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Abstract

Committees with yes-no-decisions are commonly modeled as simple games and the ability
of a member to influence the group decision is measured by so-called power indices. For
a weighted game we say that a power index satisfies local monotonicity if a player who
controls a large share of the total weight vote does not have less power than a player
with a smaller voting weight.

In [17] Manfred Holler introduced the Public Good index. In its unnormalized version,
i.e., the raw measure, it counts the number of times that a player belongs to a minimal
winning coalition. Unlike the Banzhaf index, it does not count the remaining winning
coalitions in which the player is crucial. Holler noticed that his index does not satisfy
local monotonicity, a fact that can be seen either as a major drawback [11, 221 ff.] or as
an advantage [18].

In this paper we consider a convex combination of the two indices and require the
validity of local monotonicity. We prove that the cost of obtaining it is high, i.e., the
achievable new indices satisfying local monotonicity are closer to the Banzhaf index than
to the Public Good index. All these achievable new indices are more solidary than the
Banzhaf index, which makes them as very suitable candidates to divide a public good.

As a generalization we consider convex combinations of either: the Shift index, the
Public Good index, and the Banzhaf index, or alternatively: the Shift Deegan-Packel,
Deegan-Packel, and Johnston indices.
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1. Introduction

Consider a set of players who jointly make decisions under a given set of rules. Here we
specialize to simple games and subclasses thereof. Power indices address the question of
how much power collective decision rules, like a weighted (voting) rule, award to each
individual player: is player i more or less powerful than player j, and by how much? For
an example of an applied voting power analysis in the EU, we refer the interested reader
to e.g. [1, 6, 35].

Different power indices measure different aspects of power and there is still a lot of
research in order to answer the question which index to choose, see, e.g., [19]. For a
recent overview of different power indices see, e.g., [5]. Many of these indices are based
on decisiveness. A player is called critical in a coalition if his/her deletion in the coalition
changes its status from winning to losing, so that the individual is decisive or crucial for
it. All power indices, the classical and the newly introduced ones, considered in this paper
are indeed based on counting different types of decisiveness for players in coalitions.

Some particular decision rules arise from so-called weighted games. Here each player
i ∈ {1, . . . , n} has a specific voting weight wi and a collective decision requires enough
supporters such that their total weight equals or surpasses a decision quota q. Let pi be
the power value assigned to player i by a power index. The power index is called locally
monotonic if, for each pair of players i and j, wi ≥ wj implies pi ≥ pj , i.e., a player i
who controls a large share of vote does not have less power than a player j with smaller
voting weight. Local monotonicity is considered as an essential requirement for power
measures by many authors. Felsenthal and Machover [11, 221 ff.], for instance, argue
that any a priori measure of power that violates local monotonicity, LM for brevity, is
‘pathological’ and should be disqualified as serving as a valid yardstick for measuring
power. On the other hand, e.g. in [18], it is argued that local non-monotonicity is a
very valuable property of a power index, since it can reveal certain properties of the
underlying decision rule that are overlooked otherwise.

Local monotonicity is an implication of the dominance postulate which is based on the
desirability relation as proposed by Isbell [22]. This property formalizes that a player i
is at least as desirable as a player j if for any coalition S, such that j is not in S and
the union of S and {j} is a winning coalition, i.e., is able to pass the collective decision
at hand, the union of S and {i} is also a winning coalition. A power index satisfies
dominance if pi ≥ pj whenever i dominates j, i.e., when player i is at least as desirable
as player j.

Freixas and Gambarelli [12] use desirability to define reasonable power measures and
note that the dominance postulate implies local monotonicity. In this paper we will
consider the Public Good, the Banzhaf, the Shift, the Shift Deegan-Packel, the Deegan-
Packel, the Johnston index and convex combinations thereof. Since the Deegan-Packel
index [8], and the Public Good index (see Holler [17]; Holler and Packel [21]) violate local
monotonicity, they also violate the dominance postulate. Moreover, any violation of local
monotonicity for the Deegan-Packel index implies a violation of the Shift Deegan-Packel
index (see [3]) and any violation of the local monotonicity for the Public Good index
implies a violation of the Shift index (see [2]). It is well-known that the Banzhaf [4] and
Johnston [23] indices satisfy the dominance postulate and therefore local monotonicity.
If one or several power indices violate LM then a convex combination with another power
index, that does not violate LM, yields a power index that also does not violate LM as
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long as the weight of the latter index is large enough. To study how large this has to be
is the purpose of this paper.

Some works are devoted to verify the properties of dominance or local monotonicity
(among others) for some power indices and to show their absence for some other power
indices (see among others, Felsenthal and Machover [10] or Freixas et al. [14]). Other
works are devoted to study subclasses of games for which a given power index not fulfilling
local monotonicity satisfies it for such a subclass of games (see for instance, Holler et
al. [20] and Holler and Napel [18] for the Public Good index). Here we will also make
a new contribution of this type, i.e., we consider two new subclasses of games for which
the Public Good index satisfies local monotonicity.

Proportionality of power and weights can be seen as a generalization of local mono-
tonicity, i.e., proportionality implies local monotonicity. For the classical power indices
this property is satisfied for a subset of weighted games only. Power indices which gen-
erally satisfy this property are constructed in [24].

In this paper we modify the Public Good index with the purpose to achieve a set
of new power indices being local monotonic and more solidary than the Banzhaf index.
These two properties make those achievable power indices (if they exist) well-situated
as yardstick for doing a fair division of a public good. The idea of such modification is
nothing else than an hybrid between the original Public Good index and the Banzhaf
index. It will turn out that the cost of obtaining local monotonicity is rather high, i.e.,
the achievable new indices satisfying local monotonicity are closer to the Banzhaf index
than to the Public Good index. However, these indices stress more in minimal winning
coalitions, as the Public Good index does, than in the rest of crucial winning coalitions,
with goes in the direction of Riker’s size principle [33]. The final result allows to find new
indices being locally monotonic and being more solidary than the Banzhaf index, which
makes them as good alternatives for the fair division of a public good among participants
in the voting procedure.

The idea developed previously naturally extends when the raw Shift index is incor-
porated to the duo formed by the raw Public Good and raw Banzhaf indices. Local
monotonic indices which are convex combinations of the three given raw indices are a
further target of our research.

As an extension we do a similar study for convex combinations of the raw Johnston
index, the raw Deegan-Packel index, and the raw Shift Deegan-Packel index.

The paper is organized as follows: In Section 2 we introduce the basic notation of
games and power indices. Two subclasses of weighted games satisfying local monotonicity
are presented in Section 3. The concept of considering convex combinations of some power
indices as a new power index is outlined in Section 4. The cost of local monotonicity is
introduced in the same section. Additionally we prove some structural results. An integer
linear programming approach to compute the cost of local monotonicity is presented in
Section 5. With the aid of the underlying algorithm we are able to state some exact
values and lower bounds for the cost of local monotonicity in Section 6. The set of all
convex multipliers leading to a locally monotonic power index is the topic of Section 7.
We end with a conclusion in Section 8.
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2. Notation, games and indices

In the following we will denote the set of players, which jointly make a decision, by N
and assume w.l.o.g. that the players are numbered from 1 to n, i.e., N = {1, . . . , n}.
Here we restrict ourselves to binary decisions, i.e., each player can either vote 1, meaning
‘yes’, or 0, meaning ‘no’, on a certain issue. For the readers convenience we collect all
necessary definitions briefly at this place. For a more extensive introduction we refer to
[11, 34].

We call a subset S ⊆ N , collecting the ‘yes’-voters, coalition. A (binary) decision rule
is formalized as a mapping v : 2N → {0, 1} from the set of possible coalitions to the set of
possible aggregated decisions. It is quite natural to require that the aggregated decision
transfers the players decision if they all coincide and that an enlarged set of supporters
should not turn the decision from ‘yes’ to ‘no’:

Definition 1. A simple game is a mapping v : 2N → {0, 1} such that v(∅) = 0, v(N) =
1, and v(S) ≤ v(T ) for all S ⊆ T ⊆ N .

Having local monotonicity in mind we additionally require that the players are linearly
ordered according to their capabilities to influence the final group decision. This can
be formalized, as already indicated in the introduction, with the desirability relation
introduced in [22]. Intuitively, the dominance (or desirability) relation is an attempt to
formalize the intuitive notion that underlies under the expression:‘i has at least as power
than j’, while the equivalence between i and j formalizes the expression ‘i and j have
the same power’.

Definition 2. We write i A j (or j @ i) for two players i, j ∈ N of a simple game v if

we have v
(
{i} ∪ S\{j}

)
≥ v(S) for all {j} ⊆ S ⊆ N\{i} and we abbreviate i A j, j A i

by i�j.

In words we say that i dominates j for i A j and we say that i and j are equivalent for
i�j.

Definition 3. A simple game v is called complete if the binary relation A is a total
preorder, i.e.,

(1) i A i for all i ∈ N ,

(2) i A j or j A i for all i, j ∈ N , and

(3) i A j, j A h implies i A h for all i, j, h ∈ N .

We call a coalition S of a simple game v winning if v(S) = 1 and losing otherwise.
Each simple game is uniquely characterized by its set W of winning coalitions (or its
set L of losing coalitions). A winning coalition S such that each of its proper subsets is
losing is called a minimal winning coalition. The set M of minimal winning coalitions
is already sufficient to uniquely characterize a simple game. For complete games the
defining set of winning coalitions can be further reduced. A minimal winning coalition
S is called shift-minimal if for each pair of players i, j with i ∈ S, j /∈ S, i A j, j 6A i we
have v(S\{i} ∪ {j}) = 0, i.e., replacing a player by a (properly) dominated player turns
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the coalition into a losing one. With this, each complete game is uniquely characterized
by its set S of shift-minimal winning coalitions.

A very transparent form of dominance is induced by weights.

Definition 4. A simple game v is called weighted (weighted game for brevity) if and
only if there exist weights wi ∈ R≥0, for all i ∈ N , and a quota q ∈ R>0 such that
v(S) = 1 is equivalent to w(S) :=

∑
i∈S wi ≥ q for all S ⊆ N .

Example 1. Let N = {1, 2, 3, 4, 5, 6} be the set of players of a game, with N1 = {1, 2}
and N2 = {3, 4, 5, 6} forming a partition of N . Let a be an arbitrary player of N1

and c and d arbitrary players of N2. The set of minimal winning coalitions, M, is
formed by coalitions of the two following types: {1, 2, c} and {a, c, d}. Observe that: (i)
players in N1 are equivalent and the same occurs for the players in N2, (ii) players in
N1 dominate players in N2, and (iii) the simple game defined is not weighted, this can
be deduced by observing that {1, 3, 4} and {2, 5, 6} are winning coalitions while {1, 2}
and {3, 4, 5, 6} are losing ones. If the game was weighted and wi for all i = 1, . . . , 6 were
the weights, then the two next inequalities should be true w1 + w3 + w4 > w1 + w2,
w2 + w5 + w6 > w3 + w4 + w5 + w6 but the sum of them leads to another incompatible
inequality. Note, moreover, that in this game the 12 minimal winning coalitions of type
{a, c, d} are shift-minimal winning, while the 4 minimal winning coalitions of type {1, 2, c}
are not.

