
Graphical and Incremental Type Inference.
A Graph Transformation Approach

Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract. We present a graph grammar based type inference system for
a totally graphic development language. NiMo (Nets in Motion) can be
seen as a graphic equivalent to Haskell that acts as an on-line tracer and
debugger. Programs are process networks that evolve giving total visibil-
ity of the execution state, and can be interactively completed, changed
or stored at any step. In such a context, type inference must be in-
cremental. During the net construction or modification only type safe
connections are allowed. The user visualises the type information evolu-
tion and, in case of conflict, can easily identify the causes. Though based
on the same ideas, the type inference system has significant differences
with its analogous in functional languages. Process types are a non-trivial
generalization of functional types to handle multiple outputs, partial ap-
plication in any order, and curried-uncurried coercion. Here we present
the elements to model graphical inference, the notion of structural and
non-structural equivalence of type graphs, and a graph unification and
composition calculus for typing nets in an incremental way

1 Introduction

The data flow view of lazy functional programs as process networks was first
introduced in [1]. The graphic representation of functions as processes and in-
finite lists as non-bounded channels, helps to understand the program overall
behaviour. The net architecture shows in a bi-dimensional way the chains of
function compositions, exhibits the implicit parallelism, and back arrows give
an insight of the recurrence relations from the new results and those already
calculated. The graphic execution model that the net animation suggests was
the starting point for the NiMo language design [2,3]. NiMo is intended to be a
workbench for incremental development, testing, debugging and tuning. A small
set of graphic primitives allows representing and handling higher order, partial
application, non-strict evaluation, and type inference with parametric polymor-
phism. Since the net is the code but also its computation graph, users have
total visibility of the execution internals according to a comprehensible model.
Partially defined nets can be executed, dynamically completed or modified and
stored at any step, thus allowing incremental development on the fly. Also, ex-
ecution steps can be undone, acting as an on line tracer and debugger where
everything, even the evaluation policy, can be dynamically modified.

In this context, where incompleteness does not inhibit execution, editing
a program is a discontinuous process with intervals where code evolves up to
the next user interaction, and hence type inference has to be incremental by

2 Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

force. On the other hand, in NiMo there is no textual code at all. Programs are
graphs whose nodes are interfaces of processes or data. Interfaces are graphic
tokens having typed in and out ports. Net construction is equivalent to building
a bi-dimensional term, where sub-expressions are like puzzle pieces that can be
pairwise connected in any order, provided their shapes fit together, i.e. both port
types unify, thus ensuring type safeness by construction. The full type informa-
tion associated to each interface port is carried up by means of a second kind
of graphs, and updated with each new connection. The user visualises the type
information evolution, and can identify the incompatibilities when a connection
is rejected. The type inference system, though in essence based on the same prin-
ciples [4], has some significant differences with its analogous in languages like
Haskell. Besides of being graphical and incremental, the data flow ingredient im-
plies to cope with processes with any number of outputs, and curried-uncurried
interpretation of multiple inputs. Partial application can be made in any order,
and multiple outputs can be left partially disconnected as well. In the current
version multiple output processes are also admitted as higher order parameters,
maintaining this multiple behaviour. Therefore the process type is a non-trivial
generalization of a functional type.

The type inference system implementation was based on a complete graph
grammar definition that was initially implemented in AGG. This preliminar
version is described in [5]. In fact, the graph transformation approach is the
natural framework to formalize actions in NiMo, since they are all visualised as
a subnet transformation, and so is type inference as well. On the other hand, in
NiMo there are not variable names of any kind (hence not variable substitution
either); type identity is represented as a shared type node. In this paper we
present the current version of the type inference system of NiMoToons; the NiMo
environment [6]. Graphical typing and incremental inference are here described in
terms closer to the usual type inference formalism. A textual denotation for type
graphs and a typing calculus intend to bridge the gap between the underlaying
specification in the graph transformation framework and the classical approach.

The paper is organized as follows: In the next section we introduce the syntax
and main constructions of NiMo. Section 3 presents the graphical representation
of type information, its interpretation in a textual notation, and discusses the dif-
ferences between process types and functional types. Section 4 defines the notion
of structural and non-structural equivalence of type descriptors, and graphical
type unification in both cases. Section 5 covers net typing. A set of port connec-
tion typing operators and a composition operator to connect components are the
basis for the incremental component type calculus. All along the paper the topics
are illustrated with screen-shots examples. The paper ends with a discussion of
some type visualization tools and a summary of our contributions.

