














CONSTANT VARIANCE TRANSVERSAL FILTERING FOR ADAPTIVE CHANNEL EQUALIZATION

the equalizer must be reflected in the coefficient vector covariance matrix. Therefore, the
inclussion of the data selection gets a clear meaning.

5.- WEIGHT-VECTOR COVARIANCE MATRIX ESTIMATION

The coefficient vector covariance matrix is obtained in the resolution of a
transcendental equation and then without a high computation cost. Our proposal begins

considering that the searched solution respons to a Newton diagram, as in Kalman filtering,
that is :

W(n+1) = W(n) + p R (n) e (n) X(n) (14)
where 'u' is the 'step-size' and R(n) is an ergodic estimate of the data autocorrelation

matrix :

n
R(n) = 2 X(k) XM (k) (15)

In this case, it is easy to obtained an expression for the covariance matrix (11), that is:
K) = 820 11+ XM BT n-1) X (00)) (16)
Thus, the variance for an error sample (10) becomes to be :
o2() = €2 11+ XMk RV (n-1)X (k)] (17)
An the final cost function is given by

n

le (k)1
W(n) min m 1 (18)
1+xH ) B (n-1)X (k)

k=0
W(n)

For the moment, it is not known a recursive solution for (18) and a block analysis is
required. In spite of the non-recursivity of the solulion, matrix 5'1(n-1) is known for the

n' instant due to the fact that it has been computated for obtaining W(n-1) in the previous
update, and the global computation is not so intensive.

Nevertheless, our proposal includes another allernative, much more simple and
efficient. Approaching expression (17) by :

020K = E2 1 (14X R (k1) X)) (19)
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the objetive can be writen in a recursive way and it presents a recursive resolution :

§ : len(K)I?
W(n) min (20)
14X 0BT (k-1)X(K)

W(n)

In this approach the covariance matrix (11) is sample by sample updated and it tries to
emphasises the more recent received data in front of the older ones, which is logical in an
adaptive system because the quality of the solution improves in the succesive updating.

6.- FINAL ALGORITHM AND LAST COMMENTS

The objective (20) can be solved as an exact least square one. Minimizing with respect
to the coefficients and ordering the terms of the expression, the final updating equation is
given by :

1

W(n+1) = W(n) + T R (n-1) " (n) X(n) (21.a)
ne(n) + X7(n) B (n-1)X(n) =

with:

n2(n) = 1 + XHn) B (0-1) X(n) (21.b)
where 2(.) is evaluated by :

n
1 H
R(n) = —— X(k) X" (k) (21.c)
. e (k)

which inverse matrix is updated by the matrix inversion-lemma, that is :

R (n-1)yx(mxHn) B 1 (n-1)
n2(n) + XH(n) B (n-1)X(n)

R(n) = 5“(n-1) . (21.d)

the analysis of the final solution proofs all the initial considered hypothesis, which are the
following :

(1)- From (11), (16) and (21.c) the coefficient vector covariance matrix only depends
on the previous received data vector and it doesn't include the data vector under
salection.
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(2)- The final coefficient-vector updating equation (21.a) is a Newton diagram.

(3)- Parameter 'q2(n) in (21.b) is a data selector into the updating equation, increasing
the speed of the adaptive algorithm for data vectors which are parallel to the
signal eigenvectors of the data autocorrelation matrix (21.c) and ‘'bracking' the
update when the supplied data vectors are parallel 10 the noise subspace.
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