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Abstract— The distributed blocking flow shop scheduling problem (DBFSP) allows modeling 

the scheduling process in companies with more than one factory. It configures production systems 

as flow shop lines where the blocking constraint must be considered. To the best of our 

knowledge, this variant of the distributed permutation flow shop scheduling problem has not been 

studied. In this working paper, we show the best solutions found during our research for the 

Taillard’s instances adapted to this problem.  
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Introduction  

Distributed manufacturing is a common situation for large enterprises that compete in a 

globalized market. Because of current globalization trends, production has shifted from single 

factory production to a multi-factory production network [1]. In this environment, the scheduling 

problems deal with the allocation of jobs to factories and the scheduling of jobs in each plant. Since 

the flow shop configuration is the most common processing layout, the flow shop scheduling 

problem has been studied greatly since the seminal paper of Johnson [2].  However, its  extension 

to a multi-plant environment was first presented by Naderi and Ruiz [3], who referred to it as the 

Distributed Permutation Flow Shop Scheduling Problem (DPFSP). After the publication of [3], 

several authors proposed various heuristics to solve this problem ([4]–[13]), but the blocking 

constraint has been considered in none of them. The blocking flow shop scheduling problem allows 

many production systems to be modeled when there are no buffers between consecutive machines. 

In general, it is useful for those systems that have a production line without a drag system that 

forces a job to be transferred between two consecutive stations at pre-established times. Some 

industrial examples can be found in the iron and steel industry [14]; in the treatment of industrial 

waste and the manufacture of metallic parts [15]; or in a robotic cell, where a job may block a 

machine while waiting for the robot to pick it up and move it to the next stage [16].  The blocking 

constraint tends to increase the completion time of jobs, because the processed job cannot leave 

the machine if the next machine is busy. Therefore, the heuristics designed to schedule jobs in this 

environment have to consider this fact in order to minimize the idle time of machines due to 

possible blockage. Therefore, the distributed blocking flow shop scheduling problem (DBFSSP) 

deals with the allocation and scheduling of jobs in a multi-factory production network with the 

blocking constraint present in the manufacturing system. It is interesting to study this problem in 

order to design specific procedures, since the adaptation of those designed for the DPFSP probably 

perform worse than procedures which consider its characteristics.    

In this working paper we show the best values found for the Taillard’s benchmark [17]  applied 

to the DBFSP.  

Problem definition 

The problem is defined as follows: n jobs have to be scheduled in one of the F identical factories. 

The production configuration of each factory is a flow shop consisting of m machines. Each factory 

is able to process all jobs. The jobs assigned to a factory have to be processed by all machines in 

the same order, from machine 1 to machine m. Each job i, i ϵ {1,2,. . .,n} requires a fixed non-

negative processing time pj,i on every machine j, j ϵ {1,2,. . .,m}, which  does not change from 

factory to factory. Setup times are considered to be included in the processing time. The objective 

is to schedule the jobs to the different factories such that the maximum makespan (Cmax) among 



factories is minimized. Hence, a plant f has a set of nf, jobs to be sequenced in order to minimize 

the Cmax of the plant. We denote σf as the sequence of the nf jobs assigned to plant f. Therefore, a 

solution  is formed by the sequence of jobs in each factory (=( σ1, σ2, …, σf)).   

We denote [k,f] as the job which occupies position k in the sequence of σf, and fmax as the factory 

with the maximum makespan. Let ej,k,f be the time in which the job [k,f] starts to be processed in 

machine j, and cj,k,f  be the departure time of job [k,f] in machine j.  Cmax = Cmax() denotes the 

global makespan, i.e., the maximum completion time of the last job processed in any of the factory.   

Therefore, according to this notation the problem can be formalized as follows: 
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with 00 ,jc ,  00 f,k,c , 01  f,k,mc fkj ,,  being the initial conditions. 