2 NiMo language elements

NiMo programs are oriented graphs with two kind of nodes: processes and data
items. Horizontal arrows represent channels of flowing data streams, and vertical
arrows entering a process are non channel parameters, which can also be pro-
cesses. Processes can have any number of inputs and outputs, making the use
of tuples unnecessary. There are neither patterns nor specific graphic syntax for
conditionals. The kinds of nodes are: rectangles for processes, circles (or ovals)

Graphical and Incremental Type Inference 3

for constant values, black-dots for duplicators, hexagons for data elements, and
green-arrows for open connections or formal parameters. Circles are labelled with

Fig. 1. A NiMo program example

their value for atomic types, and since symbolic evaluation is allowed, labels can
also be names for constants of any type, even polymorphic. Hexagon labels are I,
R, B ,L and F for integers, reals, booleans, lists and functional processes. Poly-
morphic data are labelled ?. In the current version neither user defined types
nor Haskell type classes are supported. Ad-hoc polymorphism for functions as
= or > is handled as in Miranda. For arithmetic operations there are two dif-
ferent processes for reals and integers. The NiMo syntax makes intensive use
of colour. Hexagons and circles are coloured according their type, the process
name’s colour denotes its evaluation mode, and edges have a state indicating
process activation or data evaluation degree that is shown as a colored diamond.

2.1 Interfaces and Connections

All the mentioned nodes are interfaces having typed (in /out) connection ports.
Interfaces are dragged from a ToolBox (see left side of Figure 2) and dropped
into the workspace where the new net is being built. Clicking on a pair of ports
connects them with an edge if both types are compatible; otherwise a failure
message is generated. Thus nets are type safe by construction. Let’s observe that
on the left of Figure 2, the three process interfaces have an F-out port on the
bottom. It is not one of their outputs but their value as a functional data. This
special out-port disappears whenever one output of the process is connected(it is
now a potentially active process that cannot be considered data), or all its inputs
are connected (once completely applied it is no longer a function). Higher-order
parameter processes are connected by its F-out port (as it happens with the
net process xxx on the right of Figure 2). When the connection is made, all the
process interface ports not yet connected get blocked (red circle) to prevent new
connections, otherwise its value as a functional data (and of course its type)

4 Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

Fig. 2. Interfaces

would change. There is a set of predefined processes (grey rectangles) for basic
types and stream processing, including multiple output versions of many Haskell
prelude functions. For instance the process SplitAt is analogous to the splitAt
function returning a pair of lists, but it can behave also as take or as drop just
by leaving one or the other output disconnected. We will refer to this multiple
behavior as partial resulting, in analogy with the notion of partial application, i.e.
there is a symmetry in parameters and results regarding partiality. Also, several
basic processes have configurable arity, as a Map with n input and m output
channels (generalizing functions map, zipWith and zipWith3), a TakeWhile and
a Filter with as many input as output channels, and an Apply process.

2.2 Net process definitions

Net processes are user-defined components whose interfaces (the white rectan-
gles) are defined by means of a parameterisation mechanism. The open in/out

Fig. 3. Net Process definition

ports of the net to be considered the formal parameters and results are bound
to the in/out ports of a configurable interface that is given a name. Afterwards
it can be imported to the Toolbox to be used as a process in a new net and so
on, allowing incremental net complexity up to any arbitrary degree.

Figure 3 shows an example for the process fromUp that generates a list with
k consecutive integers from the value n, where n and k correspond respectively

Graphical and Incremental Type Inference 5

to the parameters labelled 1 and 2. The equivalent Haskell code is fromUp n k =
x where(x, y) = splitAt k z ; z= n: map (1+) z. When the net process has to act,
the interface is replaced by the net updating the connections according to the
bindings. Also, there is a generic process interface for building the interface of a
not yet defined net process. The user sets the name and number of channels/non-
channel parameters and outputs. In a top down development this allows nets with
not yet defined processes to execute, and is also the means to define recursive
processes.

2.3 Partial application and partial resulting

The multiple inputs of a process can be interpreted in a curried way depending
on the context, and partial application can be made in any order. Also, the
effective arguments for the application can be delayed. On the left of Figure
4, process ifBool acting as a higher order parameter has a green arrow at its
first input, thus allowing its value to be completed later. It is also the way for
binding this port as a second order parameter if the net is defined as a net
process. For instance, if the increment in Figure 3 had been the third parameter

Fig. 4. Delayed argument and partial resulting

of f romUp, instead of being 1. Moreover, in NiMo multiple output processes
and even partial resulting is allowed in higher order parameters. This is also
indicated by a green arrow. At the right in Figure 4 the higher order parameter
of Map is the process SplitAt acting as take, i.e. returning a single output, and
being therefore a suitable parameter for a single output Map. When the process
is applied, the horizontal green arrow causes this output to get disconnected.

