnetic fields [13]. 
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From the orbital elements described above, one must choose between to of them in order to form 

the element set. The shape of the orbit is usually expressed through the semi-major axis and 

eccentricity; however, one can select the semi-latus rectum or mean motion instead of 𝑎. 

 

The second group of classical orbital elements relates the Earth-based system to the satellite-

based system. In particular, the coordinate systems that are going to be related are the Geocentric 

Equatorial Coordinate System (𝐼𝐽𝐾) and the Perifocal Coordinate System (𝑃𝑄𝑊). Thus, the classical 

orbital elements that relate both coordinate systems are: 

 

 The inclination, 𝑖: it is the angle measured from the unit vector �̂� to the angular momentum 

vector 𝐡1. The inclination refers to the tilt of the orbit plane and ranges from 0° to 180°. 

Inclinations of 0° and 180° are equatorial orbits, whereas all others are inclined orbits. 

 

 The right ascension of the ascension node, 𝛺: it is the angle in the equatorial plane measured 

positive eastward from the unit vector 𝐼 to the location of the ascending node2. The right 

ascension of the ascending node values may range from 0° to 360° since all locations in the 𝐼 − 𝐽 

plane must be taken into account. 

 

 The argument of periapsis (also called argument of perigee when the central body attracting the 

satellite is the Earth), 𝜔: it is the angle measured from the ascending node to the periapsis point3 

in the direction of the satellite motion and in the plane of the satellite orbit. The argument of 

periapsis may vary from 0° to 360°. 

 

In order to form the element set, three orbital elements that relate the Earth-based system to the 

satellite-based system are needed. The three orbital element introduced above are the usual ones to this 

fact (see Figure 3.5). 

 

The third group of classical orbital elements locates the satellite into the 𝑃𝑄𝑊 coordinate system. 

These orbital elements are: 

 

 The true anomaly, 𝜈: it is the angle, in the plane of the satellite orbit, that determines the satellite 

current position relative to the location of the periapsis. The true anomaly may vary from 0° to 

360°. 

 

 The time of periapsis passage, 𝑡p: it is the time when the satellite was at periapsis. This orbital 

element can be used instead of the true anomaly. 

                                                      
1 The angular momentum vector, 𝐡, is the vector cross product between the satellite position state vector, 𝐫, and 

the satellite velocity state vector, 𝐯. Therefore, it must lie perpendicular to the plane of the orbit (i.e., following 

the direction of 𝑊 axis of the 𝑃𝑄𝑊 coordinate system). 
2 The ascending node is the point on the equatorial plane at which the satellite crosses the equator from south to 

north. All inclined orbits also have a descending node, at which the satellite crosses from north to south across 

the equatorial plane. The line segment connecting both nodes defines a line of nodes. 
3 The extreme points of an elliptical orbit are the apoapsis and periapsis, representing the farthest and nearest 

points in the orbit, respectively, from the centre of attraction. The ending of these words can be changed in order 

to indicate a particular planet or central body attracting the satellite. They are the aphelion and perihelion in the 

case of the Sun, the apogee and perigee for the Earth, the aposelenium and periselenium for the Moon, and so 

forth. 
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The element set is completed with one of the two orbital elements described above, which is 

usually the true anomaly. However, it may also be used the time of perigee passage or the mean 

anomaly (introduced later) instead of 𝜈. 

 

 
Figure 3.5: 𝑖, 𝛺, 𝜔, and 𝜈 orbital elements. 

 

 

As the satellite orbit of GEOSAR mission is equatorial, there is a need to define other orbital 

elements. In this particular case, the line of nodes does not exist (i.e., both the equatorial plane and the 

satellite plane are the same plane) and orbital elements such as the right ascension of the ascending 

node and the argument of periapsis remain undefined. In addition, the satellite orbit is near circular 

meaning that the periapsis point could not exist and the true anomaly could be undefined. Thus, some 

other orbital elements can replace the use of 𝛺, 𝜔, and 𝜈 to better describe the satellite orbit such as: 

 

 The true longitude of periapsis, �̃�true: it is the angle measured eastward from the unit vector 𝐼 in 

the geocentric coordinate system to the periapsis point. The true longitude of periapsis is used 

when the line of nodes does not exist and the orbit is not circular. It may vary from 0° to 360°. 

 

 The argument of latitude, 𝑢: it is the angle measured between the ascending node and the satellite 

position vector in the direction of the satellite motion. The argument of latitude is used in circular 

inclined orbits where there is no periapsis point to measure 𝜔, and 𝜈. It may vary from 0° to 

360°. 

 

 The true longitude, 𝜆true: it is the angle measured eastward from the unit vector 𝐼 to the position 

of the satellite. It may vary from 0° to 360°. The true longitude can be calculated via Equation 

(3.3) of different ways depending on whether the line of nodes and the perigee are defined or not. 

 𝜆true = 𝛺 + 𝜔 + 𝜐 =  �̃�true + 𝜈 = 𝛺 + 𝑢 (3.3) 

 

Figure 3.6 illustrates the angles mentioned above in order to clarify their definitions. 
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Figure 3.6: �̃�true, 𝑢, and 𝜆true orbital elements. 

 

 

Finally, the two last orbital parameters must be introduced. As it will be seen later, there is a need 

to determine the relation of the time and angular displacement within an orbit. This is solved by the 

so-called Kepler’s equation (see Equation [3.4]), which includes two new orbital elements that must be 

defined. 

 𝑀 = 𝐸 − 𝑒 sin(𝐸) = 𝑛(𝑡 − 𝑡p)  (3.4) 

 

 The eccentric anomaly, 𝐸: it is an angle related to the true anomaly and the circle drawn around 

the ellipse of the satellite orbit, which is called the auxiliary circle (see Figure 3.7). The eccentric 

anomaly may vary from 0° to 360° as the true anomaly does. 

 

 The mean anomaly, 𝑀: it is an angle measured from the periapsis point corresponding to uniform 

angular motion on a circle of radius 𝑎. The mean anomaly may vary from 0° to 360°. 

 

 
Figure 3.7: Eccentric anomaly, 𝐸. 
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Kepler’s equation can be solved in two different ways. First, determining eccentric (and true) 

anomaly given the mean anomaly is a transcendental operation and is the form most commonly 

identified as Kepler’s equation. The inverse problem (i.e., determining mean anomaly, and therefore 

time, when the eccentric anomaly or true anomaly and eccentricity are given) is a straightforward 

operation. In order to solve the transcendental operation, the Newton-Raphson iteration is usually 

used. Equation (3.5) must be solved in an iterative way until some tolerance is achieved. In addition, it 

must be considered that initial estimates must be close enough to the true solution in order not to 

violate the linear assumption of the Newton-Raphson method. 

 𝐸𝑛+1 = 𝐸𝑛 +
𝑀 − 𝐸𝑛 + 𝑒 sin(𝐸𝑛)

1 − 𝑒 cos(𝐸𝑛)
      𝐮𝐧𝐭𝐢𝐥  |𝐸𝑛+1 − 𝐸𝑛| < tolerance (3.5) 

 

To conclude this section, it must be said that finding the satellite state vector from an element set 

of classical orbital elements or vice versa is quite straightforward but implies several equations and 

requirements depending on the satellite orbit. When doing the transformation, it must be taken into 

account that the state vector must be given or will be given in the Geocentric Equatorial Coordinate 

System (𝐼𝐽𝐾). The reader can find more information about this topic in the references listed at the 

introduction of the chapter. In addition, there are algorithms available online in Matlab and other 

programming languages, for example on the web of Vallado (2013), which perform such operations.  

 

 

 

3.3. Proposed Methods to initially determine the satellite orbit 

 

In Chapter 1, it has been explained which measurements GEOSAR mission will provide in order to 

determine the satellite orbit. As seen in this chapter, the proposed ARC system will offer range and 

range-rate measurements. 

 

Escobal (1965) discusses a method of Trilateration. This method utilizes as data the range and 

range-rate (𝜌𝑖 and �̇�𝑖) of a satellite from a minimum of three observation stations (i.e., 𝑖 = 1, 2, 3) that 

are in contact with each other. The main requirement is that all these measurements must be obtained 

at the same time. Trilateration method is exact and yields a precise orbit due to the fact that only 

geometric principles are involved. 

 

 
Figure 3.8: Sketch of Trilateration method. 
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The complete algorithm is given in Escobal (1965) so that this document will only show the main 

inputs and the final outputs that the algorithm uses. Figure 3.8 illustrates the initial conditions of 

Trilateration method. The algorithm needs the coordinates of each observing base (i.e., the Geodetic 

latitude1, 𝜙𝑖, the longitude, 𝜆𝑖, and the altitude, ℎ𝑖), and their range and range-rate measurements (𝜌𝑖 

and �̇�𝑖). All of these parameters must be provided at a given time, 𝑡. Then, by using geometric 

relationships, the algorithm is capable to obtain a satellite state vector, which is given in the 𝐼𝐽𝐾 

coordinate system (see Figure 3.9). 

 

 
Figure 3.9: Obtaining the satellite state vector by using Trilateration method. 

 

 

It may happen that the observing stations can only provide range measurements. In that case, 

Trilateration method could also be used to obtain the satellite state vector. If only range measurements 

of three different observing stations were given, Trilateration method would only provide a position 

satellite state vector at the time of range measurements. Repeating the same operation at another time, 

a new position state vector can be obtained, and so forth. There are some methods that calculate a 

velocity state vector from two or three different position state vectors; however, this document will 

only use Gibbs method because of its simplicity and geometrical solution. Thus, by using Trilateration 

and Gibbs methods when range-rate measurements are not available, the satellite state vector may also 

be obtained. It must be taken into account that Gibbs method fails when the position vectors are 

closely spaced due to its geometrical solution, so that one must take care of it before implementing 

Gibbs method.  

                                                      
1 As it will be seen in Section 3.4a, the model of the Earth that this document will follow is WGS-84. Therefore, 

variables such as the Earth’s equatorial radius, the Earth’s flatness, etc., will be taken from this model. 
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The reader can find the complete explanation of Gibbs method in Bate, Mueller, and White 

(1971). The Gibbs method needs three nonzero, coplanar position vectors, which represent three time-

sequential vectors of a satellite in its orbit. Then, from these three vectors, a velocity vector at the time 

of the second position vector is calculated. In this way, the satellite state vector is provided (see Figure 

3.10). 

 

 
Figure 3.10: Obtaining the satellite state vector by using Trilateration and Gibbs methods. 

 

 

Once the methods to obtain the satellite state vector have been introduced, the next step is to 

evaluate the precision of these methods. From Chapter 1, it has been explained that the precision 

expected in GEOSAR mission in order to obtain focused images is in the order of magnitude of the 

radar wavelength, 𝜆 (i.e., 𝜆 ≈ 3 cm taking into account the most restrictive case, the X-band). As there 

are not real measured data available, there is a need to simulate ideal range and range-rate 

observations in order to assess the suitability of Trilateration and Gibbs methods. In this way, the 

measurement of precision may be calculated comparing the initial ideal satellite state vector and the 

one obtained after the implementation of both methods. 

 

In the following sections, it will be explained the methodology used in order to build the ideal 

observations and the results that will be obtained after using Trilateration and Gibbs methods. Thus, 

the structure of the following sections can be summarized as follows: 

 

1) Create an ideal simulated satellite orbit. 
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2) From this simulated orbit, obtain all ideal observations. 

3) Do the inverse operation, i.e. obtain the satellite state vector and the satellite orbit from these 

ideal observations. 

4) Obtain the precision comparing both the ideal and retrieved observations. 

 

 

 

3.4. OBTAINING THE IDEAL DATA 

 

This section will cover the explanation of how the ideal observations will be calculated. It will start 

defining the model of the Earth that is going to be used as well as how the time will be computed. 

Both topics are important in order to place the observing bases over the Earth’s surface. Then, this 

section will define the parameters related to the initial position of the satellite and the position of the 

observing bases over the Earth’s surface. These observing bases will be called sites from now on. 

Finally, the ideal simulated satellite orbit will be created and all ideal observations will be calculated. 

 

Since GEOSAR orbit determination is required for a short interval of few hours, the satellite orbit 

will first be modelled based on the unperturbed two-body problem. The possible impact of 

perturbations from third bodies, atmospheric drag, solar radiation pressure, etc. is left for a future 

extension of this analysis. 

 

a) The Earth Model 

This document will follow WGS-841 in order to define the Earth’s size, shape, and gravity and 

geomagnetic fields. WGS-84 defines four parameters, which are listed in Table 3.1. 

 

WGS-84 

Parameter Notation Value 

Semi-major axis 

(Equatorial Earth’s radius) 

𝑎 

(𝑅eq) 
6 378.137 km 

Flattening of the Earth 
1

𝑓
 

1

298.257 223 563
 

Earth’s mean angular rotation 𝜔⊕ 7.292 115 × 10−5  
rad

s
 

Earth’s gravitational parameter 𝜇 398 600.441 8 
km3

s2
 

Table 3.1: Defining parameters of WGS-84. 

 

 

The Earth is not a perfect geometric sphere. In order to increase the accuracy of the 

calculations, a model for the geometric shape of the Earth must consequently be adopted. WGS-

                                                      
1 WGS-84 is an Earth-Centred, Earth-Fixed terrestrial reference system and geodetic datum. WGS84 is the 

standard U.S. Department of Defence definition of a global reference system for geospatial information and is 

the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial 

Reference System (ITRS). 
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84 defines the shape of the Earth as an oblate spheroid1 whose semi-major axis and flattening2 

values are listed in Table 3.1. The Earth’s mean angular rotation, 𝜔⊕, will be assumed to be 

constant and will be used when computing time between the ECI and ECEF coordinate systems. 

Finally, the Earth’s gravitational parameter, 𝜇, has previously been defined in section 3.2 and it 

will be needed, for example, to compute the COE when the satellite state vector is known. 

 

After describing the shape of the Earth, the location of different sites over the Earth’s surface 

can now be explained. Remember that three sites are needed in order to compute the satellite state 

vector, so that the parameters in order to locate a site over the Earth’s surface must be described. 

 

 
Figure 3.11: Longitude, 𝜆, and geodetic latitude, 𝜙. 

 

 

First, one must know the longitude, 𝜆, of the site. The longitude is defined as the east-west 

angular displacement measured positive to the east from a primary meridian3 in a plane (see 

Figure 3.11). The second parameter needed is the geodetic latitude, 𝜙, of the site. The geodetic 

latitude is the angle between the equatorial plane and the normal to the surface of the ellipsoid. 

One must be careful not to confuse this angle with the geocentric latitude, 𝜙gc, which is the angle 

measured at the Earth’s centre from the plane of the equator to the point of interest. Figure 3.12 

illustrates the difference between both angles. Finally, the third parameter is the height, ℎ, above 

the ellipsoid. By means of these three parameters, one may calculate the Cartesian coordinates of 

any site located over the Earth’s surface in an ECEF system following Equations (3.6).  

 

𝑟𝑥ECEF
=

(

 
𝑅eq

√1 − 𝑒⊕
2 sin2(𝜙)

+ ℎ

)

 cos(𝜙) cos(𝜆) 

𝑟𝑦ECEF
=

(

 
𝑅eq

√1 − 𝑒⊕
2 sin2(𝜙)

+ ℎ

)

 cos(𝜙) sin(𝜆) 

(3.6) 

                                                      
1 Oblate spheroids result from the revolution of an ellipse around its minor axis. 
2 The flattening is a parameter related to the eccentricity of the ellipsoid of revolution. 
3 The primary meridian for the Earth is the Greenwich meridian whose longitude is 0°. 
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𝑟𝑧ECEF
=

(

 
𝑅eq(1 − 𝑒⊕

2 )

√1 − 𝑒⊕
2 sin2(𝜙)

+ ℎ

)

 sin(𝜙) 

The parameter 𝑒⊕ is the eccentricity of the Earth whose value is related to the flattening of the 

Earth via Equation (3.7). 

 𝑒⊕ = √2
1

𝑓
− (

1

𝑓
)
2

 (3.7) 

 

 
Figure 3.12: Geodetic latitude, 𝜙, vs. Geocentric latitude, 𝜙gc. 

 

 

b) Time 

The moment of a phenomenon must be defined precisely. This moment will be called the epoch 

of the event and will designate a particular instant described as a date. Nowadays, there are four 

time scales providing timekeeping for scientific, engineering, and general purposes: sidereal time, 

solar (universal time), dynamical time, and atomic time. The complexity on determining the 

epoch of an event will be simplified within this document by using the sidereal time as follows. 

 

Sidereal time is a direct measure of the Earth’s rotation and it is measured positively in the 

anti-clockwise direction when viewed from the North Pole. Specifically, the sidereal time will be 

defined as the hour angle of the vernal equinox relative to the local meridian. Since the vernal 

equinox is the reference point, the sidereal time associated with the Greenwich meridian is termed 

Greenwich Mean Sidereal Time (GMST), 𝜃GMST. The sidereal time at a particular longitude is 

called Local Sidereal Time (LST), 𝜃LST. In this context, time is an angle measured from the 

observer’s longitude to the equinox (see Figure 3.13). 

 

The conversion between GMST and LST at a particular longitude, 𝜆, can be performed by 

means of Equation (3.8). 

 𝜃LST = 𝜃GMST + 𝜆 (3.8) 
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This formula requires a convention for east and west longitudes. The convention for this 

document is positive for east longitudes, and negative for west longitudes. Remember that the 

vernal equinox direction will be considered fixed into this document, as precession is not taken 

into account. Thus, the local sidereal time will provide the exact longitudes of each site in the ECI 

coordinate system, 𝐼𝐽𝐾. Equations (3.6) may consequently be reformulated now considering the 

LST. In this way, the ECI Cartesian coordinates of any site over the Earth’s surface can now be 

obtained via Equations (3.9). 

 

𝑟𝐼 =

(

 
𝑅eq

√1 − 𝑒⊕
2 sin2(𝜙)

+ ℎ

)

 cos(𝜙) cos(𝜃LST) 

𝑟𝐽 =

(

 
𝑅eq

√1 − 𝑒⊕
2 sin2(𝜙)

+ ℎ

)

 cos(𝜙) sin(𝜃LST) 

𝑟𝐾 =

(

 
𝑅eq(1 − 𝑒⊕

2 )

√1 − 𝑒⊕
2 sin2(𝜙)

+ ℎ

)

 sin(𝜙) 

(3.9) 

 

 
Figure 3.13: Greenwich Mean Sidereal Time, 𝜃GMST, and Local Sidereal Time, 𝜃LST. 

 

 

Equation (3.8) relates LST to GMST but do not provide information of how to calculate 

GMST. The GMST will be defined as follows: 
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 𝜃GMST(𝑡) = 𝜃GMST 0h + 𝜔⊕𝑡 (3.10) 

where 𝜃GMST 0h is the Greenwich Mean Sidereal Time at 0 h in radians or degrees, 𝜔⊕ is the 

Earth’s mean angular rotation in radians per second or degrees per second, and 𝑡 will be the 

elapsed time from the initial epoch (i.e., 𝜃GMST 0h). 

 

In this way, setting an initial value to 𝜃GMST 0h, and knowing the location parameters of each 

site (i.e., 𝜆, 𝜙, and ℎ), one will be able to calculate the ECI Cartesian coordinates of the site at 

different epochs by means of changing the values of the variable 𝑡. 

 

Now, the location parameters of each site may be defined. Remember that an ideal orbit must 

be created, so that the initial location of the satellite must also be described. Then, from the 

satellite-sites locations, the ideal range and range-rate observations will be obtained. 

 

c) Satellite Parameters 

The initial satellite parameters that are going to be used in order to create the satellite orbit are 

listed in Table 3.2. The term “initial” refers to the fact that the satellite orbit will not describe a 

perfect circular orbit, so that the satellite longitude will slightly vary over time when an ECEF 

coordinate system is considered. Having mentioned this fact, the initial satellite longitude chosen 

is 19.2° E, which is related to a longitude of one of the satellites of SES ASTRA company. On 

the other hand, the ideal simulated satellite orbit will be completely equatorial. Thus, the geodetic 

latitude will be 0° all the time.  

 

SATELLITE PARAMETERS 

Parameter Notation Value 

Initial longitude 𝜆sat 19° 12′ 0.0′′ E ≈ 0.335 rad 

Geodetic latitude 𝜙sat 0° 0′ 0.0′′ = 0.0 rad  

Table 3.2: Satellite parameters. 

 

 

d) Site Parameters 

Three sites are needed in order to calculate the satellite state vector from range and range-rate 

observations. These three sites have been chosen accordingly to places where the ARCs of 

GEOSAR mission might be located. Thus, Barcelona (Spain), Betzdorf (Luxemburg), and Milan 

(Italy) are places that fulfil such requirement and complete the main configuration of this 

document. The specific location parameters of these places are listed in Table 3.3. In addition, all 

these sites are placed in a map in red colour (see Figure 3.14) in order to have a better overview 

of their locations. 

 

As Trilateration method is geometric, it will also be studied how the separation of the sites 

affects to the satellite state vector calculation. For this reason, a second configuration, which 

includes specific locations of Las Palmas de Gran Canaria (Spain), Reykjavik (Iceland), and 

Ankara (Turkey) have also being added in Table 3.3 and Figure 3.14 (yellow colour) despite not 

being under the proposed satellite L-band beam coverage. 
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Finally, it has also been listed other specific locations of different places of Europe in order 

to evaluate the errors in the range and range-rate observations when either the main or the second 

configurations are chosen. This third group of places has been plotted in purple in Figure 3.14. 

 

SITE LOCATION PARAMETERS 

Map 

number 
Site Longitude (𝝀𝒊) 

Geodetic latitude 

(𝝓𝒊) 
Height (𝒉𝒊) 

01 Barcelona (Spain) 
2° 9′ 20.0′′ E 
(≈ 0.038 rad) 

41° 23′ 20.0′′ N 
(≈ 0.722 rad) 

0.020 km 

02 Betzdorf (Luxemburg) 
6° 19′ 47.8′′ E 
(≈ 0.110 rad) 

49° 41′ 34.6′′ N 
(≈ 0.867 rad) 

0.288 km 

03 Milan (Italy) 
9° 9′ 56.3′′ E 
(≈ 0.160 rad) 

45° 30′ 19.9′′ N 
(≈ 0.794 rad) 

0.120 km 

04 
Las Palmas de Gran Canaria 

(Spain) 

15° 25′ 41.1′′ W 
(≈ −0.269 rad) 

28° 7′ 59.4′′ N 
(≈ 0.491 rad) 

0.000 km 

05 Reykjavik (Iceland) 
21° 49′ 3.6′′ W 
(≈ −0.381 rad) 

64° 7′ 29.7′′ N 
(≈ 1.119 rad) 

0.000 km 

06 Ankara (Turkey) 
32° 41′ 46.9′′ E 
(≈ 0.571 rad) 

39° 44′ 33.8′′ N 
(≈ 0.694 rad) 

0.020 km 

07 Bern (Switzerland) 
7° 27′ 1.7′′ E 
(≈ 0.130 rad) 

46° 56′ 52.0′′ N 
(≈ 0.819 rad) 

0.540 km 

08 Lisbon (Portugal) 
9° 8′ 36.2′′ W 

(≈ −0.160 rad) 

38° 42′ 38.1′′ N 
(≈ 0.676 rad) 

0.040 km 

09 London (United Kingdom) 
0° 7′ 41.3′′ W 

(≈ −0.002 rad) 

51° 30′ 29.6′′ N 
(≈ 0.899 rad) 

0.035 km 

10 Berlin (Germany) 
13° 22′ 43.4′′ E 
(≈ 0.234 rad) 

52° 30′ 59.2′′ N 
(≈ 0.917 rad) 

0.034 km 

11 Warsaw (Poland) 
21° 0′ 44.0′′ E 
(≈ 0.367 rad) 

52° 14′ 58.8′′ N 
(≈ 0.912 rad) 

0.100 km 

12 Athens (Greece) 
23° 43′ 36.3′′ E 
(≈ 0.414 rad) 

37° 58′ 17.0′′ N 
(≈ 0.663 rad) 

0.100 km 

Table 3.3: Location parameters of each site. 

 

 

Once the initial satellite parameters and the location parameters of each site have been 

described and the theoretical bases have been explained, let us define the ideal simulated satellite 

orbit and obtain the ideal range and range-rate observations. 

 

e) Ideal Simulated Satellite Orbit 

A geostationary orbit must be circular (𝑒 = 0), equatorial (𝑖 = 0) and a satellite orbiting this kind 

of orbit must have a period of one sidereal day. A sidereal day is defined as the time between 

successive transits of the stars over a particular meridian. The reader should not confuse sidereal 

time with solar time, which is defined as the time between successive transits of the Sun over a 

particular meridian. Figure 3.15 shows the difference between both times. Thus, one sidereal day 

has 23h 56m 4.09s whereas a solar day has 24h. 

 

However, as seen in the example of Section 2.4, the geostationary satellite does not perfectly 

match a geostationary orbit since the orbit described by the satellite has a slight eccentricity and 

inclination. For this reason, the satellite must be relocated in order not to escape from the 

geostationary orbit from time to time. 
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Figure 3.14: Sites location. 

 

 

 

 
Figure 3.15: Sidereal day vs. Solar day (exaggerated view). 
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The ideal simulated satellite orbit that is going to be created will have a slight eccentricity 

(𝑒 = 2.0 × 10−4), so that the synthetic aperture may be performed. In addition, it will be 

perfectly equatorial (𝑖 = 0.0 rad) and it will have a period of one sidereal day. From this initial 

point, let us define the remaining orbital elements in order to complete the element set of classical 

orbital elements. 

 

The period, 𝑇, of a satellite orbit is related to the semi-major axis, 𝑎, via Equation (3.11).  

 𝑇 = 2𝜋√
𝑎3

𝜇
 (3.11) 

 

Isolating 𝑎 from Equation (3.11), one can obtain the value of the semi-major axis as follows 

𝑎 = ((
𝑇

2𝜋
)
2

𝜇)

1
3⁄

= ((
(23 × 3600 + 56 × 60 + 4.09) s

2𝜋
)

2

× 398 600.441 8 
km3

s2
)

1
3⁄

= 

       = 42 164.169 km 

 

Then, the semi-latus rectum, 𝑝, can be calculated via Equation (3.1) 

𝑝 = 𝑎(1 − 𝑒2) = 42 164.169 km × (1 − (2 × 10−4)2) = 42 164.168 km 

 

As the orbit has been defined as perfectly equatorial, the angles right ascension of the 

ascending node, 𝛺, argument of perigee, 𝜔, and argument of latitude, 𝑢, will remain undefined. In 

order to calculate the true anomaly, 𝜈, and the true longitude of perigee, �̃�true, the perigee point 

of the orbit must be defined. Let us put the perigee point on the intersection between the satellite 

orbit and the axis 𝐼 of the ECI coordinate system. Thus, the value of the true longitude of perigee 

is 

�̃�true = 0.0 rad  

Now, the initial epoch of the entire system must also be defined in order to find the value of the 

true anomaly. Let us consider the initial epoch called 𝑡0 and its value be 

𝑡0 = 00: 00: 00 h = 0 s 

At this initial epoch, it is defined that the Greenwich meridian match the direction of the axis 𝐼, so 

that 𝜃GMST 0h = 0.0 rad, and therefore 𝜃GMST(𝑡0) = 0.0 rad. In this case, the true anomaly at 𝑡0, 

i.e. 𝜈0, is defined equal to the initial satellite longitude, 𝜆sat. 

𝜈0 = 𝜆sat = 0.335 rad = 19.2° 

Note the use of the subscript 0 in order to define the epoch 𝑡0 of the true anomaly. As the value of 

the true anomaly changes along the period of the satellite orbit, it must be clarified the epoch 

where 𝜈 is given. This also happens to other orbital elements such as 𝑢, 𝜆true, 𝐸, or 𝑀. 

 

Finally, the last orbital element needed to complete the element set is the true longitude at 𝑡0, 

𝜆true0
. It can be calculated following one of the expressions of Equation (3.4). 
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𝜆true0
= �̃�true + 𝜈0 = 𝜆sat = 0.335 rad = 19.2° 

 

Table 3.4 summarizes all COE computed from the ideal satellite orbit at epoch 𝑡0. This table 

also highlights those orbital elements that can be used, as an element set, to compute all points of 

the satellite orbit. The procedure to obtain these points is as follows: a) calculate the satellite state 

vector from this initial element set (see Section 3.2), b) change the value of 𝜈 and recalculate the 

satellite state vector using this new value of 𝜈, and c) repeat b) until completing one revolution of 

the values of 𝜈 (i.e., from 0 to 2π rad). These steps are correct because the system used fulfills a 

two-body problem and no perturbations have been taken into account. Vallado (2013) provides 

further information when perturbations are considered. Figure 3.16 illustrates the ideal simulated 

satellite orbit obtained by using the classical orbital elements of Table 3.4. 

 

COE OF THE IDEAL SIMULATED SATELLITE ORBIT AT 𝒕𝟎 

Orbital element Notation Value 

Semi-major axis 𝑎 42 164.169 km 

Eccentricity 𝒆 𝟐. 𝟎 × 𝟏𝟎−𝟒 

Semi-latus rectum 𝒑 𝟒𝟐 𝟏𝟔𝟒. 𝟏𝟔𝟖 𝐤𝐦 

Inclination 𝒊 𝟎. 𝟎 𝐫𝐚𝐝 (𝟎. 𝟎°) 

Right ascension of the ascending node 𝛺 undefined 

Argument of perigee 𝜔 undefined 

True anomaly 𝝂𝟎 𝟎. 𝟑𝟑𝟓 𝐫𝐚𝐝 (𝟏𝟗. 𝟐°) 

True longitude of perigee �̃�𝐭𝐫𝐮𝐞 𝟎. 𝟎 𝐫𝐚𝐝 (𝟎. 𝟎°) 

Argument of latitude 𝑢0 undefined 

True longitude 𝝀𝐭𝐫𝐮𝐞𝟎
 𝟎. 𝟑𝟑𝟓 𝐫𝐚𝐝 (𝟏𝟗. 𝟐°) 

Table 3.4: COE computed for the ideal simulated satellite orbit (in bold, the element set). 

 

 

In order to conclude the definition of the ideal simulated satellite orbit, the relationship 

between a particular epoch and the position of the satellite at this particular epoch must be 

established. In the previous paragraph, it has been described how one may plot the satellite orbit 

from an element set; however, as true anomaly changes along the satellite orbit, which is the true 

anomaly value that corresponds at one particular epoch? The location of a satellite in orbit after 

certain amount of time is so-called Kepler’s problem or more generally, propagation. 

 

The simplest way to solve Kepler’s problem involves classical orbital elements. In the time 

between successive positions in the orbit, the only variable to change when no perturbations are 

included is the true anomaly, 𝜈, or associated parameters for the special orbits (𝑢, �̃�true, 𝜆true). 

Knowing the conversion between the anomalies and the mean motion solved with Kepler’s 

equation (see Equation [3.4]), the individual anomalies can be updated, and then the position and 
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velocity vectors can also be updated. Below, it is shown the procedure in order to solve Kepler’s 

problem via classical orbital elements. 

 

 
Figure 3.16: Different views of the ideal simulated satellite orbit around the Earth from COE of Table 3.4. 

 

 

First, obtain the COE from the initial satellite state vector. Let us call this initial epoch 𝑡0. 

Second, calculate the eccentric anomaly at 𝑡0, 𝐸0, via Equations (3.12). 