Given such a weighted representation we write v = [q;w1, . . . , wn]. All weighted games
are complete. As remarked before wi ≥ wj implies that player i dominates player j, i.e.,
i A j, while i�j is still possible even for wi > wj . That is, having more weight does not
necessarily imply having more influence in the game. i�j implies that the roles of the
two players in the game are symmetrical. A standard example in which all players are
equivalent but have different weight is the weighted game with weighted representation
[51; 49, 48, 3]. However, it is well-known that if i�j but wi > wj in a game, then there is
an equivalent weighted representation for the game that respects the equivalence relation.

In order to measure the influence of the players we use the concept of a power index,
which we in general consider as a mapping from a set G of games to a vector of n real
numbers, where n is the number of players of the specific game. In most applications,
considering subsets of the set of simple games, the image is a vector of n non-negative
real numbers upper bounded by 1. To this end we denote by S the set of simple games,
by C the set of complete games, and by W the set of weighted games. In order to stress
the underlying class of games, we speak of a power index P on G, whenever it is not
clear from the context.

In some contexts it is appropriate to further restrict the class of games:

Definition 5. A simple game is called proper if the complement N\S of any winning
coalition S is losing. It is called strong if the complement N\S of any losing coalition
S is winning. A simple game that is both proper and strong is called constant-sum (or
self-dual).

We will denote the restriction to proper, strong, or constant-sum games by a super-
script p, s, and c, respectively, i.e., we write Sp, Ss, and Sc in the case of simple games.
If P is a power index on G, then there is a restricted power index P ′ on G′ for all G′ ⊆ G,
i.e., we just restrict the domain of the given mapping.
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Having the general concept of a power index P on G at hand, i.e., P (v) = (P1(v), . . . ,
Pn(v)) = (p1, . . . , pn) ∈ Rn, we can define the properties that we are interested in this
paper:

Definition 6. A power index P on G ⊆ C satisfies the dominance property if we have
pi ≥ pj for all complete games v ∈ G and all pairs of players i A j, where P (v) =
(p1, . . . , pn).

Restricting the dominance property from the class of complete games to weighted
games, we speak of local monotonicity.

Definition 7. A power index P on G ⊆W satisfies local monotonicity (LM) if we have
pi ≥ pj for all weighted games v ∈ G and all pairs of players i A j (or wi ≥ wj), where
P (v) = (p1, . . . , pn).

We remark that the dominance property for the subclass of weighted games implies
local monotonicity and local monotonicity implies symmetry, i.e., we have pi = pj for all
i�j. Further properties of classical power indices were named and studied in the literature
and are here grouped together in the next definition. Recall first that a player i is null in
a simple game, if the player does not belong to any minimal winning coalition. Removing
a null player from a simple game (complete game or weighted game) v results in a simple
game (complete game or weighted game) v′ – more formally v′ := 2N\{i} → {0, 1}
v′(S) = v(S) for all S ⊆ N\{i}.

Definition 8. A power index P on S:
(i) is non-negative if P (v) ≥ 0 for all v ∈ S,
(ii) is efficient if it is non-negative and

∑n
i=1 pi(v) = 1 for all v ∈ S,

(iii) satisfies the null player property if pi(v) = 0 whenever i is a null player in v ∈ S,
(iv) is strictly positive if pi(v) > 0 for all non-null players i and pi(v) = 0 for all null
players i, for all v ∈ S,
(v) is invariant for nulls if pj = p′j for all j ∈ N\{i} and pi = 0, where P (v) = (p1, . . . , pn)
and P (v′) = (p′1, . . . , p

′
i−1, p

′
i+1, . . . , p

′
n).

In order to state the definition for the set of power indices mentioned in the intro-
duction we call a winning coalition S critical for player i ∈ S if S\{i} is losing. Given
a simple game v, by Di we denote the set of coalitions {i} ⊆ S ⊆ N being critical for
player i. Similarly, we denote by Mi the set of minimal winning coalitions containing
player i and by Si the set of shift-minimal winning coalitions containing player i (pro-
vided that the game is complete). In order to specify a power index P it suffices to define
the mapping for each coordinate Pi(v) = pi.

The next two definitions concern particular power indices. We mainly focus on“raw”
power indices because the results in the paper do not depend on normalizations.

Definition 9. The (raw) Banzhaf index Bzr and the (raw) Public Good index PGIr of
a simple game v are given by Bzri (v) = |Di| and PGIri (v) = |Mi| for each player i. The
(raw) Shift index of a complete game v is given by Sri (v) = |Si|.
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Chow [7] introduced, in the field of threshold logic, some parameters for all simple
games. These parameters are n+ 1 numbers: the number of winning coalitions to which
a player belongs to and the number of winning coalitions. The raw Banzhaf index is
nothing else that Bzri (v) = 2|Mi| − |M|. Thanks to this relation many properties were
derived for the raw Banzhaf index. We address the interested reader to Section 12 in
[9].

The (raw) Banzhaf index Bzr, the (raw) Public Good index PGIr, and the (raw) Shift
index Sr all are based on critical coalitions since they count subsets of critical coalitions
containing a given player i. The Banzhaf index counts all critical coalitions for each
player, while the Public Good index counts only the minimal and the Shift index only
the shift-minimal ones. Thus, for each player we have the inclusion

Si ⊆Mi ⊆ Di.

Several power indices are based on counting a certain subset of coalitions [29]. As defined,
several coalitions can be counted multiple times, e.g., a minimal winning coalition S is
counted for every player i contained in S in the computation of PGIr. If one wants to
avoid this characteristic and instead count each distinguished coalition just once, then
one can divide ‘spoils’ of each coalition equally among its critical members. This general
construction is called equal division version of a given power index (based on counting
functions) [29]. Applying this construction on our first set of power indices we obtain
the following.

Definition 10. The (raw) Johnston index Jor and the (raw) Deegan-Packel index DPr

of a simple game v are given by Jori (v) =
∑
S∈Di

1
# critical players in S and DPri (v) =∑

S∈Mi

1
|S| . The (raw) Shift Deegan-Packel index of a complete game v is given by

SDPri (v) =
∑
S∈Si

1
|S| .

Note that in the two last definitions the cardinality of S is the same as the number of
critical players in S, since all players in minimal winning (or in shift-minimal winning)
coalitions are critical in them.

3. Two subclasses where the Public Good and the Deegan-Packel index sat-
isfy local monotonicity

As it is well-known the Banzhaf and the Johnston indices (and the Shapley-Shubik
too) satisfy both the dominance property and local monotonicity since all of them pre-
serve the desirability relation (see, e.g., [14]). The other power indices previously intro-
duced in Section 2 and extensively analyzed in this paper do not preserve the desirability
relation and consequently fail to fulfill both the dominance and the local monotonicity
properties (see e.g., [11], [12], and [14]).

The purpose of this section is to provide subclasses of games precisely defined in next
definition satisfying the dominance property or the local-monotonicity for the Public
Good and the Deegan-Packel indices.

Definition 11. A simple game is:

1. uniform if all minimal winning coalitions have the same cardinality,
7



2. uniform complete if it is both complete and uniform,

3. uniform weighted if it is both weighted and uniform.

As an abbreviation we denote the corresponding subclasses by U, Uc, and Uw, respec-
tively. Obviously, a uniform weighted game is a uniform complete game and a uniform
complete game is a uniform game, while the converses are not true.

The second observation is that if a game is uniform then all shift-minimal winning
coalitions have the same cardinality because S ⊆ M for all simple game. However the
converse is also true, i.e., if all shift-minimal winning coalitions have the same cardinality
then all the minimal winning coalitions have the same cardinality too. This is because
the coalitions inM\S are obtained from those in S by one-to-one replacements of weaker
players, according to the desirability relation, for stronger players; but these exchanges do
not affect the cardinalities of the coalitions involved. Hence, we can exchange in previous
definition the term “minimal winning coalition” by “shift-minimal winning coalition”.

If l is the cardinality of all minimal winning coalitions in a uniform game, in any
of its forms, then M = M(l) where M(l) is the set of minimal winning coalitions of
cardinality l.

Despite the restrictive definition of uniform complete games, their number grow ex-
ponentially in the number of players. For instance, there are (see, e.g., [16, 31]) 2n − 1
uniform complete games with just one type of shift-minimal winning coalitions of n
players. Table 1 provides enumerations for small values of n on the number of uniform
complete games (Uc) and uniform weighted games (Uw). For n = 10 players the number
of uniform complete games is given by 3 049 712 101 and for n = 11 players the respective
number larger than 25 · 1012. Without considering symmetry the number of uniform

simple games with n players is given by
n∑
k=1

2(n
k)−1.

n 1 2 3 4 5 6 7 8 9

Uc 1 3 7 16 41 140 843 14 434 1 410 973
Uw 1 3 7 16 41 125 458 2 188 20 079

Table 1: Number of uniform complete games and uniform weighted games.

Proposition 1. Let v be a uniform complete game, characterized by W and N , then the
Public Good and Deegan-Packel indices satisfy the dominance property.

Proof. As the game is a uniform complete game, it holds: DP ri = PGIri /l for all i ∈ N ,
where l = min{|S| : S ∈ W}, so it suffices to prove the statement for the Public Good
index.

Assume i A j, then for all S ⊆ N \ {i, j} with S ∪ {j} ∈ M we have S ∪ {i} ∈ W.
If S ∪ {i} /∈ M, then there would exist a player k ∈ S such that (S ∪ {i}) \ {k} ∈ W,
but |(S ∪ {i}) \ {k}| = |S ∪ {j}| − 1 = l − 1, which is a contradiction with the fact that
all minimal winning coalitions have the same size. Thus, S ∪ {i} ∈ M and therefore
PGIri = |Mi| ≥ |Mj | = PGIrj . �

We remark that i A j, i 6A j implies PGIri > PGIrj .
8



Corollary 1. The Public Good and Deegan-Packel indices satisfy dominance and local
monotonicity properties on the classes Uc and Uw, respectively.

As a consequence, for uniform complete games the ranking given by the desirability
relation coincides with the rankings given by Public Good and Deegan-Packel indices.
So these rankings also coincide with the rankings of the Shapley-Shubik, Banzhaf, and
Johnston indices because these indices also satisfy dominance, see [14].

It is remarkable to note that there are previous studies done on studying subclasses
of weighted games satisfying local monotonicity for the Public Good index. However,
these led to subclasses whose cardinalities grow polynomially on the number of players,
see [18]. (To be more precise, these subclasses are based on the addition of null players
to some games with few players satisfying local monotonicity.) Nevertheless, the work
we develop in next sections illustrates that local monotonicity is hardly achievable for
the Public Good index if we choose a game at random with a large number of voters.
Notwithstanding of this fact we think it is noteworthy the identification of subclasses of
simple games satisfying the dominance property, for several power indices, with expo-
nential growth on the number of players. Although compared with other subclasses of
games the (exponential) growth of uniform complete games may seem limited.