3 Graphical typing

As already said, in NiMo type checking and inference is made step by step
and locally during the net edition. Initially the net is empty. The user adds
interfaces (net components) and connects pairs of type compatible ports. To
ensure type compatibility, the full type information associated to each interface
port is carried up, and updated each time a new connection is made, by means
of a second kind of graphs which are optionally visible.

6 Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

3.1 Type graph and type descriptors

The net has an associated type graph that can be made visible. All ports of
every interface are tied to a node in the type graph, and shared sub graphs
indicate identical types. In connected ports only the out is tied to the type
graph (to avoid redundant edges). For an idea of what a type graph looks like,
Figure 10 shows the type graph of the net on the right of Figure 2. The net
type graph is incrementally built during the net construction starting from the
type descriptor(TD) of each interface, and its evolution is optionally visible.
This makes easy to identify what is failing when a connection is rejected. TDs
fully describe the type of processes and data items. They are directed acyclic
graphs whose nodes are type hexagons, each interface port is tied to one of them
by means of a non-labelled arrow. This hexagon is the root of the port TD
and it could be shared by, or included in, another port TD of the interface.
In NiMo there are no variable names and this also applies to type variables in
polymorphic types. The label ? stands for all the polymorphic types. Sharing
a polymorphic hexagon is the graphical equivalent of multiple occurrences of a
type variable into a type expression. In Figure 5 we can see the interfaces on the

Fig. 5. Type descriptors

left of Figure 2 with their TDs. The type graph tied to the F-out port of the
process interfaces ifBool, Map and xxx describes their type as a functional value.
In NiMo a process type is a generalization of a functional type, whose graphical
representation is a graph rooted with a hexagon F with outgoing edges labelled
From and To. Multiple inputs or outputs in a process type correspond to the
subgraphs with an O-hexagon root and edges labelled by numbers. The O node
has as its children the descriptors of the inputs/outputs of the process (thus
the F-out port TD contains as sub-graphs all the other ports descriptors of
the interface). In case of single input or output the corresponding O-hexagon
is omitted (as happens with the output of ifBool). Note that an O-hexagon
never roots a port descriptor; it is not a NiMo type but a subgraph of a F type
descriptor. In the textual notation that we will use from now on, ‖ denotes the
type constructor O for ordered parallel inputs or results, each ?-hexagon in the
TD is denoted by a type variable ?i (or ? if there is only one), and multiples
occurrences of the same variable in the type expression correspond to a shared
?-hexagon. Thus the denotation for the type of process ifBool is B‖?‖?→?,

Graphical and Incremental Type Inference 7

forMap3−2 is (?1‖?2‖?3→?4‖?5)‖[?1]‖[?2]‖[?3]→[?4]‖[?5], and the type of the
user process xxx is ?1‖?2‖?3‖[?3]→?4‖B. The most general type for processes
is ?i1‖ . . . ‖?in→?o1‖ . . . ‖?om where n,m ≥ 0 n + m > 0, and some other
examples of process types are + : I‖I→I; id : ?→?; fibonacci : →[I] and sink :
?→. The two last ones are non-functional processes, their interfaces do not have
a F-out port. fibonacci is a process with no inputs and a single output which
is an integer list, and sink is a process with no output that consumes its input
value. It does not have a Haskell equivalent; its definition would be something
like sink x = void.

4 Type graph unification

In order for a couple of ports to be connected, the editor must first verify that its
TDs t and t’ can be unified ; i.e. that exist an unifier graph t≈ t’ for them. In this
case the connection is made and both ports acquire this common TD, otherwise a
failure message is generated. The unifier graph exists when the respective graphs
are structurally equivalent. Roughly, this means that both TDs can be overlapped
and all their respective hexagons coincide (same label and number of children),
except when one of them is a polymorphic hexagon, in which case the other one
hides it. Figure 6 shows an example for the F-out ports of interfaces f and g,
which are structurally equivalent. The respective port types are t = I‖?1→[?2]

Fig. 6. Structural unification

and t’=?3‖R→?4 The screen-shot on the right can be obtained by moving the
hexagons of both TDs to make them coincide. This allows us to visualize the
unifier graph t ≈ t′ that would result if both TDs were unified. We can see
that the second input of f, the first input of g, and its output, each one having
a different polymorphic type on the left, have been replaced by the respective
types in the other interface. The resulting type t ≈ t′ = I‖R→[?2] = t〈?1⇐R〉 =
t′〈?3⇐I; ?4⇐[?2]〉 where the notation ?i⇐τ corresponds to the replacement of
a ?-hexagon by a subgraph τ .