 

sin(𝐸) =
√1 − 𝑒2 sin(𝜈)

1 + 𝑒 cos(𝜈)
 

cos(𝐸) =
𝑒 + cos(𝜈)

1 + 𝑒 cos(𝜈)
 

(3.12) 

One of the two formulas above can be used to find the value of 𝐸0 by using 𝜈0, taking care of 

resolving the angle to the proper quadrant. Third, find the mean anomaly at 𝑡0, 𝑀0, via Equation 

(3.4) (Kepler’s equation). 

𝑀0 = 𝐸0 − 𝑒 sin(𝐸0) 

Forth, calculate the mean anomaly at new epoch. Let us call this new epoch 𝑡1, so that the mean 

anomaly at 𝑡1 is 𝑀1. 

𝑀1 = 𝑀0 + 𝑛Δ𝑡 

Δ𝑡 corresponds to the elapsed time between the initial and new epochs (Δ𝑡 = 𝑡1 − 𝑡0). Fifth, 

obtain the eccentric anomaly at 𝑡1, 𝐸1, by solving the transcendental operation of Kepler’s 

equation by means of the Newton-Raphson iteration (Equation [3.5]). 

𝑀1 = 𝐸1 − 𝑒 sin(𝐸1)   ⇒  𝐸1𝑛+1
= 𝐸1𝑛

+
𝑀1 − 𝐸1𝑛

+ 𝑒 sin(𝐸1𝑛
)

1 − 𝑒 cos(𝐸1𝑛
)

 

Sixth, find the true anomaly at 𝑡1, 𝜈1, via one of the two Equations below considering the 

eccentric anomaly value obtained in the previous step. 
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sin(𝜈) =
√1 − 𝑒2 sin(𝐸)

1 − 𝑒 cos(𝐸)
 

cos(𝜈) =
cos(𝐸) − 𝑒

1 − 𝑒 cos(𝐸)
 

(3.13) 

Finally, calculate the satellite state vector at 𝑡1 by using the same classical orbital elements of 

epoch 𝑡0, but substituting the initial true anomaly, 𝜈0, by the new value obtained at 𝑡1, 𝜈1. 

 

All this procedure can be repeated for all epochs where the ideal satellite state vector must be 

computed. As an example, Figures 3.17 and 3.18 show the evolution that the ideal satellite state 

vector obtained from Table 3.4 suffers along one orbit (i.e., one sidereal day). This evolution has 

been depicted for all six Cartesian components forming the satellite state vector in order to have a 

different view of Figure 3.16. 

 

In this way, the ideal simulated satellite orbit has been completely described. Let us now 

explain how to obtain the ideal range and range-rate observations from the satellite state vectors 

in the following sub-section. 

 

 

 

 

 
Figure 3.17: Ideal satellite position state vector evolution along one satellite orbit. 
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Figure 3.18: Ideal satellite velocity state vector evolution along one satellite orbit. 

 

 

f) Ideal Range and Range-rate Observations 

Figure 3.19 illustrates the geometry involved on the range observations computation. 

 

 
Figure 3.19: Geometry of range observations computation. 

 

 

The ideal range observations of each site, 𝜌, can be calculated as the Euclidean norm of its 

corresponding vector range, 𝛒, which is the subtraction between the satellite position state vector, 

𝐫, and the site position state vector, 𝐫𝐬𝐢𝐭𝐞. 

 𝜌 = ‖𝛒‖ = ‖𝐫 − 𝐫𝐬𝐢𝐭𝐞‖ = √(𝑟𝑥 − 𝑟site𝑥
)
2
+ (𝑟𝑦 − 𝑟site𝑦

)
2
+ (𝑟𝑧 − 𝑟site𝑧

)
2
 (3.14) 
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Having specified an epoch (e.g., 𝑡0 = 0 s), the satellite position state vector can be found 

following the steps of the previous sub-section whereas the site position state vector can be 

calculated via Equations (3.9). This latter set of equations need both the Local Sidereal Time, 

𝜃LST, which can be obtained by using Equation (3.8), and the Greenwich Mean Sidereal Time at 

𝑡0, 𝜃GMST(𝑡0), which is calculated via Equation (3.10). Remember that 𝜃GMST 0h has been defined 

to be equal to 0.0 rad. In this way, all ideal range observations of different sites needed at 𝑡0 can 

be obtained. Note that the ECI coordinate system is the coordinate system used to provide both 𝐫 

and 𝐫𝐬𝐢𝐭𝐞 vectors. 

 

On the other hand, in order to calculate the ideal range-rate observations, two definitions 

must be given. First, the range-rate will be defined as the dot product between the relative 

velocity of the satellite to the site, 𝐯𝐫𝐞𝐥, and the unit range vector, �̂� (see Equation [3.15]). 

 �̇� = 𝐯𝐫𝐞𝐥 · �̂� = 𝐯𝐫𝐞𝐥 ·
𝛒

𝜌
 (3.15) 

Second, 𝐯𝐫𝐞𝐥 will be defined as 

 𝐯𝐫𝐞𝐥 = 𝐯 − 𝐯𝐬𝐢𝐭𝐞 (3.16) 

where 𝐯 is the satellite velocity state vector, and 𝐯𝐬𝐢𝐭𝐞 is the site velocity state vector. Both vectors 

are given in the ECI coordinate system. 𝐯 can be calculated following the steps of the previous 

sub-section whereas 𝐯𝐬𝐢𝐭𝐞 can be obtained via Equation (3.17), 

 𝐯𝐬𝐢𝐭𝐞 = 𝜔⨁ [
−𝑟𝐽
𝑟𝐼
0

] (3.17) 

where 𝜔⨁ is the Earth’s mean angular rotation (see Table 3.1) and the 𝑟 components are obtained 

from Equations (3.9). Thus, the relative velocity can be defined as the satellite velocity in an 

ECEF coordinate system. Figure 3.20 shows all the geometry involved in the range-rate 

observations computation in order to clarify all equations used. 

 

In addition, Figures 3.21 and 3.22 illustrate the ideal range and range-rate histories 

respectively that, for example, the Barcelona location will provide from the ideal simulated 

satellite orbit created. Thus, one may have an overview of the shape and order of magnitude of 

range and range-rate curves along time. Both figures start at epoch 𝑡0 = 0 s and last one satellite 

orbit. 

 

 

At this point, all theoretical bases and ways to obtain the ideal parameters have already been 

explained. This ideal system may now provide valuable information of how Trilateration and Gibbs 

methods work. The following sections analyse both methods, first from the ideal range and range-rate 

observations, and, second, adding noise to these ideal observations. This latter step will show a more 

real case of the precision obtained by using both methods. 
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Figure 3.20: Geometry of range-rate observations computation. 

 

 

 

 
Figure 3.21: Ideal range history of Barcelona location along one satellite orbit. 
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Figure 3.22: Ideal range-rate history of Barcelona location along one satellite orbit. 

 

 

 

3.5. TRILATERATION AND GIBBS METHODS ANALYSES 

 

As commented in section 3.2, Trilateration method may calculate a satellite state vector, which will be 

called approximate satellite state vector from now on, from range and range-rate observations of three 

different sites at the same epoch. It has also been explained that if only range observations were 

available, the approximate satellite state vector would be provided from range observations of three 

different sites at three different epochs by using both Trilateration and Gibbs methods. 

 

This section will analyse the results obtained in both cases taking into account that Gibbs method 

will fail if consecutive range observations are given in two epochs that are very close in time (i.e., a 

few seconds of difference). Thus, as GEOSAR mission may need long integration times in order to 

obtain higher resolution images (i.e., 4 − 6 h), epochs distanced 9 000 s will be used when range 

observations are only given. 

 

Table 3.5 summarizes all conditions taken into account when the simulation of both cases 

(settings) has been run. The reader may consult Appendix A for further information about all Matlab 

functions used to perform such simulations. 

 

The important thing when evaluating all settings is their precision, especially in the range history. 

Thus, considering the worst case of GEOSAR mission (i.e., the X-band, 𝜆~3 cm), the error in range 

history of each location site under the L-band coverage (see Figure 3.14 and Table 3.3) should be 

maintained over 3 cm during all synthetic aperture. For this reason, the error will be obtained at two 
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different epochs: a) the initial epoch when the approximate satellite state vector is given, and b) an 

epoch 6 h later from the initial epoch, 𝑡f. In this way, the errors at the beginning and end of the radar 

synthetic aperture will be shown. Remember that, on the other hand, autofocus synthetic aperture 

techniques can be used to refine the range history predicted from the orbital model, so that the 

precision requirement could be relaxed in the order of magnitude of tens of centimetres. 

 
       

 Setting A   Setting B   
       

 
 

Location of the three sites: 

(01) Barcelona (Spain) 

(02) Betzdorf (Luxemburg) 

(03) Milan (Italy) 
 

IDEAL DATA 

- Type of observations generated: 

RANGE. 

- Epoch/s when the observations are 

generated: 

𝑡0 = 0 s, 

𝑡1 = 9 000 s, and 

𝑡2 = 18 000 s. 
 

APPROXIMATE DATA 

- Method/s used: 

TRILATERATION and GIBBS. 

- Epoch when the approximate 

satellite state vector is given: 

𝑡1 = 9 000 s. 
 

 
 

Location of the three sites: 

(01) Barcelona (Spain) 

(02) Betzdorf (Luxemburg) 

(03) Milan (Italy) 
 

IDEAL DATA 

- Type of observations generated: 

RANGE and RANGE-RATE. 

- Epoch/s when the observations are 

generated: 

𝑡0 = 0 s. 

 

 
 

APPROXIMATE DATA 

- Method/s used: 

TRILATERATION. 

- Epoch when the approximate 

satellite state vector is given: 

𝑡0 = 0 s. 
 

 

       

Table 3.5: Summary of all conditions considered on settings A and B. 

 

 

The error, 𝜉, will be calculated following Equation 3.18, so that all interesting approximate values 

obtained from settings of Table 3.5 will be compared to the ideal ones. As said before, the most 

important parameters to be compared are range observations1; however, the satellite state vector values 

and their errors will also be studied since they directly affect the determination of range observations. 

In addition, the range-rate observation values and their errors will also be shown when the evaluated 

setting uses these observations in order to obtain the initial approximate state vector. Finally, the 

classical orbital elements values and their errors will also be considered as an alternative view of the 

satellite state vector. 

 𝜉 = approximate value − ideal value (3.18) 

 

The results will be organised in tables that the reader may consult in Appendix B. All values 

shown in these tables will be presented with many decimal figures in order to better quantify the 

precision of each setting used. In this section, the main results will be depicted by means of different 

plots, which will show either the comparison between ideal and approximate values of a specific 

                                                      
1 The approximate range and range-rate observations can be obtained following section 3.4f once the 

approximate satellite state vector is calculated. 
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parameter or the evolution of the errors of one particular parameter. In any case, the results will be 

plotted along one satellite orbit from the initial epoch of each setting. 

 

a) Results Analysis of Setting A 

In this case, plots of errors have been selected since there are no visual differences between ideal 

and approximate parameters. In this way, Figures 3.23 and 3.24 show the errors on each satellite 

state vector component, and Figure 3.25 illustrates the error in range history of Barcelona location 

(one of the sites used to calculate the initial approximate satellite state vector). 

 

As seen from the figures below, the errors in the satellite state vector are quite smooth during 

the first hours, and then they begin to disturb. This fact affects the errors in range history, which 

its values are less predictable in the last 12 hours. However, one can see from the tables of 

Appendix A or from the figures shown here that the order of magnitude of all errors is very small. 

For example, the errors in range observations of each site evaluated are less than nanometres at 𝑡1 

(initial epoch), and less than micrometres at 𝑡f (6 hours after the initial epoch). Therefore, one 

may conclude that the precision of the whole system when using both Trilateration and Gibbs 

methods is very high. Remember that all system built is an ideal case where perturbations and 

noise are not taking into account, so that this precision could be expected. 

 

 

 

 

 
Figure 3.23: Errors in the satellite position state vector along one satellite orbit (setting A). 
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Figure 3.24: Errors in the satellite velocity state vector along one satellite orbit (setting A). 

 

 

 
Figure 3.25: Errors in the range history of Barcelona location along one satellite orbit (setting A). 
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b) Results Analysis of Setting B 

This setting provides similar order of magnitude errors than setting A, so that the use of ideal 

range and range-rate observations does not improve the precision of the system obtained in the 

previous subsection where range observations were only used. In this way, both settings A and B 

work in a very similar way when perturbations and noise are not considered. 

 

Figure 3.26 illustrates an example of the error in range-rate history of Barcelona location. As 

seen from the figure, the errors are of the order of magnitude of tens of picometres per second. 

They are therefore really small. 

 

 
Figure 3.26: Errors in the range-rate history of Barcelona location along one satellite orbit (setting B). 

 

 

Trilateration method alone or combined with Gibbs method almost provides the same and very 

high precision results when all parameters are considered ideal. As commented before, this is an ideal 

case that has been useful to evaluate the order of magnitude of errors of all Matlab functions used 

during both simulations. In order to get closer to reality, let us add noise to the ideal range and range-

rate observations and see how the precision of both settings is affected. In this way, the quantity of 

noise to be added must consequently be calculated. Next section shows how to calculate and what 

value acquires this noise quantity by using the parameters of GEOSAR mission. After that, section 3.7 

will show the new results obtained when adding such noise on ideal range and range-rate observations. 
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3.6. NOISE OF range and range-rate OBSERVATIONS 

 

Levanon (1988) develops the Cramer-Rao lower bounds for both time delay and frequency 

estimations. From these lower bounds, the standard deviation of range and range-rate observations 

may be derived. Thus, knowing some specific parameters of GEOSAR mission, one may calculate the 

quantity of noise to be added to the ideal range and range-rate observations of the previous section. Let 

us see how these quantities are obtained. 

 

Assuming that the delay measurement is performed after synchronous detection when the signal 

is at baseband, the Cramer-Rao lower bound for delay estimation can be calculated as 

 𝜎𝜏
2 =

𝑁0

2𝐸𝛽2
 (3.19) 

where 𝐸 𝑁0⁄  is the Signal-to-Noise Ratio and 𝛽 is called the RMS (Root Mean Square) bandwidth, 

which can be expressed as the Fourier transform of the envelope of the complex signal as 

 𝛽2 =
(2π)2 ∫ 𝑓2|𝐺(𝑓)|2𝑑𝑓

∞

−∞

∫ |𝐺(𝑓)|2𝑑𝑓
∞

−∞

 (3.20) 

Now, considering a linear FM signal (i.e., the GEOSAR mission case), the Fourier transform of the 

signal envelope can be approximated by 

 𝐺(𝑓) = {
1,
0,

    𝐵 2⁄ ≤ 𝑓 ≤ 𝐵 2⁄

    elsewhere          
  

where 𝐵 is the band-limited width of the signal. Using this 𝐺(𝑓) in Equation (3.20), the value of 𝛽2 of 

a linear FM signal can be obtained as 

𝛽2 =
(2π)2 ∫ 𝑓2𝑑𝑓

𝐵 2⁄

−𝐵 2⁄

∫ 𝑑𝑓
𝐵 2⁄

−𝐵 2⁄

=

(2π)2 [
𝑓3

3
]
−𝐵 2⁄

𝐵 2⁄

[𝑓]
−𝐵 2⁄
𝐵 2⁄

=
(2π)2 (

𝐵3

8
+

𝐵3

8
)

3 (
𝐵
2

+
𝐵
2
)

=
(2π)22𝐵3

24𝐵
=

1

3
π2𝐵2 

which yields the Cramer-Rao lower bound for time delay of a FM signal. 

 
𝜎𝜏

2 =
3

π2𝐵2 (2
𝐸
𝑁0

)
 

(3.21) 

Knowing that the relation between range resolution, Δ𝜌, and time delay, 𝜏, in a radar case can be 

obtained as 

 Δ𝜌 =
𝑐𝜏

2
 (3.22) 

where 𝑐 is the speed of light, the standard deviation of range measurements, 𝜎𝜌, can consequently be 

calculated as 

 𝜎𝜌 = √𝜎𝜌
2 = √

𝑐2

4
𝜎𝜏

2 =
𝑐

2√
3

π2𝐵2 (2
𝐸
𝑁0

)
 (3.23) 

 



 

 

Chapter 3: Initial Orbit Determination 

 

 
 

80 Projecte Final de Carrera (PFC)   

On the other hand, Levanon defines the Cramer-Rao lower bound on frequency estimation as 

 
𝜎𝑓𝐷

2 =
1

𝛼2 (2
𝐸
𝑁0

)
 

(3.24) 

where 𝐸 𝑁0⁄  is the Signal-to-Noise Ratio and 𝛼 is called the RMS time duration, which is defined as 

 𝛼2 =
(2π)2 ∫ 𝑡2|𝑞(𝑡)|2𝑑𝑡

∞

−∞

∫ |𝑞(𝑡)|2𝑑𝑡
∞

−∞

 (3.25) 

where 𝑞(𝑡) is the complex representation of the signal. Now, considering the linear FM signal of a 

single-frequency pulse of duration 𝑇 and envelope 𝐴 (i.e., the GEOSAR mission case), the signal 

envelope 𝑞(𝑡) can be approximated by 

 𝑞(𝑡) = {
𝐴,
0,

    𝑇 2⁄ ≤ 𝑡 ≤ 𝑇 2⁄
    elsewhere          

  

Substituting this 𝑞(𝑡) in Equation (3.25), the value of 𝛼2 of a linear FM signal can be obtained as 

𝛼2 =
(2π)2 ∫ 𝑡2𝐴2𝑑𝑡

𝑇 2⁄

−𝑇 2⁄

∫ 𝐴2𝑑𝑡
𝑇 2⁄

−𝑇 2⁄

=

(2π)2 [
𝑡3

3
]
−𝑇 2⁄

𝑇 2⁄

[𝑡]−𝑇 2⁄
𝑇 2⁄

=
(2π)2 (

𝑇3

8
+

𝑇3

8
)

3 (
𝑇
2

+
𝑇
2
)

=
(2π)22𝑇3

24𝑇
=

1

3
π2𝑇2 

which yields the Cramer-Rao lower bound for frequency of a FM signal 

 
𝜎𝑓𝐷

2 =
3

π2𝑇2 (2
𝐸
𝑁0

)
 

(3.26) 

As in the previous case, a relation between the frequency Doppler, 𝑓𝐷, and the range-rate, �̇�, must be 

established. This is done via Equation (3.27),  

 𝑣r = −
𝜆

2
𝑓𝐷 (3.27) 

where 𝜆 is the signal wavelength, and 𝑣r is the radial speed between the radar and the target. Both 𝑣r 

and �̇� can be considered the same value. Thus, the standard deviation of range-rate observations, 𝜎𝑣r
, 

can consequently be calculated as 

 𝜎𝑣r
= √𝜎𝑣r

2 = √
𝜆2

4
𝜎𝑓𝐷

2 =
𝜆

2√
3

π2𝑇2 (2
𝐸
𝑁0

)
 (3.28) 

 

Once both standard deviations have been defined, let us calculate their value on the particular 

context of GEOSAR mission. In Casado (2016), all parameters needed to calculate 𝜎𝜌 and 𝜎𝑣r
 are 

provided, which are summarized in Table 3.6. It has been considered the worst case, so that all 

parameters have been selected from the frequency at lower band (i.e., the L-band) and no sub-

apertures1 have been taken into account. 

                                                      
1 During the processing of the radar signal obtained in all synthetic aperture, it may be considered to process the 

signal into smaller apertures, called sub-apertures, in order to achieve better performance.  
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PARAMETERS OF GEOSAR MISSION 

Parameter Notation Value 

Frequency (L-band) 𝑓 1.27 × 109 Hz 

Signal-to-Noise Ratio 𝐸
𝑁0

⁄  24.8 dB 

Bandwidth 𝐵 3.6 MHz 

Pulse duration 𝑇 0.763 s 

Table 3.6: Parameters of GEOSAR mission needed to obtain 𝜎𝜌 and 𝜎𝑣r
. 

 

 

Thus, from parameters of Table 3.6, the standard deviation values of range and range-rate 

observations yield 

𝜎𝜌 =
𝑐

2√
3

π2𝐵2 (2
𝐸
𝑁0

)
=

3 × 108  
m
s

2
√

3

π2 × (3.6 × 106 Hz)2 × 2 × 102.48
= 0.935 m 

𝜎𝑣r
=

𝜆

2√
3

π2𝑇2 (2
𝐸
𝑁0

)
=

3 × 108  
m
s

2 × 1.27 × 109 Hz
√

3

π2 × (0.763 s)2 × 2 × 102.48
= 3.47 × 10−3  

m

s
 

 

Therefore, the precision of Trilateration and Gibbs methods can now be re-evaluated taking into 

account both standard deviation values. However, in order to introduce a little margin in the numbers 

obtained above and work with simpler numbers, let us round 𝜎𝜌 and 𝜎𝑣r
, and choose the values of 

Table 3.7. 

 

STANDARD DEVIATION OF RANGE AND 

RANGE-RATE OBSERVATIONS 

Parameter Notation Value 

Standard deviation of 

range observations 
𝜎𝜌 1 m 

Standard deviation of 

range-rate observations 
𝜎𝑣r

 5 
mm

s
 

Table 3.7: Standard deviation of range and range-rate observations. 

 

 

 

3.7. TRILATERATION AND GIBBS METHODS ANALYSES ADDING NOISE 

 

This section will analyse how the effect of adding noise to the ideal range and range-rate observations 

will affect the approximate satellite state vector calculation, and therefore the range values acquisition. 

This noise will follow a normal distribution with mean equal to 0 for all observations, and standard 

deviation equal to one of the two values of Table 3.7. In addition, each quantity of noise added to each 
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range and range-rate observation will be different. Thus, for example, the ideal range observation of 

Barcelona location at epoch 𝑡1 will contain a different quantity of noise that the same observation at 

epoch 𝑡2 or the range observation of Betzdorf location at epoch 𝑡1. In this way, all samples will be 

independent of one another. Once the noisy observations have been created, then the approximate 

satellite state vector will be found and all errors will be computed in the same way as Section 3.5. 

 

Repeating the same simulation different times will provide different results since the noise is 

randomly added to the observations. For this reason, this section will show the results of only one 

simulation using the same configuration of setting B (Section 3.5), but with noisy observations. Thus, 

the reader may have an overview of the effect of adding noise on the initial orbit determination. In 

order to better quantify the effect of noise, a statistical simulation must be performed. This will be 

done in the following section. 

 

As in Section 3.5, the reader may consult the numerical results in Appendix B. Here, some plots 

will be depicted in the following figures showing either the evolution of the errors or the comparison 

between the ideal and approximate values of one particular parameter along one satellite orbit. 

 

 
Figure 3.27: Ideal (in green) and approximate (in red) satellite orbits around the Earth (setting B + noise). 

 

 

From Figure 3.27, one can start to differentiate between the ideal (in green) and approximate (in 

red) satellite orbits. The approximate satellite orbit is no longer strictly equatorial since it has a little 

inclination (see Table B.12). In addition, the eccentricity value has increased more than four times the 

ideal value. All of this is due to the fact that the errors in the approximate satellite state vectors are 

becoming higher. One may also appreciate the magnitude of such errors in Figures 3.28 and 3.29. 
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Figure 3.28: Errors in the satellite position state vector along one satellite orbit (setting B + noise). 

 

 

 
Figure 3.29: Errors in the satellite velocity state vector along one satellite orbit (setting B + noise). 
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At the initial epoch, 𝑡0, the magnitude of the errors between the ideal and approximate satellite 

position state vectors are of tens and hundreds of metres, whereas, at final epoch, 𝑡f, the magnitude of 

the errors increases up to tens of kilometres. For the satellite velocity state vector case, the errors are 

more constant and in the order of magnitude of metres per second. Such errors obviously affect the 

range history of each site becoming around 1 m at 𝑡0 and reaching the 30 km at 𝑡f (see Appendix B). 

This fact is illustrated in Figure 3.30, where the ideal and approximate range histories of Barcelona 

location have been depicted. As seen in this figure, there is a significant difference between both 

curves mainly due to the difference in the eccentricities of both satellite orbits. 

 

 
Figure 3.30: Ideal (in green) and approximate (in red) range histories of Barcelona location along one satellite 

orbit (setting B + noise). 

 

 

One thing to highlight is that the same noise added to the ideal range and range-rate observations 

is obtained when computing the error in the range and range-rate observations after the approximate 

satellite state vector is calculated at the initial epoch (see Table 3.8). This fact ensures that the system 

built works properly since Trilateration and Gibbs methods are geometric methods and provide exact 

results. 

 

In order to conclude the analysis of adding noise in a single simulation, Figure 3.31 shows the 

ideal and approximate range-rate histories of Barcelona location along one satellite orbit. From this 

figure, one may also see the difference between both curves. However, the range-rate history suffers 

less degradation due to noise compared to the range history. After one satellite orbit, the ideal and 

approximate range-rate observations are very similar, whereas this fact does not occur between the 

final values of the ideal and approximate range observations. Therefore, in order not to exceed the 

amount of figures shown, only those figures that affect the satellite state vector and range history will 

be depicted in the following sections. 
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NOISE ADDED AND ERROR OBTAINED IN 𝝆 AND �̇� 

OBSERVATIONS AT 𝒕𝟎 = 𝟎 𝐬 

  

Num. Site Noise added (𝜎𝜌 or 𝜎𝑣r
) 

Error obtained 
(between ideal and 

approximate observations) 

 Error 
(between noise added and 

error obtained) 

 

RANGE OBSERVATIONS [km] 

01 BCN 0.000 537 667 140 0.000 537 667 147  0.000 000 000 007 

02 BET -0.000 433 592 022 -0.000 433 592 017  0.000 000 000 005 

03 MIL 0.000 725 404 225 0.000 725 404 243  0.000 000 000 018 
 

RANGE-RATE OBSERVATIONS [km/s] 

01 BCN 0.000 004 310 867 0.000 004 310 867  0.000 000 000 000 

02 BET 0.000 013 847 185 0.000 013 847 185  0.000 000 000 000 

03 MIL -0.000 001 024 830 -0.000 001 024 830  0.000 000 000 000 

Table 3.8: Difference between the noises added to the ideal 𝜌 and �̇� observations and the error obtained 

between the ideal and approximate 𝜌 and �̇� observations at epoch 𝑡0. 

 

 

 

 

 
Figure 3.31: Ideal (in green) and approximate (in red) range-rate histories of Barcelona location along one 

satellite orbit (setting B + noise). 
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3.8. STATISTICAL ANALYSES OF TRILATERATION AND GIBBS METHODS 

 

Since every simulation run when adding noise to the ideal range and range-rate observations gives 

similar but different results, there is a need to perform a statistical analysis in order to better delimit all 

results obtained and to better evaluate the precision of the system. 

 

This section will provide these statistics showing the results of the different parameters analysed 

by means of histograms. The numerical results will also be given in tables as previous sections 

showing the mean and standard deviation of the errors in each parameter (consult Appendix B). The 

main parameters to be analysed will be the satellite state vector and range observations of different 

locations; however, the range-rate observations will also be discussed if needed. Following the same 

criteria as Section 3.5, the results will be shown at two different epochs simulating the initial and final 

epochs of the radar synthetic aperture (i.e., 𝑡0 and 𝑡f = 𝑡0 + 6 h respectively). 

 

First, the precision of settings A and B plus noise, which will be called setting C and D 

respectively from now on (see Table 3.9), will be studied. Then, as both settings will not achieve the 

required precision, other settings will be evaluated. Thus, a complete overview of the Trilateration and 

Gibbs methods performance will be acquired. Finally, the most important results will be collected all 

together and shown in a table in Section 3.9. As last remark, it has been considered to repeat the 

simulation of each setting 1 000 times in order to perform such statistics. 

 
       

 Setting C   Setting D   
       

 
 

Location of the three sites: 

(01) Barcelona (Spain) 

(02) Betzdorf (Luxemburg) 

(03) Milan (Italy) 
 

IDEAL DATA 

- Type of observations generated: 

RANGE. 

- Epoch/s when the observations are 

generated: 

𝑡0 = 0 s, 

𝑡1 = 9 000 s, and 

𝑡2 = 18 000 s. 
 

NOISE ADDED 

- Range observations: 

MEAN: 0 m / STD.: 1 m. 

 

 
 

APPROXIMATE DATA 

- Method/s used: 

TRILATERATION and GIBBS. 

- Epoch when the approximate 

satellite state vector is given: 

𝑡1 = 9 000 s. 
 

 
 

Location of the three sites: 

(01) Barcelona (Spain) 

(02) Betzdorf (Luxemburg) 

(03) Milan (Italy) 
 

IDEAL DATA 

- Type of observations generated: 

RANGE and RANGE-RATE. 

- Epoch/s when the observations are 

generated: 

𝑡0 = 0 s. 

 

 
 

NOISE ADDED 

- Range observations: 

MEAN: 0 m / STD.: 1 m. 

- Range-rate observations: 

MEAN: 0 mm s⁄  / STD.: 5 mm s⁄ . 
 

APPROXIMATE DATA 

- Method/s used: 

TRILATERATION. 

- Epoch when the approximate 

satellite state vector is given: 

𝑡0 = 0 s. 
 

 

       

Table 3.9: Summary of all conditions considered on settings C and D. 
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a) Results Analysis of Setting C 

Adding noise to the ideal range observations obviously affect the initial satellite state vector 

determination. In this case, 1 m of standard deviation noise in range observations lead to locate 

the initial satellite position state vector with errors of 50 to 150 metres on each of its components 

compared to the initial ideal values. On the other hand, the errors in each component of the initial 

satellite velocity state vector are around 10 millimetres per second (see Figure 3.32). 

 

Such errors in the satellite state vector will degrade over time. After 6 h, some errors have 

increased, especially those relating to the satellite position state vector, whereas the other errors 

have similar values (see Figure 3.33). Although the augmented quantity is not very high, the 

impact on the final range observations is severe. One may see from tables of Appendix B that the 

errors on range values of the different locations are of few metres at initial epoch, and become 

more than 100 m at final epoch. This fact highlights the importance of determining the initial 

satellite sate vector on a very precise way. 

 

One may have realised that setting C does not fulfil the precision requirements of GEOSAR 

mission; however, it has been useful to evaluate the performance of Trilateration and Gibbs 

methods when the initial parameters (range observations) are noisy. Remember that only three 

observations of Barcelona, three of Betzdorf and three of Milan locations have been used in order 

to calculate the satellite state vector. 

 

 

 

 
Figure 3.32: Statistical errors in the satellite state vector at initial epoch, 𝑡1 = 9 000 s (setting C). 
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Figure 3.33: Statistical errors in the satellite state vector at final epoch, 𝑡f = 30 600 s (setting C). 

 

 

As commented in the previous section, the same initial noise, added to the ideal range 

observations of Barcelona, Betzdorf and Milan locations, is obtained after computing the initial 

range errors (i.e., the difference between the ideal and approximate values) of these three sites. 

This fact is illustrated in the following figures. In this way, another sign is obtained in order to 

ensure the proper functionality of whole simulation. 

 

 
Figure 3.34: Statistical noise added to the ideal 𝜌 observations and errors obtained between the ideal and 

approximate 𝜌 observations of Barcelona location at initial epoch, 𝑡1 = 9 000 s (setting C). 
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Figure 3.35: Statistical noise added to the ideal 𝜌 observations and errors obtained between the ideal and 

approximate 𝜌 observations of Betzdorf location at initial epoch, 𝑡1 = 9 000 s (setting C). 

