- Computer
generated
3D strokes

Industrial Engineering Final Project

Enric Forés Solar
Tutor: Ning Xie
Shanghai, 2015

R i # 5

TONGIJI UNIVERSITY

Y | Escola Tecnica Superior
¥ | d’Enginyeria Industrial de Barcelona

UNIVERSITAT POLITECNICA DE CATALUNYA

FOREWORD 3
INTRODUCTION 4
STATE OF ART 5
STROKE BASED RENDERING 5
2D STROKE GENERATOR 7
3D SOFTWARE SCRIPT 9
AREA OF APPLICATION 15
FUTURE WORK 15
CONCLUSIONS 16
BIBLIOGRAPHY 17
REFERENCE ARTICLES 17
ONLINE REFERENCES 17
ANNEXES 18

FOREWORD

The motivation for carrying out this project in the field of computer
generated graphics comes from trying to merge previous studies on
il-lustration with the present studies of industrial engineering.

On one hand my passion for drawing has given me an idea of which tools,
processes and aestethical criteria are used by artists to create images. On
the other hand my technology training has provided me new points of
view to solve problems and understand systems and, specially usefull for
this project, some knowledge of python language.

The 3D computer graphics software used is Blender. It has been chosen
because it’s free and open-source, it covers all the needs of a complete
animation pipeline and, most of all, for the large online community and
documentation. Because of this documentation format most of the

bibliography is only hung at internet without printed editions available.

Initially the idea was to explore the possibilities of Blender to generate
watercolor and ink effects using its non-photorealistic renderer
“Freestyle”. Thanks to the help of Lluis Solano Albajes, from Computer
Science department in ETSEIB-UPC, and Antonio Susin Sanchez, from
Applied Mathematics department in ETSEIB-UPC, an investigation
proposal around this objective was made. The opportunity offered by
Tongji University to do the project there was great to get in touch with the
tutor of this project, Ning Xie, to whom | have to thank for guiding me into
the front-end field he explored during his PHD and letting me explore the
possibilities of his amazing software.

INTRODUCTION

Stroke-based rendering (SBR) is an approach to creating non-
photorealistic images (NPI) by placing discrete elements called strokes,
such as paint strokes or stipples.

Several lines of investigation are being followed to obtain software that
authomatises this process, both in still and moving images

The aim of this present work is to adapt the Computer Generated Images
(CGl) part of a common 3D animation pipeline (concatenated processes
with which a 3D animation is made, from the concept art and sketches to
the final compositing of the scenes) to apply the authomatically generated
stroke textures of PHD Ning Xie’s software on the 3D models.

Ning Xie’s software generates, given an image and the contour of the
desired stroke, a computer generated stroke extracting the colour
information from the given image. Originally programmed to emulate
sumi-e oriental drawings (traditional style that represent the motive with
few strokes) in this work a way will be presented to bring this technology
from 2D to 3D.

For the purpose of this thesis a simple animation of a bamboo leaf has
been created to work on a simple example while developing the process .

The main (and original) challenge of this work is writing a python script to
extract from blender the desired contours of the strokes in a way that can
be used by Ning Xie’s software.

It’s important to comment that NPR is nothing near to a science with clear
objectives as the results of it only can be evaluated using aestethical
criteria. However the tools and technology used to achieve it has a clear
and exact definition in which this thesis will work on.

STATE OF ART

STROKE BASED RENDERING

An investigation has been done on the actual technologies and algorithms
used to create automathically generated NPI, specially existing solutions
for SBR, an automatic approach to creating nonphotorealistic imagery by
placing discrete elements such as paint strokes or stipples.

Researchers have proposed many SBR algorithms and styles such as
painting, pen-and-ink drawing, tile mosaics, stippling, streamline
visualization, and tensor field visualization.