The Public Good and the Deegan-Packel index are locally monotonic for uniform
games. However, this condition is not necessary as the following example illustrates.

Example 2. Let v be the 4-player game uniquely characterized by N = {1, 2, 3, 4}
and M = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}, i.e., v admits the weighted representation
[3; 2, 1, 1, 1]. This game is the unique weighted game of 4 players which is not uniform
but it satisfies the dominance property and so the local monotonicity property for the
Public Good index.

At the very least, the game of Example 2 is captured by the following two definitions.

Definition 12. Let v be a simple game with player set N = {1, . . . , n},

i % j if and only if

k∑
l=1

|Mi(l)| ≥
k∑
l=1

|Mj(l)| for all k = 1, 2, . . . , n.

Then the layer relation, %, is a preordering on N , i.e., a reflexive and transitive relation.

Definition 13. A simple game v on N is flat whenever %, the layer relation on N , is
total.

Thus, in a flat simple game, we either have i % j or j % i for all i, j ∈ N . Nevertheless
the subclass of uniform games has been presented separately by its: simpler structure
and easier identification and enumeration.

We remark that i A j, i 6A j implies DPri > DPrj . Note further that uniform games
are particular cases of flat games, for which the mentioned implication is not valid in
general.

Proposition 2. Let v be a flat complete game, characterized by W and N , then the
Public Good and Deegan-Packel indices satisfy the dominance property.

9



Proof. As v is a complete game it is either i A j or j A i for all i, j ∈ N . Assume from
now on i A j.
As v is flat, either i % j or j % i for all i, j ∈ N . We shall see that i A j implies i % j.
If i�j, then |Mi(h)| = |Mj(h)| for all h = 1, . . . , n which implies i % j.
If j 6A i, let h be the smallest value such that |Mi(h)| 6= |Mj(h)|, as i A j it must be
|Mi(h)| > |Mj(h)|, otherwise we would have a contradiction with the definition of the
desirability relation. This inequality implies i % j since j % i would be incompatible
with it.
Now it lacks to prove that i % j implies PGIri ≥ PGIrj and DP ri ≥ DP rj , but since

PGIri =
∑n
l=1 |Mi(l)| ≥

∑n
l=1 |Mj(l)| = PGIrj the statement is true for the public Good

index, and since DPri =
1

l

∑n
l=1 |Mi(l)| we have the decomposition:

DPri −DPrj =
(
1− 1

2

) (∑1
l=1 |Mi(l)| −

∑1
l=1 |Mj(l)|

)
+(

1
2 −

1
3

) (∑2
l=1 |Mi(l)| −

∑2
h=1 |Mj(l)|

)
+

· · ·+(
1

n−1 −
1
n

)(∑n−1
l=1 |Mi(l)| −

∑n−1
h=1 |Mj(l)|

)
+

1
n (
∑n
h=1 |Mi(l)| −

∑n
h=1 |Mj(l)|) .

(1)

As v is flat, each addend is non-negative, i.e., DPri ≥ DPrj . �

Example 3. Let v be the weighted game uniquely characterized by N = {1, 2, 3} and
M = {{1}, {2, 3}}. This is a flat game with 1 A 2, 2 6A 1, and 2�3. The (normalized)
Public Good index is given by 1

3 ·(1, 1, 1), i.e., player 1 and player 2 obtain the same value
while not being equivalent. The (normalized) Deegan-Packel index is given by 1

4 ·(2, 1, 1).

Corollary 2. The Public Good and Deegan-Packel indices satisfy local monotonicity on
the class of weighted flat games.

4. Convex combinations of power indices and the cost of local monotonicity

As mentioned in the introduction one of the aims of this paper is to study power indices
arising as a convex combination of a given (finite) collection of power indices. To this
end let P be a finite set of power indices, e.g. P = {Bzr,PGIr} or P = {Bzr,PGIr,Sr},
which we will use later on. Given a set P =

{
P 1, . . . , P r

}
of power indices we consider

the convex combinations

Pα,P =

r∑
h=1

αh · Ph,

where α = (α1, . . . , αr) is contained in the r-dimensional unit cube [0, 1]r and
∑r
h=1 αh =

1, that is α belongs to the r-dimensional simplex Sr := {x ∈ [0, 1]r | ‖x‖1 = 1}. The
power indices Ph are defined on possibly different classes Gh and we set G = ∩rh=1Gh.
Obviously Pα,P is a power index on G too, i.e., it maps games in G to a vector in Rn.
In the remaining part of the paper we will not explicitly mention the underlying classes
Gh and G of games.

Convex combinations of power indices have the nice feature that they preserve the
properties for power indices defined in Section 2.
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Lemma 1. Let P =
{
P 1, . . . , P r

}
be a collection of power indices such that P j

(1) satisfies the null player property,

(2) is symmetric,

(3) is strictly positive,

(4) is efficient,

(5) has the dominance property,

(6) is local monotonic, or

(7) is invariant for nulls

for all 1 ≤ j ≤ r, then Pα,P , where α ∈ Sr, has the same property.

Proof. For properties (1)-(3) the statement directly follows from the definition. For
property (4) we have

n∑
i=1

P ji (v) = 1

for all 1 ≤ j ≤ r. With this we conclude

n∑
i=1

Pα,Pi (v) =

n∑
i=1

r∑
j=1

αj · P ji (v) =

r∑
j=1

αj ·
n∑
i=1

P ji (v) =

r∑
j=1

αj = 1,

using the fact that the αj sum up to one.

For properties (5) and (6) we consider players i and h such that P ji (v) ≥ P jh(v) for
all 1 ≤ j ≤ r. With this we have

Pα,Pi (v) =

r∑
j=1

αj · P ji (v) ≥
r∑
j=1

αj · P jh(v) = Pα,Ph (v),

since the αj are non-negative.
If the P j are invariant for nulls, then they have to satisfy the null player property.

From (1) we deduce that Pα,P also satisfies the null player property. Thus it suffices to

prove Pα,Pi (v) = Pα,Pi (v′) for every player i and every game v′ arising from v by deleting
an arbitrary null player. We have

Pα,Pi (v) =

r∑
j=1

αj · P ji (v) =

r∑
j=1

αj · P ji (v′) = Pα,Pi (v′),

so that the statement is also true for property (7). �

In this paper we are especially interested in the case where not all but at least one
power index of a collection

{
P 1, . . . , P r

}
satisfies local monotonicity. W.l.o.g. we assume

r ≥ 2 and that P 1 satisfies local monotonicity while the other indices might or might
not satisfy LM. The convex combinations Pα,P may or may not satisfy LM, depending
on α. At least for α = (1, 0, . . . , 0) LM is satisfied.

Let G ⊆ W be a class of weighted games, n ∈ N>0 and P =
{
P 1, . . . , P r

}
be a

collection of power indices on G such that P 1 satisfies local monotonicity. By PPLM(n,G)
we denote the set of α ∈ Sr such that Pα,P satisfies LM on the set of games of G
consisting of n players.
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Lemma 2. If P 1 satisfies local monotonicity, then the set PPLM(n,G) is a non-empty
(bounded) polyhedron.

Proof. Obviously, we have PPLM(n,G) ⊆ Sr. Given a game v ∈ G and two players

1 ≤ i, j ≤ n with i A j, we have Pα,Pi (v) ≥ Pα,Pj (v) if and only if Pα,Pi (v)−Pα,Pj (v) ≥ 0,
which is equivalent to

r∑
h=1

αh ·
(
Phi (v)− Phj (v)

)
≥ 0. (2)

Thus PPLM(n,G) is given as the intersection of Sr and the half-spaces (and possibly Rr
for trivial inequalities 0 ≥ 0) described by Inequality (2) for all v ∈ G consisting of n
players and all 1 ≤ i, j ≤ n with i A j. We have G ⊆ W ⊆ S, so that the number of
n-player games of G is upper bounded by the number of simple games consisting of n
players. Since each simple game is uniquely characterized by its set of winning coalitions
the number of simple games with n players is at most 22

n

, i.e., finite. Thus we have a finite
intersection of half-spaces and a polyhedron, which is a, possibly empty, polyhedron. It
remains to remark that (1, 0, . . . , 0) ∈ PPLM(n,G) to conclude the non-emptiness. �

Example 4. We consider P =
{=:P 1︷︸︸︷

Bzr ,

=:P 2︷ ︸︸ ︷
PGIr,

=:P 3︷︸︸︷
Sr
}

, G = W, and n = 7, i.e., the class of

weighted games with 7 players. For v = [2; 2, 1, 1, 1, 1, 1, 1] we have Bzr(v) = (7, 5, . . . , 5)
and PGIr(v) = Sr(v) = (1, 5, . . . , 5). The corresponding inequality (2) for game v and
players 1, 2 is given by α1 ·(7−5)+α2 ·(1−5)+α3 ·(1−5) ≥ 0. Inserting α2+α3 = 1−α1

yields 2α1−4(1−α1) ≥ 0, which is equivalent to α1 ≥ 2
3 . Thus for all α with α1 <

2
3 the

convex combination Pα,P does not satisfy local monotonicity, i.e., for α =
(
2
3 − x, ?, ?

)
∈

S3 we have Pα,P(v) = (5− 6x, 5, 5). This means that the weight of the Banzhaf index in
a convex combination satisfying LM must be at least 2

3 , i.e., closer to the Banzhaf index
than to the two other indices, on the set of weighted games with 7 players.

Example 5. Again we consider P =
{=:P 1︷︸︸︷

Bzr ,

=:P 2︷ ︸︸ ︷
PGIr,

=:P 3︷︸︸︷
Sr
}

, G = W, and n = 7. For v =

[14; 9, 8, 5, 2, 2, 2, 2] we have Bzr(v) = (33, 31, 21, 7, 7, 7, 7), PGIr(v) = (6, 9, 5, 7, 7, 7, 7),
and Sr(v) = (1, 8, 5, 4, 4, 4, 4). The corresponding inequality (2) for the game v and
players 1, 2 is given by α1 ·(33−31)+α2 ·(6−9)+α3 ·(1−8) ≥ 0. Inserting α1 = 1−α2−α3

yields α2 ≤ 2
5 −

9
5 · α3 after a short calculation. Thus for all α with α2 >

2
5 −

9
5 · α3 the

convex combination Pα,P does not satisfy local monotonicity.

In Figure 1 we have depicted the two regions, where Pα,P does not satisfy LM accord-
ing to the weighted games of Example 4 and Example 5. The weight region, including
its border, is a superset of PPLM(7,W) in general. However, we will see later that both
sets indeed coincide.