 

 

 
Figure 3.36: Statistical noise added to the ideal 𝜌 observations and errors obtained between the ideal and 

approximate 𝜌 observations of Milan location at initial epoch, 𝑡1 = 9 000 s (setting C). 

 

 

 

 

b) Results Analysis of Setting D 

Now, noisy range-rate observations of the three sites are also used. In this case, all observations 

are provided at same initial epoch, and Trilateration is the only method used in order to calculate 

the initial satellite state vector. 
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Figure 3.37: Errors in the satellite state vector at initial epoch, 𝑡0 = 0 s (setting D). 

 

 

 
Figure 3.38: Errors in the satellite state vector at final epoch, 𝑡f = 21 600 s (setting D). 
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The results obtained by the simulation show similar order of magnitude errors in the initial 

satellite position state vector compared to setting C; however, the errors in the initial satellite 

velocity state vector are two orders of magnitude above (see Figure 3.37). This fact does not 

degrade the initial range observations obtained by setting C since such values are related to the 

position of the satellite state vector. But, on the other hand, having a less precise initial state 

vector, lead to a worse propagation of it over time (see Figure 3.38), and therefore higher errors in 

the obtained range observations at final epoch. Thus, setting C provided errors of 100 m in range 

observations at final epoch, and setting D gives now errors of 17 km per each site. 

 

As regards the range-rate observations, they start with errors of a few millimetres per second 

at initial epoch, and reach around 1.2 metres per second error in each site at final epoch. Again, 

the errors are too high. If setting C did not fulfil the precision requirements of GEOSAR mission, 

neither does setting D, which has even greater errors. Both settings, specifically Trilateration and 

Gibbs methods, are not designed to calculate the satellite orbit with precision in presence of 

perturbations or noise. They are used as methods to initially determine the satellite orbit. Then, 

from this initial point and more observations from the satellite orbit, other methods or techniques 

may improve substantially the initial point precision, and therefore the satellite orbit estimation 

around the Earth. One of these techniques will be discussed in Chapter 4. 

 

At this point, the correct functionality of the whole system built can finally be proved by 

showing some statistics related to range-rate observations. Thus, Figures 3.39, 3.40 and 3.41 

illustrate the statistics of the noise added to the ideal range-rate observations of Barcelona, 

Betzdorf and Milan locations at initial epoch compared to the errors obtained (i.e., the difference 

between the ideal and approximate values) in these observations at these three locations at same 

initial epoch. As seen in the figures, the statistics are the same so that the system works properly. 

 

 

 
Figure 3.39: Statistical noise added to the ideal �̇� observations and errors obtained between the ideal and 

approximate �̇� observations of Barcelona location at initial epoch, 𝑡0 = 0 s (setting D). 
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Figure 3.40: Statistical noise added to the ideal �̇� observations and errors obtained between the ideal and 

approximate �̇� observations of Betzdorf location at initial epoch, 𝑡0 = 0 s (setting D). 

 

 

 
Figure 3.41: Statistical noise added to the ideal �̇� observations and errors obtained between the ideal and 

approximate �̇� observations of Milan location at initial epoch, 𝑡0 = 0 s (setting D). 

 

 

Before concluding Trilateration and Gibbs methods analyses, let us evaluate two more 

situations. First, let us see how the precision of the system is affected when adding a different 

quantity of noise to the initial observations. In particular, if range observations are degraded with 

noise of 1 km standard deviation instead of 1 m, how will the errors of the different parameters 

be? Second, the three sites selected to initially determine the satellite orbit are very close from the 

satellite point of view. If the triangle forming these three sites is enlarged, how will the initial 

satellite state vector precision change? Both questions will be discussed in the following sub-

sections. 
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c) Results Analysis of Setting E 

This sub-section will analyse how the errors in the satellite state vector and range observations 

are affected if the initial ideal range observations of the three sites are degraded with 1 km 

standard deviation Gaussian noise. Table 3.10 summarizes all conditions considered in the 

simulation. 

 
    

 Setting E   
    

 
 

Location of the three sites: 

(01) Barcelona (Spain) 

(02) Betzdorf (Luxemburg) 

(03) Milan (Italy) 
 

IDEAL DATA 

- Type of observations generated: 

RANGE. 

- Epoch/s when the observations are 

generated: 

𝑡0 = 0 s, 

𝑡1 = 9 000 s, and 

𝑡2 = 18 000 s. 
 

NOISE ADDED 

- Range observations: 

MEAN: 0 m / STD.: 1 km. 
 

APPROXIMATE DATA 

- Method/s used: 

TRILATERATION and GIBBS. 

- Epoch when the approximate 

satellite state vector is given: 

𝑡1 = 9 000 s. 
 

 

    

Table 3.10: Summary of all conditions considered on setting E. 

 

 

Figures 3.42 and 3.43 show the statistical results of the errors obtained in the satellite state 

vector at initial and final epochs respectively. Increasing three orders of magnitude the quantity of 

noise added to range observations with regard to setting C (𝜎𝜌 = 1 m) lead to errors three order of 

magnitude higher in setting E. In setting C, the errors in the initial satellite position state vector 

were of 50 to 150 metres, whereas, in setting D, these errors become 50 to 150 kilometres. The 

same rule happens to the other parameters at both initial and final epochs. 

 

As commented in Section 3.3, Trilateration and Gibbs methods are both geometrical 

methods, so that the order of magnitude of the errors given into the analysis of setting E could be 

expected. Thus, when determining the initial position of the satellite vector, it will be of the 

utmost importance the quality of observations (i.e., range and range-rate observations) in order to 

use them on Trilateration and Gibbs methods.  
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Figure 3.42: Errors in the satellite state vector at initial epoch, 𝑡1 = 9 000 s (setting E). 

 

 

 
Figure 3.43: Errors in the satellite state vector at final epoch, 𝑡f = 30 600 s (setting E). 
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d) Results Analysis of Setting F 

This sub-section and the following one will show how the enlargement of the triangle forming the 

three sites affects the errors obtained in the satellite state vector, and range and range-rate 

observations. The selection of these new three sites has been done considering locations that are 

on the edges of Europe although they are out of the satellite L-band beam coverage. For this 

reason, Las Palmas de Gran Canaria (Spain), Reykjavik (Iceland), and Ankara (Turkey) locations 

have been chosen. 

 

The simulations of setting F (this sub-section) and setting G (next sub-section) will be 

performed considering noise values of settings C and D respectively (i.e., 𝜎𝜌 = 1 m and 𝜎𝑣r
=

5 mm s⁄ ). All conditions taken into account in the simulation of both settings are summarized in 

Table 3.11. 

 
       

 Setting F   Setting G   
       

 
 

Location of the three sites: 

(04) Las Palmas de Gran Canaria   

(Spain) 

(05) Reykjavik (Iceland) 

(06) Ankara (Turkey) 
 

IDEAL DATA 

- Type of observations generated: 

RANGE. 

- Epoch/s when the observations are 

generated: 

𝑡0 = 0 s, 

𝑡1 = 9 000 s, and 

𝑡2 = 18 000 s. 
 

NOISE ADDED 

- Range observations: 

MEAN: 0 m / STD.: 1 m. 

 

 
 

APPROXIMATE DATA 

- Method/s used: 

TRILATERATION and GIBBS. 

- Epoch when the approximate 

satellite state vector is given: 

𝑡1 = 9 000 s. 
 

 
 

Location of the three sites: 

(04) Las Palmas de Gran Canaria   

(Spain) 

(05) Reykjavik (Iceland) 

(06) Ankara (Turkey) 
 

IDEAL DATA 

- Type of observations generated: 

RANGE and RANGE-RATE. 

- Epoch/s when the observations are 

generated: 

𝑡0 = 0 s. 

 

 
 

NOISE ADDED 

- Range observations: 

MEAN: 0 m / STD.: 1 m. 

- Range-rate observations: 

MEAN: 0 mm s⁄  / STD.: 5 mm s⁄ . 
 

APPROXIMATE DATA 

- Method/s used: 

TRILATERATION. 

- Epoch when the approximate 

satellite state vector is given: 

𝑡0 = 0 s. 
 

 

       

Table 3.11: Summary of all conditions considered on settings F and G. 

 

 

Using this new triangle of sites, the errors in the initial satellite state vector have decreased 

one order of magnitude. The results of setting C showed, for example, satellite position state 

vector errors between 50 and 150 metres, whereas setting F obtains errors of 5 to 25 metres (see 

Figure 3.44). This improvement in the satellite state vector initial determination allows that the 

initial range observation errors of all sites under the satellite L-band beam coverage remain below 

1 metre. Such error was only provided in Bern location when analysing setting C. That is to say, 
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the only site evaluated whose location is inside the triangle formed by Barcelona, Betzdorf and 

Milan sites. 

 

 
Figure 3.44: Errors in the satellite state vector at initial epoch, 𝑡1 = 9 000 s (setting F). 

 

 

 
Figure 3.45: Errors in the satellite state vector at final epoch, 𝑡f = 30 600 s (setting F). 



 

Chapter 3: Initial Orbit Determination 
 

 

 
 

 Projecte Final de Carrera (PFC) 97  

In addition, this better determination of the initial satellite state vector leads to fewer errors 

in the satellite propagation (see Figure 3.45), and therefore the final range observations are closer 

to the ideal values. However, the precision requirements of GEOSAR mission are far to be 

fulfilled by means of setting F. One may see from tables of Appendix B that the range 

observation errors at final epoch are around 14 metres, which are a great improvement with 

regard to those achieved in setting C (~100 metres), but not sufficient. 

 

e) Results Analysis of Setting G 

Setting G is the last configuration that is going to be simulated. This setting includes range-rate 

observation errors as setting D does. 

 

The simulation results can be summarized in two points. On one hand, there is an 

improvement of one order of magnitude on the errors of all parameters evaluated of setting G 

with regard to the errors obtained in setting D, which is the same as happened in the previous sub-

section. On the other hand, the errors of setting G at final epoch are higher than those obtained in 

setting F. This fact also happened between settings D and C. Therefore, setting G does not fulfil 

GEOSAR mission requirements as one could expect from the simulations of previous settings. 

 

 

 

 

 
Figure 3.46: Errors in the satellite state vector at initial epoch, 𝑡0 = 0 s (setting G). 
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Figure 3.47: Errors in the satellite state vector at final epoch, 𝑡f = 21 600 s (setting G). 

 

 

 

3.9. RESULTS SUMMARY 

 

Table 3.12 summarizes the main results obtained of all settings evaluated along Chapter 3. Thus, the 

reader can compare the performance of the different settings. 

 

As a conclusion of the chapter, Trilateration and Gibbs methods are required to initially calculate 

one satellite state vector from observation data. They perform such operation through very few 

observations of different sites, so that a poor precision on the final result could be expected. On the 

other hand, GEOSAR mission requirements are very high with respect actual orbit positioning of GEO 

satellites. Therefore, other techniques must be studied, which use a large amount of observation data, 

in order to refine the initial orbit determination offered by Trilateration and Gibbs methods. One of 

these techniques is discussed and evaluated in the following chapter, which is based on differential 

correction. 
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RESULTS SUMMARY OF ALL SETTINGS OF CHAPTER 3  

Set. 
Errors in satellite 

Postion SV (𝐫) 

Errors in satellite 

Velocity SV (𝐯) 

Errors in Range 

observations (𝜌) 

Errors in Range-rate 

observations (�̇�) 
 

INITIAL EPOCH 
 

A 80 pm − 550 pm less than 
pm

s
 less than 

pm

s
− 30 pm − 

B 140 pm − 870 pm less than 
pm

s
 less than 

pm

s
− 10 pm less than 

pm

s
 

C 50 m − 160 m 5 
mm

s
− 15 

mm

s
 0.5 m − 7 m − 

D 50 m − 160 m 0.2 
m

s
− 0.8 

m

s
 0.5 m − 7 m 3 

mm

s
− 35 

mm

s
 

E 50 km − 160 km 6 
m

s
− 15 

m

s
 0.5 km − 7 km − 

F 5 m − 25 m 0.7 
mm

s
− 2.1 

mm

s
 0.5 m − 1.1 m − 

G 5 m − 25 m 25 
mm

s
− 125 

mm

s
 0.5 m − 1.1 m 2.8 

mm

s
− 5.1 

mm

s
 

 

FINAL EPOCH 
 

A 140 pm − 870 pm less than 
pm

s
 150 pm − 230 pm − 

B 1 pm − 300 pm less than 
pm

s
 250 pm − 270 pm less than 

pm

s
 

C 110 m − 180 m 5 
mm

s
− 15 

mm

s
 101 m − 110 m − 

D 1 km − 20 km 10 
mm

s
− 2 

m

s
 17.0 km − 17.5 km 1.1 

m

s
− 1.4 

m

s
 

E 110 km − 180 km 7 
m

s
− 12 

m

s
 104 km − 110 km − 

F 14 m − 28 m 0.9 
mm

s
− 1.8 

mm

s
 14.2 m − 14.6 m − 

G 0.3 km − 1.8 km 1 
mm

s
− 180 

mm

s
 1.65 km − 1.74 km 110 

mm

s
− 135 

mm

s
 

Table 3.12: Summary of all simulation results performed in Chapter 3. This table shows the value range of the 

errors between ideal and approximate values of different parameters. 
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Orbit determination requires estimation, which is intimately tied to initial orbit determination (studied 

in the previous chapter), prediction, and uncertainty estimates. Regardless of the observational data 

source used for orbit determination, one should make the algorithms general enough to process them. 

In other words, estimation must be versatile in predicting, filtering, and smoothing data. For 

estimation, predicting is simply using existing observations to find future states. One must consider 

that estimation techniques are intimately tied to propagation methods. On the other hand, filtering is 

determining the current state using current (and past) observations. And, finally, smoothing techniques 

improve previous state solutions by combining them with future data. 

 

The techniques presented in this chapter are often referred to as differential correction techniques 

since the methods of solution require iteration or incremental updates to the state. On the one hand, 

Least Squares techniques use all data available in order to improve the determination of the initial 

state. On the other, Kalman Filter techniques compute the best estimate of the state of a time-varying 

process by using a predictor-corrector technique ideally suited for computer applications, given 

imperfect observations and uncertain dynamics. The selection of using a Least Squares vs. a Kalman 

Filter evokes tremendous discussion. Ultimately, the requirements are the deciding factor. If the need 

is for continuous near real-time updates, Kalman Filter approaches are preferred. If the objective is for 

routine position determination, the Least Squares techniques suffice. 

 

Comparisons of the two techniques are limited, however, Montenbruck et al. (2000) compare 

Least Squares and Kalman Filter approaches to orbit determination. While they note differences and 

conclude that the Least Squares approach is better, the positional comparisons are shown to be 

remarkably close. 

 

This document will only use Least Squares techniques in order to determine the satellite orbit of 

GEOSAR mission. All data will be available after the radar synthetic aperture and there is no need to 

continuously monitor the satellite position. In addition, some problems arising from the covariance 

propagation when using Kalman Filter techniques will be avoided. 

 

Chapter 4 will begin introducing the Least Squares techniques to the reader. Then, these 

techniques will be particularized to orbit determination and specially to orbit determination for the 

GEOSAR mission. Remember that GEOSAR mission will provide either range and range-rate 

measurements or only range measurements, so that both cases will be considered when explaining the 

final algorithm. Finally, such algorithm will be evaluated performing different statistical simulations 

and showing their results. As in the previous chapter, the objective is looking for precision. Thus, the 

results will show how the errors in range history of different sites under the satellite L-band beam 

coverage evolve along the radar synthetic aperture. 

 

As there is no real data available since the satellite of GEOSAR mission is not in orbit, the 

simulations performed during this chapter will use the ideal observations built by the same 

configuration of Chapter 3. Therefore, the Least Squares algorithm developed within this chapter will 

only consider the interaction between the Earth and the satellite (i.e., no perturbations will be taken 

into account). 

 

The explanations of this chapter will follow Vallado (2013). The reader is address to it in order to 

complete all concepts discussed within Chapter 4. 
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4.1. LEAST SQUARES FUNDAMENTALS 

 

Least Squares techniques are defined as an optimization problem, which fits the measurements to an 

appropriate mathematical model minimizing the sum of the squares of the residuals. The residuals will 

be the difference in the actual observations and those obtained using the state vector solution. Thus, 

defining the residuals as 

 �̅� = 𝑦0 − 𝑦c   

where 𝑦0 are the observed values of the dependent variable, and 𝑦c are the computed values of the 

dependent variable, the Least Squares criterion (for 𝑁 observations) satisfies 

 𝐽 = ∑�̅�𝑖
2

𝑁

𝑖=1

= a minimum (4.1) 

where 𝐽 is also known as cost function. 

 

In order to better understand the Least Squares technique, let us first obtain a solution for a linear 

mathematical model. 

 

a) Linear Least Squares 

Linear unweighted Least Squares is the simplest estimation technique. It assumes that all data is 

given equal weighting or importance and defines the mathematical model in a linear way. Thus, 

the computed value of the dependent variable per each data point, 𝑦c𝑖
, is defined as 

 𝑦c𝑖
= 𝛼 + 𝛽𝑥0𝑖

   

where 𝑥0𝑖
 are the observed values of the independent variable per each data point, and 𝛼 and 𝛽 

are the values to be estimated such that the sum of the squares of the residuals, �̅�𝑖
2, is a minimum. 

𝐽 = ∑�̅�𝑖
2

𝑁

𝑖=1

= ∑(𝑦0𝑖
− 𝑦c𝑖

)
2

𝑁

𝑖=1

= ∑[𝑦0𝑖
− (𝛼 + 𝛽𝑥0𝑖

 )]
2

𝑁

𝑖=1

= 𝑓(𝛼, 𝛽) = a minimum 

 

In order to find this minimum, the first derivative with respect to 𝛼 and 𝛽 parameters of the 

cost function to zero must be performed. The function above has two variables whose both partial 

derivatives are equal to 0 at the minimum, so that the equation can be split in two: 

𝜕

𝜕𝛼
𝐽 =

𝜕

𝜕𝛼
∑�̅�𝑖

2

𝑁

𝑖=1

= ∑
𝜕�̅�𝑖

2

𝜕𝛼

𝑁

𝑖=1

= ∑2�̅�𝑖
𝜕�̅�𝑖
𝜕𝛼

𝑁

𝑖=1

= 0  ⇒  ∑ �̅�𝑖
𝜕�̅�𝑖
𝜕𝛼

𝑁

𝑖=1

= 0 

𝜕

𝜕𝛽
𝐽 =

𝜕

𝜕𝛽
∑�̅�𝑖

2

𝑁

𝑖=1

= ∑
𝜕�̅�𝑖

2

𝜕𝛽

𝑁

𝑖=1

= ∑2�̅�𝑖
𝜕�̅�𝑖
𝜕𝛽

𝑁

𝑖=1

= 0  ⇒  ∑ �̅�𝑖
𝜕�̅�𝑖
𝜕𝛽

𝑁

𝑖=1

= 0 

 

By using the residual definition, the previous equations become 

 



 

Chapter 4: Differential Correction Techniques 
 

 

 
 

 Projecte Final de Carrera (PFC) 105  

∑�̅�𝑖
𝜕�̅�𝑖
𝜕𝛼

𝑁

𝑖=1

= ∑�̅�𝑖
𝜕(𝑦0𝑖

− 𝛼 − 𝛽𝑥0𝑖
)

𝜕𝛼

𝑁

𝑖=1

= ∑�̅�𝑖(−1)

𝑁

𝑖=1

= −�̅�1 − �̅�2 − ⋯− �̅�𝑁 = 0 

∑�̅�𝑖
𝜕�̅�𝑖
𝜕𝛽

𝑁

𝑖=1

= ∑�̅�𝑖
𝜕(𝑦0𝑖

− 𝛼 − 𝛽𝑥0𝑖
)

𝜕𝛽

𝑁

𝑖=1

= ∑�̅�𝑖(−𝑥0𝑖
)

𝑁

𝑖=1

= −�̅�1𝑥01
− �̅�2𝑥02

− ⋯− �̅�𝑁𝑥0𝑁
= 0 

which can be expressed in matrix notation as 

[
1

𝑥01

1
𝑥02

⋯
⋯

1
𝑥0𝑁

] [

�̅�1
�̅�2
⋮
�̅�𝑁

] = [
0
0
] 

 

Now, substituting the definition of the residual, �̅�𝑖, yield 

 

[
1

𝑥01

1
𝑥02

⋯
⋯

1
𝑥0𝑁

] 

[
 
 
 
 
𝑦01

− (𝛼 + 𝛽𝑥01
 )

𝑦02
− (𝛼 + 𝛽𝑥02

 )

⋮
𝑦0𝑁

− (𝛼 + 𝛽𝑥0𝑁
 )]
 
 
 
 

= [
0
0
] (4.2) 

where 𝛼 and 𝛽 parameters have appeared. Applying the distributive law to the second matrix and 

separating 𝛼 and 𝛽 result in 

[
1

𝑥01

1
𝑥02

⋯
⋯

1
𝑥0𝑁

] [

𝑦01

𝑦02

⋮
𝑦0𝑁

] − [
1

𝑥01

1
𝑥02

⋯
⋯

1
𝑥0𝑁

] 

[
 
 
 
1 𝑥01

1 𝑥02

⋮ ⋮
1 𝑥0𝑁]

 
 
 
[
𝛼
𝛽] = [

0
0
] 

Notice, in this case, that 𝛼 and 𝛽 parameters can be separated because the selected mathematical 

model is linear. 

 

The next step is to rearrange the matrix addition in order to place the 𝛼 and 𝛽 parameters on 

one side 

[
1

𝑥01

1
𝑥02

⋯
⋯

1
𝑥0𝑁

] 

[
 
 
 
1 𝑥01

1 𝑥02

⋮ ⋮
1 𝑥0𝑁]

 
 
 
[
𝛼
𝛽] = [

1
𝑥01

1
𝑥02

⋯
⋯

1
𝑥0𝑁

] [

𝑦01

𝑦02

⋮
𝑦0𝑁

] 

 

The equation above can be defined in a symbolic form as 

𝐀𝑇𝐀�̂� = 𝐀𝑇𝐛 

where 𝐀 is the partial-derivative matrix (𝑁 × 2), �̂� is the solution, state vector or state space 

(2 × 1), and 𝐛 is the observation matrix (𝑁 × 1). These equations are called the normal equations. 

Although 𝐀 and 𝐀𝑇 are not usually square matrices, the matrix product 𝐀𝑇𝐀 is always square. 

Thus, the matrix product may be inverted provided it is positive definite (not singular)1. 

 

                                                      
1 A matrix 𝐘 is positive definite when 𝐱𝑇𝐘𝐱 > 0 for all 𝐱. This is also the observability requirement. 
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Finally, solving for �̂�, the general solution of Least Squares technique for the linear 

unweighted case is provided. 

 �̂� = (𝐀𝑇𝐀)−1𝐀𝑇𝐛  (4.3) 

The overall process is sometimes called parameter estimation because the final objective is to 

determine the 𝛼 and 𝛽 parameters. 

 

In order to account for differences in the accuracy of measurements, weights, 𝑤𝑖, must be 

introduced. The residuals are weighted using the inverses of the standard deviations of each 

observation classes, usually by a sensor type or location. Thus, all the observations (of the same 

type) from a particular sensor are assumed to have similar characteristics. Applying the Least 

Squares criterion (i.e., Equation [4.1]) to the weighted residuals produces the cost function 

𝐽 = ∑𝑤𝑖
2�̅�𝑖

2

𝑁

𝑖=1

= �̅�𝑇𝐖�̅� = (𝐛 − 𝐀𝐗)𝑇𝐖(𝐛 − 𝐀𝐗) 

where 

�̅� = [

𝑦01
− 𝑦c1

𝑦02
− 𝑦c2

⋮
𝑦0𝑁

− 𝑦c𝑁

] , 𝐀 =

[
 
 
 
1 𝑥01

1 𝑥02

⋮ ⋮
1 𝑥0𝑁]

 
 
 
, 𝐗 = [

𝛼
𝛽] , and 𝐖 =

[
 
 
 
𝑤1

2 0 … 0

0 𝑤2
2 ⋮

 ⋮ ⋱   0

0 ⋯ 0 𝑤𝑁
2]
 
 
 

 

 

The matrix 𝐖 is called the weighting matrix whose diagonal elements are defined as 

𝑤𝑖 =

[
 
 
 
 
 
 
 
1

𝜎1
0 ⋯ 0

0
1

𝜎2

⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0
1

𝜎𝑀]
 
 
 
 
 
 
 

 

where 𝑀 refers to the total number of observation classes (i.e., range measurements, angular 

measurements, measurements of different sensors…) related to one observation (time epoch). 

 

Before finding the minimum, let us expand the cost function 

𝐽 = (𝐛 − 𝐀𝐗)𝑇𝐖(𝐛 − 𝐀𝐗) = 𝐛𝑇𝐖𝐛 − 2𝐛𝑇𝐖𝐀𝐗 + 𝐗𝑇𝐀𝑇𝐖𝐀𝐗 

In this way, setting the derivative with respect to 𝐗 of the cost function equal to zero, one can 

obtain the best estimate of the state. 

𝜕𝐽

𝜕𝐗
= −2𝐛𝑇𝐖𝐀 + 2�̂�𝑇𝐀𝑇𝐖𝐀 = 0 

After a few matrix operations, the solution state can be calculated as 

 �̂� = (𝐀𝑇𝐖𝐀)−1𝐀𝑇𝐖𝐛  (4.4) 

where it has been assumed that 𝐀𝑇𝐖𝐀 is invertible (the observability criteria). Note also that 

𝐖𝑇 = 𝐖. 
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Equation (4.4) provides the general solution of linear Least Squares technique. However, 

orbit determination is not a linear case. Least Squares method can be applied to nonlinear 

problems by linearizing the problem, obtaining an approximate solution, and iterating in order to 

refine the answer. Next subsection introduces the nonlinear Least Squares technique. 

 

b) Nonlinear Least Squares 

In this case, the measurement-state relationship (i.e., the mathematical model used) is a nonlinear 

function of the state (e.g., 𝑦 = 𝑓(𝑥) = 𝛼 sin(𝑥 + 𝛽) where, in this case, 𝛼 and 𝛽 are again the 

parameters to be estimated). Thus, when applying the derivative to the cost function and 

rearranging all parameters as the previous subsection (Equation [4.2]), one may realise that 𝛼 and 

𝛽, or at least one of them, cannot be separated, so that the solution state, �̂�, cannot be reached. 

 

Fortunately, the nonlinear equations can be approximated to linear equations by means of 

Taylor series, provided that one can neglect the higher order terms in the Taylor series. In this 

way, if the measurement-state relationship is calculated as a function 𝑦 = 𝑓(𝛼, 𝛽) about a 

nominal 𝛼𝑛 and 𝛽𝑛, the computed value of the dependent variable, 𝑦c, can be obtained as 

𝑦c = 𝑓(𝛼, 𝛽, 𝑥0) = 𝑔(𝛼, 𝛽) for any given 𝑥0 

whose Taylor series is 

𝑦c = 𝑦|𝛼𝑛,𝛽𝑛
+ (𝛼 − 𝛼𝑛)

𝜕𝑦

𝜕𝛼
|
𝛼𝑛,𝛽𝑛

+ (𝛽 − 𝛽𝑛)
𝜕𝑦

𝜕𝛽
|
𝛼𝑛,𝛽𝑛

+
(𝛼 − 𝛼𝑛)2

2!

𝜕2𝑦

𝜕𝛼2
|
𝛼𝑛,𝛽𝑛

 

+
(𝛽 − 𝛽𝑛)2

2!

𝜕2𝑦

𝜕𝛽2
|
𝛼𝑛,𝛽𝑛

+ ⋯ 

 

Because higher power (second order and above) of (𝛼 − 𝛼𝑛) and (𝛽 − 𝛽𝑛) are neglected in 

the linearization, the formulation provides corrections to a known state as Δ𝛼 = 𝛼 − 𝛼𝑛 and 

Δ𝛽 = 𝛽 − 𝛽𝑛. The nonlinear Least Squares problem consequently requires an a priori estimate of 

the state for solution, which will be called nominal state vector. 

 

At this point, the computed value of the dependent variable per each data point, 𝑦c𝑖
, can be 

obtained as 

𝑦c𝑖
= 𝑦𝑛𝑖

+ Δ𝛼
𝜕𝑦𝑛𝑖

𝜕𝛼
+ Δ𝛽

𝜕𝑦𝑛𝑖

𝜕𝛽
 

where 

𝑦𝑛𝑖
= 𝑦𝑖|𝛼𝑛,𝛽𝑛

,
𝜕𝑦𝑛𝑖

𝜕(𝑎)
=

𝜕𝑦𝑖

𝜕(𝑎)
|
𝑎=𝛼𝑛,𝛽𝑛

 

 

Now, the values of the observations and the partial derivatives can be calculated by using the 

initial estimates of the state (𝛼𝑛, 𝛽𝑛) from above. Thus, Equation (4.2) for a nonlinear Least 

Squares problem, which has been linearized, becomes 
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𝐀𝑇  

[
 
 
 
 
 
 
 𝑦01

− (𝑦𝑛1
+ Δ𝛼

𝜕𝑦𝑛1

𝜕𝛼
+ Δ𝛽

𝜕𝑦𝑛1

𝜕𝛽
)

𝑦02
− (𝑦𝑛2

+ Δ𝛼
𝜕𝑦𝑛2

𝜕𝛼
+ Δ𝛽

𝜕𝑦𝑛2

𝜕𝛽
)

⋮

𝑦0𝑁
− (𝑦𝑛𝑁

+ Δ𝛼
𝜕𝑦𝑛𝑁

𝜕𝛼
+ Δ𝛽

𝜕𝑦𝑛𝑁

𝜕𝛽
)
]
 
 
 
 
 
 
 

= [
0
0
] 

In the linear case, the partial-derivative matrix, 𝐀, contained partial derivatives of the residuals, 

𝜕𝑟𝑖 𝜕𝛼⁄ ; however, in this case, it contains partials of the measurements, 𝜕𝑦𝑛𝑖
𝜕𝛼⁄ . 

 

Applying the distributive law and separating the state parameters (∆𝛼, ∆𝛽), the equation 

above results in 

𝐀𝑇  [

𝑦01
− 𝑦𝑛1

𝑦02
− 𝑦𝑛2

⋮
𝑦0𝑁

− 𝑦𝑛𝑁

] − 𝐀𝑇  

[
 
 
 
 
 
 
 
𝜕𝑦𝑛1

𝜕𝛼

𝜕𝑦𝑛1

𝜕𝛽
𝜕𝑦𝑛2

𝜕𝛼

𝜕𝑦𝑛2

𝜕𝛽
⋮       ⋮

𝜕𝑦𝑛𝑁

𝜕𝛼

𝜕𝑦𝑛𝑁

𝜕𝛽 ]
 
 
 
 
 
 
 

[
∆𝛼
∆𝛽

] = [
0
0
] 

Some features of this equation must be considered. First, the matrix containing 𝑦0𝑖
− 𝑦𝑛𝑖

 looks 

like the 𝐛 matrix, except it contains differences between the measured and nominal 𝑦 values. It 

will be called residual matrix and will be noted with symbol �̃�. Second, the matrix containing the 

observation partials is the transpose of 𝐀𝑇, so that it is the 𝐀 matrix. Finally, the matrix containing 

∆𝛼 and ∆𝛽 corresponds to the �̂� matrix, except it is now the corrections to 𝛼 and 𝛽. For this 

reason, it will be called 𝛿�̃�. Substituting the newly defined matrices, the equation above becomes 

𝐀𝑇�̃� − 𝐀𝑇𝐀𝛿�̃� = 0 

and assuming observability, the estimated corrections to the state are 

 𝛿�̂� = (𝐀𝑇𝐀)−1𝐀𝑇�̃�  (4.5) 

 

Equation (4.5) is identical to the linear Least Squares equation, except that 

 

1) 𝐀, �̃�, and 𝛿�̂� are defined in the derivation. 