Courtesy of Paul Haeberli

Figure 1. Several examples of Stroke Based Rendering

An institution that nowadays is pushing hard the fronteir of knowledge in
this field is Disney Research Zurich. In “Authoring and animating painterly
characters” they show a system in which 3D stroke-based paintings can be
deformed using standard rigging tools. They also propose a configuration-
space keyframing algorithm for authoring stroke effects that depend on
scene variables such as character pose or light position. Their primary
technical contribution is a novel interpolation scheme for configuration-
space keyframing that ensures smooth, controllable results.

- ¥V

- - /

Figure 2. Figures from “Authoring and animating painterly characters”.

This is a good example where automathically generated strokes could
speed up the process. In their workflow an artist has to digitally paint one
by one each stroke that later will be deformated and shown upon the 3D
object. A contribution that Ning Xie’s stroke generator software could do
would be to do this artists task. This way parametric strokes could be
programmed, for example, to texture hundreds of leaves of a tree with a
different stroke for each without needing a an artist to texture each of
them.

2D STROKE GENERATOR

In 2012 Ning Xie publishes his thesis “A machine learning approach for
automatic stroke generation in oriental ink painting” from which two
paragraphs will be quoted:

“Stroke placement is a common problem in painterly rendering. The study
of stroke placement is how to generate stroke with realistic brush texture
in a desired shape. It is widely used to digital painting artwork generation.
The state of the art methods can efficiently map a scanned brush texture
by deforming (cutting and pasting) them onto a user-drawn path or the
destination shape. Users cannot get strokes with shapes similar to their
expectation. Moreover, the processing of distorting the shape from stored
one to desired one and non-natural stretching texture causes
unsatisfactory defects such as undesirable folder or creased appearance
inside the corner or curve.

In this dissertation, we propose a highly practical framework for
generating the expressive appearance of brush strokes. We introduce the
intelligent learning agent theory into the painterly rendering problem. A
brush is modeled as an intelligent agent under Markov decision process
(MDP). We elaborate on the design of actions, states, and rewards
tailored for the brush agent. We motivate stroke placement problem as
learning to optimally select actions by a robot (agent) to cover given
regions of desired strokes. We propose two optimal policy learning
approaches the model-based method and the model-free method, to
return control policies in the reinforcement learning framework. We also
propose methods to understand a scene in a 2D real photo and segment it
into regions that can be covered by single strokes based on computer
vision. “

Ning Xie’s thesis cristalises in a java application with which the user can
generate multiple kinds of strokes using several parameters as dampness
and style.

I @ Sumie Window (size = 512 px*512px) = O

1. Contour Tradectory

2.0pTimal Contour | isVerticalBrush

@ isRefinedDP © Voronoi

DryCoef

u

kkkkkkk

00 0 D DM@ @ 0m

0

mooo

Figure 3. Interface of Ning Xie’s Java application.

The input that Ning Xie’s software needs to generate the strokes are the
original image and the contour of the stroke within that image that the
user wants to create.

image
[e —
stroke stroke
generator image
contour -
coordinates
O

Figure 4. Block diagram of Ning Xie’s Java application inputs and outputs.

3D SOFTWARE SCRIPT

To achieve our goal of bringing Ning Xie’s software capabilities to 3D
texturing open source Blender 2.73a 3D software has been used. Blender
has a python editor that allows to execute scripts like the one needed.

In the case of study (three dimensional scenery) this “original image” that
has been used is the parametrical or custom painted texture of the model.
To apply a texture to a model the grid of vertexs that build its mesh are
flattened on a 2D plane, usually a 2"x2" square bitmap to improve
rendering time in later processes. This plane’s coordinates are called u and
v to differenciate them from the cartesian coordinates x, y and z from the
3D environment where it will be applied.

In Ning Xie’s software the contour input is generated by the user using a
mouse or a digital tablet. In the present case the objective is to generate
the contour with the same tool that manages the texture: the 3D
computer graphics software. Blender includes a python console and a
script editor. To generate a text file with the uv coordinates as the input of
Ning Xie’s software an extractor script has been created.