We focus on the necessary weight proportion of P 1 in order to ensure local mono-
tonicity of Pα,P . For each α ∈ Sr the convex combination Pα,P either satisfies local
monotonicity or not. The smallest value β such that the first case occurs for all α ∈ Sr
with α1 ≥ β is defined as the cost of local monotonicity cP(n,G).
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Figure 1: Regions of Pα,{Bzr,PGIr,Sr} which do not satisfy LM for weighted games with n = 7
players.

Definition 14. If P 1 satisfies local monotonicity, then the cost of local monotonicity is
defined as

cP(n,G) = inf
{
β ∈ [0, 1] | Pα,Psatisfies LM on (n,G), ∀α ∈ Sr : α1 ≥ β

}
for r > 1, where (n,G) stands for the class of games G with at most n players, and
cP(n,G) = 0 for r = 1.

Some examples may be derived from the previous section. For G = U, or more
generally G = F, and P = {Jo,DP} we have cP(n,G) = 0 for all n ∈ N, since the
DP index is local monotonic. Similarly, for G = U, or more generally G = F, and
P = {Bz, PGI} we have cP(n,G) = 0 for all n ∈ N.

From Example 4 we conclude c{Bzr,PGIr,Sr}(7,W) ≥ 2
3 . The game from Example 5

gives the tighter inequality c{Bzr,PGIr,Sr}(7,W) ≥ 7
9 . Later on it will turn out that we

can replace the infimum in Definition 14 by a minimum. Next we remark that dropping
some of the power indices that do not satisfy LM does not increase the cost of local
monotonicity:

Lemma 3. Let P 1 satisfy local monotonicity and let P 1 ∈ P ′ ⊆ P be a subset, then we
have cP′(n,G) ≤ cP(n,G) for all n ∈ N>0.

Proof. For |P ′| = 1 the statement follows from cP(n,G) ≥ 0. For |P ′| > 1 we can

embed the elements of S|P
′| in S|P| by choosing zero for the missing indices. �

Observation 1. If P 1 satisfies local monotonicity, then we have cP(n,G′) ≤ cP(n,G)
for all G′ ⊆ G.

Under slight technical assumptions on the set of power indices and on G we have
monotonicity in the number of players:

13



Lemma 4. If P 1 satisfies local monotonicity, assume that all P j’s are invariant for
nulls and that G is closed under the addition of null players. Then we have cP(n,G) ≤
cP(n+ 1,G) for all n ∈ N>0.

Proof. Given an n-player game v ∈ G with Pα,P(v) = (p1, . . . , pn), we can construct
a game v′ ∈ G by adding a null player such that Pα,P(v′) = (p1, . . . , pn, 0). Since Pα,P

satisfies LM for v if and only if Pα,P satisfies LM for v′, the statement follows. �

For collections of r = 2 power indices not only the set PPLM(n,G) is a polyhedron but
also its complement Sr\PPLM(n,G) since both sets are intervals. Thus we can replace the
infimum in Definition 14 by a minimum for all cases where r = 2. Next we will show
that the lower bounds from Lemma 3 for all subsets of cardinality two are sufficient to
determine the cost of local monotonicity in general:

Lemma 5. If P 1 satisfies local monotonicity, then we have

cP(n,G) = max
{
c{P 1,P j}(n,G) | 2 ≤ j ≤ r

}
.

Proof. From Lemma 3 we conclude cP(n,G) ≥ max
{
c{P 1,P j}(n,G) | 2 ≤ j ≤ r

}
.

W.l.o.g. we assume c{P 1,P j}(n,G) < 1 for all 2 ≤ j ≤ r. Let ei denote the ith unit vector.

With this define vj = e1 · c{P 1,P j}(n,G) + ej ·
(
1− c{P 1,P j}(n,G)

)
for all 2 ≤ j ≤ r. We

have already observed that for r = 2 the infimum in the definition of the cost of local
monotonicity is indeed attained. Thus P vj ,P satisfies LM. Since PPLM(n,G) ⊆ Sr is con-
vex, the n− 1-dimensional simplex conv(e1, v2, . . . , vr) =: F2 is contained in PPLM(n,G).
Now let A be the closure of Sr\F, i.e., the smallest closed set containing Sr\F, which is
a polyhedron too. Indeed, the vertices of A are given by v2, . . . , vr and e2, . . . , er.

With this we have cP(n,G) ≤ max{a1 | (a1, . . . , ar) ∈ A}, where the maximum is
attained at one of the 2r − 2 vertices of A. For the vertices e2, . . . , er the respective
a1-value is zero. By definition the a1-value of vj is given by c{P 1,P j} for all 2 ≤ j ≤ r.

Thus, cP(n,G) ≤ max
{
c{P 1,P j}(n,G) | 2 ≤ j ≤ r

}
. �

Corollary 3. If P 1 satisfies local monotonicity, then we have

cP(n,G) = min
{
β ∈ R≥0 | Pα,P satisfies LM on G∀α ∈ Sr : α1 ≥ β

}
So, in order to determine cP(n,G) it suffices to determine c{P 1,Ph}(n,G) for all 2 ≤

h ≤ r. Given a game v ∈ G and two players i, j ∈ N with i A j, we can solve
Inequality (2) for α1 using α1 + αh = 1. If Ph violates LM for v and players i, j, we
obtain an inequality of the form α1 ≥ u, where u is a suitable real number, and can
conclude c{P 1,Ph}(n,G) ≥ u. For Example 4 we conclude c(Bzr,PGIr)(7,W) ≥ 2

3 and for

Example 5 we conclude c(Bzr,PGIr)(7,W) ≥ 7
9 .

In order to obtain tight bounds for the cost of local monotonicity, we may simply
loop over all possible choices of v, i, and j. At the very least, we can partially restrict
the number of choices:

2conv(a1, . . . , an) :=

{
n∑
i=1

λiai |
n∑
i=1

λi = 1, λ1, . . . , λn ≥ 0

}
.
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Lemma 6. If P 1 satisfies local monotonicity and r = 2, then we have

c(P 1,P 2)(n,G) = max {li(v) | v ∈ G, 1 ≤ i ≤ n− 1} ,

where
li(v) :=

(
P 2
i+1(v)− P 2

i (v)
)
/
(
P 1
i (v)− P 1

i+1(v) + P 2
i+1(v)− P 2

i (v)
)

if P 2
i+1(v)− P 2

i (v) > 0 and li(v) := 0 otherwise.

Proof. Assuming 1 A · · · A n the requirement i A j is equivalent to i ≤ j. If
α ·P 1 +(1−α) ·P 2 violates LM for v, 0 ≤ α ≤ 1, and players i, j and there exists another
player i < i′ < j, then LM is violated for v and at least one of the pairs i, i′ or i′, j of
players. Thus, we can restrict our considerations on pairs of players of the form i, i+ 1,
where 1 ≤ i < n.

The inequality αP 1
i (v) + (1− α)P 2

i (v) ≥ αP 1
i+1(v) + (1− α)P 2

i+1(v) is equivalent to

α ·

P 1
i (v)− P 1

i+1(v)︸ ︷︷ ︸
≥0

+ P 2
i+1(v)− P 2

i (v)

 ≥ P 2
i+1(v)− P 2

i (v).

If P 2
i+1(v) − P 2

i (v) ≤ 0 this is satisfied for all α ≤ 1. Otherwise it is only satisfied for
α ≥

(
P 2
i+1(v)− P 2

i (v)
)
/
(
P 1
i (v)− P 1

i+1(v) + P 2
i+1(v)− P 2

i (v)
)
. �

The big drawback of this exact approach is the usually large size of the set of n-
player games of G. Both sets of n-player complete or weighted games grow faster than
exponential. The exact numbers have been determined up to n = 9 only, see, e.g., [26]
for the numbers of complete and weighted games up to n = 8, [15] for the number of
complete games for n = 9, and [27, 31] for the number of weighted games for n = 9. For
n = 9 there are 284 432 730 174 complete and 993 061 482 weighted games.3 Thus, using
Lemma 6 becomes computationally infeasible for n > 9. So we propose an integer linear
programming formulation in the next section.

5. An integer linear programming formulation

Whenever one is interested in complete games or weighted games, which are extremal
with respect to a certain criterion, exhaustive enumeration is not a feasible option for
n > 9 players (see the enumeration results stated at the end of the previous section).
An alternative is to specify the set games indirectly by binary variables and linear in-
equalities. If the extremality criterion can be also formulated using integer variables and
linear constraints, then integer linear programming techniques can be applied. In the
context of cooperative games this approach was introduced in [28] and also applied in
this context in [13, 29, 30].

For completeness, we briefly repeat the integer linear programming (ILP) formulation
of a game v. Since v is uniquely characterized by its values v(S) for all coalitions S ∈ 2N ,
we introduce binary variables xS ∈ {0, 1} for all S ∈ 2N . The conditions for a simple

3which had to be slightly corrected recently [25].
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game can be stated as x∅ = 0, xN = 1, and xS ≤ xT for all S ⊆ T ⊆ N . We remark
that for the later set of inequalities it suffices to consider the pairs of coalitions where
|T | = |S| + 1. Complete games can be modeled by additionally requiring xS ≤ xT
for all pairs of coalitions with ti A si for 1 ≤ i ≤ m, where S = {s1, . . . , sm} and
T = {t1, . . . , tm}.

In order to restrict v to weighted games we additionally have to introduce weights
wi ≥ 0 and a quota q > 0, where we assume that the weight of each winning coalition
is larger than the weight of each losing coalition by at least one. (We may simply use
integer weights, which could result in harder problems for the ILP solver.) To interlink
the xS with the wi and q we use

q − (1− xS) ·M −
∑
i∈S

wi ≤ 0 ∀S ∈ 2N and

−xS ·M +
∑
i∈S

wi ≤ q − 1 ∀S ∈ 2N ,

where M is a suitably large constant fulfilling M − 1 ≥
n∑
i=1

wi. (We may choose M =

4n
(
n+1
4

)(n+1)/2
, see [32, Theorem 9.3.2.1].)

The restrictions to proper games can be formulated via xS + xN\S ≤ 1 for all S ⊆ N
with |S| ≤ n

2 . Similarly we can restrict to strong games by requesting xS + xN\S ≥ 1.
For constant sum games we need xS + xN\S = 1.

In order to compute the power distribution of Bzr, PGIr, and Sr from the xS , we
introduce further binary variables, cf. [29]. For i ∈ N and S ∈ 2N we set yi,S = 1 if and
only if coalition S is critical for player i and yi,S = 0 otherwise. This can be ensured by
requesting yi,S = 0 for i /∈ S and yi,S = xS − xS\{i} otherwise. Similarly we introduce
zS ∈ {0, 1}, where zS = 1 if and only if S is a minimal winning coalition. This condition
can be linearly reformulated as

zS − xS ≤ 0 ∀S ∈ 2N ,

zS + xS\{i} ≤ 1 ∀S ∈ 2N , i ∈ S, and

zS − xS +
∑
i∈S

xS\{i} ≥ 0 ∀S ∈ 2N .