 

2) 𝐀, 𝐀𝑇, and 𝛿�̂� use the previous estimates of 𝛼𝑛 and 𝛽𝑛. 

 

3) It is an approximate solution due to the use of a truncated Taylor series. 

 

4) An initial nominal state (𝛼𝑛 and 𝛽𝑛 in this case) must be calculated. This is important 

because the initial nominal value must be near the global minimum value. Otherwise, the 

iteration may diverge or, in some cases, converge on an incorrect value. 
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Points (2) and (3) imply the need to iterate in order to improve the estimates whereas, in the 

linear case, the solutions of 𝛼 and 𝛽 were obtained directly. 

 

The steps for the most general form of differential correction using Gaussian Least Squares1 

are: 

 

1) Compute 𝑦𝑛𝑖
 corresponding to each 𝑥0𝑖

. 

 

2) Compute each residual �̅�𝑖 = 𝑦0𝑖
− 𝑦𝑛𝑖

. 

 

3) Compute each partial derivative, 𝜕𝑦𝑛𝑖
𝜕𝛼⁄  and 𝜕𝑦𝑛𝑖

𝜕𝛽⁄ , using 𝛼𝑛, 𝛽𝑛. 

 

4) Form 𝐀, 𝐀𝑇, and �̃�. 

 

5) Solve for ∆𝛼 and ∆𝛽 using Equation (4.5). 

 

6) Find 𝛼𝑛new
= 𝛼𝑛old

+ ∆𝛼 and 𝛽𝑛new
= 𝛽𝑛old

+ ∆𝛽. 

 

7) If the stopping criterion is reached, quit. Otherwise, return to step (1). A specific criterion for 

stopping the algorithm will not be used when performing the Least Squares technique in the 

following simulations. It will be used a certain number of iterations in order to evaluate the 

algorithm performance. Consult Vallado (2013) for stopping criterions. 

 

All this process is termed differential correction since the state is corrected each iteration. 

 

Weighting the observations may also be addressed. Weighting appears in the solution of the 

nonlinear problem exactly as it does in the linear case. Thus, the differential-correction equation 

for nonlinear, weighted Least Squares becomes 

 𝛿�̂� = (𝐀𝑇𝐖𝐀)−1𝐀𝑇𝐖�̃�  (4.6) 

where 𝐖 is again the weighting matrix of dimension 𝑁 × 𝑁. 

 

 

 

4.2. APPYING LEAST SQUARES TECHNIQUE TO ORBIT DETERMINATION 

 

The differential-correction technique described previously (i.e, the nonlinear Least Squares) is a 

powerful tool, which can accurately estimate an orbit state from radar, optical, or other measurements 

of the motion. 

 

When applying differential correction to orbit determination, several situations must be handled: 

 

1) Several element sets may be chosen in order to define the state space, �̂�, such as the position and 

velocity vectors, {𝑟𝐼 , 𝑟𝐽, 𝑟𝐾 , 𝑣𝐼 , 𝑣𝐽, 𝑣𝐾}, or an element set composed of Classical Orbital Elements 

                                                      
1 Gauss has been credited with discovering the Least Squares method with some help from Legendre. 
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(see Section 3.2). The simulations performed within this document will use the position and 

velocity vectors since they work well for special orbits such as circular and elliptical equatorial 

orbits (i.e., GEOSAR mission case). 

 

2) More than one observation is required at each observation time. GEOSAR mission fulfils this 

requirement since at least three observations (i.e., one range observation for each of the three 

sites) are provided at each epoch. Remember that the sites may also offer range-rate observations. 

In this latter case, six observations would be provided at each observation time. 

 

3) The measurements are nonlinear, complex functions of the state. 

 

Considering such requirements, let us formulate the Least Squares technique to the context of 

GEOSAR mission. It has been said that each site can provide only range measurements or range and 

range-rate measurements at each time 𝑡𝑖. Thus, the observed values of the dependent variable at time 

𝑡𝑖, 𝑦0𝑖
, can be expressed as 

𝑦0𝑖
= [

𝜌10

𝜌20

𝜌30

]  at 𝑡𝑖    or    𝑦0𝑖
=

[
 
 
 
 
 
 
𝜌10

�̇�10

𝜌20

�̇�20

𝜌30

�̇�30]
 
 
 
 
 
 

 at 𝑡𝑖 

In order to calculate the residuals, some predicted measurements from the position and velocity 

vectors must be obtained: 

𝑦c𝑖
= [

𝜌1c

𝜌2c

𝜌3c

]  at 𝑡𝑖    or    𝑦c𝑖
=

[
 
 
 
 
 
 
𝜌1c

�̇�1c

𝜌2c

�̇�2c

𝜌3c

�̇�3c]
 
 
 
 
 
 

 at 𝑡𝑖 

Because 𝑦c𝑖
 is a nonlinear function of the position and velocity vectors, it must be expressed using a 

first-order Taylor series. In this approach, the computed measurement must be obtained as a Taylor-

series expansion about a nominal trajectory. Thus, vector 𝑦c𝑖
 becomes 

𝑦c𝑖
= 𝑦𝑛𝑖

+ Δ𝑟𝐼
𝜕𝑦𝑛𝑖

𝜕𝑟𝐼
+ Δ𝑟𝐽

𝜕𝑦𝑛𝑖

𝜕𝑟𝐽
+ Δ𝑟𝐾

𝜕𝑦𝑛𝑖

𝜕𝑟𝐾
+ Δ𝑣𝐼

𝜕𝑦𝑛𝑖

𝜕𝑣𝐼
+ Δ𝑣𝐽

𝜕𝑦𝑛𝑖

𝜕𝑣𝐽
+ Δ𝑣𝐾

𝜕𝑦𝑛𝑖

𝜕𝑣𝐾
 

The nominal trajectory is 𝑦𝑛𝑖
= 𝑓(𝑟𝐼 , 𝑟𝐽, 𝑟𝐾 , 𝑣𝐼 , 𝑣𝐽, 𝑣𝐾 , 𝑡𝑖), a function of the nominal state vector at each 

observation time1. 

 

Once 𝑦0𝑖
 and 𝑦c𝑖

 have been defined, the residuals, �̅�𝑖, can be calculated as 

�̅�𝑖 = 𝑦0𝑖
− 𝑦c𝑖

= 𝑦0𝑖
− (𝑦𝑛𝑖

+ Δ𝑟𝐼
𝜕𝑦𝑛𝑖

𝜕𝑟𝐼
+ ⋯+ Δ𝑣𝐾

𝜕𝑦𝑛𝑖

𝜕𝑣𝐾
) 

                                                      
1 The requirement for nominal vectors often means that the initial orbit must be determined (see Chapter 3) in 

order to form each vector from the observations. The vectors are then propagated to a common epoch, where the 

nominal vector is formed. 
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Assuming that each measurement is weighted using its appropriate standard deviation, 

𝑤𝜌𝑗
=

1

𝜎𝜌𝑗

, 𝑤�̇�𝑗
=

1

𝜎�̇�𝑗

   where   𝑗 = 1, 2, 3 

the cost function, 𝐽, can be formulated 

𝐽 = ∑(𝑤𝑖 �̅�𝑖)
𝑇(𝑤𝑖�̅�𝑖)

𝑁

𝑖=1

 

where 

𝑤𝑖 = [

𝑤𝜌1
 0 0

0 𝑤𝜌2
 0

0 0 𝑤𝜌3

]   or   𝑤𝑖 =

[
 
 
 
 
 
 
𝑤𝜌1

0 0 0 0 0

0 𝑤�̇�1
0 0 0 0

0 0 𝑤𝜌2
0 0 0

0 0 0 𝑤�̇�2
0 0

0 0 0 0 𝑤𝜌3
0

0 0 0 0 0 𝑤�̇�3]
 
 
 
 
 
 

 

 

At this point, the cost function minimum must be obtained. Therefore, the first derivative with 

respect to all state parameters (Δ𝑟𝐼, Δ𝑟𝐽, Δ𝑟𝐾, Δ𝑣𝐼, Δ𝑣𝐽, and Δ𝑣𝐾) to zero must be calculated, which 

produces six scalar equations: 

∑𝑤𝑖
2�̅�𝑖

𝜕�̅�𝑖
𝜕∆𝑟𝐼

𝑁

𝑖=1

= ∑𝑤𝑖
2�̅�𝑖

𝜕

𝜕∆𝑟𝐼
(𝑦0𝑖

− 𝑦𝑛𝑖
− Δ𝑟𝐼

𝜕𝑦𝑛𝑖

𝜕𝑟𝐼
− ⋯− Δ𝑣𝐾

𝜕𝑦𝑛𝑖

𝜕𝑣𝐾
)

𝑁

𝑖=1

= ∑𝑤𝑖
2�̅�𝑖 (−

𝜕𝑦𝑛𝑖

𝜕𝑟𝐼
)

𝑁

𝑖=1

= 0 

⋮ 

∑𝑤𝑖
2�̅�𝑖

𝜕�̅�𝑖
𝜕∆𝑣𝐾

𝑁

𝑖=1

= ∑𝑤𝑖
2�̅�𝑖

𝜕

𝜕∆𝑣𝐾
(𝑦0𝑖

− 𝑦𝑛𝑖
− Δ𝑟𝐼

𝜕𝑦𝑛𝑖

𝜕𝑟𝐼
− ⋯− Δ𝑣𝐾

𝜕𝑦𝑛𝑖

𝜕𝑣𝐾
)

𝑁

𝑖=1

= ∑𝑤𝑖
2�̅�𝑖 (−

𝜕𝑦𝑛𝑖

𝜕𝑣𝐾
)

𝑁

𝑖=1

= 0 

Setting the equations above in matrix form results in 

(−1)

[
 
 
 
 
 
 
 
𝜕𝑦𝑛1

𝜕𝑟𝐼

𝜕𝑦𝑛2

𝜕𝑟𝐼
⋯

𝜕𝑦𝑛𝑁

𝜕𝑟𝐼
𝜕𝑦𝑛1

𝜕𝑟𝐽

𝜕𝑦𝑛2

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛𝑁

𝜕𝑟𝐽
⋮ ⋮ ⋮

𝜕𝑦𝑛1

𝜕𝑣𝐾

𝜕𝑦𝑛2

𝜕𝑣𝐾
⋯

𝜕𝑦𝑛𝑁

𝜕𝑣𝐾 ]
 
 
 
 
 
 
 

[
 
 
 
𝑤1

2�̅�1
𝑤2

2�̅�2
⋮

𝑤𝑁
2 �̅�𝑁]

 
 
 

= [
0
⋮
0
] 

 

Now, substituting the definition of the residual, �̅�𝑖, yield 

[
 
 
 
 
 
 
 
𝜕𝑦𝑛1

𝜕𝑟𝐼

𝜕𝑦𝑛2

𝜕𝑟𝐼
⋯

𝜕𝑦𝑛𝑁

𝜕𝑟𝐼
𝜕𝑦𝑛1

𝜕𝑟𝐽

𝜕𝑦𝑛2

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛𝑁

𝜕𝑟𝐽
⋮ ⋮ ⋮

𝜕𝑦𝑛1

𝜕𝑣𝐾

𝜕𝑦𝑛2

𝜕𝑣𝐾
⋯

𝜕𝑦𝑛𝑁

𝜕𝑣𝐾 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝑤1

2 [𝑦01
− (𝑦𝑛1

+ Δ𝑟𝐼
𝜕𝑦𝑛1

𝜕𝑟𝐼
+ ⋯+ Δ𝑣𝐾

𝜕𝑦𝑛1

𝜕𝑣𝐾
)]

𝑤2
2 [𝑦02

− (𝑦𝑛2
+ Δ𝑟𝐼

𝜕𝑦𝑛2

𝜕𝑟𝐼
+ ⋯+ Δ𝑣𝐾

𝜕𝑦𝑛2

𝜕𝑣𝐾
)]

⋮

𝑤𝑁
2 [𝑦0𝑁

− (𝑦𝑛𝑁
+ Δ𝑟𝐼

𝜕𝑦𝑛𝑁

𝜕𝑟𝐼
+ ⋯+ Δ𝑣𝐾

𝜕𝑦𝑛𝑁

𝜕𝑣𝐾
)]

]
 
 
 
 
 
 
 

= [
0
⋮
0
] 
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Finally, rearranging the matrices, Equation (4.6) is obtained. 

[
 
 
 
 
 
 
 
𝜕𝑦𝑛1

𝜕𝑟𝐼

𝜕𝑦𝑛2

𝜕𝑟𝐼
⋯

𝜕𝑦𝑛𝑁

𝜕𝑟𝐼
𝜕𝑦𝑛1

𝜕𝑟𝐽

𝜕𝑦𝑛2

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛𝑁

𝜕𝑟𝐽
⋮ ⋮ ⋮

𝜕𝑦𝑛1

𝜕𝑣𝐾

𝜕𝑦𝑛2

𝜕𝑣𝐾
⋯

𝜕𝑦𝑛𝑁

𝜕𝑣𝐾 ]
 
 
 
 
 
 
 

[
 
 
 
𝑤1

2 0 … 0

0 𝑤2
2 ⋮

 ⋮ ⋱   0

0 ⋯ 0 𝑤𝑁
2]
 
 
 

[
 
 
 
 
 
 
 
 
𝜕𝑦𝑛1

𝜕𝑟𝐼

𝜕𝑦𝑛1

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛1

𝜕𝑣𝐾

𝜕𝑦𝑛2

𝜕𝑟𝐼

𝜕𝑦𝑛2

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛2

𝜕𝑣𝐾

⋮ ⋮ ⋮
𝜕𝑦𝑛𝑁

𝜕𝑟𝐼

𝜕𝑦𝑛𝑁

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛𝑁

𝜕𝑣𝐾 ]
 
 
 
 
 
 
 
 

[

Δ𝑟𝐼
Δ𝑟𝐽
⋮

Δ𝑣𝐾

] = 

=

[
 
 
 
 
 
 
 
𝜕𝑦𝑛1

𝜕𝑟𝐼

𝜕𝑦𝑛2

𝜕𝑟𝐼
⋯

𝜕𝑦𝑛𝑁

𝜕𝑟𝐼
𝜕𝑦𝑛1

𝜕𝑟𝐽

𝜕𝑦𝑛2

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛𝑁

𝜕𝑟𝐽
⋮ ⋮ ⋮

𝜕𝑦𝑛1

𝜕𝑣𝐾

𝜕𝑦𝑛2

𝜕𝑣𝐾
⋯

𝜕𝑦𝑛𝑁

𝜕𝑣𝐾 ]
 
 
 
 
 
 
 

[
 
 
 
𝑤1

2 0 … 0

0 𝑤2
2 ⋮

 ⋮ ⋱   0

0 ⋯ 0 𝑤𝑁
2]
 
 
 

[

𝑦01
− 𝑦𝑛1

𝑦02
− 𝑦𝑛2

⋮
𝑦0𝑁

− 𝑦𝑛𝑁

] 

where 

𝛿�̂� =

[
 
 
 
 
 
Δ𝑟𝐼
Δ𝑟𝐽
Δ𝑟𝐾
Δ𝑣𝐼

Δ𝑣𝐽

Δ𝑣𝐾]
 
 
 
 
 

, 𝐀 =

[
 
 
 
 
 
 
 
 
𝜕𝑦𝑛1

𝜕𝑟𝐼

𝜕𝑦𝑛1

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛1

𝜕𝑣𝐾

𝜕𝑦𝑛2

𝜕𝑟𝐼

𝜕𝑦𝑛2

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛2

𝜕𝑣𝐾

⋮ ⋮ ⋮
𝜕𝑦𝑛𝑁

𝜕𝑟𝐼

𝜕𝑦𝑛𝑁

𝜕𝑟𝐽
⋯

𝜕𝑦𝑛𝑁

𝜕𝑣𝐾 ]
 
 
 
 
 
 
 
 

,𝐖 =

[
 
 
 
𝑤1

2 0 … 0

0 𝑤2
2 ⋮

 ⋮ ⋱   0

0 ⋯ 0 𝑤𝑁
2]
 
 
 

, and �̃� = [

𝑦01
− 𝑦𝑛1

𝑦02
− 𝑦𝑛2

⋮
𝑦0𝑁

− 𝑦𝑛𝑁

] 

 

In order to clarify the dimension of each vector and matrix above and its elements, Figures 4.1, 

4.2 and 4.3 illustrates the structure of all of them, except for vector 𝛿�̂� whose dimensions are 6 × 1. 

The vectors and matrices structure takes into account the two possible cases of GEOSAR mission: a) 

only range measurements, and b) range and range-rate measurements. Thus, one may see an overview 

of how each observation is split in 𝑀 measurements (observed values). 

 

 

 
Figure 4.1: Dimensions and structure of vector �̃�. 
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Figure 4.2: Dimensions and structure of matrix 𝐀. 

 

 

 

 

 

 
Figure 4.3: Dimensions and structure of matrix 𝐖. 
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Now, it must be explained how to calculate matrix 𝐀. The 𝐀 matrix describes how changes in the 

initial state (position and velocity vectors) affect the computed observations (measurements). These 

are sometimes called sensitivity partial derivatives. In order to find these nonlinear, time-dependent 

derivatives, the first step is to break up the partial derivative using the chain rule: 

 𝐀 =
𝜕observations

𝜕�̂�0

=
𝜕observations

𝜕�̂�

𝜕�̂�

𝜕�̂�0

= 𝐇𝚽 (4.7) 

Equation (4.7) distinguishes the observation partial derivatives, 𝐇, from the partial derivative of the 

state over time. This latter matrix, 𝚽, is called the matrix of variational equations, or the error state 

transition matrix, and it relates the state errors at time 𝑡 (𝜹�̂�), to the state errors at time 𝑡0 (𝜹�̂�𝟎). Both 

matrices, 𝐇 and 𝚽, can be calculated using analytical or numerical integration techniques, or by finite 

differencing. This document will use finite differencing, so that the reader may consult Vallado (2013) 

or Montenbruck et al. (2000) for further information about analytical or numerical integration 

techniques, which consider perturbations. 

 

It is fairly simple to approximate the complete matrix 𝐀 using finite differencing. This technique 

takes small differences of the state in order to determine their effect on the system. In addition, the 

technique is independent of any particular propagation method. 

 
𝜕observations

𝜕�̂�0

≅
𝑓(�̂� + 𝛿𝑖) − 𝑓(�̂�)

𝛿𝑖
 (4.8) 

 

 
Figure 4.4: Determination of the first modified orbit when using finite differencing. 

 

 

The main idea is to take the partial derivative of the observations (at the observation times) with 

respect to the state at the epoch time. In order to do this, one must proceed as follows: 
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1) Generate position and velocity vectors at the times of the observations from the nominal state at 

epoch 𝑡0. Although one can choose any epoch time, the beginning or the end of the data are most 

common. 

 

2) Determine six additional trajectories varying each component of the position and velocity vectors. 

Figure 4.4 illustrates the first modified trajectory when the first component of the nominal state 

vector, 𝑟𝐼0 , is perturbed. 

 

3) Compute each partial derivative from the observations and each varied trajectories. Thus, an 

approximation to the partial derivative is achieved. 

 

Step (2) must be performed modifying each state element with a percentage of the vector 

magnitude rather than a fixed delta. Thus, the value of 𝛿𝑖 of Equation (4.8) can be determined as the 

modified state minus the nominal state, 

 𝛿𝑖 = �̂�mod𝑖
− �̂�nom𝑖

  

and each observation can be calculated as the modified observation minus the nominal observation. As 

a result, the approximation of the derivative of each observation with respect to an element of the state 

becomes 

 
𝜕observations

𝜕�̂�0

≅
obsmod − obsnom

𝛿𝑖
  

 

Figure 4.5 shows how the partial derivatives are calculated when using finite differencing in the 

first possible case of GEOSAR mission (i.e., when only range measurements are provided). 

 

 
Figure 4.5: Partial derivatives calculation when using finite differencing. 
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In order to conclude the explanation of finite differencing technique, Table 4.1 summarizes all 

steps performed by this technique in algorithm form. 

 

FINITE DIFFERENCING ALGORITHM 

FOR 𝑗 = 1 to 6 (i.e., number of state vector components) 

1) Propagate the nominal state vector from 𝑡0 (i.e., the epoch where the nominal 

state vector is given) to the observation time 𝑡𝑖. 
2) Compute all observed values from the nominal state vector at 𝑡𝑖 (i.e., 𝜌1nom𝑖

, 

�̇�1nom𝑖
, …). 

3) Calculate the modified state vector at 𝑡0. 

 𝛿𝑗 = �̂�nom𝑗
× 0.01 (i.e., modify by 1 % the original component value). 

 �̂�mod𝑗
= �̂�nom𝑗

+ 𝛿𝑗. 

4) Propagate the modified state vector from 𝑡0 to 𝑡𝑖. 
5) Compute all observed values from the modified state vector at 𝑡𝑖 (i.e., 𝜌1mod𝑗

, 

�̇�1mod𝑗
, …). 

6) Compute the 𝐀 matrix elements for each observed value. 

 
𝜕obs

𝜕component
≈

𝛿obs𝑗

𝛿𝑗
=

obsmod−obsnom

𝛿𝑗
. 

7) Reset the modified component �̂�mod𝑗
 to its original value �̂�nom𝑗

. 

END LOOP 

Table 4.1: Finite differencing algorithm. 

 

 

Once the calculation of 𝐀 matrix has been explained, Equation (4.6) can be performed. The 

resulting 𝛿�̂� value must be added to the nominal state vector. At this point, the convergence must be 

checked. The simulations performed into this document will not follow any convergence criteria, so 

that the final algorithm will iterate a fixed number of iterations in order to evaluate its performance. 

 

Table 4.2 shows the complete Least Squares algorithm related to orbit determination in the 

GEOSAR mission context, which will be used in the simulations of the following section. 

 

In order to conclude this section, it must be said that Least Squares may process successive 

batches of data in order not to redo all calculations performed when new data is provided. Such 

technique is called sequential batch Least Squares and uses Bayes estimation. The reader may consult 

Vallado (2013) for further information about this technique since it will not be used within the 

simulations of this document. 
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LEAST SQUARES ALGORITHM 

Compute the nominal state vector at time 𝑡0, �̂�nom0
 by using one of the methods of 

Chapter 3. 

 

FOR 𝑖 = 1 to 100 (i.e., total number of Least Squares iterations) 

 

    FOR 𝑗 = 1 to 𝑁 (i.e., total number of observations) 

1) Propagate the nominal state vector from 𝑡0 to the observation time 𝑡𝑗. 

2) Compute all observed values from the nominal state vector at 𝑡𝑗 (i.e., 𝜌1nom𝑗
, 

�̇�1nom𝑗
, …). 

3) Find vector �̃� corresponding to observation 𝑗, �̃�𝑗. 

 �̃�𝑗 = [𝑦obs𝑗
− 𝑦nom𝑗

] = [

𝜌1obs𝑗
− 𝜌1nom𝑗

𝜌2obs𝑗
− 𝜌2nom𝑗

𝜌3obs𝑗
− 𝜌3nom𝑗

], or 

 �̃�𝑗 = [𝑦obs𝑗
− 𝑦nom𝑗

] =

[
 
 
 
 
 
 
 
𝜌1obs𝑗

− 𝜌1nom𝑗

�̇�1obs𝑗
− �̇�1nom𝑗

𝜌2obs𝑗
− 𝜌2nom𝑗

�̇�2obs𝑗
− �̇�2nom𝑗

𝜌3obs𝑗
− 𝜌3nom𝑗

�̇�3obs𝑗
− �̇�3nom𝑗]

 
 
 
 
 
 
 

 

4) Perform Finite Differencing for the 𝐀 matrix corresponding to observation 𝑗, 
𝐀𝑗. 

    END FOR 

 

5) Concatenate all vectors �̃�𝑗 and matrices 𝐀𝑗 in order to build vector �̃� and matrix 

𝐀. 

6) Compute the transpose of matrix 𝐀, 𝐀𝑇. 

7) Compute the weighting matrix, 𝐖. 

8) Compute (𝐀𝑇𝐖𝐀)−1. 

9) Find 𝛿�̂� from Equation (4.6). 

10) Update the nominal state vector. 

 �̂�nom0
= �̂�nom0

+ 𝛿�̂� 

 

END LOOP 

Table 4.2: Least Squares algorithm. 

 

 

 

4.3. RESULTS ANALYSES OF LEAST SQUARES TECHNIQUE 

 

This section will analyse the precision of Least Squares technique when different simulations of the 

Least Squares algorithm of the previous section are performed. Each simulation will be independent of 

the other since the quantity of noise added to the ideal range and range-rate observations will be 

random and delimited by the same standard deviation calculated in Section 3.6. Thus, the results 

obtained in each simulation will be different, and therefore there is a need to perform statistical 
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simulations. All Matlab functions and scripts used in such simulations are listed and briefly explained 

in Appendix A. 

 

The simulations proceeding will be similar to those performed in Chapter 3. First, different 

settings will be analysed considering either range and range-rate observations or only range 

observations. Second, each statistical simulation will use 1 000 samples (i.e., the complete Least 

Squares algorithm will be repeated 1 000 times on each statistical simulation). Third, the noisy 

observations will be provided equally spaced in a time span of 6 h, which will simulate the radar 

synthetic aperture duration. Forth, the amount of observations given will be 1 000 in all simulations, 

so that the interval of time between observations will be of 20 seconds approximately. During the 

simulation of the first setting, 10 and 100 observations will also be used. In this way, the reader will 

see how the available number of observations affects the final precision of Least Squares technique. 

Finally, the initial state vector will be given at 𝑡0 = 0 s for all settings used. Thus, in this section, there 

will not be distinction in the initial epoch selected depending on the initial observations provided. 

Remember that Least Squares technique uses all available data in order to improve the initial state. 

 

In Chapter 3, it has been explained the methods used in order to obtain the initial nominal state 

vector when range and range-rate observations are given. Now, in Chapter 4, more than 3 observations 

are available1, so that the determination of the initial state may be improved by means of averaging the 

initial state vectors calculated when using different observations of different epochs. Imagine that 

range and range-rate observations are available. One state vector can be calculated at each observation 

epoch by means of Trilateration method. Propagating all of them to the same epoch, let us say the 

initial epoch 𝑡0, and performing an average of all of these vectors, the initial state vector estimate is 

improved. Thus, Least Squares technique needs less iterations in order to converge. However, it may 

happen that the initial estimate is too close to the real one (e.g., a few metres of difference in the 

satellite position state vector), and this fact entails problems when the partial-derivative matrix, 𝐀, is 

calculated (i.e., matrix 𝐀 is not full rank, so that (𝐀𝑇𝐖𝐀)−1 cannot be calculated). Therefore, there is 

no need to obtain a very precise initial nominal state vector when using Least Squares technique. 

 

In order to see better how Least Squares technique works, the initial nominal state vector has 

been chosen manually. That is to say, as the ideal satellite state vector value at epoch 𝑡0 is known, one 

may vary its values in an appropriate way in order to obtain the initial nominal state vector. Table 4.3 

shows the initial nominal state vector used as a starting point for all settings that are going to be 

simulated.  

 

Previous to show the results, it must be said that the Least Squares algorithm has been set to 

iterate 100 times per each sample of the statistical simulation. Thus, some intermediate results will 

also be collected in order to evaluate the Least Squares performance. The results will show the errors 

in the approximate satellite state vector (i.e., how the initial nominal state vector errors vary along the 

Least Squares iterations), and the errors in the range and range-rate observations of the same locations 

evaluated in the simulations of the previous chapter. 

 

 

 

                                                      
1 Remember that, when only range observations are given, the range observations must be provided at three 

different epochs in order to calculate the initial state vector. 
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 SATELLITE STATE VECTOR AT 𝒕𝟎 = 𝟎 𝐬   

 Ideal value Initial nominal value  Initial error 

𝑟𝑥 [km] 39 811.324 342 080 086 39 861.324 342 080 086  50.000 000 000 000 

𝑟𝑦 [km] 13 863.769 945 143 404 13 813.769 945 143 402  -50.000 000 000 002 

𝑟𝑧 [km] 0.000 000 000 000 50.000 000 000 000  50.000 000 000 000 

𝑣𝑥 [km/s] -1.011 153 178 968 -1.611 153 178 968  -0.600 000 000 000 

𝑣𝑦 [km/s] 2.904 251 340 218 3.304 251 340 218  0.400 000 000 000 

𝑣𝑧 [km/s] 0.000 000 000 000 -0.500 000 000 000  -0.500 000 000 000 

Table 4.3: Initial nominal state vector at 𝑡0 = 0 s. 

 

 

a) Results Analysis of Setting H 

Table 4.4 summarizes all conditions taken into account when performing the statistical simulation 

of setting H. 

 
    

 Setting H   
    

 
 

Location of the three sites in order to obtain the initial nominal state vector: 

(01) Barcelona (Spain) / (02) Betzdorf (Luxemburg) / (03) Milan (Italy). 
 

IDEAL DATA 

- Type of observations generated: RANGE. 

- Number of observations generated per type and site: 1 000. 

- Time span: 6 h. 
 

NOISE ADDED 

- Range observations: MEAN: 0 m / STD.: 1 m. 
 

APPROXIMATE DATA 

- Technique used: LEAST SQUARES. 

- Epoch when the approximate satellite state vector is given: 𝑡0 = 0 s. 
 

 

    

Table 4.4: Summary of all conditions considered on setting H. 

 

 

As setting H is the first simulation to be analysed, some issues of the Least Squares 

algorithm will be evaluated in order to achieve a better understanding of how it works. In this 

way, first, it will be studied the algorithm convergence considering the use of 10, 100, and 1 000 

range observations per site. Then, it will be shown the statistical simulations of these three cases 

in order to evaluate the Least Squares performance depending on the number of observations 

used. Finally, it will be discussed the need of using the matrix weighting, 𝐖. 

 

Least Squares Algorithm Convergence 

The convergence of Least Squares algorithm will be first evaluated by means of the values that 

the vector corrections to the state vector, 𝛿�̂�, will take along the 100 iterations of the algorithm. 

Remember that vector 𝛿�̂� stands for the quantities to add or subtract to the initial nominal state 

vector in order to meet the ideal (or real) state vector value. Therefore, the algorithm convergence 

will be achieved when all components of 𝛿�̂� tend to zero. Table 4.5 shows these values related to 
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the first, last, and two intermediate algorithm iterations when 10, 100, and 1 000 observations are 

available. 