 

Best solutions for Taillard’s instances 

The Taillard’s benchmark was generated to test algorithms for the permutation flow shop problem 

with makespan criterion, although they have also been used under other criteria and conditions. In 

particular, these instances were adapted to the DPFSP in [3] and used later in [18] and [9] to test 

their algorithms for the same problem. The benchmark is composed of 12 sets of 10 instances, 

ranging from 20 jobs and 5 machines to 500 jobs and 20 machines, where n ϵ {20, 50, 100, 200, 

500} and m ϵ {5, 10, 20}, although not all combinations of n and m are available. In particular, 

sets 200x5, 500x5 and 500x10 are missing. These 120 instances were augmented with six values 

of  F ϵ {2, 3, 4, 5, 6, 7}.  

The next table shows the best makespan value known for each instance. 

 

 

 

 

 



num n m F 
    2 3 4 5 6 7 
    
1 20 5 771 583 493 440 409 384 
2 20 5 793 589 496 438 404 381 
3 20 5 704 522 446 398 373 360 
4 20 5 805 616 521 469 432 413 
5 20 5 758 573 489 438 406 385 
6 20 5 745 565 483 436 404 383 
7 20 5 757 568 478 439 430 430 
8 20 5 758 568 489 440 412 386 
9 20 5 767 577 478 427 396 376 

10 20 5 699 513 434 392 365 347 
    

11 20 10 1085 888 789 732 693 670 
12 20 10 1155 941 840 781 735 707 
13 20 10 1044 845 754 700 673 650 
14 20 10 969 778 689 635 605 586 
15 20 10 1005 817 727 671 650 628 
16 20 10 978 786 695 648 613 591 
17 20 10 1019 832 743 696 671 671 
18 20 10 1075 875 773 720 692 692 
19 20 10 1070 860 769 713 702 702 
20 20 10 1127 915 808 760 723 707 
    

21 20 20 1715 1482 1363 1305 1257 1237 
22 20 20 1602 1391 1297 1235 1191 1191 
23 20 20 1772 1528 1405 1347 1320 1320 
24 20 20 1665 1443 1354 1297 1259 1239 
25 20 20 1726 1490 1377 1309 1280 1253 
26 20 20 1687 1468 1356 1286 1256 1256 
27 20 20 1701 1474 1362 1297 1251 1232 
28 20 20 1648 1422 1321 1258 1232 1227 
29 20 20 1699 1483 1369 1302 1257 1240 
    

30 20 20 1638 1416 1302 1240 1201 1166 
31 50 5 1563 1076 828 688 603 536 
32 50 5 1657 1143 887 738 648 582 
33 50 5 1565 1072 837 699 609 543 
34 50 5 1633 1135 882 736 642 578 
35 50 5 1648 1129 882 736 636 572 
36 50 5 1649 1145 897 749 657 591 
37 50 5 1589 1109 872 730 640 575 
38 50 5 1582 1092 856 715 622 560 
39 50 5 1511 1052 825 688 602 540 
40 50 5 1616 1116 873 727 631 565 
    

41 50 10 1985 1452 1190 1041 940 870 
42 50 10 1910 1394 1143 1003 904 844 
43 50 10 1919 1399 1146 1009 921 856 
44 50 10 1989 1450 1188 1042 948 882 
45 50 10 1976 1437 1190 1042 947 879 
46 50 10 1978 1432 1181 1036 935 869 
47 50 10 2038 1488 1227 1069 973 901 
48 50 10 1981 1443 1195 1045 948 875 
49 50 10 1931 1404 1148 1008 911 844 
50 50 10 2005 1474 1220 1067 971 902 
 
 
 

   



num n m F 
    2 3 4 5 6 7 
    

51 50 20 2736 2147 1864 1692 1582 1502 
52 50 20 2597 2043 1761 1610 1501 1423 
53 50 20 2598 2045 1765 1603 1494 1419 
54 50 20 2641 2073 1797 1638 1531 1452 
55 50 20 2589 2042 1765 1609 1504 1428 
56 50 20 2586 2043 1769 1602 1495 1426 
57 50 20 2608 2047 1766 1603 1497 1417 
58 50 20 2613 2063 1791 1624 1515 1436 
59 50 20 2653 2094 1820 1652 1539 1468 
60 50 20 2667 2097 1808 1644 1531 1453 
    