In order to identify shift-minimal winning coalitions, we introduce binary variables uS ∈
{0, 1} for all S ∈ 2N . In order to state characterizing linear constraints we additionally
need binary variables ti ∈ {0, 1} for all 1 ≤ i ≤ n− 1, which are equal to 0 if and only if
players i and i+ 1 are of the same type, i.e., i� i+ 1. This equivalence can be ensured
by requesting

xS∪{i} − xS∪{i+1} − ti ≤ 0 ∀1 ≤ i ≤ n− 1, S ⊆ N\{i, i+ 1} and

−ti +
∑

S⊆N\{i,i+1}

xS∪{i} − xS∪{i+1} ≥ 0 ∀1 ≤ i ≤ n− 1.

If ti = 0, i.e., i� i + 1, then S ∪ {i} is a shift-minimal winning coalition if and only if
S∪{i+1} is a shift-minimal winning coalition, where S ⊆ N\{i, i+1} and 1 ≤ i ≤ n−1.
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This conditioned equivalence can be expressed as

uS∪{i} ≥ uS∪{i+1} − ti and uS∪{i+1} ≥ uS∪{i} − ti.

So in the following we can restrict our considerations on coalitions S such that for each
i ∈ S we either have i = n, i+ 1 ∈ S or i A i+ 1.

Since each shift-minimal winning coalition has to be a minimal winning coalition, we
require uS ≤ zS for all S ∈ 2N . The other possibility disqualifying a coalition S from
being a shift-minimal winning coalition is the existence of player i ∈ S\{n} with i+1 /∈ S
and i A i+ 1 such that S ∪ {i+ 1}\{i} is winning. So we require

uS ≤ 1 + xS − xS∪{i+1}\{i} − ti

for all S ⊆ N , n 6= i ∈ S and i+ 1 /∈ S. Since xS ≥ xS∪{i+1}\{i} the right hand side is at
least zero. So let us assume ti = 1. Since uS ≤ zS ≤ xS it suffices to consider the cases
where xS = 1. If xS∪{i+1}\{i} = 1 then the stated inequality is trivially true. Just in the
single case, where xS = 1, xS∪{i+1}\{i} = 0, and ti = 1, it implies uS = 0.

By now we can guarantee that uS = 0 if S is not a shift-minimal winning coalition.
However uS = 0 is still feasible for shift-minimal winning coalitions. So, we additionally
require

uS − xS +
∑

i∈N\{n}:i∈S,i+1/∈S

xS∪{i+1}\{i} ≥ 0

for all S ⊆ N\n and

uS − xS + xS\{n} +
∑

i∈N\{n}:i∈S,i+1/∈S

xS∪{i+1}\{i} ≥ 0

for all {n} ⊆ S ⊆ N . If xS = 0 or one of the xS∪{i+1}\{i} = 1, then the proposed
inequality is trivially satisfied. So we assume otherwise. In the cases where n ∈ S we
can similarly assume xS\{n} = 0. In this remaining case we have the implication uS = 1,
which is correct since no certificate for not being a shift-minimal winning coalition exists,
so that S is a shift-minimal winning coalition.

Finally consider the case where S indeed is a shift-minimal winning coalition. Thus
xS = 1. Remember that we need the implication uS ≥ 1 just for the coalitions S, where
for each player i ∈ S we either have i = n, i + 1 ∈ S, or i A i + 1. So we can assume
i A i + 1 for all indices i in the summation. Thus xS∪{i+1}\{i} = 0. If n ∈ S, then also
xS\{n} = 0 since S is a minimal winning coalition.
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Having these variables at hand, we can easily compute the following power indices:

Bzri (v) =
∑
S⊆N

yi,S ,

PGIri (v) =
∑

{i}⊆S⊆N

zS ,

Sri (v) =
∑

{i}⊆S⊆N

uS ,

DPri (v) =
∑

{i}⊆S⊆N

1

|S|
· zS , and

SDPri (v) =
∑

{i}⊆S⊆N

1

|S|
· uS .

For the Johnston index we have to take care that only the critical players obtain
an equal share for each coalition. To this end we introduce the continuous variables
bi,S ∈ R≥0 for all i ∈ N and and all S ∈ 2N , cf. [29]:

bi,S ≤ yi,S ∀S ∈ 2N , i ∈ N
bi,S − bjS ≥ yi,S + yj,S − 2 ∀S ∈ 2N , i, j ∈ N

n∑
i=1

bi,S ≤ 1 ∀S ∈ 2N

n∑
j=1

bi,S ≥ yi,S ∀S ∈ 2N , i ∈ N.

Given an arbitrary coalition S ⊆ N , we can easily check that
∑n
i=1 bi,S = 0 if S is

not a critical coalition for any player i ∈ N and
∑n
i=1 bi,S = 1 otherwise. In the later

case we have bi,S = 0 whenever player i is not critical in coalition S. The second set of
inequalities guarantees bi,S = bj,S whenever both i and j are critical in coalition S. So
we can state

Jori (v) =
∑
S⊆N

bi,S .

As a target we maximize

Pα,Pi+1 (v)− Pα,Pi (v) =

r∑
h=1

αhP
h
i+1(v)− αhPhi (v),

where 1 ≤ i ≤ n − 1 has to be specified as a parameter. By looping over all possible
values of i we can decide whether Pα,P satisfies LM for a given α ∈ Sr.

Lemma 7. For P ⊆ {Bzr,PGIr,Sr, Jor,DPr,SDPr}, r := |P|, and α ∈ Sr, one can
decide α ∈ PPLM(n,G) if incidence vectors of the n-player games in G form a polyhedron.
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To be more precise, we have explicitly stated ILP formulations for the classes of
games G ∈ {S,C,W,Sp,Cp,Wp,Ss,Cs,Ws,Sc,Cc,Wc}. Having the binary variables ti
at hand restrictions on the number of equivalence classes of players or even the precise
partition can be formulated easily. ILP formulations for further power indices can be
found in [29].

We assume that the algorithm behind Lemma 7 gives either the answer yes, if all
corresponding n − 1 ILPs have an optimal target value of zero, or gives the answer no
together with a game v ∈ G and an index 1 ≤ i ≤ n − 1 such that Pα,P violates LM
for the game v and players i, i + 1. The following algorithm computes the cost of local
monotonicity for convex combinations of two power indices, i.e., P = {P 1, Ph}:

α1 = 0
αh = 1
go on = true
while go on = true do

go on = false
for i from 1 to n− 1 do

if maxα1P
1
i+1(v)− α1P

1
i (v) + αhP

h
i+1(v)− αhPhi (v) > 0 then

go on = true
choose v? ∈ arg maxα1P

1
i+1(v)− α1P

1
i (v) + αhP

h
i+1(v)− αhPhi (v) > 0

determine β with β
(
P 1
i+1(v?)− P 1

i (v?)
)

+ (1− β)
(
Phi+1(v?)− Phi (v?)

)
= 0

α1 = β
αh = 1− β

end if
end for

end while

6. Exact values and lower bounds for the cost of local monotonicity

By considering parametric examples we can obtain general lower bounds for the cost
of local monotonicity.

Lemma 8. For P = (Bzr,PGIr) and n ≥ 2 we have cP(n,W) ≥ max
(

0, n−3n−1

)
.

Proof. Since cP(n,W) ≥ 0 by definition, it suffices to consider weighted games with
n ≥ 4 players. For the weighted game v = [2; 2, 1, . . . , 1], with n− 1 players of weight 1
and one player of weight 2, the minimal winning coalitions are given by {1} and {i, j},
where 2 ≤ i < j ≤ n. Thus, we have PGIr1(v) = 1 and PGIr2(v) = n− 2. For player 1 the
critical coalitions are given by {1} and {1, i} for all 2 ≤ i ≤ n. Given a player j ≥ 2 the
critical coalitions for player j are given by {i, j} for all 2 ≤ i ≤ n, with i 6= j. Thus, we
have Bzr1(v) = n and Bzr2(v) = n− 2.

For players 1, 2 and game v Inequality (2) reads

α1 · Bzr1(v) + α2 · PGIr1(v) ≥ α1 · Bzr2(v) + α2 · PGIr2(v),

which is equivalent to

α1 · n+ α2 · 1 ≥ α1 · (n− 2) + α2 · (n− 2) ⇐⇒ α1 ≥
n− 3

n− 1
,
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since α1 + α2 = 1. �

Corollary 4. For P = (Bzr,Sr) and n ≥ 2 we have cP(n,W) ≥ max
(

0, n−3n−1

)
.

Proof. Since all minimal winning coalitions in the example of the proof of Lemma 8
are also shift-minimal winning, we can apply the same proof for the Shift index. �

So, from Lemma 8, Corollary 4, and Lemma 5 we can conclude that the cost of local
monotonicity is at least n−3

n−1 for P = (Bzr,PGIr,Sr) and all n ≥ 2.

Corollary 5.

lim
n→∞

c(Bzr,PGIr)(n,W) = lim
n→∞

c(Bzr,Sr)(n,W) = lim
n→∞

c(Bzr,PGIr,Sr)(n,W) = 1

The limit results implies that the only convex combination of Bzr, PGIr, and Sr that
is locally monotonic for all weighted games (independently of the number of players) is
the raw Banzhaf index itself. For a fixed finite number of players it may still be possible
that the cost of local monotonicity is strictly less than 1.

Having the ILP approach from the previous section at hand we can also determine
the exact value of the cost of local monotonicity for a small number of players. It turns
out that the lower bound from Lemma 8 is tight for all n ≤ 10. So, especially for n ≤ 3
we have a cost of local monotonicity of zero, which goes in line with the fact that all
weighted games with at most 3 players are locally monotonic. Although the ILP approach
can move the computational limit of exhaustive enumeration a bit, it is so far limited to
n ≤ 10. Since we were not able to find improving examples, we state:

Conjecture 1. For P = (Bzr,PGIr) and n ≥ 2 we have cP(n,W) = max
(

0, n−3n−1

)
.

We remark that the extremal examples are not unique, e.g., we have the weighted
games [4; 4, 3, 2, 2, 1, 1], [10; 10, 8, 5, 4, 4, 3, 3, 2] and [7; 7, 6, 6, 6, 5, 3, 3, 3, 2, 1] also meet-
ing the bound from Lemma 8 for n = 6, n = 8, and n = 10, respectively. The re-
spective Banzhaf scores are given by (11, 9, 5, 5, 3, 3), (28, 26, 16, 12, 12, 10, 10, 6), and
(24, 22, 22, 22, 20, 12, 12, 12, 8, 6). The respective PGI scores are given by (1, 4, 3, 3, 3, 3),
(1, 6, 11, 9, 9, 8, 8, 6), and (1, 8, 8, 8, 7, 9, 9, 9, 7, 6).

For combinations of the Banzhaf score and the Shift score the lower bound of Corol-
lary 4 is tight for n ≤ 6. For 7 ≤ n ≤ 11 we were able to compute improving examples.