 

 VECTOR CORRECTIONS TO THE STATE VECTOR (𝛿�̂�) 

 1 iteration 5 iterations 10 iterations 100 iterations 

 

10 observations 
 

∆𝑟𝐼 [km] -3 398.688 743 392 164 7.551 466 757 265 -0.000 000 005 521 0.000 000 014 671 

∆𝑟𝐽 [km] 7 404.570 041 511 945 -22.351 284 190 081 0.000 000 047 278 -0.000 000 004 605 

∆𝑟𝐾  [km] -3 763.973 795 325 485 48.420 613 556 557 0.000 000 102 210 0.000 000 100 552 

∆𝑣𝐼 [km/s] -0.137 931 905 765 0.000 952 662 549 -0.000 000 000 004 0.000 000 000 001 

∆𝑣𝐽 [km/s] -0.897 575 778 875 0.000 431 719 380 -0.000 000 000 003 -0.000 000 000 001 

∆𝑣𝑘 [km/s] -0.847 552 955 657 -0.003 174 745 293 -0.000 000 000 015 -0.000 000 000 004 

 

100 observations 
 

∆𝑟𝐼 [km] -2 797.376 035 418 503 -0.724 838 847 395 -0.000 000 023 078 0.000 000 027 056 

∆𝑟𝐽 [km] 6 083.544 042 823 009 -1.014 973 379 256 0.000 000 127 740 -0.000 000 078 793 

∆𝑟𝐾  [km] -2 528.329 262 221 871 2.425 283 473 699 0.000 000 202 795 -0.000 000 021 910 

∆𝑣𝐼 [km/s] 0.021 368 880 662 0.000 280 478 520 -0.000 000 000 012 0.000 000 000 008 

∆𝑣𝐽 [km/s] -0.785 378 631 189 -0.000 026 171 636 -0.000 000 000 006 0.000 000 000 003 

∆𝑣𝑘 [km/s] -0.571 238 823 219 0.000 022 713 295 -0.000 000 000 039 0.000 000 000 019 

 

1000 observations 
 

∆𝑟𝐼 [km] -2 727.787 691 748 790 -1.331 548 925 731 -0.000 000 072 754 -0.000 000 024 384 

∆𝑟𝐽 [km] 5 921.967 312 268 461 0.011 342 024 704 0.000 000 058 583 0.000 000 021 923 

∆𝑟𝐾  [km] -2 412.261 924 791 630 -0.031 730 686 798 -0.000 000 396 257 -0.000 000 126 927 

∆𝑣𝐼 [km/s] 0.040 031 559 759 0.000 182 871 545 -0.000 000 000 006 -0.000 000 000 002 

∆𝑣𝐽 [km/s] -0.771 984 625 893 -0.000 031 330 161 0.000 000 000 002 0.000 000 000 000 

∆𝑣𝑘 [km/s] -0.538 811 531 308 0.000 125 882 791 0.000 000 000 005 0.000 000 000 001 

Table 4.5: Initial, final, and two intermediate values of vector 𝛿�̂� considering 10, 100, and 1 000 observations. 

 

 

From the table above, one may say that the algorithm converges to one point in all three 

cases provided that all components of 𝛿�̂� tend to zero. In addition, one may conclude that the 

more observations are available, the more rapidly the algorithm will converge. This fact can also 

be seen in Figure 4.6 where the evolution of all 𝛿�̂� components has been depicted. This figure 

only shows the first 10 iterations since the evolution of 𝛿�̂� components is very little from iteration 

10 and cannot be observable in all plots. 

 

Up to now, it has been proved that all 𝛿�̂� components tend to zero; however, nothing has 

been said about the point where the algorithm has converged. This fact is illustrated in Figures 4.7 

and 4.8 where the evolution of the initial nominal position and velocity vectors along the Least 

Squares algorithm iterations have been depicted respectively. As in Figure 4.6, only the first 10 

iterations have been plotted. 
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Figure 4.6: Evolution of 𝛿�̂� components along the first 10 iterations of Least Squares algorithm considering 10 

(in red), 100 (in blue), and 1 000 (in orange) observations. 

 

 

 
Figure 4.7: Evolution of the initial nominal position state vector along the first 10 iterations of Least Squares 

algorithm considering 10 (in red), 100 (in blue), and 1 000 (in orange) observations. 
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Figure 4.8: Evolution of the initial nominal velocity state vector along the first 10 iterations of Least Squares 

algorithm considering 10 (in red), 100 (in blue), and 1 000 (in orange) observations. 

 

 

 
Figure 4.9: Evolution of the errors between the ideal and nominal state vectors along the first 10 iterations of 

Least Squares algorithm and considering 10 (in red), 100 (in blue), and 1 000 (in orange) observations. 
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From Figures 4.7 and 4.8, one may see that all components converge to the ideal value, and 

therefore the algorithm convergence has been totally proved.  

 

Finally, Figure 4.9 shows the evolution of the errors obtained between the ideal and nominal 

state vector values. From this figure, one may see the magnitude of the errors. However, in order 

to better analyse such errors, a statistical simulation must be performed since each Least Squares 

algorithm simulation provides different results. 

 

Statistical Simulation of Setting H (10, 100, and 1 000 Observations) 

Appendix C shows the main results obtained during each statistical simulation of setting H. First, 

the evolution of the errors in the nominal state vector is listed, and then, the final errors in the 

range observations are provided. Both set of errors are calculated at two different epochs 

simulating the initial and final epochs of the radar synthetic aperture. 

 

Least Squares algorithm needs a few iterations in order to converge to the final state vector. 

During the first iteration, the nominal state vector is moved far away from its ideal position; 

however, from this distant point, the algorithm is able to meet the ideal position more precisely 

than the methods used in Chapter 3. It must also be said that, from iteration 10, the Least Squares 

algorithm achieve very little or no gain with respect to the precision obtained. Thus, the tolerance 

of iteration 10 would be used as an escape criterion when performing Least Squares technique in 

a more real case. 

 

  ORDER OF MAGNITUDE OF THE ERRORS OF SETTING H AT 𝒕𝟎 AND 𝒕𝐟 

 
 3 observations 

(setting C) 
10 observations 100 observations 1 000 observations 

 

𝐫 

𝑡0 117 / 56 / 151 m 15 / 30 / 52 m 4 / 9 / 17 m 1 / 3 / 5 m 

𝑡f 143 / 114 / 169 m 44 / 22 / 63 m 14 / 7 / 21 m 4 / 2 / 7 m 

      

𝐯 

𝑡0 9 / 6 / 12 
mm

s
 1 / 2 / 5 

mm

s
 0.8 / 0.3 / 1.5 

mm

s
 0.2 / 0.1 / 0.5 

mm

s
 

𝑡f 7 / 8 / 11 
mm

s
 1 / 3 / 4 

mm

s
 0.2 / 1 / 1.2 

mm

s
 0.08 / 0.3 / 0.4 

mm

s
 

      

𝜌 

𝑡0 0.6 to 6.7 m 0.4 to 1.7 m 0.2 to 0.5 m 5.6 to 17 cm 

𝑡f 102 to 108 m 0.4 to 2.5 m 0.2 to 0.8 m 5.4 to 26 cm 

Table 4.6: Summary of the order of magnitude errors of setting H. This table shows the error obtained on each 𝐫 

and 𝐯 components as well as the range values of the error in 𝜌 observations of all sites evaluated. 

 

 

Table 4.6 summarizes the errors obtained (i.e., their standard deviations) when using 10, 100, 

and 1 000 observations. The errors calculated when setting C was simulated have also been 

added. In this way, one may compare the precision of all same configurations. As seen from the 

table, the errors in the satellite state vector decrease one order of magnitude when using 1 000 
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observations instead of 10, and are two orders of magnitude below of those errors obtained when 

simulating setting C. This fact clearly affect the precision of range observations, which goes from 

a few metres on setting C to a few centimetres on setting H when using 1 000 observations.  

 

In order to better see how the final range observation errors are distributed among all 

locations studied, it has been considered adding Figures 4.10, 4.11, and 4.12.  

 

By using Least Squares technique, the precision requirement of GEOSAR mission may be 

fulfilled. All locations under the satellite L-band beam coverage, except those at the edges, have a 

range observation precision of the same order of magnitude of the radar X-band wavelength. In 

addition, such requirement is achieved at both initial and final epochs. However, one must 

consider that the simulation has been performed without taking into account any kind of 

perturbations, so that some precision deterioration could be expected when adding third body 

effects, solar radiation pressure, etc. But, on the other hand, more observations might be used in 

order to increase the precision obtained. For instance, one could use 10 000 observations (time 

epochs) instead of 1 000. This fact has not been proved within this document since the statistical 

simulation was computationally expensive. 

 

 

 

 

 
Figure 4.10: Precision of setting H when using 10 observations. Red and purple squares illustrate 𝜌 errors 

at initial epoch, 𝑡0, whereas black squares show 𝜌 errors at final epoch, 𝑡f. 
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Figure 4.11: Precision of setting H when using 100 observations. Red and purple squares illustrate 𝜌 

errors at initial epoch, 𝑡0, whereas black squares show 𝜌 errors at final epoch, 𝑡f. 

 

 

 
Figure 4.12: Precision of setting H when using 1 000 observations. Red and purple squares illustrate 𝜌 

errors at initial epoch, 𝑡0, whereas black squares show 𝜌 errors at final epoch, 𝑡f. 
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Matrix Weighting, 𝐖 

In order to conclude the analysis of setting H, it has been tested without setting the matrix 𝐖. The 

reason to do this is that all ideal range observations coming from different sites have been 

perturbed considering the same level of noise (i.e., 𝜎𝜌𝑖
= 1 m where 𝑖 = 1, 2, 3). Thus, the use or 

not of matrix 𝐖 for improving the precision of the Least Squares algorithm will be evaluated in 

this case of study. Table 4.7 shows a comparison of the errors found in setting H. 

 

  ERRORS OF SETTING H AT 𝒕𝟎 AND 𝒕𝐟 

 
 1 000 observations 

(using 𝐖) 

1 000 observations 

(without using 𝐖) 

𝐫 

𝑡0 1 / 3 / 5 m 1 / 3 / 5 m 

𝑡f 4 / 2 / 7 m 4 / 2 / 7 m 

    

𝐯 

𝑡0 0.2 / 0.1 / 0.5 
mm

s
 0.3 / 0.09 / 0.5 

mm

s
 

𝑡f 0.08 / 0.3 / 0.4 
mm

s
 0.08 / 0.3 / 0.4 

mm

s
 

    

𝜌 

𝑡0 5.6 to 17 cm 5.6 to 17 cm 

𝑡f 5.4 to 26 cm 5.3 to 26 cm 

Table 4.7: Summary of the errors of setting H (matrix 𝐖 use). This table shows the error obtained on each 

𝐫 and 𝐯 components as well as the range values of the error in 𝜌 observations of all sites evaluated. 

 

As seen from the table above, the use of matrix 𝐖 does not improve the precision of Least 

Squares algorithm. Although matrix 𝐖 is not useful in this case, it must be taken into account 

when performing the algorithm in a real case. 

 

b) Results Analysis of Setting I 

The next setting to be analysed considers range and range-rate observations. Let us see whether 

the use of range-rate observations improve the precision acquired in the previous sub-section. All 

conditions taken into account within the simulation are summarized in Table 4.8. 

 

The simulation of Least Squares algorithm adding range-rate observations is run similarly 

than the one only using range observations. That is to say, after the first iteration, the initial 

nominal state vector is moved far away. Then, from this distant point, the algorithm converges a 

few iterations later. One can see this fact from the tables of Appendix C. 

 

Table 4.9 compares the results between settings D and I, which have similar configurations. 

It has also been added setting H in order to compare its precision to the one obtained through 

setting I. As seen from the table, setting I improves the precision of setting D in two, three or 

even in four order of magnitudes. However, it does not improve the precision of setting H since 

similar or almost identical results are obtained. 
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 Setting I   
    

 
 

Location of the three sites in order to obtain the initial nominal state vector: 

(01) Barcelona (Spain) / (02) Betzdorf (Luxemburg) / (03) Milan (Italy). 
 

IDEAL DATA 

- Type of observations generated: RANGE and RANGE-RATE. 

- Number of observations generated per type and site: 1 000. 

- Time span: 6 h. 
 

NOISE ADDED 

- Range observations: MEAN: 0 m / STD.: 1 m. 

- Range-rate observations: MEAN: 0 mm s⁄  / STD.: 5 mm s⁄ . 
 

APPROXIMATE DATA 

- Technique used: LEAST SQUARES. 

- Epoch when the approximate satellite state vector is given: 𝑡0 = 0 s. 
 

 

    

Table 4.8: Summary of all conditions considered on setting I. 

 

 

  COMPARISON BETWEEN ERRORS OF SETTINGS D, H, I 

 
 Setting D 

(3 observations) 

Setting H 

(1 000 observations) 

Setting I 

(1 000 observations) 

𝐫 

𝑡0 62 / 120 / 150 m 1 / 3 / 5 m 2 / 3 / 6 m 

𝑡f 2 / 17 / 10 km 4 / 2 / 7 m 4 / 2 / 6 m 

     

𝐯 

𝑡0 0.3 / 0.6 / 0.7 
m

s
 0.2 / 0.1 / 0.5 

mm

s
 0.3 / 0.09 / 0.5 

mm

s
 

𝑡f 0.02 / 1.7 / 0.01 
m

s
 0.08 / 0.3 / 0.4 

mm

s
 0.08 / 0.3 / 0.4 

mm

s
 

     

𝜌 

𝑡0 0.6 to 6.9 m 5.6 to 17 cm 5.6 to 17 cm 

𝑡f 17.0 to 17.5 km 5.4 to 26 cm 5.4 to 25 cm 

Table 4.9: Comparison between the errors of settings D, H, and I. This table shows the error obtained on each 𝐫 

and 𝐯 components as well as the range values of the error in 𝜌 observations of all sites evaluated. 

 

 

Therefore, the precision requirement of GEOSAR mission is also fulfilled by means of 

setting I, especially for those locations in the centre of the satellite L-band beam coverage. Figure 

4.13 shows how the errors in range observations are distributed among all sites evaluated. 

 

Before concluding Chapter 4, it has been considered to add the analysis of two more settings. 

Setting J will reduce the error added in the ideal range observations one order of magnitude. On 

the other hand, setting K will do the same but in the range-rate observations. In this way, it will 
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be shown which case offers better capabilities for improving the precision required on GEOSAR 

mission. 

 

 
Figure 4.13: Precision of setting I. Red and purple squares illustrate 𝜌 errors at initial epoch, 𝑡0, whereas 

black squares show 𝜌 errors at final epoch, 𝑡f. 

 

 

c) Results Analysis of Setting J 

Table 4.10 summarizes all conditions taken into account in the simulation of setting J, which they 

are the same of those used for setting H, but the standard deviation noise to the range 

observations has reduced one order of magnitude. 

 
    

 Setting J   
    

 
 

Location of the three sites in order to obtain the initial nominal state vector: 

(01) Barcelona (Spain) / (02) Betzdorf (Luxemburg) / (03) Milan (Italy). 
 

IDEAL DATA 

- Type of observations generated: RANGE. 

- Number of observations generated per type and site: 1 000. 

- Time span: 6 h. 
 

NOISE ADDED 

- Range observations: MEAN: 0 m / STD.: 0.1 m. 
 

APPROXIMATE DATA 

- Technique used: LEAST SQUARES. 

- Epoch when the approximate satellite state vector is given: 𝑡0 = 0 s. 
 

 

    

Table 4.10: Summary of all conditions considered on setting J. 
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  ERRORS OF SETTINGS H AND J 

 
 Setting H 

(1 000 observations) 

Setting J 

(1 000 observations) 

𝐫 

𝑡0 1 / 3 / 5 m 0.1 / 0.3 / 0.5 m 

𝑡f 4 / 2 / 7 m 0.4 / 0.2 / 0.7 m 

    

𝐯 

𝑡0 0.2 / 0.1 / 0.5 
mm

s
 27 / 10 / 49 

μm

s
 

𝑡f 0.08 / 0.3 / 0.4 
mm

s
 8 / 35 / 39 

μm

s
 

    

𝜌 

𝑡0 5.6 to 17 cm 5.7 to 17 mm 

𝑡f 5.4 to 26 cm 5.5 to 27 mm 

Table 4.11: Comparison between settings H and J. This table shows the error obtained on each 𝐫 and 𝐯 

components as well as the range values of the error in 𝜌 observations of all sites evaluated. 

 

 

 

 
Figure 4.14: Precision of setting J. Red and purple squares illustrate 𝜌 errors at initial epoch, 𝑡0, whereas 

black squares show 𝜌 errors at final epoch, 𝑡f. 
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The simulation results show a reduction of one order of magnitude of the errors obtained in 

the satellite state vector as well as in the range observations with respect to setting H (see Table 

4.11). Thus, the precision requirement of GEOSAR mission is completely fulfilled in all locations 

under the satellite L-band beam coverage. Therefore, it is highlighted the need of being provided 

of very precise range observations. 

 

Following the same format of previous sub-sections, Figure 4.14 illustrates how the range 

observation errors are distributed along all sites evaluated. 

 

d) Results Analysis of Setting K 

The analyses of different settings will conclude studying setting K. One may find the information 

of all conditions considered in the simulation of setting K in Table 4.12. 

 
    

 Setting K   
    

 
 

Location of the three sites in order to obtain the initial nominal state vector: 

(01) Barcelona (Spain) / (02) Betzdorf (Luxemburg) / (03) Milan (Italy). 
 

IDEAL DATA 

- Type of observations generated: RANGE and RANGE-RATE. 

- Number of observations generated per type and site: 1 000. 

- Time span: 6 h. 
 

NOISE ADDED 

- Range observations: MEAN: 0 m / STD.: 1 m. 

- Range-rate observations: MEAN: 0 mm s⁄  / STD.: 0.5 mm s⁄ . 
 

APPROXIMATE DATA 

- Technique used: LEAST SQUARES. 

- Epoch when the approximate satellite state vector is given: 𝑡0 = 0 s. 
 

 

    

Table 4.12: Summary of all conditions considered on setting K. 

 

 

The simulation results (see Table 4.13) show a very little error decrease in the satellite state 

vector with respect to setting I. This fact implies a small improvement in the precision of setting 

K; however, it does not achieve the precision obtained by using setting J, which is one order of 

magnitude below. Therefore, it has been shown that decreasing the errors of the range 

observations provides better precision results than only decreasing the errors of the range-rate 

observations. 

 

Finally, the range observation errors are shown in Figure 4.15. 
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  COMPARISON BETWEEN ERRORS OF SETTINGS I, J, K 

 
 Setting I 

(1 000 observations) 

Setting J 

(1 000 observations) 

Setting K 

(1 000 observations) 

𝐫 

𝑡0 2 / 3 / 6 m 0.1 / 0.3 / 0.5 m 1 / 3 / 5 m 

𝑡f 4 / 2 / 6 m 0.4 / 0.2 / 0.7 m 4 / 2 / 6 m 

     

𝐯 

𝑡0 0.3 / 0.09 / 0.5 
mm

s
 27 / 10 / 49 

μm

s
 0.3 / 0.09 / 0.4 

mm

s
 

𝑡f 0.08 / 0.3 / 0.4 
mm

s
 8 / 35 / 39 

μm

s
 0.08 / 0.3 / 0.4 

mm

s
 

     

𝜌 

𝑡0 5.6 to 17 cm 5.7 to 17 mm 4.9 to 17 cm 

𝑡f 5.4 to 25 cm 5.5 to 27 mm 4.7 to 25 cm 

Table 4.13: Comparison between the errors of settings I, J, and K. This table shows the error obtained on 

each 𝐫 and 𝐯 components as well as the range values of the error in 𝜌 observations of all sites evaluated. 

 

 

 

 
Figure 4.15: Precision of setting K. Red and purple squares illustrate 𝜌 errors at initial epoch, 𝑡0, whereas 

black squares show 𝜌 errors at final epoch, 𝑡f. 
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4.4. RESULTS SUMMARY 

 

The following table summarizes the main results obtained of all simulated settings along Chapter 4. 

 

RESULTS SUMMARY OF ALL CHAPTER 4 SETTINGS 

Set. 
Errors in satellite 

Postion SV (𝐫) 

Errors in satellite 

Velocity SV (𝐯) 

Errors in Range 

observations (𝜌) 

Errors in Range-rate 

observations (�̇�) 
 

INITIAL EPOCH (𝑡0 = 0 s) 
 

H 
(10) 

15 / 30 / 52 m 1 / 2 / 5 
mm

s
 0.4 to 1.7 m − 

H 
(100) 4 / 9 / 17 m 0.8 / 0.3 / 1.5 

mm

s
 0.2 to 0.5 m − 

H 
(1 000) 1 / 3 / 5 m 0.2 / 0.1 / 0.5 

mm

s
 5.6 to 17 cm − 

I 
(1 000) 2 / 3 / 6 m 0.3 / 0.09 / 0.5 

mm

s
 5.6 to 17 cm 11 to 14 

μm

s
 

J 
(1 000) 0.1 / 0.3 / 0.5 m 27 / 10 / 49 

μm

s
 5.7 to 17 mm − 

K 
(1 000) 1 / 3 / 5 m 0.3 / 0.09 / 0.4 

mm

s
 4.9 to 17 cm 8.7 to 12 

μm

s
 

 

FINAL EPOCH (𝑡f = 21 600 s) 
 

H 
(10) 

44 / 22 / 63 m 1 / 3 / 4 
mm

s
 0.4 to 2.5 m − 

H 
(100) 14 / 7 / 21 m 0.2 / 1 / 1.2 

mm

s
 0.2 to 0.8 m − 

H 
(1 000) 4 / 2 / 7 m 0.08 / 0.3 / 0.4 

mm

s
 5.4 to 26 cm − 

I 
(1 000) 4 / 2 / 6 m 0.08 / 0.3 / 0.4 

mm

s
 5.4 to 25 cm 11 to 14 

μm

s
 

J 
(1 000) 0.4 / 0.2 / 0.7 m 8 / 35 / 39 

μm

s
 5.5 to 27 mm − 

K 
(1 000) 4 / 2 / 6 m 0.08 / 0.3 / 0.4 

mm

s
 4.7 to 25 cm 8.5 to 12 

μm

s
 

Table 4.14: Summary of all simulation results performed in Chapter 4. This table shows the error obtained on 

each 𝐫 and 𝐯 components as well as the range values of the error in 𝜌 and �̇� observations of all sites evaluated. 
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CONCLUSIONS 
 

 

This document has introduced the topic of orbit determination methods and techniques to the reader in 

the context of GEOSAR mission. 

 

First, Chapter 1 has explained the GEOSAR mission main features. In this way, the advantages of 

the mission versus LEOSAR missions, and the new set of application that this fact involves have been 

listed. However, GEOSAR mission introduces some constraints. One of these limitations lies on the 

lack of knowledge with precision about the orbit that the satellite describes around the Earth. Such 

precision is related to the range history between the radar antenna and each scene point under the 

satellite L-band beam coverage. Therefore, in order to obtain well-focused images, the range history of 

every site must remain in the order of magnitude of the radar X-band wavelength (i.e., 𝜆~3 cm). Thus, 

this document has introduced different methods and techniques in order to determine the satellite orbit 

with such precision. 

 

After Chapter 2 has shown how a SAR radar works with some examples, Chapter 3 has started to 

present methods for orbit determination from range and range-rate measurements. In this way, 

Trilateration and Gibbs methods have been discussed. On the one hand, Trilateration method alone 

may calculate an initial satellite state vector if both types of measurements are available. On the other 

hand, Gibbs method may help Trilateration method in order to find the initial state vector if only range 

measurements are given. Many simulations have been performed in order to evaluate the precision of 

both methods. Such simulations have shown that the combination of both methods results to be the 

best approach to initially determine the satellite orbit. However, the required precision is far to be 

accomplished, so that other techniques had to be studied. 

 

Finally, Chapter 4 has introduced Least Squares and Kalman filter techniques, which are called 

differential correction techniques. At the beginning of the chapter, it has been discussed the pros and 

cons of both techniques resulting Least Squares the technique to be used in order to determine the 

satellite orbit. In this way, the complete formulation of Least Squares technique has been explained, 

and then, it has been adapted to the orbit determination problem. At this point, some simulations have 

been performed in order to evaluate the precision of Least Squares technique. Such simulations have 

resulted in range observation errors of the same order of magnitude than the required precision of 

GEOSAR mission. However, all errors found are above the 3 centimetres of the radar X-band 

wavelength. This fact implies that the Least Squares technique must be used in collaboration to other 

techniques, for instance, autofocusing techniques. In this way, the mission precision for the satellite 

orbit determination may be completely ensured. 

 

As a final remark, it had been shown that decreasing the errors in the range observations used in 

Least Squares technique provide better precision results than reducing the errors in the range-rate 

observations. 
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Future work 

This document may be used as a first overview of satellite orbit determination in GEOSAR mission. 

All methods and techniques explained within the document are clearly useful for orbit determination. 

However, some modifications in the algorithms must be performed in order to take into account 

perturbations. Since there were no real data available, the precision of all methods has been evaluated 

from an ideal simulated orbit, which presented similar issues of a real GEO orbit but did not consider 

perturbations. One must know that perturbations affect the satellite movement along its orbit, and does 

the estimation of its orbit more difficult to calculate in a precise way. 

 

On the other hand, care must be taken when defining time. Since there were no specific dates of 

real observables, time has treated in a more easy way. But, the appearance of real data will imply to 

define time by using time references described briefly in Section 2.4. Knowing the time, one may 

locate one site over the Earth’s surface more precisely, and therefore the range measurement between 

the satellite and site will be calculated with less error. 

 

Since GEOSAR mission has no launching date yet, it will be difficult to achieve real data soon in 

order to prove the methods and techniques discussed within this document. However, this real data 

may be obtained from the alternative system based on a ground-based interferometer, which has been 

presented in Chapter 1. An interferometer will provide different measurements, so that all methods and 

techniques explained along this document must be adapted to such system. 

 

Finally, the feasibility of Kalman filter techniques in the context of GEOSAR mission may also 

be proved instead of using Least Squares techniques. And, in case that the precision requirements are 

not obtained, autofocusing techniques may also be studied. 
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APPENDIX A 
 

 A.1. MATLAB SCRIPTS AND FUNCTIONS OF SECTIONS 3.5 AND 3.7 
 

A.2. MATLAB SCRIPTS AND FUNCTIONS OF SECTION 3.8 
 

A.3. MATLAB SCRIPTS AND FUNCTIONS OF SECTION 4.3 
 

A.4. SUMMARY of ALL MATLAB FUNCTIONS AND SCRIPTS USED 

 

 

 

Appendix A illustrates the block diagram of all Matlab scripts and functions involved on each group of 

simulations performed along this document. At the end of this Appendix, a brief explanation of every 

script or function used into the simulations is provided. 

 

 

 

A.1. MATLAB SCRIPTS AND FUNCTIONS OF SECTIONS 3.5 AND 3.7 
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Figure A.1: Block diagram of Matlab scripts and functions used in Sections 3.5 and 3.7. 

 

 

 

A.2. MATLAB SCRIPTS AND FUNCTIONS OF SECTION 3.8 
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Figure A.2: Block diagram of Matlab scripts and functions used in Section 3.8. 

 

 

 

A.3. MATLAB SCRIPTS AND FUNCTIONS OF SECTION 4.3 
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Figure A.3: Block diagram of Matlab scripts and functions used in Section 4.3. 

 

 

 

A.4. SUMMARY of ALL MATLAB FUNCTIONS AND SCRIPTS USED 

 

Script/Function name Summary 

add_errors2ranges 

(script) 

It adds uniform or Gaussian noise to the range and range-rate 

observations generated by script observations_generator. 

angl 

(function) 

It calculates the angle between two vectors. 

coe2rv 

(function) 

It finds the position and velocity vectors in a geocentric 

equatorial system, 𝐼𝐽𝐾, given the Classical Orbital Elements. 

dms2rad 

(function) 

It converts degrees, minutes and seconds into radians. 

errors_statistical_LS 

(script) 

It computes the statistical errors obtained in the satellite state 

vector, and in range and range-rate observations when the Least 

Squares technique is performed. 
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errors_SV_ranges_COE 

(script) 

It computes the errors between ideal and approximate values of 

the satellite state vector, range and range-rate observations, and 

Classical Orbital Elements. 

findc2c3 

(function) 

It calculates the c2 and c3 functions in order for using them in 

the universal variable calculation of 𝑧. 

finitediff 

(function) 

It perturbs the components of the state vector in order to obtain 

matrix 𝐀 when performing Least Squares technique. 

gibbs 

(function) 

It performs the Gibbs’ method of orbit determination, i.e. it 

determines the velocity at the middle epoch of the 3 given 

position vectors. 

hgibbs 

(function) 

It implements the Herrick-Gibbs approximation for orbit 

determination, and finds the middle velocity vector for the 3 

given position vectors. 

kepler 

(function) 

 

It solves Kepler’s problem for orbit determination and returns a 

future geocentric equatorial, 𝐼𝐽𝐾, position and velocity vector. 

The solution uses universal variables. 

least_squares 

(script) 

It performs the complete Least Squares algorithm by using finite 

differencing. 

lstime 

(function) 
It finds the Local Sidereal Time, 𝜃LST, at a given location. 

mag 

(function) 

It finds the magnitude of a vector. 

MAIN 

(script) 

It performs the complete simulation of the initial orbit 

determination of Chapter 3. 

MAIN_statistical 

(script) 

It performs the complete statistical simulation of the initial orbit 

determination of Chapter 3. 

MAIN_statistical_LS 

(script) 

It performs the complete statistical simulation of Least Squares 

algorithm of Chapter 4. 

newtonnu 

(function) 

 

It solves Kepler’s equation when the true anomaly is known. The 

mean and eccentric, parabolic, or hyperbolic anomaly are also 

found. 

observations_generator 

(script) 

 

It generates 𝑁 range and range-rate (if chosen) observations of 

three different sites selected by the user from an ideal simulated 

geostationary satellite orbit. It also provides the ideal parameters 

generated of this satellite orbit. 

orbit_ranges_plots 

(script) 

It calculates the evolution of the ideal and approximate satellite 

orbits, and range and range-rate histories. Then it plots the 

results. 

plot_statistical 

(script) 

It plots the statistical results performed within the script 

results_statistical. 

plot_statistical_LS 

(script) 

It plots the statistical results calculated within the script 

results_statitical_LS. 

ranges2rv 

(function) 

It computes the satellite state vector from a set of range and 

range-rate observations of three different sites by using 

Trilateration, Gibbs or Herrick-Gibbs methods. 

ranges_calculation 

(function) 

It computes the range and range-rate observations given the 

satellite and site state vectors. 

results_Command_Window 

(script) 

It shows, by Command Window, some results obtained in 

scripts: observations_generator, add_errors2ranges, 

SVs_from_ranges, errors_SV_ranges_COE, and 

orbit_ranges_plot. 
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results_LS_CW 

(script) 

It shows, by Command Window, some results related to script 

least_squares. 

results_statistical 

(script) 

It shows, by Command Window, the results obtained within the 

script MAIN_statistical. 

results_statistical_LS 

(script) 

It computes the statistical results of Least Squares algorithm 

when performing the statistical simulation of it. 

results_statistical_LS_CW 

(script) 

It shows, by Command Window, the statistical results obtained 

within the script results_statistical_LS. 

rot1 

(function) 

It performs a rotation about the first axis. 

rot3 

(function) 

It performs a rotation about the third axis. 

rv2coe 

(function) 

It finds the Classical Orbital Elements given the geocentric 

equatorial, 𝐼𝐽𝐾, position and velocity vectors. 

rv2ranges 

(function) 

It computes the range and range-rate observations of different 

sites given the satellite state vector at epoch 𝑡. 

satellite_parameters 

(function) 

 

It returns the location parameters that define the initial satellite 

position with respect to the initial Greenwich Mean Sidereal 

Time (GMST) at epoch 𝑡0 = 00: 00: 00. 

site_parameters 

(function) 

It returns the location parameters of one of the sites defined 

within the function. 

site_SVs 

(function) 

It computes the site state vectors given the location parameters of 

each site and the epochs when these state vectors must be 

calculated. 

