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( 11} 

and min is the mean power of the error for the ideal solution : 

):2 2 
mfn = E (len(k)l ) ( 1 2) 

Y{(n) = w_* 

Thus, the maximum likelihood criteria leads to the following least square problem 

W(n) 
n len(k)l2 

mfn L 
k=O an 2(k) 

W(n) 

( 1 3) 

where an 2 (k) is given by ( 1 0). The physical meaning of the constant variance criteria is 

clear. Recovering the definition of the error (1 ), we have that given a known data vector 
X(k) and a known sample of the reference sequence d(k), the error term is only a function 
of the coefficient vector Y{(n). 

Besides, vector 't:/._(n) is obtained in the minimization of the deterministic objective 
(13), where the complete set of data samples and reference samples are considered. The 
question is the relative to the degree of dependence or the sensibility exhibed by the error 
(1) to any change in the coefficient vector W.(n). If one data vector X(k) is degradated, it 
shows a different structure than the rest of the data, and an increase in the variance of its 
associated error is expected. As a consequence, the contribution of the error term due to 
this data is removed in the cost function . If this idea is true, the error variance estimate 
will depent on the data vector we are using in the evaluation of the error and also of the 
rest of the data and the relation between them. In this way, the statistic behaviour of the 
complete data set must be reflected in the expression of the variance. 

Until now, all the development has been rigorous and exact. The last aspect to define is 
the evaluation of the coefficient vector covariance matrix of the filter [11]. 

Due to the fact that matrix (11) is positive definite, the estimate of the error variance 
(7) appears, except a constant factor, as an inner product of the considered data vector 
X(k), in the metric of the coefficient vector covariance matrix (11 ). 

"Data selection" will take this matrix (11) as a reference in such a way that we hope 
that it will include the information about the statistic behaviour of all the previous received 
data vectors, that is, all them except the data vector we are selecting X(k). 

lt is very common to consider the error variance as a constant one to avoid the 
computation of matrix (11 ). This is equivalent to assume that the coefficient vector 
covariance matriz is a null one, and this is absurd. 1t is evident that the succesive updating 
of the coefficients improves the quality of the solution we obtain and this making better of 
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the equalizer must be reflected in the coefficient vector covariance matrix. Therefore, the 
inclussion of the data selection gets a clear meaning. 

5.- WEIGHT-VECTOR COVARIANCE MATRIX ESTIMATION 

The coefficient vector covariance matrix is obtained in the resolution of a 
transcendental equation and then without a high computation cost. Our proposal begins 
considering that the searched solution respons to a Newton diagram, as in Kalman filtering, 
that is : 

( 1 4) 

where ·~· is the 'step-size' and ~(n) is an ergodic estimate of the data autocorrelation 

matrix 

n 

f3(n) = L X(k) X H (k) ( 1 5) 

- k=O 

In this case, it is easy to obtained an expression for the covariance matrix ( 11 ), that is : 

( 1 6) 

Thus, the variance for an error sample ( 1 0) becomes to be : 

( 1 7) 

An the final cost function is given by 

n 

'J::l.(n) mlnL 
1 +XH(k) ~- 1 (n-1 }X(k) 

( 1 8) 

't{(n) 

For the moment, it is not known a recursive solution for ( 18) and a block analysis is 

required. In spite of the non-recursivity of the solution, matrix ~- 1 (n-1) is known for the 

'n' instant due to the fact that it has been computated for obtaining W (n-1) in the previous 
update, and the global computation is not so intensive. 

Nevertheless, our proposal includes another alternative, much more simple and 
efficient. Approaching expression (17) by : 

( 1 9) 
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the objetive can be writen in a recursive way and it presents a recursive resolution : 

W(n) 

n 

mfnL 
k::O 

YY._{n) 

1 +XH(k)~- 1 {k-1 )_K{k) 
(20) 

In this approach the covariance matrix {11) is sample by sample updated and it tries to 
emphasises the more recent received data in front of the older ones, which is logical in an 
adaptive system because the quality of the solution improves in the succesive updating. 

6.- FINAL ALGORITHM AND LAST COMMENTS 

The objective {20) can be solved as an exact least square one. Minimizing with respect 
to the coefficients and ordering the terms of the expression, the final updating equation is 
given by : 

{21.a) 

with: 

{21.b) 

where R(.) is evaluated by : = 
n 

_B{n) = ~ -
2
1 

X(k) XH(k) 
- L..; Tt (k) 

(21.c) 

k=O 

which inverse matrix is updated by the matrix inversion-lemma, that is 

(21.d) 

the analysis of the final solution proofs all the initial considered hypothesis, which are the 
following : 

{ 1 )- From {11), {16) and (21.c) the coefficient vector covariance matrix only depends 
on the previous received data vector and it doesn't include the data vector under 
selection. 
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( 2)- The final coefficient-vector updating equation (21.a) is a Newton diagram. 

( 3)- Parameter 112(n) in (21.b) is a data selector into the updating equation, increasing 
the speed of the adaptive algorithm for data vectors which are parallel to the 
signal eigenvectors of the data autocorrelation matrix (21.c) and 'bracking' the 
update when the supplied data vectors are parallel to the noise subspace. 

7.- REFERENCES 

[ 1] S.Kay & D. Sengupta 
Statistically computationally efficient estimation of non gaussian autoregresive 

process 
Procc. of ICCASP-87, pp. 45-48, Dallas, U.S.A. 1987 

[2] B.D.O. Anderson & J.B. Moore 
Optimal Filtering 
Prentice -Hall, 1979 

( 3] G. Vazquez 
Power Dunctions and Data Transforms in Adaptive Filtering 
Ph. D. dissertation, Politechnique University of Catalonia, March 1988 (Spanish) 

[ 4] D. Goddard 
Channel Equalization Using a Kalman Filter for Fast Data Transmission 
IBM J. Res. Development, May 1974 

[ 5] D. Widrow & S.D. Stearns 
Adaptive Signal Processing 
Prentice-Hall, 1985 

[ 6] S. Haykin 
Adaptive Filter Theory 
Prentice-Hall, 1986 

[ 7) S.U.H. Qureshi 
Adaptive Equalization 
Proc. IEEE, vol. 73, No. 9, Sept. 1985 

[ 8] B. Toplis & S. Pasupathy 
Tracking Improvements in Fast RLS Algorithms Using a Variable Forgetting Factor 
IEEE Trans.ASSP, Vol. 36, No. 2, pp. 206-227, FEb. 1988 

( 9] B. I. Helme & C.L. Nikias 
Improved Spectrum Performance Via a Data-Adaptive Weighted Burg Technique 
IEEE Trans. ASSP, Vol. ASSP-33, No.4, pp.903-91 0, Aug. 1985 