4.1 Structural unification

In Haskell-like languages the unification is always structural. A functional type
has a single interpretation because all functions have a single result and also a

8 Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

single parameter (the first one), and to be unified both type expressions must
be structurally equivalent. Curried and uncurried functions have no equivalent
types. But in NiMo processes can be interpreted in one or the other way, and thus
non-structural unification is allowed under certain conditions that are described
in section 4.3.

The following rules define the conditions for structural unification of TDs:
1. unify(t , t) for t rooted in {I, R, B}
2. unify (t , ?) for t not rooted O and ? 6⊂ t
3. unify ([t], [t’]) ⇔ unify (t , t’)
4. unify((t1‖ . . . ‖tn), (t′1‖ . . . ‖t′n))⇔ Unify (tk, t

′
k) ∀ 1 ≤ k ≤ n

5. unify ((ti1‖ . . . ‖tin→to1‖ . . . ‖tom), (ti′1‖ . . . ‖ti′n→to′1‖ . . . ‖to′m))⇔
unify ((ti1‖ . . . ‖tin), (ti′1‖ . . . ‖ti′n)) ∧ unify((to1‖ . . . ‖tom), (to′1‖ . . . ‖to′m))
The restriction in 2 states that a ?-hexagon can be substituted by any other

TD not rooted O, because O does not represent a tuple type; it is always a
subgraph of a process TD. Hence, a single polymorphic input/output cannot be
specialized by multiple inputs/outputs. And the ?-hexagon cannot be a proper
subgraph of the other TD because a cycle would occur (infinitely recursive type).

4.2 The unifier graph

If two TDs t and t’ unify, the unifier graph t≈t’ is obtained by the fusion of t
and t’ into a common type graph, where each pair of corresponding hexagons
collapses in a single node. This node has as its incoming edges the union of both
sets of incoming edges (where the new hexagon is now the target node). For
identical basic types the unification ends. When a ?-hexagon collapse with any
node (not labelled O nor including the ?-hexagon), the resulting hexagon will
be the other one (which maintains its outgoing edges). This graph replacement
of the node ?i in the TD t by the subgraph τ is denoted as t〈?i⇐τ〉. When
both labels are L or O, the respective subgraphs are pairwise unified, and the
collapsed hexagon has (same number of) new outgoing edges, each one of them
having as their target the respective collapsed hexagons. And the same happens
for structurally equivalent TDs rooted F.

The following rules define the (commutative and highest precedence) operator
≈ that obtains the unification result in case of structural equivalence:

1. t ≈ t = t for t rooted in {I, R, B}
2. t ≈ ? = t (t is not rooted O and ? 6⊂ t)
3. [t] ≈ [t’] = [t ≈ t’]
4. (t1‖ . . . ‖tn) ≈ (t′1‖ . . . ‖t′n) = t1 ≈ t′1‖ . . . ‖tn ≈ t′n
5. (ti1‖ . . . ‖tin→to1‖ . . . ‖tom) ≈ (ti′1‖ . . . ‖ti′n→to′1‖ . . . ‖to′m) =

(ti1‖ . . . ‖tin) ≈ (ti′1‖ . . . ‖ti′n) → (to1‖ . . . ‖tom) ≈ (to′1‖ . . . ‖to′m)

4.3 Non structural unification

In NiMo two process types with different number of parameters and results could
also be unified. For instance Figure 7 shows that, as happens in Haskell, process
+ is a valid actual parameter for Map, in which case the elements in the input
channel must be integers, and the result is a channel of functional elements of
type I→I. But the type of + is I‖I→I, and thus it should unify with I→(I→I).
i.e. in cases like this, there is an implicit conversion among non-structurally

Graphical and Incremental Type Inference 9

Fig. 7. curried interpretation of multiple inputs

equivalent process types. Also the number of outputs could have been different,
as happens in Figure 8. In general, processes with multiple inputs and outputs
can also be interpreted as returning intermediate functional types, i.e. the type
of a process with n > 1 inputs and m outputs t1‖ . . . ‖tn → t′1‖ . . . ‖t′m can
be implicitly converted to types t1‖ . . . ‖tk→(tk+1‖ . . . ‖tn→t′1‖ . . . ‖t′m) for any
k < n. Thus two non-structurally equivalent process types can be unified. The
idea is that the process with fewer parameters must return a single output, whose
type has to unify with the functional type resulting of having applied the second
process to as many parameters as the first one has. In this case both F nodes
collapse, and the new children are the children of the unifier graph root. i.e. the
structure of the result changes.