SVs_from_ranges 

(script) 

It computes the approximate satellite state vector from a set of 

observations containing range and range-rate observations of 

three different sites. 

theoretical_parameters 

(function) 

 

It computes the ideal range and range-rate observations at each 

epoch of variable 𝑡 between one site located over the Earth’s 

surface and a satellite located in a near-circular geostationary 

orbit. 

Trilateration 

(function) 

It calculates the satellite state vector at the epoch when the range 

and range-rate observations of three different sites are provided. 

unit 

(function) 

It calculates a unit vector given the original vector. 

Table A.1: Summary of all Matlab functions and scripts used along the PFC. 
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APPENDIX B 
 

 B.1. RESULTS OF SECTION 3.5: SETTING A 
 

B.2. RESULTS OF SECTION 3.5: SETTING B 
 

B.3. RESULTS OF SECTION 3.7: SETTING B + NOISE 
 

B.4. RESULTS OF SECTION 3.8: SETTING C 
 

B.5. RESULTS OF SECTION 3.8: SETTING D 
 

B.6. RESULTS OF SECTION 3.8: SETTING E 
 

B.7. RESULTS OF SECTION 3.8: SETTING F 
 

B.8. RESULTS OF SECTION 3.8: SETTING G 

 

 

 

Appendix B shows the numerical results obtained in all Matlab simulations performed in Chapter 3. 

These results are related to ideal and approximate values and errors of: the satellite state vector, the 

Classical Orbital Elements, and the range and range-rate observations. In case of statistical 

simulations, the results show the ideal value, and the mean and standard deviation of the errors 

obtained in the satellite state vector, and the range and range-rate observations. 

 

 

 

B.1. RESULTS OF SECTION 3.5: SETTING A 

 

 SATELLITE STATE VECTOR   

 Ideal value Approximate value  Error 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

𝑟𝑥 [km] 23 076.206 106 788 981 23 076.206 106 788 715  -0.000 000 000 266 

𝑟𝑦 [km] 35 283.375 426 893 952 35 283.375 426 894 039  0.000 000 000 087 

𝑟𝑧 [km] 0.000 000 000 000 -0.000 000 000 531  -0.000 000 000 531 

𝑣𝑥 [km/s] -2.573 186 442 040 -2.573 186 442 040  -0.000 000 000 000 

𝑣𝑦 [km/s] 1.683 542 939 042 1.683 542 939 042  -0.000 000 000 000 

𝑣𝑧 [km/s] 0.000 000 000 000 0.000 000 000 000  -0.000 000 000 000 
 

EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥 [km] -35 389.419 322 388 858 -35 389.419 322 389 018  -0.000 000 000 160 

𝑟𝑦 [km] 22 934.754 421 927 479 22 934.754 421 926 620  -0.000 000 000 859 

𝑟𝑧 [km] 0.000 000 000 000 -0.000 000 001 146  -0.000 000 001 146 

𝑣𝑥 [km/s] -1.672 148 279 220 -1.672 148 279 220  0.000 000 000 000 

𝑣𝑦 [km/s] -2.579 589 570 438 -2.579 589 570 438  -0.000 000 000 000 

𝑣𝑧 [km/s] -0.000 000 000 000 0.000 000 000 000  0.000 000 000 000 

Table B.1: Numerical results of satellite state vector (setting A). 
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RANGE OBSERVATIONS (𝝆) 
 

 

Num. Site Ideal value [km] Approximate value [km]  Error [km] 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

01 BCN 37 837.696 026 402 111 37 837.696 026 402 111 
 

0.000 000 000 000 

02 BET 38 446.575 954 225 314 38 446.575 954 225 314 
 

0.000 000 000 000 

03 MIL 38 028.921 622 176 684 38 028.921 622 176 684 
 

0.000 000 000 000 

07 BRN 38 182.029 368 749 914 38 182.029 368 749 914 
 

0.000 000 000 000 

08 LIS 38 042.328 754 617 185 38 042.328 754 617 192 
 

0.000 000 000 007 

09 LON 38 742.205 915 905 528 38 742.205 915 905 528 
 

0.000 000 000 000 

10 BRL 38 622.189 255 594 414 38 622.189 255 594 414 
 

0.000 000 000 000 

11 WAR 38 576.603 473 887 648 38 576.603 473 887 641 
 

-0.000 000 000 007 

12 ATH 37 347.330 742 545 055 37 347.330 742 545 033 
 

-0.000 000 000 022 
 

EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 849.125 818 200 402 37 849.125 818 200 220 
 

-0.000 000 000 182 

02 BET 38 458.054 469 152 936 38 458.054 469 152 768 
 

-0.000 000 000 167 

03 MIL 38 040.427 889 373 103 38 040.427 889 372 928 
 

-0.000 000 000 175 

07 BRN 38 193.517 922 760 664 38 193.517 922 760 497 
 

-0.000 000 000 167 

08 LIS 38 053.631 863 541 596 38 053.631 863 541 428 
 

-0.000 000 000 167 

09 LON 38 753.630 333 962 217 38 753.630 333 962 057 
 

-0.000 000 000 160 

10 BRL 38 633.731 442 392 957 38 633.731 442 392 789 
 

-0.000 000 000 167 

11 WAR 38 588.212 889 795 912 38 588.212 889 795 737 
 

-0.000 000 000 175 

12 ATH 37 359.011 566 637 222 37 359.011 566 637 004 
 

-0.000 000 000 218 

Table B.2: Numerical results of range observations (setting A). 

 

 

CLASSICAL ORBITAL ELEMENTS (COE) 
 

 

COE Unit Ideal value Approximate value  Error 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

𝒂 [km] 42 164.169 460 970 334 42 164.169 460 970 174 
 

-0.000 000 000 160 

𝒆 − 0.000 200 000 000 0.000 200 000 000 
 

-0.000 000 000 000 

𝒑 [km] 42 164.167 774 403 555 42 164.167 774 403 410 
 

-0.000 000 000 145 

𝒊 [°] 0.000 000 000 000 0.000 000 000 000 
 

0.000 000 000 000 

𝜴 [°] undefined undefined 
 

- 

𝝎 [°] undefined undefined 
 

- 

𝝂𝟎 [°] 56.814 314 616 910 56.814 314 616 744 
 

-0.000 000 000 166 

�̃�𝐭𝐫𝐮𝐞 [°] 0.000 000 000 000 0.000 000 000 000 
 

0.000 000 000 000 

𝒖𝟎 [°] undefined undefined 
 

- 

𝝀𝐭𝐫𝐮𝐞𝟎
 [°] 56.814 314 616 910 56.814 314 616 744 

 

-0.000 000 000 166 
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EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

𝒂 [km] 42 164.169 460 970 334 42 164.169 460 970 166 
 

-0.000 000 000 167 

𝒆 − 0.000 200 000 000 0.000 200 000 000 
 

-0.000 000 000 000 

𝒑 [km] 42 164.167 774 403 555 42 164.167 774 403 395 
 

-0.000 000 000 160 

𝒊 [°] 0.000 000 000 000 0.000 000 000 000 
 

0.000 000 000 000 

𝜴 [°] undefined undefined 
 

- 

𝝎 [°] undefined undefined 
 

- 

𝝂𝟎 [°] 147.054 013 879 961 147.054 013 879 872 
 

-0.000 000 000 089 

�̃�𝐭𝐫𝐮𝐞 [°] 0.000 000 000 000 0.000 000 000 000 
 

0.000 000 000 000 

𝒖𝟎 [°] undefined undefined 
 

- 

𝝀𝐭𝐫𝐮𝐞𝟎
 [°] 147.054 013 879 961 147.054 013 879 872 

 

-0.000 000 000 089 

Table B.3: Numerical results of Classical Orbital Elements (setting A). 

 

 

 

B.2. RESULTS OF SECTION 3.5: SETTING B 

 

 SATELLITE STATE VECTOR   

 Ideal value Approximate value  Error 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥 [km] 39 811.324 342 080 086 39 811.324 342 080 072  -0.000 000 000 015 

𝑟𝑦 [km] 13 863.769 945 143 404 13 863.769 945 143 476  0.000 000 000 036 

𝑟𝑧 [km] -0.000 000 000 015 0.000 000 000 073  0.000 000 000 036 

𝑣𝑥 [km/s] -1.011 153 178 968 -1.011 153 178 968  0.000 000 000 000 

𝑣𝑦 [km/s] 2.904 251 340 218 2.904 251 340 218  -0.000 000 000 000 

𝑣𝑧 [km/s] 0.000 000 000 000 0.000 000 000 000  0.000 000 000 000 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥 [km] -14 048.210 875 367 075 -14 048.210 875 367 071  0.000 000 000 004 

𝑟𝑦 [km] 39 758.040 138 460 929 39 758.040 138 460 681  0.000 000 000 281 

𝑟𝑧 [km] 0.000 000 000 004 -0.000 000 000 247  0.000 000 000 281 

𝑣𝑥 [km/s] -2.899 009 362 761 -2.899 009 362 761  0.000 000 000 000 

𝑣𝑦 [km/s] -1.023 728 690 437 -1.023 728 690 437  -0.000 000 000 000 

𝑣𝑧 [km/s] -0.000 000 000 000 -0.000 000 000 000  -0.000 000 000 000 

Table B.4: Numerical results of satellite state vector (setting B). 
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RANGE OBSERVATIONS (𝝆) 
 

 

Num. Site Ideal value [km] Approximate value [km]  Error [km] 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108 37 834.053 693 001 115 
 

0.000 000 000 007 

02 BET 38 443.051 174 980 268 38 443.051 174 980 275 
 

0.000 000 000 007 

03 MIL 38 025.423 177 105 964 38 025.423 177 105 971 
 

0.000 000 000 007 

07 BRN 38 178.508 556 331 370 38 178.508 556 331 377 
 

0.000 000 000 007 

08 LIS 38 038.478 209 228 619 38 038.478 209 228 626 
 

0.000 000 000 007 

09 LON 38 738.600 812 036 675 38 738.600 812 036 675 
 

0.000 000 000 000 

10 BRL 38 618.783 379 768 545 38 618.783 379 768 553 
 

0.000 000 000 007 

11 WAR 38 573.312 333 845 846 38 573.312 333 845 854 
 

0.000 000 000 007 

12 ATH 37 344.093 302 991 045 37 344.093 302 991 045 
 

0.000 000 000 000 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470 37 845.136 629 696 208 
 

-0.000 000 000 262 

02 BET 38 453.982 609 793 478 38 453.982 609 793 216 
 

-0.000 000 000 262 

03 MIL 38 036.328 990 781 658 38 036.328 990 781 396 
 

-0.000 000 000 262 

07 BRN 38 189.439 026 046 719 38 189.439 026 046 457 
 

-0.000 000 000 262 

08 LIS 38 049.809 535 903 398 38 049.809 535 903 143 
 

-0.000 000 000 255 

09 LON 38 749.625 490 385 479 38 749.625 490 385 210 
 

-0.000 000 000 269 

10 BRL 38 629.568 681 622 295 38 629.568 681 622 033 
 

-0.000 000 000 262 

11 WAR 38 583.959 484 721 621 38 583.959 484 721 352 
 

-0.000 000 000 269 

12 ATH 37 354.695 527 400 443 37 354.695 527 400 181 
 

-0.000 000 000 262 

Table B.5: Numerical results of range observations (setting B). 

 

 

CLASSICAL ORBITAL ELEMENTS (COE) 
 

 

COE Unit Ideal value Approximate value  Error 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝒂 [km] 42 164.169 460 970 312 42 164.169 460 970 064 
 

-0.000 000 000 247 

𝒆 − 0.000 200 000 000 0.000 200 000 000 
 

-0.000 000 000 000 

𝒑 [km] 42 164.167 774 403 555 42 164.167 774 403 279 
 

-0.000 000 000 276 

𝒊 [°] 0.000 000 000 000 0.000 000 000 000 
 

0.000 000 000 000 

𝜴 [°] undefined undefined 
 

- 

𝝎 [°] undefined undefined 
 

- 

𝝂𝟎 [°] 19.200 000 000 009 19.200 000 000 836 
 

0.000 000 000 827 

�̃�𝐭𝐫𝐮𝐞 [°] 0.000 000 000 000 0.000 000 000 000 
 

0.000 000 000 000 

𝒖𝟎 [°] undefined undefined 
 

- 

𝝀𝐭𝐫𝐮𝐞𝟎
 [°] 19.200 000 000 009 19.200 000 000 836 

 

0.000 000 000 827 
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EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝒂 [km] 42 164.169 460 970 304 42 164.169 460 970 086 
 

-0.000 000 000 218 

𝒆 − 0.000 200 000 000 0.000 200 000 000 
 

-0.000 000 000 000 

𝒑 [km] 42 164.167 774 403 526 42 164.167 774 403 300 
 

-0.000 000 000 226 

𝒊 [°] 0.000 000 000 000 0.000 000 000 000 
 

0.000 000 000 000 

𝜴 [°] undefined undefined 
 

- 

𝝎 [°] undefined undefined 
 

- 

𝝂𝟎 [°] 109.460 486 499 160 109.460 486 499 685 
 

0.000 000 000 524 

�̃�𝐭𝐫𝐮𝐞 [°] 0.000 000 000 000 0.000 000 000 000 
 

0.000 000 000 000 

𝒖𝟎 [°] undefined undefined 
 

- 

𝝀𝐭𝐫𝐮𝐞𝟎
 [°] 109.460 486 499 160 109.460 486 499 685 

 

0.000 000 000 524 

Table B.6: Numerical results of Classical Orbital Elements (setting B). 

 

 

RANGE-RATE OBSERVATIONS (�̇�) 
 

 

Num. Site Ideal value [km/s] 
Approximate value 

[km/s] 
 Error [km/s] 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 0.000 243 981 046 0.000 243 981 046 
 

-0.000 000 000 000 

02 BET 0.000 228 394 049 0.000 228 394 049 
 

-0.000 000 000 000 

03 MIL 0.000 224 589 431 0.000 224 589 431 
 

-0.000 000 000 000 

07 BRN 0.000 227 712 055 0.000 227 712 055 
 

-0.000 000 000 000 

08 LIS 0.000 272 339 131 0.000 272 339 131 
 

-0.000 000 000 000 

09 LON 0.000 239 431 262 0.000 239 431 262 
 

-0.000 000 000 000 

10 BRL 0.000 212 360 938 0.000 212 360 938 
 

-0.000 000 000 000 

11 WAR 0.000 196 782 202 0.000 196 782 202 
 

-0.000 000 000 000 

12 ATH 0.000 188 748 825 0.000 188 748 825 
 

0.000 000 000 000 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 0.000 560 626 939 0.000 560 626 939 
 

-0.000 000 000 000 

02 BET 0.000 565 211 901 0.000 565 211 901 
 

-0.000 000 000 000 

03 MIL 0.000 567 152 627 0.000 567 152 627 
 

-0.000 000 000 000 

07 BRN 0.000 565 822 125 0.000 565 822 125 
 

-0.000 000 000 000 

08 LIS 0.000 550 314 761 0.000 550 314 761 
 

-0.000 000 000 000 

09 LON 0.000 560 950 171 0.000 560 950 171 
 

-0.000 000 000 000 

10 BRL 0.000 570 630 327 0.000 570 630 327 
 

-0.000 000 000 000 

11 WAR 0.000 576 172 939 0.000 576 172 939 
 

-0.000 000 000 000 

12 ATH 0.000 580 934 546 0.000 580 934 546 
 

-0.000 000 000 000 

Table B.7: Numerical results of range-rate observations (setting B). 
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B.3. RESULTS OF SECTION 3.7: SETTING B + NOISE 

 

NOISE ADDED TO RANGE OBSERVATIONS AT 𝒕𝟎 = 𝟎 𝐬 

Num. Site Mean [km] Standard deviation [km] 

01 BCN 0.000 000 000 000 0.000 537 667 140 

02 BET 0.000 000 000 000 -0.000 433 592 022 

03 MIL 0.000 000 000 000 0.000 725 404 225 

Table B.8: Numerical results of the noise added to range observations at initial epoch (setting B + noise). 

 

 

NOISE ADDED TO RANGE-RATE OBSERVATIONS AT 𝒕𝟎 = 𝟎 𝐬 

Num. Site Mean [km/s] Standard deviation [km/s] 

01 BCN 0.000 000 000 000 0.000 004 310 867 

02 BET 0.000 000 000 000 0.000 013 847 185 

03 MIL 0.000 000 000 000 -0.000 001 024 830 

Table B.9: Numerical results of the noise added to range-rate observations at initial epoch (setting B + noise). 

 

 

 SATELLITE STATE VECTOR   

 Ideal value Approximate value  Error 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥 [km] 39 811.324 342 080 086 39 811.365 775 960 876  0.041 433 880 790 

𝑟𝑦 [km] 13 863.769 945 143 404 13 863.704 826 079 083  -0.065 119 064 320 

𝑟𝑧 [km] 0.000 000 000 000 0.128 662 579 438  0.128 662 579 438 

𝑣𝑥 [km/s] -1.011 153 178 968 -1.011 713 812 592  -0.000 560 633 624 

𝑣𝑦 [km/s] 2.904 251 340 218 2.905 228 419 887  0.000 977 079 669 

𝑣𝑧 [km/s] 0.000 000 000 000 -0.001 581 919 610  -0.001 581 919 610 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥 [km] -14 048.210 875 367 075 -14 052.447 524 146 140  -4.236 648 779 066 

𝑟𝑦 [km] 39 758.040 138 460 929 39 785.824 830 923 550  27.784 692 462 621 

𝑟𝑧 [km] 0.000 000 000 000 -21.697 656 431 888  -21.697 656 431 888 

𝑣𝑥 [km/s] -2.899 009 362 761 -2.899 022 545 707  -0.000 013 182 946 

𝑣𝑦 [km/s] -1.023 728 690 437 -1.020 975 865 168  0.002 752 825 269 

𝑣𝑧 [km/s] -0.000 000 000 000 -0.000 003 827 423  -0.000 003 827 423 

Table B.10: Numerical results of satellite state vector (setting B + noise). 
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RANGE OBSERVATIONS (𝝆) 
 

 

Num. Site Ideal value [km] Approximate value [km]  Error [km] 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108 37 834.054 230 668 255 
 

0.000 537 667 147 

02 BET 38 443.051 174 980 268 38 443.050 741 388 251 
 

-0.000 433 592 017 

03 MIL 38 025.423 177 105 964 38 025.423 902 510 207 
 

0.000 725 404 243 

07 BRN 38 178.508 556 331 370 38 178.508 755 516 385 
 

0.000 199 185 015 

08 LIS 38 038.478 209 228 619 38 038.477 744 405 391 
 

-0.000 464 823 228 

09 LON 38 738.600 812 036 675 38 738.599 345 585 506 
 

-0.001 466 451 169 

10 BRL 38 618.783 379 768 545 38 618.783 389 391 559 
 

0.000 009 623 014 

11 WAR 38 573.312 333 845 846 38 573.313 393 922 865 
 

0.001 060 077 018 

12 ATH 37 344.093 302 991 045 37 344.098 271 158 415 
 

0.004 968 167 370 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470 37 874.770 851 403 351 
 

29.634 221 706 881 

02 BET 38 453.982 609 793 478 38 483.973 901 242 141 
 

29.991 291 448 663 

03 MIL 38 036.328 990 781 658 38 066.214 892 452 292 
 

29.885 901 670 634 

07 BRN 38 189.439 026 046 719 38 219.353 441 842 606 
 

29.914 415 795 887 

08 LIS 38 049.809 535 903 398 38 079.158 423 171 444 
 

29.348 887 268 046 

09 LON 38 749.625 490 385 479 38 779.601 111 043 070 
 

29.975 620 657 591 

10 BRL 38 629.568 681 622 295 38 659.720 734 556 664 
 

30.152 052 934 369 

11 WAR 38 583.959 484 721 621 38 614.177 746 458 212 
 

30.218 261 736 591 

12 ATH 37 354.695 527 400 443 37 384.479 588 293 689 
 

29.784 060 893 246 

Table B.11: Numerical results of range observations (setting B + noise). 

 

 

CLASSICAL ORBITAL ELEMENTS (COE) 
 

 

COE Unit Ideal value Approximate value  Error 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝒂 [km] 42 164.169 460 970 312 42 194.613 477 875 355 
 

30.444 016 905 043 

𝒆 − 0.000 200 000 000 0.000 909 845 318 
 

0.000 709 845 318 

𝒑 [km] 42 164.167 774 403 555 42 194.578 548 393 642 
 

30.410 773 990 086 

𝒊 [°] 0.000 000 000 000 0.029 463 150 371 
 

0.029 463 150 371 

𝜴 [°] undefined 199.539 960 718 384 
 

199.539 960 718 384 

𝝎 [°] undefined 179.893 028 161 531 
 

179.893 028 161 531 

𝝂𝟎 [°] 19.200 000 000 009 359.766 908 973 045 
 

340.566 908 973 035 

�̃�𝐭𝐫𝐮𝐞 [°] 0.000 000 000 000 undefined 
 

- 

𝒖𝟎 [°] undefined undefined 
 

- 

𝝀𝐭𝐫𝐮𝐞𝟎
 [°] 19.200 000 000 009 undefined 

 

- 
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150 Projecte Final de Carrera (PFC)   

 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝒂 [km] 42 164.169 460 970 304 42 194.613 477 875 333 
 

30.444 016 905 029 

𝒆 − 0.000 200 000 000 0.000 909 845 318 
 

0.000 709 845 318 

𝒑 [km] 42 164.167 774 403 526 42 194.578 548 393 612 
 

30.410 773 990 086 

𝒊 [°] 0.000 000 000 000 0.029 463 150 371 
 

0.029 463 150 371 

𝜴 [°] undefined 199.539 960 718 384 
 

199.539 960 718 384 

𝝎 [°] undefined 179.893 028 161 473 
 

179.893 028 161 473 

𝝂𝟎 [°] 109.460 486 499 160 90.020 352 336 123 
 

-19.440 134 163 037 

�̃�𝐭𝐫𝐮𝐞 [°] 0.000 000 000 000 undefined 
 

- 

𝒖𝟎 [°] undefined undefined 
 

- 

𝝀𝐭𝐫𝐮𝐞𝟎
 [°] 109.460 486 499 160 undefined 

 

- 

Table B.12: Numerical results of Classical Orbital Elements (setting B + noise). 

 

 

RANGE-RATE OBSERVATIONS (�̇�) 
 

 

Num. Site Ideal value [km/s] 
Approximate value 

[km/s] 
 Error [km/s] 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 0.000 243 981 046 0.000 248 291 913 
 

0.000 004 310 867 

02 BET 0.000 228 394 049 0.000 242 241 234 
 

0.000 013 847 185 

03 MIL 0.000 224 589 431 0.000 223 564 601 
 

-0.000 001 024 830 

07 BRN 0.000 227 712 055 0.000 233 656 531 
 

0.000 005 944 476 

08 LIS 0.000 272 339 131 0.000 293 435 693 
 

0.000 021 096 562 

09 LON 0.000 239 431 262 0.000 267 723 969 
 

0.000 028 292 707 

10 BRL 0.000 212 360 938 0.000 218 254 665 
 

0.000 005 893 727 

11 WAR 0.000 196 782 202 0.000 187 315 570 
 

-0.000 009 466 632 

12 ATH 0.000 188 748 825 0.000 129 890 237 
 

-0.000 058 858 588 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 0.000 560 626 939 0.002 654 130 867 
 

0.002 093 503 928 

02 BET 0.000 565 211 901 0.002 694 071 148 
 

0.002 128 859 247 

03 MIL 0.000 567 152 627 0.002 708 050 691 
 

0.002 140 898 064 

07 BRN 0.000 565 822 125 0.002 697 928 254 
 

0.002 132 106 129 

08 LIS 0.000 550 314 761 0.002 571 307 098 
 

0.002 020 992 337 

09 LON 0.000 560 950 171 0.002 660 561 661 
 

0.002 099 611 490 

10 BRL 0.000 570 630 327 0.002 738 766 736 
 

0.002 168 136 409 

11 WAR 0.000 576 172 939 0.002 783 622 972 
 

0.002 207 450 033 

12 ATH 0.000 580 934 546 0.002 816 550 615 
 

0.002 235 616 069 

Table B.13: Numerical results of range-rate observations (setting B + noise). 
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 Projecte Final de Carrera (PFC) 151  

B.4. RESULTS OF SECTION 3.8: SETTING C 

 

NOISE ADDED TO RANGE OBSERVATIONS AT 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 

Num. Site Mean [km] Standard deviation [km] 

01 BCN -0.000 020 794 635 0.001 001 491 045 

02 BET 0.000 065 381 263 0.000 990 369 202 

03 MIL -0.000 010 505 824 0.000 999 585 034 

Table B.14: Statistical results of the noise added to range observations at initial epoch (setting C). 

 

 

RANGE OBSERVATIONS (𝝆) 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

01 BCN 37 837.696 026 402 111  -0.000 020 794 636 0.001 001 491 045 

02 BET 38 446.575 954 225 314  0.000 065 381 261 0.000 990 369 203 

03 MIL 38 028.921 622 176 684  -0.000 010 505 826 0.000 999 585 034 

07 BRN 38 182.029 368 749 914  0.000 022 277 605 0.000 647 420 212 

08 LIS 38 042.328 754 617 185  0.000 014 524 901 0.003 088 182 987 

09 LON 38 742.205 915 905 528  0.000 123 810 304 0.002 220 811 393 

10 BRL 38 622.189 255 594 414  0.000 053 819 387 0.001 487 446 178 

11 WAR 38 576.603 473 887 648  -0.000 000 487 978 0.002 826 341 719 

12 ATH 37 347.330 742 545 055  -0.000 262 248 383 0.006 701 227 195 
 

EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 849.125 818 200 402  0.003 229 178 696 0.106 116 551 598 

02 BET 38 458.054 469 152 936  0.003 236 956 763 0.104 823 979 930 

03 MIL 38 040.427 889 373 103  0.003 168 286 400 0.104 747 398 201 

07 BRN 38 193.517 922 760 664  0.003 203 213 421 0.104 880 971 769 

08 LIS 38 053.631 863 541 596  0.003 353 629 527 0.108 007 819 194 

09 LON 38 753.630 333 962 217  0.003 318 412 393 0.105 453 419 099 

10 BRL 38 633.731 442 392 957  0.003 171 451 640 0.103 747 735 929 

11 WAR 38 588.212 889 795 912  0.003 076 117 304 0.102 815 631 311 

12 ATH 37 359.011 566 637 222  0.002 856 473 494 0.103 004 113 990 

Table B.15: Statistical results of range observations (setting C). 
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152 Projecte Final de Carrera (PFC)   

 

 SATELLITE STATE VECTOR 

 

 
Ideal value 

 Error 

  Mean Standard deviation 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

𝑟𝑥 [km] 23 076.206 106 788 981  -0.003 842 348 683 0.116 666 925 830 

𝑟𝑦 [km] 35 283.375 426 893 952  0.001 119 548 941 0.056 142 626 758 

𝑟𝑧 [km] 0.000 000 000 000  -0.008 971 507 131 0.150 660 482 757 

𝑣𝑥 [km/s] -2.573 186 442 040  -0.000 000 360 000 0.000 008 633 632 

𝑣𝑦 [km/s] 1.683 542 939 042  -0.000 000 182 964 0.000 006 246 387 

𝑣𝑧 [km/s] 0.000 000 000 000  -0.000 000 499 875 0.000 012 300 785 
 

EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥 [km] -35 389.419 322 388 858  -0.005 656 660 153 0.142 900 699 936 

𝑟𝑦 [km] 22 934.754 421 927 479  -0.004 628 160 410 0.114 204 786 750 

𝑟𝑧 [km] 0.000 000 000 000  -0.006 816 147 554 0.168 727 153 936 

𝑣𝑥 [km/s] -1.672 148 279 220  0.000 000 184 632 0.000 007 073 899 

𝑣𝑦 [km/s] -2.579 589 570 438  -0.000 000 064 263 0.000 007 518 829 

𝑣𝑧 [km/s] -0.000 000 000 000  0.000 000 656 216 0.000 010 983 308 

Table B.16: Statistical results of satellite state vector (setting C). 

 

 

 

B.5. RESULTS OF SECTION 3.8: SETTING D 

 

NOISE ADDED TO RANGE OBSERVATIONS AT 𝒕𝟎 = 𝟎 𝐬 

Num. Site Mean [km] Standard deviation [km] 

01 BCN 0.000 007 075 273 0.000 954 952 523 

02 BET -0.000 016 803 836 0.000 999 457 606 

03 MIL -0.000 003 828 291 0.001 013 639 293 

Table B.17: Statistical results of the noise added to range observations at initial epoch (setting D). 

 

 

NOISE ADDED TO RANGE-RATE OBSERVATIONS AT 𝒕𝟎 = 𝟎 𝐬 

Num. Site Mean [km/s] Standard deviation [km/s] 

01 BCN -0.000 000 124 367 0.000 004 894 309 

02 BET 0.000 000 294 824 0.000 005 057 132 

03 MIL -0.000 000 149 263 0.000 005 094 707 

Table B.18: Statistical results of the noise added to range-rate observations at initial epoch (setting D). 
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 Projecte Final de Carrera (PFC) 153  

 

RANGE OBSERVATIONS (𝝆) 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  0.000 007 075 277 0.000 954 952 523 

02 BET 38 443.051 174 980 268  -0.000 016 803 831 0.000 999 457 606 

03 MIL 38 025.423 177 105 964  -0.000 003 828 284 0.001 013 639 293 

07 BRN 38 178.508 556 331 370  -0.000 008 756 149 0.000 648 793 275 

08 LIS 38 038.478 209 228 619  0.000 013 303 092 0.003 172 591 514 

09 LON 38 738.600 812 036 675  -0.000 023 070 197 0.002 300 991 661 

10 BRL 38 618.783 379 768 545  -0.000 021 902 804 0.001 476 513 832 

11 WAR 38 573.312 333 845 846  -0.000 018 486 489 0.002 908 291 393 

12 ATH 37 344.093 302 991 045  0.000 028 636 768 0.006 940 341 927 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  0.710 064 597 740 17.194 602 433 949 

02 BET 38 453.982 609 793 478  0.720 554 883 344 17.343 079 403 691 

03 MIL 38 036.328 990 781 658  0.716 680 203 892 17.318 322 025 947 

07 BRN 38 189.439 026 046 719  0.717 916 902 765 17.320 408 916 631 

08 LIS 38 049.809 535 903 398  0.703 313 125 439 17.035 369 200 413 

09 LON 38 749.625 490 385 479  0.721 053 566 825 17.313 093 709 566 

10 BRL 38 629.568 681 622 295  0.724 510 770 026 17.428 527 444 918 

11 WAR 38 583.959 484 721 621  0.725 387 526 973 17.481 859 284 098 

12 ATH 37 354.695 527 400 443  0.710 219 078 426 17.360 789 159 842 

Table B.19: Statistical results of range observations (setting D). 