Lemma 9. Let P = (Bzr,Sr).

(1) For n = 7 we have cP(n,W) = 7
9 ≈ 0.77777.

(2) For n = 8 we have cP(n,W) = 7
8 = 0.875.

(3) For n = 9 we have cP(n,W) = 25
27 ≈ 0.92593.

(4) For n = 10 we have cP(n,W) = 51
53 ≈ 0.96226.

(5) For n = 11 we have cP(n,W) = 97
99 ≈ 0.97980.

(6) For n = 12 we have cP(n,W) ≥ 175
177 ≈ 0.98870.

Proof. For the lower bounds we state an explicit weighted game and the Banzhaf and
the Shift score for the first two players:
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(1) [14; 9, 8, 5, 2, 2, 2, 2], Bzr = (33, 31, . . . ), Sr = (1, 8, . . . );

(2) [16; 11, 10, 5, 2, 2, 2, 2, 2], Bzr = (65, 63, . . . ), Sr = (1, 15, . . . );

(3) [30; 16, 15, 7, 7, 3, 3, 3, 3, 3], Bzr = (129, 127, . . . ), Sr = (2, 27, . . . ),
[18; 13, 12, 5, 2, 2, 2, 2, 2, 2], Bzr = (129, 127, . . . ), Sr = (1, 26, . . . );

(4) [33; 19, 18, 7, 7, 3, 3, 3, 3, 3, 3], Bzr = (257, 255, . . . ), Sr = (2, 53, . . . );

(5) [36; 22, 21, 7, 7, 3, 3, 3, 3, 3, 3, 3], Bzr = (513, 511, . . . ), Sr = (2, 99, . . . ).

(6) [56; 29, 28, 9, 9, 9, 4, 4, 4, 4, 4, 4, 4], Bzr = (1025, 1023, . . . ), Sr = (2, 177, . . . ).

For the upper bounds we have applied the ILP approach. �

We have already stated some other tight examples before. We would highlight just
another tight example, where the bound is met between the second and the third player,
for n = 9: [8; 5, 3, 2, 2, 2, 2, 2, 2, 2] with Banzhaf score (85, 43, 41, 41, 41, 41, 41, 41, 41) and
Shift score (22, 1, 26, 26, 26, 26, 26, 26, 26).

We provide a general construction meeting the cost of local monotonicity of the best
known examples for all n ≥ 6:

Lemma 10. Let k ≥ 1 be an integer, m ∈ {0, 1, 2}, n = 3k + 3 +m, and

v =
[
2t+m(k + 1); t+ 1 +m(k + 1), t+m(k + 1),

k times︷ ︸︸ ︷
2k + 3, . . . , 2k + 3,

2k+1+m times︷ ︸︸ ︷
k + 1, . . . , k + 1

]
,

where t = 2k2 +3k+1. With this, v is a weighted game consisting of n players, Bzr1(v) =
2n−2 + 1, Bzr2(v) = 2n−2 − 1, Sr1(v) = 1 for k = 1, Sr1(v) = 2 for k > 1, and

Sr2(v) = −1 + Sr1(v) +

k∑
a=0

∑
b=d t−a(2k+3)

k+1 e

(
k

a

)
·
(

2k + 1 +m

b

)
.

Proof. We can easily check that v consists of n = 3k+ 3 +m players having 4 different
non-negative weights. For the ease of notation we denote coalition types as a 4-tuple
(c1, c2, c3, c4) meaning a coalition having 0 ≤ c1 ≤ 1 players of weight t+ 1 +m(k + 1),
0 ≤ c2 ≤ 1 players of weight t + m(k + 1), 0 ≤ c3 ≤ k players of weight 2k + 3, and
0 ≤ c4 ≤ 2k + 1 + m players of weight k + 1. Due to symmetry it suffices to know the
counts c1, . . . , c4 instead of the precise coalitions.

Note that the sum of weights of the players of weight 2k + 3 is given by t − 1. The
sum of weights of players of weight k + 1 is given by t + m(k + 1). Next we show that
the players of the 4 weight types are non-equivalent. Since (1, 1, 0, 0) is winning and
(1, 0, 1, 0) is losing, the player of weight t + m(k + 1) is non-equivalent to players of
weight 2k + 3. Since (1, 0, k, 0) and winning and (0, 1, k, 0) is losing the first two players
are non-equivalent. Since (1, 0, k, 0) is winning and (1, 0, 0, k) is losing, also the players
of weight 2k + 3 are non-equivalent to players of weight k + 1. Due to the decreasing
sequence of weights, we have four equivalence classes of players coinciding with the sets
of players that have an equal weight.

A coalition type (1, 1, a, b) corresponds to critical coalitions for player 1 if and only if
a(2k + 3) + b(k + 1) ≤ t− 1. Similarly, a coalition type (1, 0, a, b) corresponds to critical
coalitions for player 1 if and only if a(2k + 3) + b(k + 1) ≥ t − 1. So we are interested
in the number of cases where a(2k + 3) + b(k + 1) = t − 1. Considering this equation
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modulo k + 1 yields a ≡ −1 (mod k) + 1, so that a = k, b = 0 is the unique solution.
Thus we have Bzr1(v) = 2n−2 + 1.

A coalition type (1, 1, a, b) corresponds to critical coalitions for player 2 if and only if
a(2k+3)+b(k+1) ≤ t−2 and a coalition type (0, 1, a, b) corresponds to critical coalitions
for player 2 if and only if a(2k + 3) + b(k + 1) ≥ t. Thus we have Bzr1(v) = 2n−2 − 1.

The coalition {1, 2} is a minimal winning coalition in any case. We can easily check
that it is shift-minimal winning if and only if k > 1. Since the weight of (1, 0, k, 0) exactly
equals the quota, the corresponding unique coalition is shift-minimal in any case. Now
assume that a coalition S of type (1, 0, a, b) is shift-minimal winning. Since S has to be
winning, we have a(2k+ 3) + b(k+ 1) ≥ t− 1. Since (0, 1, a, b) has to be losing, we have
a(2k + 3) + b(k + 1) = t− 1. As mentioned before, the unique solution of this equation
is given by a = k and b = 0. Thus, we have Sr1(v) = 1 for k = 1 and Sr1(v) = 2 for k > 1.

Every minimal winning coalition besides {1, 2} containing player 2 has to be of type

(0, 1, a, b). For any 0 ≤ a ≤ k the unique value for b is given by b(a) =
⌈
t−a(2k+3)

k+1

⌉
,

where 1 ≤ b ≤ 2k + 1. Since 2k + 3 > 2 · (k + 1) we have b(a) + 1 < b(a − 1), i.e., the
corresponding coalitions are shift-minimal winning. Counting the number of coalitions
of type (0, 1, a, b(a)) gives

Sr2(v) = −1 + Sr1(v) +

k∑
a=0

∑
b=d t−a(2k+3)

k+1 e

(
k

a

)
·
(

2k + 1 +m

b

)
.

�

Of course one may speculate whether the stated construction is tight for all n ≥ 6. At the
very least we can conclude that cP(n,W) tends at least exponentially to 1, i.e., there are
constants d1 > 0, d2 > 1 with cP(n,W) ≥ 1− d1 · d−n2 , for P = (Bzr,Sr). Conjecture 1
on the other hand would imply only a linear convergence rate. So, in some sense, the
Shift index is even less locally monotonic than the Public Good index.

Next we go on and consider restrictions of the class of weighted games.

Lemma 11. For P = (Bzr,PGIr) and n ≥ 3 we have cP(n,Wp) ≥ max
(

0, n−4n−2

)
.

Proof. Since cP(n,W) ≥ 0 by definition, it suffices to consider weighted games with
n ≥ 5 players. We consider the weighted game v = [2n−3;n−1, n−2, n−2, 1, . . . , 1] with
n− 3 players of weight 1, two players of weight n− 2 > 1 and one player of weight n− 1.
Since the sum of voting weights is 4n−8 < 2 · (2n−3), the game is proper. The minimal
winning coalitions are given by {1, 2}, {1, 3}, and {2, 3, i} for all 4 ≤ i ≤ n. Thus, we
have PGIr(v) = (2, n− 2, n− 2, 1, . . . , 1). The critical coalitions for player 1 are given by
{1, 2, 3} and all coalitions of the form {1, i}∪S, where i ∈ {2, 3} and S ⊆ {4, . . . , n}. The
critical coalitions for player 2 are given by {1, 2} and all coalitions of the form {2, 3}∪S,
where ∅ 6= S ⊆ {4, . . . , n}. The unique critical coalition for a player i ≥ 4 is given by
{2, 3, i}. Thus, we have Bzr(v) =

(
2n−2 + 1, 2n−2 − 1, 2n−2 − 1, 1, . . . , 1

)
.

For players 1, 2 and game v Inequality (2) is equivalent to 2α1 ≥ α1·Bzr2(v)+(n−4)α2.
Inserting α1 + α2 = 1 yields α1 ≥ n−4

n−2 . �

Corollary 6. For P = (Bzr,Sr) and n ≥ 3 we have cP(n,Wp) ≥ max
(

0, n−4n−2

)
.
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Using the ILP approach we can verify that Lemma 11 is tight for n ≤ 10 and Corol-
lary 6 is tight for n ≤ 6.

Lemma 12. Let P = (Bzr,Sr).

(1) For n = 7 we have cP(n,Wp) = 5
7 ≈ 0.71429.

(2) For n = 8 we have cP(n,Wp) = 11
13 ≈ 0.84615.

(3) For n = 9 we have cP(n,Wp) = 12
13 ≈ 0.92308.

(4) For n = 10 we have cP(n,Wp) = 21
22 ≈ 0.95455.

(5) For n = 11 we have cP(n,Wp) = 83
85 ≈ 0.97647.

Proof. For the lower bounds we state an explicit weighted game and the Banzhaf and
the Shift score for the first two players:

(1) [21; 11, 10, 5, 5, 3, 3, 3], Bzr = (33, 31, . . . ), Sr = (2, 7, . . . );

(2) [25; 13, 12, 5, 5, 3, 3, 3, 3], Bzr = (65, 63, . . . ), Sr = (2, 13, . . . );

(3) [31; 16, 15, 7, 7, 3, 3, 3, 3, 3], Bzr = (129, 127, . . . ), Sr = (2, 26, . . . );

(4) [39; 12, 11, 9, 9, 9, 5, 5, 5, 5, 5], Bzr = (194, 192, . . . ), Sr = (1, 45, . . . );

(5) [32; 8, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4], Bzr = (324, 322, . . . ), Sr = (1, 84, . . . ).

For the upper bounds we have applied the ILP approach. �

Since the parametric example from Lemma 8 and the examples from Lemma 9 and
Lemma 10 have the property that the sum of weights meets or exceeds twice the quota,
the respective games are all strong. Thus, the same results are valid if we restrict the class
of weighted games to weighted strong games. Clearly we also conjecture cP(n,Ws) =

max
(

0, n−3n−1

)
for all n ≥ 2, where P = (Bzr,PGIr), which is a weakening of Conjecture 1.