The following rules for non-structural unification complete the predicate unify
defined in the previous section:

6. unify (t1‖ . . . ‖tk‖tk+1‖ . . . ‖tn→to)) , ((t′1‖ . . . ‖t′k→to′)⇔
unify(t1‖ . . . ‖tk , t′1‖ . . . ‖t′k) & unify(to’ , tk+1‖ . . . ‖tn→to)

7. Anymore unify

And the following equation define the unification result in this case

6. (t1‖ . . . ‖tk‖tk+1‖ . . . ‖tn → to) ≈ (t′1‖ . . . ‖t′k→to′)) =

(t1‖ . . . ‖tk) ≈ (t′1‖ . . . ‖t′k)→ to′ ≈ (tk+1‖ . . . ‖tn→to)
Note that all the possible “curried interpretations” of a process with n inputs

and m outputs can be derived from this rule.

Fig. 8. Non-structural unification

10 Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

In Figure 8 the process types of f and g unify because the first two inputs
types of both functions unify, and g has a single polymorphic output, which can
be unified with a function from the third output of f to its results. Their types
are f : ?1‖?2‖[?3]→?4‖?5 and g : ?6‖?7→?8. The unifier graph on the right
side is τf≈τg = (?1‖?2 ≈ ?6‖?7)→?8≈([?3]→?4‖?5) = ?1‖?2→([?3]→?4‖?5),
and the collapsed hexagons during the unification correspond to the following
substitutions in the type expression τg , whose result is one of the possible
curried interpretations of τf : (?6‖?7→?8)〈?6⇐?1; ?7⇐?2; ?8⇐([?3]→?4‖?5)〉=
?1‖?2→([?3]→?4‖?5)

5 Incremental type inference

In functional languages variables are used as formal parameters (bound vari-
ables) in function definitions, or locally defined function or constant names. Ex-
pressions having free variables cannot be evaluated by the interpreter; they are
interpreted as missing definitions and therefore are discharged by the compiler.
In NiMo nets containing open ports are executable, and there are no variable
names. The function parameters are the process interface in-ports, and data
hexagons with open in-ports can be seen as anonymous free variables. During
construction, the net can be considered to have as many parameters as open
in-ports and as many results as open out-ports. But the ordering of these inputs
and outputs is not relevant. Ordering is significant for process interfaces because
they can be used as higher order parameters, which are clockwise applied, but
not for a non-parameterised net. If it is finally defined as a net-process (see sec-
tion 2.3) the user decides which subset of open ports are to be the parameters
and results and the respective orderings.

Connecting a process input corresponds to function application or function
composition and most of the possible parameters and results are progressively
cancelled. In terms of graphs the net is a non-connected directed graph. Adding
a new interface means adding a new component, and connecting a pair of ports
may reduce the number of connected components (CC). On the other hand, since
several port TDs in a CC can share subgraphs containing ?-hexagons, when two
ports are connected the effect of unifying both types can affect any other port
type all along both CCs. But even if both port types are identical, the connection
will change the types of both interfaces, those of their CCs and thus the net type,
because all of them loose an in and an out port.

5.1 Typing nets

If N is the net under construction, N = ∪Ni where Ni are its CCs. For instance,
the net in Figure 2 has nine CCs, each one having a single interface. In Figure 9
there are two CCs N1 and N2, which are the result of having connected xxx with
real-const in the CC N2, and all the other interfaces1 in CC N1. The types of both
CCs have a different kind because N2 has an open F-out port. Processes in N1 are
all operative because they all have at least one of their outputs connected, and
thus none of the out-ports is an F-out port. Moreover, N1 though not complete

1 The respective in and out ports could have been connected in any order and the
resulting CC type would have been the same.

Graphical and Incremental Type Inference 11

is nevertheless executable because it already has a connected terminal hexagon
whose value could be produced2. N1 has four in-ports and two out-ports not yet
connected and therefore its type is {B‖[I]‖(?1‖I‖?2→I‖?3)‖[?1]}→{[?3]‖[?3]},
where curly brackets indicate that the given ordering is arbitrary. On the other

Fig. 9. Two CCs

hand, CC N2 has a different CC type because xxx can still be interpreted as
functional data and connected by its F-out port. But also, it could be applied
to any of its inputs, or connected by an output port thus becoming an operative
process; depending on which kind of port is connected the effect of the connec-
tion will be different. As already said, once all the in-ports or at least one of the
out ports are connected, the F-out port disappears. Conversely, when it is con-
nected, all the remaining ports become disabled. This mutual dependence among
the open ports of the interface is denoted in the CC type with a down-arrow
representing the F-out port, whose TD has as subgraphs all the other ones. In
this case N2 : ↓(?4‖?5‖[R]→?6‖B).