 

 

RANGE-RATE OBSERVATIONS (�̇�) 

 

Num. Site Ideal value [km/s] 
 Error [km/s] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 0.000 243 981 046  -0.000 000 124 367 0.000 004 894 309 

02 BET 0.000 228 394 049  0.000 000 294 824 0.000 005 057 132 

03 MIL 0.000 224 589 431  -0.000 000 149 263 0.000 005 094 707 

07 BRN 0.000 227 712 055  0.000 000 048 884 0.000 003 383 013 

08 LIS 0.000 272 339 131  0.000 000 196 579 0.000 015 646 600 

09 LON 0.000 239 431 262  0.000 000 671 420 0.000 011 101 081 

10 BRL 0.000 212 360 938  0.000 000 161 363 0.000 007 752 932 

11 WAR 0.000 196 782 202  -0.000 000 210 994 0.000 014 541 946 

12 ATH 0.000 188 748 825  -0.000 001 720 667 0.000 033 562 133 
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154 Projecte Final de Carrera (PFC)   

 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 0.000 560 626 939  0.000 050 351 944 0.001 215 446 991 

02 BET 0.000 565 211 901  0.000 051 140 778 0.001 236 985 820 

03 MIL 0.000 567 152 627  0.000 051 416 697 0.001 244 283 557 

07 BRN 0.000 565 822 125  0.000 051 216 883 0.001 238 944 948 

08 LIS 0.000 550 314 761  0.000 048 716 844 0.001 171 383 486 

09 LON 0.000 560 950 171  0.000 050 478 906 0.001 219 213 403 

10 BRL 0.000 570 630 327  0.000 052 023 622 0.001 260 891 744 

11 WAR 0.000 576 172 939  0.000 052 909 712 0.001 284 814 369 

12 ATH 0.000 580 934 546  0.000 053 558 613 0.001 301 879 697 

Table B.20: Statistical results of range-rate observations (setting D). 

 

 

 SATELLITE STATE VECTOR 

 

 
Ideal value 

 Error 

  Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥 [km] 39 811.324 342 080 086  0.000 268 174 643 0.061 898 243 421 

𝑟𝑦 [km] 13 863.769 945 143 404  -0.000 131 102 625 0.120 189 082 665 

𝑟𝑧 [km] 0.000 000 000 000  0.001 752 361 514 0.150 967 284 766 

𝑣𝑥 [km/s] -1.011 153 178 968  -0.000 015 081 728 0.000 298 147 864 

𝑣𝑦 [km/s] 2.904 251 340 218  0.000 022 838 521 0.000 581 275 665 

𝑣𝑧 [km/s] 0.000 000 000 000  -0.000 050 439 729 0.000 743 176 478 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥 [km] -14 048.210 875 367 075  -0.138 466 305 982 2.098 900 569 503 

𝑟𝑦 [km] 39 758.040 138 460 929  0.629 012 483 030 17.040 050 731 314 

𝑟𝑧 [km] 0.000 000 000 000  -0.692 942 617 556 10.190 570 394 388 

𝑣𝑥 [km/s] -2.899 009 362 761  -0.000 000 702 934 0.000 016 477 585 

𝑣𝑦 [km/s] -1.023 728 690 437  0.000 062 031 977 0.001 688 435 116 

𝑣𝑧 [km/s] -0.000 000 000 000  -0.000 000 186 739 0.000 011 417 112 

Table B.21: Statistical results of satellite state vector (setting D). 

 

 

 

B.6. RESULTS OF SECTION 3.8: SETTING E 

 

NOISE ADDED TO RANGE OBSERVATIONS AT 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 

Num. Site Mean [km] Standard deviation [km] 

01 BCN -0.032 512 355 075 0.990 224 081 084 

02 BET 0.000 624 884 542 1.009 062 541 120 

03 MIL -0.050 884 426 181 0.985 956 913 669 

Table B.22: Statistical results of the noise added to range observations at initial epoch (setting E). 
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 Projecte Final de Carrera (PFC) 155  

 

RANGE OBSERVATIONS (𝝆) 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

01 BCN 37 837.696 026 402 111  -0.032 512 355 076 0.990 224 081 084 

02 BET 38 446.575 954 225 314  0.000 624 884 540 1.009 062 541 120 

03 MIL 38 028.921 622 176 684  -0.050 884 426 182 0.985 956 913 668 

07 BRN 38 182.029 368 749 914  -0.026 534 838 313 0.646 554 965 419 

08 LIS 38 042.328 754 617 185  0.022 914 666 003 3.221 222 236 165 

09 LON 38 742.205 915 905 528  0.050 216 339 532 2.324 621 277 815 

10 BRL 38 622.189 255 594 414  -0.028 523 882 592 1.433 944 953 140 

11 WAR 38 576.603 473 887 648  -0.083 828 924 968 2.862 158 601 816 

12 ATH 37 347.330 742 545 055  -0.258 454 672 248 6.878 881 439 188 
 

EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 849.125 818 200 402  -6.288 550 770 242 107.882 405 765 730 

02 BET 38 458.054 469 152 936  -6.428 043 535 146 106.688 345 838 139 

03 MIL 38 040.427 889 373 103  -6.435 099 219 613 106.495 591 077 952 

07 BRN 38 193.517 922 760 664  -6.420 953 108 421 106.681 669 485 819 

08 LIS 38 053.631 863 541 596  -6.087 339 942 798 109.875 074 665 772 

09 LON 38 753.630 333 962 217  -6.362 939 492 749 107.420 794 498 492 

10 BRL 38 633.731 442 392 957  -6.544 132 085 281 105.570 111 606 237 

11 WAR 38 588.212 889 795 912  -6.644 503 999 983 104.535 524 397 077 

12 ATH 37 359.011 566 637 222  -6.632 765 425 843 104.335 352 709 917 

Table B.23: Statistical results of range observations (setting E). 

 

 

 SATELLITE STATE VECTOR 

 

 
Ideal value 

 Error 

  Mean Standard deviation 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

𝑟𝑥 [km] 23 076.206 106 788 981  -4.124 581 228 867 121.720 532 918 644 

𝑟𝑦 [km] 35 283.375 426 893 952  1.015 302 556 406 58.588 548 994 502 

𝑟𝑧 [km] 0.000 000 000 000  -6.144 603 168 485 149.234 382 398 849 

𝑣𝑥 [km/s] -2.573 186 442 040  0.000 034 960 719 0.008 978 175 308 

𝑣𝑦 [km/s] 1.683 542 939 042  -0.000 353 135 071 0.006 529 509 732 

𝑣𝑧 [km/s] 0.000 000 000 000  0.000 176 505 538 0.012 673 089 619 
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156 Projecte Final de Carrera (PFC)   

 

EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥 [km] -35 389.419 322 388 858  1.697 418 123 979 147.521 768 475 264 

𝑟𝑦 [km] 22 934.754 421 927 479  -10.353 228 819 781 118.069 957 282 002 

𝑟𝑧 [km] 0.000 000 000 000  2.591 282 794 655 173.760 712 319 894 

𝑣𝑥 [km/s] -1.672 148 279 220  0.000 714 119 301 0.007 264 669 915 

𝑣𝑦 [km/s] -2.579 589 570 438  -0.000 707 565 863 0.007 445 796 793 

𝑣𝑧 [km/s] -0.000 000 000 000  0.000 456 036 687 0.010 884 328 392 

Table B.24: Statistical results of satellite state vector (setting E). 

 

 

 

B.7. RESULTS OF SECTION 3.8: SETTING F 

 

NOISE ADDED TO RANGE OBSERVATIONS AT 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 

Num. Site Mean [km] Standard deviation [km] 

04 LPG 0.000 030 256 899 0.001 002 632 811 

05 REY -0.000 007 978 140 0.001 022 218 217 

06 ANK 0.000 046 053 714 0.000 993 014 698 

Table B.25: Statistical results of the noise added to range observations at initial epoch (setting F). 

 

 

 SATELLITE STATE VECTOR 

 

 
Ideal value 

 Error 

  Mean Standard deviation 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

𝑟𝑥 [km] 23 076.206 106 788 981  0.000 359 133 482 0.010 999 995 561 

𝑟𝑦 [km] 35 283.375 426 893 952  -0.000 085 138 000 0.006 209 583 964 

𝑟𝑧 [km] 0.000 000 000 000  0.000 826 007 842 0.024 072 703 630 

𝑣𝑥 [km/s] -2.573 186 442 040  0.000 000 029 162 0.000 000 882 855 

𝑣𝑦 [km/s] 1.683 542 939 042  0.000 000 011 014 0.000 000 732 739 

𝑣𝑧 [km/s] 0.000 000 000 000  0.000 000 001 979 0.000 002 008 423 
 

EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥 [km] -35 389.419 322 388 858  0.000 488 610 291 0.015 299 427 680 

𝑟𝑦 [km] 22 934.754 421 927 479  0.000 281 858 699 0.014 176 421 690 

𝑟𝑧 [km] 0.000 000 000 000  0.000 023 545 211 0.027 540 061 269 

𝑣𝑥 [km/s] -1.672 148 279 220  -0.000 000 012 722 0.000 000 970 585 

𝑣𝑦 [km/s] -2.579 589 570 438  -0.000 000 003 055 0.000 001 175 189 

𝑣𝑧 [km/s] -0.000 000 000 000  -0.000 000 060 237 0.000 001 755 614 

Table B.26: Statistical results of satellite state vector (setting F). 
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 Projecte Final de Carrera (PFC) 157  

 

RANGE OBSERVATIONS (𝝆) 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟏 = 𝟗 𝟎𝟎𝟎 𝐬 
 

01 BCN 37 837.696 026 402 111  0.000 019 998 491 0.000 598 104 638 

02 BET 38 446.575 954 225 314  0.000 011 968 222 0.000 714 705 975 

03 MIL 38 028.921 622 176 684  0.000 018 954 116 0.000 646 144 337 

04 LPG 37 730.308 575 272 822  0.000 030 256 903 0.001 002 632 811 

05 REY 40 447.716 714 274 029  -0.000 007 978 142 0.001 022 218 218 

06 ANK 37 620.731 260 024 579  0.000 046 053 716 0.000 993 014 698 

07 BRN 38 182.029 368 749 914  0.000 015 943 760 0.000 663 886 005 

08 LIS 38 042.328 754 617 185  0.000 016 867 671 0.000 680 957 206 

09 LON 38 742.205 915 905 528  0.000 006 628 946 0.000 757 257 889 

10 BRL 38 622.189 255 594 414  0.000 012 953 037 0.000 792 970 410 

11 WAR 38 576.603 473 887 648  0.000 017 883 284 0.000 836 272 936 

12 ATH 37 347.330 742 545 055  0.000 041 999 290 0.000 832 316 292 
 

EPOCH 𝒕𝐟 = 𝟑𝟎 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 849.125 818 200 402  -0.000 276 227 181 0.014 439 621 250 

02 BET 38 458.054 469 152 936  -0.000 269 610 712 0.014 408 347 978 

03 MIL 38 040.427 889 373 103  -0.000 267 961 806 0.014 396 681 592 

04 LPG 37 741.515 485 508 971  -0.000 298 549 309 0.014 561 379 407 

05 REY 40 459.065 252 813 991  -0.000 279 222 399 0.014 478 627 518 

06 ANK 37 632.500 945 118 300  -0.000 242 363 041 0.014 267 309 424 

07 BRN 38 193.517 922 760 664  -0.000 269 308 119 0.014 404 692 650 

08 LIS 38 053.631 863 541 596  -0.000 288 240 213 0.014 502 245 076 

09 LON 38 753.630 333 962 217  -0.000 274 336 964 0.014 436 335 634 

10 BRL 38 633.731 442 392 957  -0.000 262 730 222 0.014 372 494 319 

11 WAR 38 588.212 889 795 912  -0.000 256 006 235 0.014 334 869 038 

12 ATH 37 359.011 566 637 222  -0.000 252 436 373 0.014 319 784 911 

Table B.27: Statistical results of range observations (setting F). 

 

 

 

B.8. RESULTS OF SECTION 3.8: SETTING G 

 

NOISE ADDED TO RANGE OBSERVATIONS AT 𝒕𝟎 = 𝟎 𝐬 

Num. Site Mean [km] Standard deviation [km] 

04 LPG -0.000 011 590 789 0.001 018 744 790 

05 REY 0.000 090 799 603 0.001 049 616 126 

06 ANK -0.000 018 023 079 0.001 003 659 869 

Table B.28: Statistical results of the noise added to range observations at initial epoch (setting G). 
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158 Projecte Final de Carrera (PFC)   

 

NOISE ADDED TO RANGE-RATE OBSERVATIONS AT 𝒕𝟎 = 𝟎 𝐬 

Num. Site Mean [km/s] Standard deviation [km/s] 

04 LPG -0.000 000 031 771 0.000 004 990 862 

05 REY 0.000 000 098 369 0.000 004 970 079 

06 ANK -0.000 000 385 005 0.000 005 014 528 

Table B.29: Statistical results of the noise added to range-rate observations at initial epoch (setting G). 

 

 

RANGE OBSERVATIONS (𝝆) 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  0.000 025 764 508 0.000 598 561 248 

02 BET 38 443.051 174 980 268  0.000 048 604 630 0.000 712 547 116 

03 MIL 38 025.423 177 105 964  0.000 032 848 830 0.000 639 097 012 

04 LPG 37 726.272 782 221 386  -0.000 011 590 789 0.001 018 744 789 

05 REY 40 444.031 239 730 401  0.000 090 799 606 0.001 049 616 126 

06 ANK 37 617.666 306 731 175  -0.000 018 023 079 0.001 003 659 869 

07 BRN 38 178.508 556 331 370  0.000 039 289 394 0.000 659 000 053 

08 LIS 38 038.478 209 228 619  0.000 026 442 025 0.000 694 987 184 

09 LON 38 738.600 812 036 675  0.000 058 720 357 0.000 764 302 752 

10 BRL 38 618.783 379 768 545  0.000 050 025 138 0.000 785 163 598 

11 WAR 38 573.312 333 845 846  0.000 041 913 691 0.000 823 628 922 

12 ATH 37 344.093 302 991 045  -0.000 013 724 601 0.000 838 438 661 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  0.113 154 989 828 1.701 901 589 788 

02 BET 38 453.982 609 793 478  0.114 255 313 435 1.713 109 098 993 

03 MIL 38 036.328 990 781 658  0.113 976 397 583 1.712 893 791 970 

04 LPG 37 737.833 258 773 469  0.110 186 517 018 1.665 902 722 591 

05 REY 40 455.138 465 738 593  0.114 559 076 988 1.707 171 595 565 

06 ANK 37 628.054 814 066 825  0.114 392 373 306 1.733 537 119 433 

07 BRN 38 189.439 026 046 719  0.114 041 031 403 1.712 193 853 289 

08 LIS 38 049.809 535 903 398  0.112 172 788 264 1.686 343 783 715 

09 LON 38 749.625 490 385 479  0.114 150 409 778 1.708 828 059 552 

10 BRL 38 629.568 681 622 295  0.114 792 879 207 1.721 206 807 406 

11 WAR 38 583.959 484 721 621  0.115 055 184 762 1.727 483 140 005 

12 ATH 37 354.695 527 400 443  0.113 854 944 790 1.723 842 226 669 

Table B.30: Statistical results of range observations (setting G). 

 

 

 

 



 

APPENDIX B 
 

 

 
 

 Projecte Final de Carrera (PFC) 159  

 

RANGE-RATE OBSERVATIONS (�̇�) 

 

Num. Site Ideal value [km/s] 
 Error [km/s] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 0.000 243 981 046  -0.000 000 078 524 0.000 002 829 472 

02 BET 0.000 228 394 049  -0.000 000 062 611 0.000 003 386 262 

03 MIL 0.000 224 589 431  -0.000 000 110 872 0.000 003 054 289 

04 LPG 0.000 297 263 023  -0.000 000 031 771 0.000 004 990 862 

05 REY 0.000 250 880 941  0.000 000 098 369 0.000 004 970 079 

06 ANK 0.000 165 555 535  -0.000 000 385 005 0.000 005 014 528 

07 BRN 0.000 227 712 055  -0.000 000 087 145 0.000 003 135 776 

08 LIS 0.000 272 339 131  -0.000 000 003 826 0.000 003 305 663 

09 LON 0.000 239 431 262  -0.000 000 009 610 0.000 003 607 503 

10 BRL 0.000 212 360 938  -0.000 000 100 028 0.000 003 784 186 

11 WAR 0.000 196 782 202  -0.000 000 159 483 0.000 004 027 778 

12 ATH 0.000 188 748 825  -0.000 000 315 837 0.000 004 157 103 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 0.000 560 626 939  0.000 008 084 726 0.000 120 170 862 

02 BET 0.000 565 211 901  0.000 008 220 009 0.000 122 372 946 

03 MIL 0.000 567 152 627  0.000 008 268 125 0.000 123 112 684 

04 LPG 0.000 542 035 994  0.000 007 571 614 0.000 111 937 348 

05 REY 0.000 555 506 558  0.000 007 968 441 0.000 118 436 842 

06 ANK 0.000 588 604 579  0.000 008 858 204 0.000 132 470 260 

07 BRN 0.000 565 822 125  0.000 008 233 427 0.000 122 570 039 

08 LIS 0.000 550 314 761  0.000 007 803 142 0.000 115 683 478 

09 LON 0.000 560 950 171  0.000 008 105 566 0.000 120 563 874 

10 BRL 0.000 570 630 327  0.000 008 372 392 0.000 124 812 180 

11 WAR 0.000 576 172 939  0.000 008 525 751 0.000 127 251 771 

12 ATH 0.000 580 934 546  0.000 008 639 959 0.000 128 978 427 

Table B.31: Statistical results of range-rate observations (setting G). 
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160 Projecte Final de Carrera (PFC)   

 

 SATELLITE STATE VECTOR 

 

 
Ideal value 

 Error 

  Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥 [km] 39 811.324 342 080 086  -0.000 387 366 344 0.005 959 348 757 

𝑟𝑦 [km] 13 863.769 945 143 404  0.000 454 205 423 0.011 730 818 246 

𝑟𝑧 [km] 0.000 000 000 000  -0.001 984 728 364 0.024 854 585 822 

𝑣𝑥 [km/s] -1.011 153 178 968  -0.000 002 180 298 0.000 029 332 037 

𝑣𝑦 [km/s] 2.904 251 340 218  0.000 003 790 617 0.000 058 548 037 

𝑣𝑧 [km/s] 0.000 000 000 000  -0.000 004 761 136 0.000 120 527 136 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥 [km] -14 048.210 875 367 075  -0.016 556 064 088 0.302 695 363 054 

𝑟𝑦 [km] 39 758.040 138 460 929  0.108 028 284 059 1.764 757 959 772 

𝑟𝑧 [km] 0.000 000 000 000  -0.065 276 042 319 1.652 626 790 413 

𝑣𝑥 [km/s] -2.899 009 362 761  -0.000 000 008 128 0.000 003 784 674 

𝑣𝑦 [km/s] -1.023 728 690 437  0.000 010 674 790 0.000 174 989 687 

𝑣𝑧 [km/s] -0.000 000 000 000  0.000 000 164 641 0.000 001 882 529 

Table B.32: Statistical results of satellite state vector (setting G). 
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 Projecte Final de Carrera (PFC) 161  

 

APPENDIX C 
 

 C.1. RESULTS OF SECTION 4.3: SETTING H 
 

C.2. RESULTS OF SECTION 4.3: SETTING I 
 

C.3. RESULTS OF SECTION 4.3: SETTING J 
 

C.4. RESULTS OF SECTION 4.3: SETTING K 

 

 

 

Appendix C shows the numerical results obtained in all Matlab statistical simulations performed in 

Chapter 4. These results are related to the mean and standard deviation of the errors in the satellite 

state vector, and the range and range-rate observations. 

 

 

 

C.1. RESULTS OF SECTION 4.3: Setting H 

 

a) 10 observations 

 

RANGE OBSERVATIONS (𝝆) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  -0.000 021 985 243 0.000 630 787 855 

02 BET 38 443.051 174 980 268  -0.000 024 767 247 0.000 560 073 395 

03 MIL 38 025.423 177 105 964  -0.000 012 878 201 0.000 503 176 644 

07 BRN 38 178.508 556 331 370  -0.000 018 808 537 0.000 471 408 115 

08 LIS 38 038.478 209 228 619  -0.000 041 892 249 0.001 214 243 512 

09 LON 38 738.600 812 036 675  -0.000 038 287 380 0.000 734 115 508 

10 BRL 38 618.783 379 768 545  -0.000 014 660 243 0.000 807 455 746 

11 WAR 38 573.312 333 845 846  0.000 000 730 986 0.001 077 123 467 

12 ATH 37 344.093 302 991 045  0.000 038 965 419 0.001 741 682 544 
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162 Projecte Final de Carrera (PFC)   

 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  -0.000 019 379 361 0.000 625 846 249 

02 BET 38 453.982 609 793 478  -0.000 029 474 680 0.000 584 067 512 

03 MIL 38 036.328 990 781 658  -0.000 004 589 864 0.000 548 007 265 

07 BRN 38 189.439 026 046 719  -0.000 016 685 846 0.000 472 987 357 

08 LIS 38 049.809 535 903 398  -0.000 055 324 092 0.001 410 584 120 

09 LON 38 749.625 490 385 479  -0.000 056 033 121 0.000 938 104 981 

10 BRL 38 629.568 681 622 295  -0.000 011 628 733 0.000 836 314 796 

11 WAR 38 583.959 484 721 621  0.000 017 838 984 0.001 278 244 541 

12 ATH 37 354.695 527 400 443  0.000 098 969 964 0.002 546 747 265 

Table C.1: Statistical results of range observations (setting H with 10 observations). 

 

 

 SATELLITE STATE VECTOR 

   

 
Ideal value 

 
LS 

(Iter.) 

Error 

  Mean Standard deviation 

   

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥  [km] 39 811.324 342 080 086 

 001 -3 348.715 059 713 256 0.012 768 375 080 

005 0.140 738 014 856 0.014 747 394 503 

010 0.000 507 727 770 0.014 744 377 508 

100 0.000 507 712 444 0.014 744 379 387 

𝑟𝑦 [km] 13 863.769 945 143 404 

 001 7 354.628 326 153 779 0.028 858 004 929 

005 -0.106 686 695 679 0.030 052 160 175 

010 -0.001 007 805 667 0.030 048 544 293 

100 -0.001 007 742 257 0.030 048 544 756 

𝑟𝑧 [km] 0.000 000 000 000 

 001 -3 714.001 680 310 728 0.049 972 809 200 

005 0.149 007 136 586 0.052 422 816 149 

010 0.001 150 281 391 0.052 416 480 446 

100 0.001 150 350 317 0.052 416 446 636 

𝑣𝑥 [km/s] -1.011 153 178 968 

 001 -0.737 937 815 336 0.000 002 921 888 

005 -0.000 008 601 758 0.000 002 603 013 

010 0.000 000 105 815 0.000 002 602 921 

100 0.000 000 105 809 0.000 002 602 922 

𝑣𝑦 [km/s] 2.904 251 340 218 

 001 -0.497 579 433 802 0.000 002 040 366 

005 0.000 008 463 373 0.000 000 868 280 

010 0.000 000 024 593 0.000 000 868 037 

100 0.000 000 024 590 0.000 000 868 037 

𝑣𝑧 [km/s] 0.000 000 000 000 

 001 -1.347 559 455 396 0.000 005 596 347 

005 -0.000 011 666 079 0.000 004 608 225 

010 0.000 000 183 366 0.000 004 608 880 

100 0.000 000 183 347 0.000 004 608 881 
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 Projecte Final de Carrera (PFC) 163  

   

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥  [km] -14 048.210 875 367 075 

 001 -10 476.498 484 164 631 0.035 221 350 209 

005 -0.016 855 803 350 0.043 952 521 368 

010 0.001 899 711 124 0.043 947 076 870 

100 0.001 899 615 283 0.043 947 091 942 

𝑟𝑦 [km] 39 758.040 138 460 929 

001 -6 486.796 924 776 097 0.019 610 172 239 

005 0.284 597 148 697 0.022 489 936 721 

010 0.001 032 148 676 0.022 477 374 572 

100 0.001 032 078 890 0.022 477 385 589 

𝑟𝑧 [km] 0.000 000 000 000 

001 -18 683.638 722 227 672 0.087 948 132 827 

005 -0.160 648 193 583 0.063 235 958 483 

010 0.002 508 958 347 0.063 244 843 499 

100 0.002 508 702 773 0.063 244 862 618 

𝑣𝑥 [km/s] -2.899 009 362 761 

001 0.166 336 443 981 0.000 000 708 473 

005 -0.000 009 622 119 0.000 000 829 369 

010 -0.000 000 023 571 0.000 000 829 261 

100 -0.000 000 023 570 0.000 000 829 261 

𝑣𝑦 [km/s] -1.023 728 690 437 

001 -0.360 467 995 554 0.000 003 402 911 

005 0.000 033 300 418 0.000 003 341 045 

010 0.000 000 143 578 0.000 003 339 718 

100 0.000 000 143 568 0.000 003 339 719 

𝑣𝑧 [km/s] -0.000 000 000 000 

001 0.186 562 342 948 0.000 003 592 318 

005 -0.000 010 816 228 0.000 003 819 130 

010 -0.000 000 084 686 0.000 003 818 667 

100 -0.000 000 084 691 0.000 003 818 665 

Table C.2: Statistical results of satellite state vector (setting H with 10 observations). 

 

 

b) 100 observations 

 

RANGE OBSERVATIONS (𝝆) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  0.000 011 553 484 0.000 222 999 071 

02 BET 38 443.051 174 980 268  -0.000 001 990 323 0.000 206 172 160 

03 MIL 38 025.423 177 105 964  0.000 000 018 007 0.000 183 104 085 

07 BRN 38 178.508 556 331 370  -0.000 000 015 215 0.000 177 337 188 

08 LIS 38 038.478 209 228 619  0.000 025 728 903 0.000 408 104 335 

09 LON 38 738.600 812 036 675  0.000 001 051 072 0.000 253 155 197 

10 BRL 38 618.783 379 768 545  -0.000 010 398 525 0.000 286 000 491 

11 WAR 38 573.312 333 845 846  -0.000 016 189 459 0.000 365 824 870 

12 ATH 37 344.093 302 991 045  -0.000 006 343 591 0.000 540 105 173 
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164 Projecte Final de Carrera (PFC)   

 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  0.000 002 817 166 0.000 213 144 866 

02 BET 38 453.982 609 793 478  0.000 005 804 237 0.000 206 021 686 

03 MIL 38 036.328 990 781 658  -0.000 000 409 032 0.000 193 601 359 

07 BRN 38 189.439 026 046 719  0.000 002 576 529 0.000 172 910 702 

08 LIS 38 049.809 535 903 398  0.000 011 166 829 0.000 439 132 920 

09 LON 38 749.625 490 385 479  0.000 012 245 353 0.000 311 714 674 

10 BRL 38 629.568 681 622 295  0.000 001 709 606 0.000 277 384 814 

11 WAR 38 583.959 484 721 621  -0.000 005 348 105 0.000 405 393 755 

12 ATH 37 354.695 527 400 443  -0.000 025 725 529 0.000 811 046 538 

Table C.3: Statistical results of range observations (setting H with 100 observations). 

 

 

 SATELLITE STATE VECTOR 

   

 
Ideal value 

 
LS 

(Iter.) 

Error 

  Mean Standard deviation 

   

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥  [km] 39 811.324 342 080 086 

 001 -2 747.374 325 585 931 0.004 146 849 876 

005 -0.005 299 178 589 0.004 521 005 301 

010 -0.000 097 115 434 0.004 521 148 648 

100 -0.000 097 133 988 0.004 521 136 296 

𝑟𝑦 [km] 13 863.769 945 143 404 

 001 6 033.535 176 245 816 0.009 704 448 769 

005 0.013 809 326 909 0.009 404 098 553 

010 0.000 435 919 487 0.009 404 391 635 

100 0.000 435 934 555 0.009 404 359 237 

𝑟𝑧 [km] 0.000 000 000 000 

 001 -2 478.342 498 907 589 0.016 397 486 902 

005 -0.029 047 632 121 0.017 013 920 467 

010 0.000 506 979 619 0.017 013 913 856 

100 0.000 506 878 979 0.017 013 953 208 

𝑣𝑥 [km/s] -1.011 153 178 968 

 001 -0.578 630 555 378 0.000 000 974 684 

005 -0.000 001 445 831 0.000 000 815 724 

010 -0.000 000 035 074 0.000 000 815 733 

100 -0.000 000 035 075 0.000 000 815 729 

𝑣𝑦 [km/s] 2.904 251 340 218 

 001 -0.385 378 072 371 0.000 000 714 399 

005 0.000 000 249 565 0.000 000 287 048 

010 -0.000 000 016 321 0.000 000 287 060 

100 -0.000 000 016 321 0.000 000 287 060 

𝑣𝑧 [km/s] 0.000 000 000 000 

 001 -1.071 237 749 339 0.000 001 932 899 

005 0.000 003 021 132 0.000 001 496 201 

010 -0.000 000 046 316 0.000 001 496 178 

100 -0.000 000 046 315 0.000 001 496 180 
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 Projecte Final de Carrera (PFC) 165  

   

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥  [km] -14 048.210 875 367 075 

 001 -8 548.390 778 414 758 0.012 133 914 830 

005 -0.019 060 666 552 0.013 620 143 714 

010 -0.000 452 119 889 0.013 620 356 490 

100 -0.000 452 160 534 0.013 620 291 342 

𝑟𝑦 [km] 39 758.040 138 460 929 

001 -6 532.343 853 471 367 0.005 753 698 587 

005 0.010 077 547 226 0.007 086 387 543 

010 -0.000 252 452 032 0.007 086 806 648 

100 -0.000 252 465 348 0.007 086 774 143 

𝑟𝑧 [km] 0.000 000 000 000 

001 -14 326.473 931 763 925 0.027 692 388 556 

005 0.041 558 633 499 0.020 538 101 548 

010 -0.000 637 403 147 0.020 537 780 090 

100 -0.000 637 384 745 0.020 537 806 848 

𝑣𝑥 [km/s] -2.899 009 362 761 

001 0.177 185 347 266 0.000 000 201 065 

005 0.000 000 343 279 0.000 000 254 009 

010 0.000 000 007 811 0.000 000 254 019 

100 0.000 000 007 812 0.000 000 254 019 

𝑣𝑦 [km/s] -1.023 728 690 437 

001 -0.505 585 645 680 0.000 000 697 863 

005 0.000 000 464 568 0.000 001 049 856 

010 -0.000 000 040 915 0.000 001 049 909 

100 -0.000 000 040 917 0.000 001 049 905 

𝑣𝑧 [km/s] -0.000 000 000 000 

001 0.205 791 572 405 0.000 001 108 719 

005 0.000 002 105 265 0.000 001 238 952 

010 -0.000 000 036 772 0.000 001 238 951 

100 -0.000 000 036 764 0.000 001 238 954 

Table C.4: Statistical results of satellite state vector (setting H with 100 observations). 