Observe that the parametric example from Lemma 11 and the examples from Lemma 12
are not strong, so the cost of local monotonicity may decrease for constant sum weighted
games compared to proper weighted games.

If we consider the subclass of constant-sum games within the class of weighted games,
then the non-monotonicity is generally reduced, i.e., a lower contribution of the Banzhaf
score is sufficient to guarantee local monotonicity of the power index obtained as a convex
combination.

Lemma 13. For P = (Bzr,PGIr) and n ≥ 2 we have cP(n,Wc) ≥ max
(

0, n−5n−1

)
.

Proof. Since cP(n,W) ≥ 0 by definition, it suffices to consider weighted games with n ≥
6 players. For the weighted game v = [2n−5;n−2, n−3, n−3, 1 . . . , 1], with n−3 players
of weight 1, the minimal winning coalitions are given by {1, 2}, {1, 3}, {1, 4, 5, . . . , n}, and
{2, 3, i}, where 4 ≤ i ≤ n. Thus, we have PGIr1(v) = 3 and PGIr2(v) = n−2. For player 1
the critical coalitions are given by {1, 2, 3}, {1, 4, 5, . . . , n}, and {1, 2} ∪ S, {1, 3} ∪ S,
where S ⊆ {4, 5, . . . , n}. For player 2 the critical coalitions are given by {1, 2}∪U , where
U ⊆ {4, 5, . . . , n} with |U | < n − 3, and {2, 3} ∪ V , where ∅ 6= V ⊆ {4, 5, . . . , n}. Thus,
we have Bzr1(v) = 2n−2 + 2 and Bzr2(v) = 2n−2 − 2.

For players 1, 2 and game v Inequality (2) is equivalent to 4α1 ≥ α1·Bzr2(v)+(n−5)α2.
Inserting α1 + α2 = 1 yields α1 ≥ n−5

n−1 . �
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Corollary 7. For P = (Bzr,Sr) and n ≥ 2 we have cP(n,Wc) ≥ max
(

0, n−5n−1

)
.

Corollary 8.

lim
n→∞

c(Bzr,PGIr)(n,W
c) = lim

n→∞
c(Bzr,Sr)(n,W

c) = lim
n→∞

c(Bzr,PGIr,Sr)(n,W
c) = 1

Using the ILP approach we can verify that Lemma 13 is tight for n ≤ 11 and Corol-
lary 7 is tight for n ≤ 7.

Lemma 14. Let P = (Bzr,Sr).

(1) For n = 8 we have cP(n,Wc) = 2
3 ≈ 0.66667.

(2) For n = 9 we have cP(n,Wc) = 23
27 ≈ 0.85185.

(3) For n = 10 we have cP(n,Wc) = 43
47 ≈ 0.91489.

(4) For n = 11 we have cP(n,Wc) = 75
79 ≈ 0.94937.

Proof. For the lower bounds we state an explicit weighted game and the Banzhaf and
the Shift score for the first two players:

(1) [17; 9, 8, 5, 3, 2, 2, 2, 2], Bzr = (66, 62, . . . ), Sr = (3, 11, . . . );

(2) [21; 11, 10, 5, 5, 2, 2, 2, 2, 2], Bzr = (130, 126, . . . ), Sr = (3, 26, . . . );

(3) [21; 6, 5, 5, 5, 5, 3, 3, 3, 3, 3], Bzr = (170, 166, . . . ), Sr = (5, 48, . . . );

(4) [22; 8, 7, 7, 7, 2, 2, 2, 2, 2, 2, 2], Bzr = (386, 382, . . . ), Sr = (4, 79, . . . ).

For the upper bounds we have applied the ILP approach. �

Similar results can be obtained for Jor, DPr, and SDPr.

Lemma 15. Let P = (Jor,DPr).

(1) For n ≤ 4 we have cP(n,W) = 0.

(2) For n = 5 we have cP(n,W) = 1
8 = 0.125.

(3) For n = 6 we have cP(n,W) = 1
4 = 0.25.

(4) For n = 7 we have cP(n,W) = 1
3 ≈ 0.33333.

(5) For n = 8 we have cP(n,W) = 2
5 = 0.4.

(6) For n = 9 we have cP(n,W) ≥ 11
25 = 0.44.

(7) For n = 10 we have cP(n,W) ≥ 1
2 = 0.5.

Proof. For the lower bounds we state an explicit weighted game, the Johnston and the
Deegan-Packel score, where we highlight the values of the critical players:

(2) [3; 3, 2, 2, 1, 1], Jor = (6, 52 ,
5
2 , 1, 1), DPr = (1, 32 ,

3
2 , 1, 1);

(3) [8; 4, 4, 3, 1, 1, 1], Jor = ( 15
2 ,

15
2 ,6,

2
3 ,

2
3 ,

2
3 ), DPr = ( 3

2 ,
3
2 ,2,

2
3 ,

2
3 ,

2
3 );

(4) [9; 5, 4, 3, 2, 2, 2, 2], Jor = ( 70
3 ,

28
3 ,

23
3 ,

19
6 ,

19
6 ,

19
6 ,

19
6 ),

SDPr = ( 23
6 ,

17
6 ,

11
3 ,

19
6 ,

19
6 ,

19
6 ,

19
6 );

(5) [12; 4, 4, 4, 3, 3, 3, 3, 3], Jor = ( 19
2 ,

19
2 ,

19
2 ,

17
2 ,

17
2 ,

17
2 ,

17
2 ,

17
2 ),

DPr = ( 47
6 ,

47
6 ,

47
6 ,

17
2 ,

17
2 ,

17
2 ,

17
2 ,

17
2 );

(6) [20; 5, 5, 5, 5, 4, 4, 4, 4, 4], Jor = ( 19
2 , . . . ,

19
2 ,

69
5 , . . . ,

69
5 ),

DPr = ( 53
4 , . . . ,

53
4 ,

69
5 , . . . ,

69
5 );
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(7) [20; 5, 5, 5, 5, 4, 4, 4, 4, 4, 4], Jor = ( 103
4 , . . . , 1034 ,25, . . . , 25),

DPr = ( 97
4 , . . . ,

97
4 ,25, . . . , 25);

For the upper bounds we have applied the ILP approach. �

For P = (Jor,DPr) the cost of local monotonicity seems to be increasing rather
slowly. Given the numerical data from Lemma 15 it is not clear at all whether cP(n,W)
tends to 1 as n tends to infinity. To this end we consider the following construction for
an odd number of players:

Lemma 16. For k ≥ 1 and v = [k(k + 1);

k times︷ ︸︸ ︷
k + 1, . . . , k + 1,

k+1 times︷ ︸︸ ︷
k, . . . , k ] we have Jori (v) =

c(k) for all 1 ≤ i ≤ k, Jori (v) = d(k) for all k + 1 ≤ 2k + 1, DPri (v) = c(k)− k+1
k for all

1 ≤ i ≤ k, and DPri (v) = d(k) for all k + 1 ≤ 2k + 1, where

c(k) =
k + 2

k
+

1

k + 1

k−1∑
i=1

(
k − 1

i− 1

)
·
(
k + 1

i

)
and

d(k) =
1

k + 1
+

1

k + 1
·
k−1∑
i=1

(
k

i

)2

.

Proof. We can easily check that v consists of n = 2k + 1 players having two different
weights. As in the proof of Lemma 10 we use a 2-tuple (c1, c2) to describe the type of a
coalition. Since the coalitions of type (k, 0) are winning but the coalitions of type (0, k)
are losing, no player of weight k + 1 is equivalent to a player of weight k.

In coalitions of type (k, 0) or type (k, 1) all players of weight k+1 are critical players,
while the players of weight k are not critical players. The other types of coalitions which
contain a least one critical player are given by (i, k+ 1− i), where 0 ≤ i ≤ k−1. In these
cases all involved k + 1 players are critical. Counting the number of cases, where player
1 is contained, for each of the mentioned coalition types gives

Jor1(v) =

(
k − 1

k − 1

)
·
(
k + 1

0

)
· 1

k
+

(
k − 1

k − 1

)
·
(
k + 1

1

)
· 1

k

+
1

k + 1
·
k−1∑
i=1

(
k − 1

i− 1

)
·
(
k + 1

i

)
= c(k)

Counting the number of cases, where player n is contained, for each of the mentioned
coalition types gives

Jorn(v) =
1

k + 1
+

1

k + 1
·
k−1∑
i=1

(
k

i

)
·
(
k

i

)
= d(k).

All coalition types except (k, 1) correspond to minimal winning coalitions. Thus we have
DPr1(v) = Jor1(v) −

(
k−1
k−1
)
·
(
k+1
1

)
· 1k = c(k) − k+1

k and DPrn(v) = Jorn(v) = d(k). The
values for the remaining players follow from symmetry. �
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Corollary 9. For P = (Jor,DPr) and n ≥ 1 we have cP(n,W) ≥ 1− 2(3n−2)
n2 ≥ 1− 6

n .

Proof. For the weighted game from Lemma 16 Inequality (2) yields cP(2k + 1,W) ≥
1 − k

k+1 · (c(k) − d(k)). Since
∑k−1
i=1

(
k−1
i−1
)
·
(
k+1
i

)
−
∑k−1
i=1

(
k
i

)2
= −(k − 1), we have

c(k)− d(k) = 3k+2
k(k+1) . Thus cP(2k + 1,W) ≥ 1− 3k+2

(k+1)2 . Since cP(n,W) ≥ cP(n− 1,W)

we can choose k =
⌈
n−2
2

⌉
and obtain the stated lower bounds. �

Corollary 10. For P = (Jor,DPr) we have lim
n→∞

cP(n,W) = 1.

Lemma 17. Let P = (Jor,SDPr).

(1) For n ≤ 4 we have cP(n,W) = 0.

(2) For n = 5 we have cP(n,W) = 1
3 ≈ 0.33333.

(3) For n = 6 we have cP(n,W) = 3
5 = 0.6.

(4) For n = 7 we have cP(n,W) = 7
9 ≈ 0.77778.

(5) For n = 8 we have cP(n,W) = 47
53 ≈ 0.88679.

(6) For n = 9 we have cP(n,W) ≥ 29
31 ≈ 0.93548.

Proof. For the lower bounds we state an explicit weighted game and the Johnston and
the Shift Deegan-Packel score for the last two players:

(2) [4; 3, 3, 2, 2, 1], Jor = (. . . , 2, 1), SDPr = (. . . , 12 , 1);

(3) [8; 4, 4, 3, 3, 2, 1], Jor = (. . . , 2, 43 ), SDPr = (. . . , 13 ,
4
3 );

(4) [8; 5, 5, 2, 2, 2, 2, 1], Jor = (. . . , 196 ,
8
3 ), Sr = (. . . , 1112 ,

8
3 );

(5) [15; 7, 7, 3, 3, 3, 3, 3, 2], Jor = (. . . , 8615 ,
16
3 ), SDPr = (. . . , 115 ,

16
3 );

(6) [12; 7, 7, 2, 2, 2, 2, 2, 2, 1], Jor = (. . . , 476 ,
15
2 ), SDPr = (. . . , 83 ,

15
2 ).