5.2 Connecting components

If X1 and X2 are interfaces in CCs N1 and N2 (which could be the same), and the
i-th in-port of X1 is compatible with the k-th out-port of X2, their connection
Xin−i

1 ≺Xout−k
2 modifies both interfaces TDs (each will have at least one open

port less). N1 and N2 become a single CC N where, due to the unification, all
the remaining open port types sharing ?-hexagons with any of them could have
changed. For instance, let’s suppose that the ports p1 and p2 to be connected, are
respectively the first in-port ofMap3−2 inN1 and the F-out port of xxx inN2. i.e.
τp1 = τMapin−13−2 = ?1‖I‖?2→I‖?3, and τp2=τxxxF−out = ?4‖?5‖[R]→?6‖B.
Types τp1 and τp2 unifiy, τp1≈τp2 = ?1‖I‖[R]→I‖B, and the connection p1≺p2
produces the fusion of the respective CCs in the single component net N that can
be seen in Figure 10. Note that the connected ports p1 and p2 now have τp1≈τp2
2 In fact, this is the case here because Map3−2 already has enough inputs to act,

since one of its input channels is empty (has a list-end connected), and will return
a list-end in both outputs whatever its higher order parameter may be. Then the
duplicator could return this final result also.

12 Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

Fig. 10. Single component net

as its type, and all the port TDs that shared with them a collapsed ?-hexagon
have also changed. N has one in-port less than N1 since Map3−2 loosed one
openne port, and all the in and out ports of N2 has been cancelled with the con-
nection of the F-port, since they became parameters and results of a higher order
parameter. The resulting CC type (up to reordering) is {B‖[I]‖[?1]}→{[B]‖[B]}.

5.3 Net typing operators

Ports in a functional component are related, and connecting one of them may
close some one else. It does not happen in operative components. So the effect
on the CC type of a given connection is not uniform.

The following set of operators ¬ perform the corresponding transformations
for each case. Operators ¬in,¬out,¬A−out and ¬ are infix, and ¬F−out is postfix.

1. {t}→{t′}¬ink = {t¬k}→{t′} k-th in-port (in a given order) is connected
2. {t}→{t′}¬outk = {t}→{t′¬k} k-th out-port (in a given order) is connected
3. t1‖ . . . ‖tn¬k = if n > 1 then t1‖ . . . ‖tk−1‖tk+1‖ . . . ‖tn else ∅ k-th parallel

input or output is removed
4. ↓(t→t′)¬F−out = ∅ the F-out port is connected
5. ↓(t→t′)¬ink = ↓(t¬k→t′) partial application in the k-th input
6. ↓(t→t′)¬outk = {t}→{t¬k} k-th output is connected
7. ↓(t→t′)¬A−outk = ↓(t→t′¬k) green arrow connected to the k-th output
8. ↓(t→∅) = {t}→∅ all the outputs have green arrows
9. ↓(∅→t) = ∅→{t} all the inputs are connected
If the CC has no F-out port it just loose this port (1, 2, 3). Having an F-

out, when it is connected all the open ports get closed (4). Any open input can
be connected and the F-out persists (5), unless it were the last one (9). When
connecting any output the F-out also disappears, thus changing the kind of the
CC type (6). Except when it is connected with a green arrow (7 and 8). As
said in 2.3, the green arrow is the only interface that can be connected to a
process output without disappearance of the F-out port. In section 5.6 this case
is covered.

On the other hand, connection fuses both CCs in a single CC whose in/out
ports are the union of the respective in/out ports. It is performed by the operator

Graphical and Incremental Type Inference 13

⊕ which groups the respective in as well as out port types of its operands that
are not bound to a F-out port. ⊕ is commutative with neutral element ∅:
{t1}→{t′1}⊕ {t2}→{t′2} = {t1‖t2}→{t′1‖t′2}
↓(t→t′) ⊕ {t}→{t′} does not reduce.

5.4 The type inference algorithm

If N = N1p1≺p2N2 is the CC resulting from connection p1≺p2, τN is obtained
as follows:

1. both TDs are unified: τp1≈τp2 = τp1〈σ1〉 = τp2〈σ2〉
2. τp1 and τp2 are “removed from” τN1 and τN2 (applying the fitting ¬
operator), thus resulting τN ′1 and τN ′2.
3. the substitutions σ1 σ2 are respectively applied on τN ′1 and τN ′2
4. τN = τN ′1〈σ1〉 ⊕ τN ′2〈σ2〉