 

 

c) 1 000 observations 

 

RANGE OBSERVATIONS (𝝆) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  -0.000 001 777 038 0.000 071 012 805 

02 BET 38 443.051 174 980 268  -0.000 001 860 663 0.000 067 246 589 

03 MIL 38 025.423 177 105 964  -0.000 001 913 580 0.000 058 008 732 

07 BRN 38 178.508 556 331 370  -0.000 001 880 110 0.000 056 978 953 

08 LIS 38 038.478 209 228 619  -0.000 001 558 577 0.000 131 749 702 

09 LON 38 738.600 812 036 675  -0.000 001 761 370 0.000 082 746 150 

10 BRL 38 618.783 379 768 545  -0.000 001 979 483 0.000 093 098 695 

11 WAR 38 573.312 333 845 846  -0.000 002 108 893 0.000 118 072 018 

12 ATH 37 344.093 302 991 045  -0.000 002 253 608 0.000 170 057 396 

 



 

 

APPENDIX C 

 

 
 

166 Projecte Final de Carrera (PFC)   

 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  0.000 000 557 739 0.000 069 278 537 

02 BET 38 453.982 609 793 478  0.000 000 557 934 0.000 064 956 620 

03 MIL 38 036.328 990 781 658  0.000 000 460 472 0.000 059 577 369 

07 BRN 38 189.439 026 046 719  0.000 000 510 769 0.000 053 827 942 

08 LIS 38 049.809 535 903 398  0.000 000 751 058 0.000 142 939 197 

09 LON 38 749.625 490 385 479  0.000 000 677 961 0.000 101 756 609 

10 BRL 38 629.568 681 622 295  0.000 000 457 484 0.000 083 655 145 

11 WAR 38 583.959 484 721 621  0.000 000 316 663 0.000 123 922 691 

12 ATH 37 354.695 527 400 443  0.000 000 008 972 0.000 257 925 962 

Table C.5: Statistical results of range observations (setting H). 

 

 

 SATELLITE STATE VECTOR 

   

 
Ideal value 

 
LS 

(Iter.) 

Error 

  Mean Standard deviation 

   

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥  [km] 39 811.324 342 080 086 

 001 -2 677.786 964 536 734 0.001 318 997 334 

005 -0.010 626 476 347 0.001 438 366 518 

010 -0.000 005 365 480 0.001 438 359 759 

100 -0.000 005 446 527 0.001 438 368 282 

𝑟𝑦 [km] 13 863.769 945 143 404 

 001 5 871.966 257 355 713 0.003 163 605 546 

005 0.020 768 959 952 0.003 012 023 221 

010 0.000 008 172 583 0.003 012 052 792 

100 0.000 008 231 089 0.003 012 070 365 

𝑟𝑧 [km] 0.000 000 000 000 

 001 -2 362.258 797 119 339 0.005 289 591 483 

005 -0.035 126 056 733 0.005 483 035 341 

010 -0.000 002 130 912 0.005 483 072 193 

100 -0.000 002 590 748 0.005 483 043 009 

𝑣𝑥 [km/s] -1.011 153 178 968 

 001 -0.559 968 250 472 0.000 000 313 683 

005 -0.000 001 200 920 0.000 000 262 389 

010 -0.000 000 000 482 0.000 000 262 386 

100 -0.000 000 000 489 0.000 000 262 388 

𝑣𝑦 [km/s] 2.904 251 340 218 

 001 -0.371 984 502 881 0.000 000 232 936 

005 -0.000 000 344 739 0.000 000 092 659 

010 -0.000 000 000 120 0.000 000 092 664 

100 -0.000 000 000 118 0.000 000 092 664 

𝑣𝑧 [km/s] 0.000 000 000 000 

 001 -1.038 811 150 367 0.000 000 622 655 

005 0.000 003 708 427 0.000 000 474 169 

010 -0.000 000 000 661 0.000 000 474 165 

100 -0.000 000 000 653 0.000 000 474 159 
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 Projecte Final de Carrera (PFC) 167  

   

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥  [km] -14 048.210 875 367 075 

 001 -8 315.714 256 233 945 0.003 929 811 676 

005 -0.018 496 798 384 0.004 382 018 752 

010 -0.000 009 250 633 0.004 381 969 183 

100 -0.000 009 418 790 0.004 382 008 881 

𝑟𝑦 [km] 39 758.040 138 460 929 

001 -6 468.689 501 788 756 0.001 981 644 527 

005 -0.004 954 134 618 0.002 282 212 241 

010 -0.000 004 148 325 0.002 282 312 448 

100 -0.000 004 199 171 0.002 282 323 456 

𝑟𝑧 [km] 0.000 000 000 000 

001 -13 854.833 771 147 956 0.008 839 328 329 

005 0.051 010 595 018 0.006 508 273 915 

010 -0.000 009 053 048 0.006 508 216 793 

100 -0.000 008 937 975 0.006 508 137 137 

𝑣𝑥 [km/s] -2.899 009 362 761 

001 0.176 220 721 205 0.000 000 064 635 

005 0.000 000 753 490 0.000 000 080 385 

010 0.000 000 000 337 0.000 000 080 385 

100 0.000 000 000 341 0.000 000 080 385 

𝑣𝑦 [km/s] -1.023 728 690 437 

001 -0.514 435 890 555 0.000 000 208 955 

005 -0.000 001 313 125 0.000 000 337 747 

010 -0.000 000 000 751 0.000 000 337 757 

100 -0.000 000 000 759 0.000 000 337 759 

𝑣𝑧 [km/s] -0.000 000 000 000 

001 0.204 004 621 229 0.000 000 359 307 

005 0.000 002 545 565 0.000 000 399 340 

010 0.000 000 000 158 0.000 000 399 343 

100 0.000 000 000 192 0.000 000 399 341 

Table C.6: Statistical results of satellite state vector (setting H). 

 

 

d) 1 000 observations (without weighting matrix) 

 

RANGE OBSERVATIONS (𝝆) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  -0.000 001 628 950 0.000 071 177 743 

02 BET 38 443.051 174 980 268  -0.000 000 165 003 0.000 066 023 878 

03 MIL 38 025.423 177 105 964  -0.000 000 567 517 0.000 057 450 768 

07 BRN 38 178.508 556 331 370  -0.000 000 468 230 0.000 056 227 648 

08 LIS 38 038.478 209 228 619  -0.000 002 792 055 0.000 132 087 723 

09 LON 38 738.600 812 036 675  -0.000 000 265 194 0.000 080 803 802 

10 BRL 38 618.783 379 768 545  0.000 000 552 792 0.000 092 101 806 

11 WAR 38 573.312 333 845 846  0.000 000 911 101 0.000 117 310 536 

12 ATH 37 344.093 302 991 045  -0.000 000 738 031 0.000 167 360 833 
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168 Projecte Final de Carrera (PFC)   

 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  0.000 001 397 873 0.000 069 634 476 

02 BET 38 453.982 609 793 478  -0.000 000 320 364 0.000 065 575 654 

03 MIL 38 036.328 990 781 658  0.000 000 970 807 0.000 059 048 938 

07 BRN 38 189.439 026 046 719  0.000 000 431 707 0.000 053 855 658 

08 LIS 38 049.809 535 903 398  0.000 001 134 534 0.000 141 822 478 

09 LON 38 749.625 490 385 479  -0.000 001 211 874 0.000 102 556 738 

10 BRL 38 629.568 681 622 295  -0.000 000 318 861 0.000 083 227 715 

11 WAR 38 583.959 484 721 621  0.000 000 443 080 0.000 121 552 935 

12 ATH 37 354.695 527 400 443  0.000 004 961 733 0.000 255 372 313 

Table C.7: Statistical results of range observations (setting H without weighting matrix). 

 

 

 SATELLITE STATE VECTOR 

   

 
Ideal value 

 
LS 

(Iter.) 

Error 

  Mean Standard deviation 

   

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥  [km] 39 811.324 342 080 086 

 001 -2 677.786 949 746 548 0.001 297 433 765 

005 -0.010 619 491 499 0.001 411 273 828 

010 0.000 001 516 604 0.001 411 289 148 

100 0.000 001 253 456 0.001 411 285 953 

𝑟𝑦 [km] 13 863.769 945 143 404 

 001 5 871.966 200 124 976 0.003 147 108 709 

005 0.020 730 906 342 0.002 982 883 974 

010 -0.000 029 803 123 0.002 982 953 845 

100 -0.000 029 665 123 0.002 982 931 529 

𝑟𝑧 [km] 0.000 000 000 000 

 001 -2 362.258 856 687 308 0.005 260 674 370 

005 -0.035 193 300 474 0.005 402 048 546 

010 -0.000 069 955 764 0.005 402 075 357 

100 -0.000 071 604 097 0.005 402 168 986 

𝑣𝑥 [km/s] -1.011 153 178 968 

 001 -0.559 968 245 768 0.000 000 309 463 

005 -0.000 001 197 243 0.000 000 259 710 

010 0.000 000 003 186 0.000 000 259 711 

100 0.000 000 003 171 0.000 000 259 711 

𝑣𝑦 [km/s] 2.904 251 340 218 

 001 -0.371 984 497 543 0.000 000 232 779 

005 -0.000 000 342 851 0.000 000 092 867 

010 0.000 000 001 771 0.000 000 092 872 

100 0.000 000 001 781 0.000 000 092 871 

𝑣𝑧 [km/s] 0.000 000 000 000 

 001 -1.038 811 134 506 0.000 000 626 093 

005 0.000 003 720 572 0.000 000 478 738 

010 0.000 000 011 494 0.000 000 478 732 

100 0.000 000 011 542 0.000 000 478 715 
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 Projecte Final de Carrera (PFC) 169  

   

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥  [km] -14 048.210 875 367 075 

 001 -8 315.714 196 681 018 0.003 874 792 808 

005 -0.018 443 966 932 0.004 315 008 723 

010 0.000 043 356 914 0.004 315 027 184 

100 0.000 042 878 132 0.004 315 081 414 

𝑟𝑦 [km] 39 758.040 138 460 929 

001 -6 468.689 456 032 478 0.001 999 247 430 

005 -0.004 912 305 802 0.002 262 239 465 

010 0.000 037 615 802 0.002 262 354 655 

100 0.000 037 515 266 0.002 262 380 757 

𝑟𝑧 [km] 0.000 000 000 000 

001 -13 854.833 547 229 373 0.008 880 598 667 

005 0.051 177 442 015 0.006 571 597 525 

010 0.000 157 919 908 0.006 571 514 620 

100 0.000 158 594 463 0.006 571 289 358 

𝑣𝑥 [km/s] -2.899 009 362 761 

001 0.176 220 721 428 0.000 000 064 383 

005 0.000 000 753 072 0.000 000 079 181 

010 -0.000 000 000 076 0.000 000 079 182 

100 -0.000 000 000 064 0.000 000 079 181 

𝑣𝑦 [km/s] -1.023 728 690 437 

001 -0.514 435 891 777 0.000 000 203 702 

005 -0.000 001 307 588 0.000 000 334 341 

010 0.000 000 004 775 0.000 000 334 355 

100 0.000 000 004 756 0.000 000 334 357 

𝑣𝑧 [km/s] -0.000 000 000 000 

001 0.204 004 627 210 0.000 000 360 957 

005 0.000 002 550 416 0.000 000 393 363 

010 0.000 000 005 052 0.000 000 393 365 

100 0.000 000 005 172 0.000 000 393 372 

Table C.8: Statistical results of satellite state vector (setting H without weighting matrix). 

 

 

 

C.2. RESULTS OF SECTION 4.3: Setting I 

 

RANGE OBSERVATIONS (𝝆) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  0.000 000 770 829 0.000 071 608 511 

02 BET 38 443.051 174 980 268  -0.000 000 827 931 0.000 066 955 836 

03 MIL 38 025.423 177 105 964  -0.000 000 870 510 0.000 057 835 021 

07 BRN 38 178.508 556 331 370  -0.000 000 730 115 0.000 056 476 678 

08 LIS 38 038.478 209 228 619  0.000 003 000 810 0.000 132 173 830 

09 LON 38 738.600 812 036 675  -0.000 000 124 237 0.000 082 788 634 

10 BRL 38 618.783 379 768 545  -0.000 002 108 565 0.000 093 339 633 

11 WAR 38 573.312 333 845 846  -0.000 003 195 748 0.000 118 185 093 

12 ATH 37 344.093 302 991 045  -0.000 002 915 545 0.000 173 109 336 
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170 Projecte Final de Carrera (PFC)   

 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  0.000 001 027 371 0.000 069 052 109 

02 BET 38 453.982 609 793 478  0.000 000 945 505 0.000 065 130 765 

03 MIL 38 036.328 990 781 658  0.000 000 056 827 0.000 060 386 400 

07 BRN 38 189.439 026 046 719  0.000 000 521 567 0.000 054 692 344 

08 LIS 38 049.809 535 903 398  0.000 002 904 514 0.000 144 387 518 

09 LON 38 749.625 490 385 479  0.000 002 074 127 0.000 098 357 362 

10 BRL 38 629.568 681 622 295  -0.000 000 034 092 0.000 087 592 215 

11 WAR 38 583.959 484 721 621  -0.000 001 370 335 0.000 128 689 257 

12 ATH 37 354.695 527 400 443  -0.000 004 153 027 0.000 250 961 703 

Table C.9: Statistical results of range observations (setting I). 

 

 

RANGE-RATE OBSERVATIONS (�̇�) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 0.000 243 981 046  -0.000 000 000 026 0.000 000 011 575 

02 BET 0.000 228 394 049  0.000 000 000 066 0.000 000 011 395 

03 MIL 0.000 224 589 431  0.000 000 000 027 0.000 000 010 889 

07 BRN 0.000 227 712 055  0.000 000 000 040 0.000 000 010 957 

08 LIS 0.000 272 339 131  -0.000 000 000 071 0.000 000 013 647 

09 LON 0.000 239 431 262  0.000 000 000 077 0.000 000 011 678 

10 BRL 0.000 212 360 938  0.000 000 000 097 0.000 000 012 488 

11 WAR 0.000 196 782 202  0.000 000 000 099 0.000 000 012 846 

12 ATH 0.000 188 748 825  -0.000 000 000 048 0.000 000 012 758 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 0.000 560 626 939  0.000 000 000 048 0.000 000 011 126 

02 BET 0.000 565 211 901  0.000 000 000 065 0.000 000 010 996 

03 MIL 0.000 567 152 627  0.000 000 000 043 0.000 000 010 647 

07 BRN 0.000 565 822 125  0.000 000 000 053 0.000 000 010 672 

08 LIS 0.000 550 314 761  0.000 000 000 071 0.000 000 012 439 

09 LON 0.000 560 950 171  0.000 000 000 087 0.000 000 011 413 

10 BRL 0.000 570 630 327  0.000 000 000 055 0.000 000 011 614 

11 WAR 0.000 576 172 939  0.000 000 000 033 0.000 000 011 780 

12 ATH 0.000 580 934 546  -0.000 000 000 043 0.000 000 013 471 

Table C.10: Statistical results of range-rate observations (setting I). 

 

 

 

 

 



 

APPENDIX C 
 

 

 
 

 Projecte Final de Carrera (PFC) 171  

 

 SATELLITE STATE VECTOR 

   

 
Ideal value 

 
LS 

(Iter.) 

Error 

  Mean Standard deviation 

   

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥  [km] 39 811.324 342 080 086 

 001 -2 697.830 916 001 658 0.001 327 320 153 

005 -0.009 379 023 830 0.001 455 867 350 

010 -0.000 025 446 978 0.001 455 896 352 

100 -0.000 025 425 499 0.001 455 899 083 

𝑟𝑦 [km] 13 863.769 945 143 404 

 001 5 919.982 215 824 241 0.003 088 347 545 

005 0.019 068 736 037 0.003 010 298 329 

010 0.000 077 815 866 0.003 010 389 998 

100 0.000 077 775 678 0.003 010 392 880 

𝑟𝑧 [km] 0.000 000 000 000 

 001 -2 382.515 465 341 180 0.005 426 048 743 

005 -0.033 719 771 772 0.005 656 490 556 

010 0.000 034 430 493 0.005 656 476 292 

100 0.000 034 479 023 0.005 656 492 066 

𝑣𝑥 [km/s] -1.011 153 178 968 

 001 -0.565 160 766 587 0.000 000 309 688 

005 -0.000 001 249 854 0.000 000 259 910 

010 -0.000 000 006 193 0.000 000 259 914 

100 -0.000 000 006 189 0.000 000 259 914 

𝑣𝑦 [km/s] 2.904 251 340 218 

 001 -0.375 793 434 857 0.000 000 222 982 

005 -0.000 000 206 094 0.000 000 092 389 

010 -0.000 000 002 370 0.000 000 092 393 

100 -0.000 000 002 369 0.000 000 092 393 

𝑣𝑧 [km/s] 0.000 000 000 000 

 001 -1.047 995 976 807 0.000 000 588 884 

005 0.000 003 549 556 0.000 000 458 154 

010 -0.000 000 005 757 0.000 000 458 153 

100 -0.000 000 005 750 0.000 000 458 151 
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172 Projecte Final de Carrera (PFC)   

   

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥  [km] -14 048.210 875 367 075 

 001 -8 381.040 088 224 710 0.003 874 163 861 

005 -0.018 548 395 607 0.004 333 462 606 

010 -0.000 088 336 892 0.004 333 527 986 

100 -0.000 088 262 954 0.004 333 534 321 

𝑟𝑦 [km] 39 758.040 138 460 929 

001 -6 490.884 587 991 865 0.001 901 177 357 

005 -0.001 507 908 604 0.002 213 002 323 

010 -0.000 043 356 962 0.002 213 123 877 

100 -0.000 043 316 048 0.002 213 122 347 

𝑟𝑧 [km] 0.000 000 000 000 

001 -13 987.354 693 985 875 0.008 379 130 683 

005 0.048 825 735 702 0.006 290 482 196 

010 -0.000 079 096 664 0.006 290 478 631 

100 -0.000 079 001 334 0.006 290 446 975 

𝑣𝑥 [km/s] -2.899 009 362 761 

001 0.176 608 909 943 0.000 000 065 102 

005 0.000 000 656 975 0.000 000 081 636 

010 0.000 000 001 765 0.000 000 081 638 

100 0.000 000 001 764 0.000 000 081 638 

𝑣𝑦 [km/s] -1.023 728 690 437 

001 -0.512 603 976 081 0.000 000 208 491 

005 -0.000 000 901 765 0.000 000 331 146 

010 -0.000 000 007 239 0.000 000 331 162 

100 -0.000 000 007 233 0.000 000 331 162 

𝑣𝑧 [km/s] -0.000 000 000 000 

001 0.203 805 441 568 0.000 000 364 693 

005 0.000 002 443 698 0.000 000 411 886 

010 -0.000 000 002 486 0.000 000 411 885 

100 -0.000 000 002 489 0.000 000 411 886 

Table C.11: Statistical results of satellite state vector (setting I). 

 

 

 

C.3. RESULTS OF SECTION 4.3: Setting J 

 

RANGE OBSERVATIONS (𝝆) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  -0.000 000 070 051 0.000 007 281 977 

02 BET 38 443.051 174 980 268  0.000 000 118 833 0.000 006 576 705 

03 MIL 38 025.423 177 105 964  -0.000 000 023 310 0.000 005 898 642 

07 BRN 38 178.508 556 331 370  0.000 000 036 060 0.000 005 682 753 

08 LIS 38 038.478 209 228 619  -0.000 000 040 721 0.000 013 668 476 

09 LON 38 738.600 812 036 675  0.000 000 217 092 0.000 007 896 027 

10 BRL 38 618.783 379 768 545  0.000 000 118 432 0.000 009 454 451 

11 WAR 38 573.312 333 845 846  0.000 000 034 352 0.000 012 264 174 

12 ATH 37 344.093 302 991 045  -0.000 000 463 065 0.000 017 173 610 
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 Projecte Final de Carrera (PFC) 173  

 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  0.000 000 378 377 0.000 006 741 494 

02 BET 38 453.982 609 793 478  0.000 000 311 810 0.000 006 675 618 

03 MIL 38 036.328 990 781 658  0.000 000 223 765 0.000 006 238 949 

07 BRN 38 189.439 026 046 719  0.000 000 274 143 0.000 005 564 134 

08 LIS 38 049.809 535 903 398  0.000 000 642 659 0.000 013 737 852 

09 LON 38 749.625 490 385 479  0.000 000 447 426 0.000 010 380 647 

10 BRL 38 629.568 681 622 295  0.000 000 169 470 0.000 008 603 031 

11 WAR 38 583.959 484 721 621  -0.000 000 000 508 0.000 012 659 498 

12 ATH 37 354.695 527 400 443  -0.000 000 261 115 0.000 026 855 049 

Table C.12: Statistical results of range observations (setting J). 

 

 

 SATELLITE STATE VECTOR 

   

 
Ideal value 

 
LS 

(Iter.) 

Error 

  Mean Standard deviation 

   

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥  [km] 39 811.324 342 080 086 

 001 -2 677.786 975 906 893 0.000 133 956 213 

005 -0.010 624 924 629 0.000 143 275 899 

010 -0.000 003 969 278 0.000 143 278 347 

100 -0.000 004 034 020 0.000 143 268 900 

𝑟𝑦 [km] 13 863.769 945 143 404 

 001 5 871.966 278 781 252 0.000 326 164 517 

005 0.020 765 466 505 0.000 309 343 581 

010 0.000 004 770 594 0.000 309 337 189 

100 0.000 004 779 533 0.000 309 340 067 

𝑟𝑧 [km] 0.000 000 000 000 

 001 -2 362.258 840 895 556 0.000 524 489 887 

005 -0.035 139 969 631 0.000 540 902 839 

010 -0.000 016 976 777 0.000 540 920 141 

100 -0.000 017 456 877 0.000 541 020 771 

𝑣𝑥 [km/s] -1.011 153 178 968 

 001 -0.559 968 253 697 0.000 000 031 988 

005 -0.000 001 200 966 0.000 000 026 899 

010 -0.000 000 000 538 0.000 000 026 898 

100 -0.000 000 000 539 0.000 000 026 897 

𝑣𝑦 [km/s] 2.904 251 340 218 

 001 -0.371 984 504 797 0.000 000 023 883 

005 -0.000 000 344 630 0.000 000 009 735 

010 -0.000 000 000 006 0.000 000 009 735 

100 -0.000 000 000 002 0.000 000 009 737 

𝑣𝑧 [km/s] 0.000 000 000 000 

 001 -1.038 811 154 877 0.000 000 062 718 

005 0.000 003 708 568 0.000 000 049 199 

010 -0.000 000 000 497 0.000 000 049 198 

100 -0.000 000 000 477 0.000 000 049 209 
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174 Projecte Final de Carrera (PFC)   

   

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥  [km] -14 048.210 875 367 075 

 001 -8 315.714 296 721 295 0.000 400 394 995 

005 -0.018 498 693 109 0.000 443 803 587 

010 -0.000 011 437 950 0.000 443 796 239 

100 -0.000 011 526 996 0.000 443 756 910 

𝑟𝑦 [km] 39 758.040 138 460 929 

001 -6 468.689 506 980 571 0.000 203 388 262 

005 -0.004 954 835 409 0.000 235 259 872 

010 -0.000 004 930 950 0.000 235 264 923 

100 -0.000 004 929 211 0.000 235 256 287 

𝑟𝑧 [km] 0.000 000 000 000 

001 -13 854.833 837 052 151 0.000 890 850 710 

005 0.051 012 592 437 0.000 675 327 306 

010 -0.000 006 742 239 0.000 675 306 439 

100 -0.000 006 454 379 0.000 675 467 888 

𝑣𝑥 [km/s] -2.899 009 362 761 

001 0.176 220 721 353 0.000 000 006 421 

005 0.000 000 753 317 0.000 000 008 068 

010 0.000 000 000 171 0.000 000 008 068 

100 0.000 000 000 174 0.000 000 008 068 

𝑣𝑦 [km/s] -1.023 728 690 437 

001 -0.514 435 888 504 0.000 000 020 534 

005 -0.000 001 313 066 0.000 000 034 776 

010 -0.000 000 000 706 0.000 000 034 776 

100 -0.000 000 000 707 0.000 000 034 775 

𝑣𝑧 [km/s] -0.000 000 000 000 

001 0.204 004 623 304 0.000 000 035 826 

005 0.000 002 546 579 0.000 000 039 386 

010 0.000 000 001 240 0.000 000 039 387 

100 0.000 000 001 275 0.000 000 039 394 

Table C.13: Statistical results of satellite state vector (setting J). 

 

 

 

C.4. RESULTS OF SECTION 4.3: Setting K 

 

RANGE OBSERVATIONS (𝝆) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 37 834.053 693 001 108  -0.000 000 250 183 0.000 065 877 713 

02 BET 38 443.051 174 980 268  -0.000 000 862 137 0.000 060 406 739 

03 MIL 38 025.423 177 105 964  -0.000 001 237 938 0.000 051 330 092 

07 BRN 38 178.508 556 331 370  -0.000 000 998 669 0.000 049 660 534 

08 LIS 38 038.478 209 228 619  0.000 001 318 878 0.000 127 815 401 

09 LON 38 738.600 812 036 675  -0.000 000 149 690 0.000 076 999 027 

10 BRL 38 618.783 379 768 545  -0.000 001 722 737 0.000 087 315 656 

11 WAR 38 573.312 333 845 846  -0.000 002 657 805 0.000 113 149 212 

12 ATH 37 344.093 302 991 045  -0.000 003 684 519 0.000 168 884 460 
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EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 37 845.136 629 696 470  0.000 001 304 685 0.000 062 961 619 

02 BET 38 453.982 609 793 478  0.000 000 262 023 0.000 058 656 129 

03 MIL 38 036.328 990 781 658  0.000 000 010 009 0.000 054 287 302 

07 BRN 38 189.439 026 046 719  0.000 000 217 327 0.000 047 806 034 

08 LIS 38 049.809 535 903 398  0.000 003 204 583 0.000 140 075 764 

09 LON 38 749.625 490 385 479  0.000 000 997 310 0.000 093 213 854 

10 BRL 38 629.568 681 622 295  -0.000 000 804 564 0.000 082 000 817 

11 WAR 38 583.959 484 721 621  -0.000 001 837 791 0.000 124 592 351 

12 ATH 37 354.695 527 400 443  -0.000 002 362 806 0.000 246 859 596 

Table C.14: Statistical results of range observations (setting K). 

 

 

RANGE-RATE OBSERVATIONS (�̇�) AFTER 100 LS ITERATIONS 

 

Num. Site Ideal value [km] 
 Error [km] 

 Mean Standard deviation 

 

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

01 BCN 0.000 243 981 046  0.000 000 000 125 0.000 000 009 562 

02 BET 0.000 228 394 049  0.000 000 000 115 0.000 000 009 388 

03 MIL 0.000 224 589 431  0.000 000 000 114 0.000 000 008 792 

07 BRN 0.000 227 712 055  0.000 000 000 115 0.000 000 008 875 

08 LIS 0.000 272 339 131  0.000 000 000 141 0.000 000 011 807 

09 LON 0.000 239 431 262  0.000 000 000 120 0.000 000 009 729 

10 BRL 0.000 212 360 938  0.000 000 000 105 0.000 000 010 599 

11 WAR 0.000 196 782 202  0.000 000 000 097 0.000 000 010 971 

12 ATH 0.000 188 748 825  0.000 000 000 096 0.000 000 010 956 
 

EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

01 BCN 0.000 560 626 939  -0.000 000 000 007 0.000 000 009 147 

02 BET 0.000 565 211 901  -0.000 000 000 030 0.000 000 008 966 

03 MIL 0.000 567 152 627  -0.000 000 000 020 0.000 000 008 578 

07 BRN 0.000 565 822 125  -0.000 000 000 023 0.000 000 008 602 

08 LIS 0.000 550 314 761  0.000 000 000 004 0.000 000 010 672 

09 LON 0.000 560 950 171  -0.000 000 000 032 0.000 000 009 419 

10 BRL 0.000 570 630 327  -0.000 000 000 037 0.000 000 009 691 

11 WAR 0.000 576 172 939  -0.000 000 000 038 0.000 000 009 911 

12 ATH 0.000 580 934 546  -0.000 000 000 002 0.000 000 011 692 

Table C.15: Statistical results of range-rate observations (setting K). 
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 SATELLITE STATE VECTOR 

   

 
Ideal value 

 
LS 

(Iter.) 

Error 

  Mean Standard deviation 

   

EPOCH 𝒕𝟎 = 𝟎 𝐬 
 

𝑟𝑥  [km] 39 811.324 342 080 086 

 001 -4 145.255 430 893 705 0.001 177 041 479 

005 -2.234 567 985 750 0.001 442 236 533 

010 -0.000 027 469 233 0.001 438 465 081 

100 -0.000 027 476 738 0.001 438 458 445 

𝑟𝑦 [km] 13 863.769 945 143 404 

 001 9 296.634 210 249 404 0.002 728 209 600 

005 3.145 995 000 364 0.002 990 885 288 

010 0.000 063 591 839 0.002 991 743 233 

100 0.000 063 678 013 0.002 991 666 588 

𝑟𝑧 [km] 0.000 000 000 000 

 001 -4 092.703 963 651 105 0.005 190 187 331 

005 -9.691 657 036 666 0.005 468 711 676 

010 -0.000 019 622 573 0.005 455 665 516 

100 -0.000 019 423 490 0.005 455 600 798 

𝑣𝑥 [km/s] -1.011 153 178 968 

 001 -0.934 667 828 621 0.000 000 269 359 

005 -0.000 297 554 852 0.000 000 257 813 

010 -0.000 000 004 730 0.000 000 257 908 

100 -0.000 000 004 738 0.000 000 257 902 

𝑣𝑦 [km/s] 2.904 251 340 218 

 001 -0.640 724 003 951 0.000 000 190 848 

005 0.000 146 974 540 0.000 000 090 214 

010 -0.000 000 001 373 0.000 000 090 538 

100 -0.000 000 001 378 0.000 000 090 534 

𝑣𝑧 [km/s] 0.000 000 000 000 

 001 -1.677 325 002 805 0.000 000 514 321 

005 0.000 585 291 930 0.000 000 443 992 

010 0.000 000 000 167 0.000 000 445 421 

100 0.000 000 000 138 0.000 000 445 424 
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EPOCH 𝒕𝐟 = 𝟐𝟏 𝟔𝟎𝟎 𝐬 
 

𝑟𝑥  [km] -14 048.210 875 367 075 

 001 -12 925.334 680 520 786 0.003 326 379 109 

005 -4.684 198 415 642 0.004 298 025 187 

010 -0.000 072 073 819 0.004 298 208 091 

100 -0.000 072 183 711 0.004 298 150 078 

𝑟𝑦 [km] 39 758.040 138 460 929 

001 -6 084.549 398 217 307 0.002 616 983 431 

005 3.521 434 554 237 0.002 184 304 485 

010 -0.000 026 839 579 0.002 188 589 888 

100 -0.000 026 934 738 0.002 188 561 168 

𝑟𝑧 [km] 0.000 000 000 000 

001 -24 488.696 796 761 662 0.008 841 851 651 

005 8.070 342 332 343 0.006 095 477 377 

010 0.000 002 378 047 0.006 114 824 736 

100 0.000 001 978 307 0.006 114 868 560 

𝑣𝑥 [km/s] -2.899 009 362 761 

001 0.126 651 563 028 0.000 000 089 156 

005 0.000 133 636 167 0.000 000 081 072 

010 0.000 000 001 830 0.000 000 080 906 

100 0.000 000 001 831 0.000 000 080 906 

𝑣𝑦 [km/s] -1.023 728 690 437 

001 -0.179 011 162 294 0.000 000 372 814 

005 0.000 215 045 428 0.000 000 327 648 

010 -0.000 000 005 141 0.000 000 328 081 

100 -0.000 000 005 153 0.000 000 328 075 

𝑣𝑧 [km/s] -0.000 000 000 000 

001 -0.003 861 972 197 0.000 000 432 004 

005 0.000 704 311 394 0.000 000 398 278 

010 0.000 000 001 430 0.000 000 397 317 

100 0.000 000 001 416 0.000 000 397 312 

Table C.16: Statistical results of satellite state vector (setting K). 
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