For the upper bounds we have applied the ILP approach. �

Quite obviously the cost of local monotonicity for P = (Jor,SDPr) seems to converge
to 1 as n increases. An appropriate lower bound can be concluded from the parametric
example v = [2(n− 3);n− 2, n− 2, 2, . . . , 2︸ ︷︷ ︸

n−3 times

, 1], where n ≥ 5, by considering the last two

players. We remark that the exact value for n = 7 and the lower bound for n = 9 is
attained for this parametric family.

7. Determining the polyhedron PP
LM(n,W) for convex combinations of three

power indices.

In the previous section we have computationally determined the cost of local monotonicity
for several sets of two or three power indices on subclasses of weighted games. Now we
want to gain even more information: Given a collection P of r ≥ 2 power indices, for
which α ∈ Sr does Pα,P satisfy local monotonicity? In Lemma 2 we have obtained the
result that the respective set PPLM(n,G) is a polyhedron. As already discussed, each game
v ∈ G gives a valid inequality for PPLM(n,G). Using the ILP approach from Section 5
we can check whether a given point α ∈ Sr is contained in PPLM(n,G). In the case
where α is not contained in PPLM(n,G), we obtain a game v ∈ G verifying this fact. So
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either we can verify vertices of our polyhedron or compute additional non-redundant
valid inequalities. So, instead of looping over all games in G, we can use the following
algorithm to determine PPLM(n,G):

P = Sr
compute the set A of vertices of P
for all α ∈ A do

verified(α) = false
end for
while ∃α ∈ A with verified(α) = false do

if α ∈ PPLM(n,G) then
verified(α) = true

else
compute certifying game v ∈ G
add inequalities corresponding to v to P
compute the set A of vertices of P
set verified(α) = false for all new vertices

end if
end while
return P

We remark that we may also include the information that (1, 0, . . . , 0) ∈ PPLM(n,G) in
any case, i.e., one of the r vertices of Sr can be set to be verified. If already determined,
the r − 1 examples for the cost of local monotonicity for P ′ =

{
P 1, P i

}
can be used to

replace the initialization of P, i.e., setting P = conv(e1, p2, . . . , pr), where ei is the ith
unit vector and pi = e1 · c{P 1,P i}(n,G) + ei · (1− c{P 1,P i}(n,G)).

As an example, we have performed the computations for G = W, P = {Bzr,PGIr,Sr},
and n ≤ 9.

Lemma 18. For P = {Bzr,PGIr,Sr} we have

(1) PPLM(n,W) = S3 = conv {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for n ≤ 3;

(2) PPLM(4,W) = conv
{

(1, 0, 0), ( 1
3 ,

2
3 , 0), ( 1

3 , 0,
2
3 )
}

;

(3) PPLM(5,W) = conv
{

(1, 0, 0), ( 1
2 ,

1
2 , 0), ( 1

2 , 0,
1
2 )
}

;

(4) PPLM(6,W) = conv
{

(1, 0, 0), ( 3
5 ,

2
5 , 0), ( 3

5 , 0,
2
5 )
}

;

(5) PPLM(7,W) = conv
{

(1, 0, 0), ( 2
3 ,

1
3 , 0), ( 7

9 , 0,
2
9 ), ( 2

3 ,
1
4 ,

1
12 )
}

;

(6) PPLM(8,W) = conv
{

(1, 0, 0), ( 5
7 ,

2
7 , 0), ( 7

8 , 0,
1
8 ), ( 5

7 ,
9
35 ,

1
35 )
}

;

(7) PPLM(9,W) = conv
{

(1, 0, 0), ( 3
4 ,

1
4 , 0), ( 25

27 , 0,
2
27 ), ( 3

4 ,
19
80 ,

1
80 )
}

.

As an example, we have drawn P{Bzr,PGIr,Sr}
LM (7,W) in Figure 2. The filled region

is the complement of the region drawn in Figure 1. In order to illustrate the proposed
algorithm we consider the case n = 9 as an example. For {Bzr,PGIr} the cost of local
monotonicity is given by 3

4 and e.g. attained at the game v1 = [2; 2, 1, 1, 1, 1, 1, 1, 1, 1].
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We have Bzr(v1) = (9, 7, . . . ), PGIr(v1) = (1, 7, . . . ), and Sr(v1) = (1, 7, . . . ). For
{Bzr,Sr} the cost of local monotonicity is given by 25

27 and e.g. attained at the game v2 =
[30; 16, 15, 7, 7, 3, 3, 3, 3, 3]. We have Bzr(v2) = (129, 127, . . . ), PGIr(v2) = (23, 27, . . . ),
and Sr(v2) = (2, 27, . . . ). The hyperplane corresponding to v1 is given by 2α1 − 6α2 −
6α3 = 0 and the hyperplane corresponding to v2 is given by 2α1 − 4α2 − 25α3 = 0.
Together with α1 + α2 + α3 = 1 we obtain the new vertex α′ =

(
3
4 ,

19
84 ,

1
42

)
. By using

the ILP approach we can compute that α′ does not lead to a locally monotonic power
index and obtain the game v3 = [18; 13, 12, 5, 2, 2, 2, 2, 2, 2] with Bzr(v3) = (129, 127, . . . ),
PGIr(v3) = (22, 27, . . . ), and Sr(v3) = (1, 26, . . . ). For this game the corresponding
hyperplane is given by 2α1− 5α2− 25α3 = 0. Again there arises exactly one new vertex:
α′′ =

(
3
4 ,

19
80 ,

1
80

)
. By using the ILP approach we can compute that α′′ is contained in

PPLM(9,W), so that the determination of the polyhedron is completed.
We remark that α′′ does also attain the cost of local monotonicity for {Bzr,Sr}. So

if we had started with the games v1 and v3 instead of v1 and v2, our algorithm would
have needed one iteration less.

0, 1

0, 2
α3

0, 1 0, 2 0, 3
α2

Figure 2: PPLM(7,W) for P = {Bzr,PGIr, Sr}.

A similar result is obtained for the three other indices considered in the paper:

Lemma 19. For P = {Jor,DPr,SDPr} we have

(1) PPLM(n,W) = S3 = conv {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for n ≤ 4;

(2) PPLM(5,W) = conv
{

(1, 0, 0), ( 1
8 ,

7
8 , 0), ( 1

3 , 0,
2
3 ), ( 1

17 ,
7
17 ,

9
17 )
}

;

(3) PPLM(6,W) = conv
{

(1, 0, 0), ( 1
4 ,

3
4 , 0), ( 3

5 , 0,
2
5 ), ( 1

4 ,
7
16 ,

5
16 )
}

;

(4) PPLM(7,W) = conv
{

(1, 0, 0), ( 1
3 ,

2
3 , 0), ( 7

9 , 0,
2
9 ), ( 19

61 ,
32
61 ,

10
61 )
}

;

(5) PPLM(8,W) = conv
{

(1, 0, 0), ( 2
5 ,

3
5 , 0), ( 47

53 , 0,
6
53 ), ( 197

503 ,
264
503 ,

42
503 )

}
.

Finally, we want to consider a more complex example of linear combinations of four
power indices, where two of them satisfy LM. To this end we denote by SSIr(v) the raw
Shapley-Shubik index of a weighted game v, consisting of n players, times n!.4 With

4The philosophy of the definition of Bzr, PGIr, and Sr is the counting of relevant coalitions for
each player, where relevant is specified differently in each case. The Shapley-Subik index weights crit-
ical coalitions with respect to their size, while the Banzhaf index treats all critical coalitions equally.
Dropping the normalization factor of 2n−1 from the Banzhaf index is somehow similar to dropping the
normalization factor of n! of the Shapley-Shubik index.
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this, we choose P = {SSIr,Bzr,PGIr,Sr}. From the 25 weighted games on 4 players just
v1 = [2; 2, 1, 1, 1] and v2 = [3; 3, 2, 1, 1] violate LM for PGIr or Sr. We have PGIr(v1) =
Sr(v1) = PGIr(v2) = Sr(v2) = (1, 2, 1, 1), SSIr(v1) = (12, 4, 4, 4), SSIr(v2) = (14, 6, 2, 2),
Bzr(v1) = (4, 2, 2, 2), and Bzr(v2) = (5, 3, 1, 1). In both cases the condition for the
α-multipliers to ensure LM is equivalent to 8α1 + 2α2 ≥ α3 + α4, i.e., PPLM(4,W) ={
α ∈ R4

≥0 | 8α1 + 2α2 ≥ α3 + α4, α1 + α2 + α3 + α4 = 1
}

. Dropping either SSIr or Bzr

we could speak of the cost of LM for Bzr or SSIr, respectively.

8. Conclusion

We have introduced the concept of considering convex combinations of power indices.
Several of the main properties of power indices are preserved by convexity, i.e., given a
collection P of power indices such that each power index in P has a certain property,
then also every convex combination of the power indices in P has this property. Lemma 1
gives some examples of such properties being preserved by convexity. The freedom in
choosing the multipliers almost arbitrarily enables us to search for power indices, which
satisfy some other useful properties. As an application we study local monotonicity. It
is well known that the Public Good index does not satisfy local monotonicity, while e.g.
the Banzhaf index does. So, what proportion of the Banzhaf index is necessary so that a
convex combination of both indices becomes locally monotonic? The newly introduced
cost of local monotonicity answers this specific question. Similar measures may of course
be introduced for other properties of power indices.

It turns out that with an increasing number of players the weight of the Banzhaf
index needs to tend to 1. For a finite number of players there is still some freedom to
incorporate some information from the Public Good index, while maintaining the local
monotonicity of the Banzhaf index.

Restricting the class of the underlying games to strong or proper games typically
decreases the cost of local monotonicity, but does not change the general behavior.

The cost of local monotonicity for combinations of the Banzhaf and the Shift index
is considerably higher. So, in some sense the Shift index is even less locally monotonic
than the Public Good index. Replacing the Banzhaf-, Public Good-, and the Shift index
by their so-called equal division versions, i.e., the Johnston-, the Deegan-Packel and the
Shift-Deegan Packel index, generally results in lower costs of local monotonicity. For
instance, we can compare the cost of local monotonicity of the Banzhaf and the Public
Good index, see Lemma 8 and Conjecture 1, with the cost of local monotonicity of the
Johnston and the Deegan-Packel index, see Lemma 15. Nevertheless, the corresponding
cost of local monotonicity approaches 1 as the number of players tends to infinity.

So, our study has shed some light on the property of local monotonicity of some power
indices. The methodology of considering convex combinations of power indices in order
to obtain some desirable properties is quite general and the presented theoretical and
algorithmic framework may be applied in further studies.
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