5.5 Example1

The τN calculus for the net in Figure 10 proceeds as follows:
1. τp1≈τp2 =?1‖I‖[R]→I‖B =τp1〈?2⇐[R]; ?3⇐B〉= τp2〈?4⇐?1; ?5, ?6⇐I〉
2. p1 is the third in-port in the given ordering for τN1 and p2 is theN ′2F−out :

τN1¬in3 = {B‖[I]‖
︷ ︸︸ ︷
(?1‖I‖?2→I‖?3) ‖[?1]¬3}→{[?3]‖[?3]}

= {B‖[I]‖[?1]}→{[?3]‖[?3]}
τN2¬F−out = ↓(?4‖?5‖[R]→?6‖B)¬F−out = ∅
3. ({B‖[I]‖[?1]}→{[?3]‖[?3]})〈?2⇐[R]; ?3⇐B〉 = {B‖[I]‖[?1]}→{[B]‖[B]}
∅〈?4⇐?1; ?5, ?6⇐I〉 = ∅

4. τN = {B‖[I]‖[?1]}→{[B]‖[B]}⊕ ∅ = {B‖[I]‖[?1]}→{[B]‖[B]}

5.6 Example2

Figure 11 shows an example where green arrows (see section 2.3) and incomplete
subnets are connected to a functional CC. On the left side of the figure there are

Fig. 11. Connecting green arrows

four CCs, say N1, N2 and N3 respectively containing the horizontal green arrow

14 Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

grArw, the process xxx and the vertical green arrow grArw2, and N4 containing
the interfaces rProduct and HdTl.

τN1 = {?4}→∅ τN2 = ↓(?1‖?2‖R‖[R]→?3‖B)
τN3 = {?5}→{?5} τN4 = ↓(R→R) ⊕ {[R]}→{[R]}
The CC N on the right results from having connected the three pairs of ports

p1=grArwin p′1 = xxxout1 p2 = xxxin1 p′2=grArw2out p3 = xxxin3 p′3=rProductout

As can be seen it has two in and one out ports related to the F-out port of xxx,
and also other three in and one out ports. Its type (up to renaming and curly
brackets reordering) is ↓(?2‖[R]→B) ⊕ {?1‖[R]‖R}→{[R]}. Connections can be
made in any order, for instance c1, c2, c3 thus τN calculus proceeds as follows:
(c1)N2.4 = N2p3≺p′3N4 (c2)N1.2.4 = N1p1≺p′1N2.4 (c3)N = N1.2.4p2≺p′2N3

p3≈p′3=R≈R=p3〈〉=p′3〈〉 p1≈p′1=?4≈?3=p1〈?4⇐?3〉=p′1〈〉
p2≈p′2=?1≈?5=p2〈〉=p′2〈?5⇐?1〉
= ↓(?1‖?2‖R‖[R]¬3→ ?3‖B) ⊕ (↓(R→R¬1) ⊕ {[R]}→{[R]})
= ↓(?1‖?2‖[R]→?3‖B) ⊕ {R}→∅ ⊕ {[R]}→{[R]}
= ↓(?1‖?2‖[R]→?3‖B) ⊕ {R‖[R]}→{[R]}
τ(N1 p1≺p′1 N2.4) = (τN1¬in1)〈?4⇐?3〉 ⊕ (τN2.4¬A−out1)〈〉
= ({?4¬1}→∅)〈?4⇐?3〉 ⊕ ↓(?1‖?2‖[R]→?3‖B¬1) ⊕ {R‖[R]}→{[R]}
= ∅ ⊕ ↓(?1‖?2‖[R]→B) ⊕ {R‖[R]}→{[R]}
= ↓(?1‖?2‖[R]→) ⊕ {R‖[R]}→{[R]}
τ(N1.2.4 p2≺p′2 N3) = (τN1.2.4¬in1)〈〉 ⊕ (τN3¬out1)〈?5⇐?1〉
= ↓(?1‖?2‖[R]¬1→B) ⊕ {R‖[R]}→{[R]} ⊕ ({?5}→{?5¬1})〈?5⇐?1〉
= ↓(?2‖[R]→B) ⊕ {R‖[R]}→{[R]} ⊕ {?1}→∅
= ↓(?2‖[R]→B) ⊕ {R‖[R]‖?1}→{[R]}