[

Figure 3. Interface of 3D computer graphics software Blender in scripting mode.

object new
texture texture
[e
y stroke -

generator

unwrapped
mesh vertex
selection

contour
' coordinates
list
< —

Figure 4. Block diagram of Ning Xie’s Java application and the contour exporter inputs and outputs.

10

The contour exporter python script works on a textured 3D object. This
object consists on a mesh and it’s texture. This texture is allready
unwrapped upon the original texture where the user needs to select the
loops (each vertex of the mesh can generate several loops in the uv plane
once unwrapped) that will conform the contour of the generated stroke.

Here is presented the script with extended comments in green:

INSTRUCTIONS

1-Open the blend file and select the leaf with the right mouse
button.

2-Change screen layout (upper unfolding menu with a picture of
two squares and a rectangle) to Scripting.

3-Click Text>0Open_Text_block and open the script .py file.
4-Change the file route where you want the .txt file to
appear(line 18).

5-Press "Run Script".

bpy and sys libraries are needed to access the system and

blender environment. The other three libraries are used for
their buit-in classes and mathematicall operations related.
import numpy as np

import bpy

import bmesh

import sys

import mathutils

a .txt file is created and the output redirected to it.

file = open('/Users/Enric Forés/Desktop/leaf.txt', "w")
sys.stdout = file

UV data is accessible only in object mode

prev_mode = bpy.context.object.mode
bpy.ops.object.mode_set(mode='0BJECT")

Update vertex selection properties, in case the script wasn't
run in object mode

bpy.context.object.update_from_editmode()
Active object assumed to be a mesh and already have a UV map

mesh = bpy.context.object.data

uv_layer = mesh.uv_layers.active.data
selected_loops = []
selected_vertices = set()

First a list of uv coordinates of the selected vetices is
arranged:

for index, uv_loop in enumerate(uv_layer):
if(uv_loop.select):
selected_loops.append(index)

for loop_index in selected_loops:
selected_vertices.add(mesh.loops[loop_index].vertex_index)

uv_coord = []

for poly in mesh.polygons:
for loop_index in range(poly.loop_start, poly.loop_start +
poly.loop_total):
if mesh.loops[loop_index].vertex_index in

selected_vertices:

vec =
mathutils.Vector((round(uv_layer[loop_index].uv[0]%512),
round(uv_layer[loop_index].uv[1]1%512)))

if vec not in uv_coord:

uv_coord.append(vec)

At this point the task that is left is to order the pixels by
proximity making the 1list to go over the contour while adding
the connecting pixels between each uv coordinate and the next.

H B

This way of ordering the points restricts the shape of the
contour; a stroke with a very slim central region can give
problems as the track being generated may jump to the other
side of the stroke at that point instead of following the
contour.

HHHHFHR

Function that returns the distance between two pixels:

def distance(pt_1, pt_2):
pt_1 = np.array((pt_1[0], pt_1[11))
pt_2 = np.array((pt_2[0], pt_2[11))
return np.linalg.norm(pt_1-pt_2)

Function that returns, given one point, the closest one from a
list:

def closest_node(node, nodes):
pt = []
dist = 9999999
for n in nodes:
if distance(node, n) <= dist:
dist = distance(node, n)
pt = n

12

return pt

Next function is the Bresenham’s algoritm, which given two
points it returns the pixels of the straight line that
connects them

def line(x@, yo@, x1, yl):
points_in_line = []

dx = abs(x1l - x0)
dy = abs(yl - y0)
X, y = x0, yo
sx = -1 if x0 > x1 else 1
sy = -1 if y0 > yl1 else 1
if dx > dy:
err = dx / 2.0
while x !'= x1:
points_in_line.append((x, y))
err —= dy
if err < 0:
y += sy
err += dx
X += SX
else:

err =dy / 2.0
while y !'= yl:
points_in_line.append((x, y))
err —= dx
if err < 0:
X += SX
err += dy
y += sy

return points_in_1line
#With these three last functions the contour is generated:

path = []
numuvs = len(uv_coord)
path.append(uv_coord[0])
uv_coord. remove(uv_coord[0])
i=20
while i !'= (numuvs-1):
previous = pathl[i]
closer = closest_node(previous, uv_coord)
path.append(closer)
uv_coord. remove(closer)

i=1i+1
i=20
while i !'= (numuvs-1):

previous = pathl[i]

next = path[i+1]

filled = line(previous[@], previous[1], next[0], next[1])
for mathutils.Vector in filled:

13

print(int(mathutils.Vector[0]),
int(mathutils.Vector[1]))
i=i+1
previous = path[-1]
next = path[0]
filled = line(previous[@], previous[1], next[@], next[1])

for mathutils.Vector in filled:
print(int(mathutils.Vector[@]), int(mathutils.Vector[1]))

Restore whatever mode the object is in previously
bpy.ops.object.mode_set(mode=prev_mode)

sys.stdout = sys.__stdout__ #reset

file.close()

14

AREA OF APPLICATION

The area of application of this script is in CGI pipelines where a SBR style
is required without making an artist draw the stokes. Here there are two
hypothetical cases:

- A 3D animation during a part of iwhich a painterly style is necessary;
the objects can be used only changing the textures.

- Any case whan a large amount of strokes must be made, for
example, when creating the leaves of a tree. In this case the
software can be programmed to generate a great number of
different leaves.

FUTURE WORK

The future work that could be done towards improving Ning Xie’s code
capabilities in a 3D environment is, in my opinion, translating it from Java
to Python and implement it as an add-on. This would simplify a lot the
workflows as it could be fully automathic and insertable in other sripts
facilitate the participation of CGl developers on finding new aplications
such as:

- Design a way, maybe a mask, to simulate the building of the stroke,
begining when the brush touches the paper till it finishes the stroke.

- Find a way to sincronise the painting of the stroke with a 3D object
(brush) that leaves a path.

- Use particle systems to enhance the effect of the ink spreading in
the air.

15

CONCLUSIONS

The objective of the project has been achieved but the script is far from
being free of bugs (for strange contour shapes) and some more
programming would be nice to improve usability.

It’s remarcable how online Blender and python developers communities
have helped to carry this project out. It couldn’t be made without them. A
good conclusion would be to upload the script to one of these forums to
thank all the free resources.

Personally, | have much enjoyed getting to taste what would the job of a
studio technician be tinkering around with the pipeline. It has been an
honor to work with such a new field as Ning Xie’s software and | hope to
be able to do it in the future.

16

BIBLIOGRAPHY

REFERENCE ARTICLES

-A MACHINE LEARNING APPROACH FOR AUTOMATIC STROKE
GENERATION IN ORINENTAL INK PAINTING

A Thesis in Department of Computer Science Graduate School of
Information Science and Engineering Tokyo Institute of
Technology by Ning Xie

-Bassett, K., Baran, |., Schmid, J., Gross, M., and Sumner, R. W. 2013.
Authoring and animating painterly characters. ACM Trans. Graph. 32, 5,
Article 156 (September 2013), 12 pages. DOI:
http://dx.doi.org/10.1145/2484238

-A Survey of Stroke-Based Rendering July/August 2003
Aaron Hertzmann
Dept. of Computer Science University of Toronto

-Painterly Rendering for Animation
Barbara J. Meier
Walt Disney Feature Animation

ONLINE REFERENCES
Blender Manual: http://www.blender.org/manual/

http://stackoverflow.com/questions/7789154/can-blender-export-per-
vertex-uv-coordinates

http://www.blender.org/api/blender_python_api_2 63 release
http://blenderartists.org/forum/showthread.php?220171
http://wiki.blender.org/index.php/User:Pkrime/TexturedStrokes

https://cgcookie.com/blender/cgc-courses/introduction-python-scripting-
blender

17

The CD includes the following materials:

- Python script in .py format.

- The present report in digital format.

- Blender .blend file used for the examples.

- Short clip showing a 3D animation with the result of the example.

18