61 100 5 3138 2135 1628 1331 1127 982 
62 100 5 3088 2091 1594 1302 1101 963 
63 100 5 3018 2057 1568 1273 1082 942 
64 100 5 2941 1993 1519 1236 1049 912 
65 100 5 3054 2067 1579 1278 1093 954 
66 100 5 2969 2021 1533 1248 1059 924 
67 100 5 3070 2074 1586 1287 1095 957 
68 100 5 2985 2025 1541 1250 1056 922 
69 100 5 3119 2125 1621 1328 1125 985 
70 100 5 3122 2113 1611 1309 1109 967 
    

71 100 10 3677 2549 2004 1687 1469 1323 
72 100 10 3558 2449 1911 1595 1384 1239 
73 100 10 3614 2496 1952 1638 1422 1277 
74 100 10 3775 2616 2051 1718 1502 1353 
75 100 10 3584 2481 1953 1632 1427 1280 
76 100 10 3502 2420 1877 1568 1364 1222 
77 100 10 3581 2476 1934 1608 1407 1263 
78 100 10 3594 2514 1967 1645 1437 1292 
79 100 10 3712 2579 2022 1692 1475 1319 
80 100 10 3656 2543 1991 1666 1461 1314 
    

81 100 20 4350 3183 2606 2278 2043 1891 
82 100 20 4351 3167 2589 2250 2037 1881 
83 100 20 4342 3163 2608 2272 2051 1897 
84 100 20 4351 3173 2605 2261 2043 1891 
85 100 20 4355 3175 2605 2269 2051 1900 
86 100 20 4407 3236 2654 2319 2094 1934 
87 100 20 4410 3197 2636 2294 2070 1908 
88 100 20 4465 3264 2695 2353 2125 1963 
89 100 20 4398 3230 2650 2304 2084 1931 
90 100 20 4421 3243 2661 2317 2097 1934 
    

91 200 10 6902 4719 3605 2956 2499 2197 
92 200 10 6831 4639 3576 2907 2483 2170 
93 200 10 6848 4674 3593 2929 2496 2185 
94 200 10 6830 4675 3559 2915 2480 2170 
95 200 10 6830 4674 3585 2921 2481 2169 
96 200 10 6739 4585 3514 2863 2444 2137 
97 200 10 6961 4759 3644 2987 2534 2220 
98 200 10 6909 4698 3603 2946 2504 2190 
99 200 10 6842 4657 3560 2915 2479 2169 

100 200 10 6867 4676 3586 2917 2492 2175 
 
 

   

    



num n m F 
    2 3 4 5 6 7 
    

101 200 20 7820 5487 4314 3608 3151 2824 
102 200 20 7929 5533 4336 3644 3183 2855 
103 200 20 8000 5610 4402 3682 3212 2871 
104 200 20 7948 5556 4373 3645 3183 2854 
105 200 20 7859 5484 4297 3599 3139 2809 
106 200 20 7940 5519 4321 3611 3136 2819 
107 200 20 7944 5554 4370 3659 3203 2869 
108 200 20 7965 5574 4377 3660 3202 2864 
109 200 20 7908 5540 4349 3635 3172 2845 
110 200 20 7951 5538 4367 3651 3202 2863 

    
111 500 20 18399 12525 9619 7869 6704 5849 
112 500 20 18541 12670 9724 7959 6766 5919 
113 500 20 18344 12517 9609 7863 6701 5860 
114 500 20 18469 12610 9688 7908 6742 5888 
115 500 20 18374 12490 9575 7856 6667 5831 
116 500 20 18494 12618 9655 7893 6699 5889 
117 500 20 18348 12510 9595 7845 6665 5806 
118 500 20 18399 12595 9643 7883 6700 5881 
119 500 20 18313 12480 9559 7857 6647 5798 
120 500 20 18496 12597 9680 7911 6713 5872 

Best solutions for the DBFSP 
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