6 Related work and final remarks

We have presented a graphic type inference system for a development language
where edition an execution are interleaved. Being graphic and incremental, the
inference system itself becomes an online visualisation tool for type information
and error identification. There are several languages or tools for understanding
the type inference process. GemCut [7] is a graphical viewer for functions in
the Haskell like language CAL, the editor uses CAL compiler’s inference system
to prevent type errors. TypeTool [8] and System I [9] are web-based tools
for vizualizing type inference of lambda terms, they are oriented to teaching the
basis of type inference algorithms for functional languages. Other works focus on
tracing the origin of unification failure. [10], proposes a guideline for evaluating
the quality of type error diagnosis of type inference systems. It compares several
systems and presents the algorithm Unification Assumption Environments. It is
in some sense similar as the one in NiMo, since the inference process records
the local inferences so as to identify all possible sources of inconsistencies. In
NiMo whenever a pair of type hexagons cannot be collapsed, all ports related
to this hexagon in the type graph can be visually identified. Other work on this
regard (not a graphical tool either) is [11], that uses a graph representation with
nodes labelled by lambda terms and types from which information is extracted
to help in error type debugging. Concerning the NiMo inference process the
main differences with other type systems are that every token in the language
carries its own type, and partially constructed expressions are always well typed
and also carry their type. On the contrary, type inference systems work on

Graphical and Incremental Type Inference 15

complete terms which, if erroneous, prevent the system from building their types
and produce an error message. NiMo has no error reports, just incompatibility
messages. Errors are avoided. On the other hand, expressions in NiMo are bi-
dimensional, and can thus be constructed in any order, not only left to right, as
application in textual languages does. Hence incremental inference is made in
the port connection order. The only restriction is that partial application of a
process must be made before connecting its F-out port. Inasmuch as the overall
aspects of NiMo development, the paradigms fusion was a big challenge that
required figuring out many creative solutions to make both models compatible.
In particular, dealing with multiple outputs and curried/uncurried compatibility
required a non-trivial generalization of the usual notions of polymorphic type
inference to handle the process type. Non structural unification is unnecessary
in functional languages because functions have a single parameter and curried
and uncurried functions have incompatible types. But we think it was worth
the try; the graphic-functional-dataflow characteristics of NiMo result in a very
powerful computation model where everything can be dynamically changed, even
the evaluation policy. The NiMo execution model is described in [12]. We are
currently working on several aspects of net visualization, which are critical when
nets grow, such as the non-expanded view of net processes. Also, in the next
version user defined types are slated for inclusion. A distribution version of
NiMoToons (with an interactive tutorial) is now underway.

References

1. Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.
In: Proc. of a conference on Functional programming languages and computer
architecture, New York, NY, USA, Springer-Verlag New York, Inc. (1985) 1–16

2. Clerici, S., Zoltan, C.: A graphic functional-dataflow language. In Loidl, H.W.,
ed.: Trends in Functional Programming. Volume 5 of Trends in Functional Pro-
gramming., Intellect (2004) 129–144

3. NiMo-Home page: (2009), http://www.lsi.upc.edu/~nimo/Project
4. Milner, R.: A theory of type polymorphism in programming. Journal of Computer

and System Sciences 17 (1978) 348–375
5. Clerici, S., Zoltan, C.: Graphical type inference. a graph grammar definition. Tech-

nical Report LSI-07-24-R, Dept. Llenguatges i Sistemes Informàtics, Universitat
Politècnica de Catalunya (July 2007)

6. Silvia Clerici, C.Z., Prestigiacomo, G.: Nimotoons: a totally graphic workbench
for program tunning and experimentation. In: PROLE. (2009) 129–148, Selected
to appear in, http://www.elsevier.nl/locate/entcs

7. Resources: (2009), (http://resources.businessobjects.com/labs/cal/
gemcutter-techpaper.pdf)

8. Simões, H., Florido, M.: TypeTool - a type inference visualization tool. In: In
Proceedings of the 13th International Workshop on Functional and (Constraint)
Logic Programming. (2004)

9. System I: (2009), http://types.bu.edu/modular/compositional/system-i/
10. Yang, J., Michaelson, G., Trinder, P., Wells, J.B.: Improved type error reporting.

In: In Proceedings of 12th International Workshop on Implementation of Func-
tional Languages. (2000) 71–86

11. McAdam, B.J.: Generalising techniques for type debugging. In: Trends in Func-
tional Programming, Intellect (2000) 49–57

12. Clerici, S., Zoltan, C.: A dynamically customizable process-centered evaluation
model. In: PPDP. (2009) 37–48

 http://www.lsi.upc.edu/~nimo/Project
http://www.elsevier.nl/locate/entcs
http://resources.businessobjects.com/labs/cal/gemcutter-techpaper.pdf
http://resources.businessobjects.com/labs/cal/gemcutter-techpaper.pdf
http://types.bu.edu/modular/compositional/system-i/

	Graphical and Incremental Type Inference. A Graph Transformation Approach
	Silvia Clerici cl@@auth, Cristina Zoltan cl@@auth, Guillermo Prestigiacomo

