Fast-PPP assessment in European and equatorial region near the Solar Cycle maximum

A. Rodríguez-García, J. M. Juan, J. Sanz
{adria.rodriguez, jose.miguel.juan, jaumesan}@upc.edu - Research group of Astronomy and Geomatics (gAGE, UPC), 08034 Barcelona, Spain

INTRODUCTION

The Fast Precise Point Positioning (Fast-PPP) is a technique to provide quick high-accuracy navigation with ambiguity fixing capability, thanks to an accurate modelling of the ionosphere.

First Wide-Area Real-Time Kinematic (WARTK) feasibility studies [1] enabled differential relative continental navigation using only a few tens of reference stations. The further evolution [2] led to a global PPP service with the added capability of ups-derstood ambiguity fixing, and a continental enhancement to shorten convergence based on accurate ionospheric corrections. The technique is protected by several international patents [2] funded by the European Space Agency (ESA).

In this work, Fast-PPP is assessed in single- and dual-frequency users at a planetary scale for the first time, and in near-maximum solar cycle conditions. This includes equatorial latitudes, more challenging than previous results, which were obtained with quieter ionospheric spatial (Europe mid-latitudes) and temporal (late 2008).

EXPERIMENT DESCRIPTION

A world-wide distribution of rovers (green dots) is used to assess the performance of Fast-PPP, which uses the latest ionospheric references located at more than one order of magnitude greater than typical RTK or Virtual Reference Station (VRS) baselines. Other strong networks are used by the Central Processing Facility (CPF) to generate Fast-PPP corrections: orbit and clocks, ionosphere, biases and ambiguity fractional part.

SATELLITE ORBITS AND CLOCKS

The Fast-PPP RMS orbit error is maintained at 3.9 centimetres, while satellite clocks have an accuracy of 0.22 nanoseconds (6 cm).

This performance is comparable with International GNSS Service (IGS)-Real Time combined product for the selected day of the scenario, the 2.7 centimetres and 0.21 nanoseconds for orbits and clocks.

CONVERGENCE ASSESSMENT

The user state is reset every 2 hours, merging the twelve cold starts on the same day. Vertical and horizontal accuracies of the 3D formal error are plotted as a function of time. Fast-PPP single and dual frequency positioning are respectively assessed against ionosphere-free strategies: GRAPHIC and classic PPP.

IONOSPHERE: A METRIC TO ASSESS IONOSPHERIC MODELS FOR GNSS NAVIGATION

The core of the Fast-PPP is the capability to compute real-time ionospheric corrections with accuracies at the level or better than 1 Total Electron Content Unit (TECU), improving the widely-accepted Global Ionospheric Maps (GIM), which has nominal accuracy of 2-8 TECUs. Fast-PPP large improvement in the modelling accuracy is achieved thanks to:

- Unambiguous: Carrier-phase ambiguities are fixed in the same Central Processing Facility (CPF) than geostationary computations (Satellite orbits and clocks).
- Unbiased: Satellite DOP is estimated and removed.
- Two-layer: Better separation of ionospheric and plasma-geophysical delays and its dynamics.

A test to assess any ionospheric model for GNSS navigation is proposed:

1. Computing of Unambiguous and Unbiased (true) STEC from geometry-free combination of carrier phases measurements: $STEC_{true} = L_{e} - (DCB_{e} - DCB^{bias}) - B^{true}$
2. RMS of the post-fit residuals of the fit of the difference between the STECs provided by the model under testing and the true STEC ($STEC_{true}$) to a bias per station and per satellite: $STEC_{bias} = STEC_{model} - DCB_{e} - DCB^{bias}$

CONCLUSION

Using a world-wide distribution of rovers, the Fast-PPP technique has been assessed from the Central Processing Facility (CPF) corrections to the user domain positioning:

- Precise satellite orbits and clocks: are computed with an accuracy at the level to IGS real-time products; few centimetres and few tenths of nanoseconds.
- Ionospheric Models: constrained: Fast-PPP and dual-frequency ambiguity-fixed ionospheric real-time determinations better than 1 TECU (6 centimetres in L1) can be used in combination with precise orbits and clocks maintaining their accuracy.
- Reduction of convergence time: Dual-Frequency Users enhance from the best part of an hour to 5-10 minutes; in Europe mid-latitudes and equatorial region.
- Accuracy: The improvement of ionospheric modelling is directly translated into the accuracy of single-frequency mass-market users.
- Protection levels: Safe margins are achieved thanks to the realism of the Fast-PPP corrections confidence levels computed at the CPF level.

ACKNOWLEDGMENT

The authors acknowledge the use of data from the International GNSS Service, the Smithsonian CFS89 array (SAC89) network and the Ares Institute of Technology (AIAT).

REFERENCES

USER DOMAIN PROTECTION LEVELS

A first glance to user domain and its confidence level is shown by the Stanford plots. The trade-off between formal and actual positioning errors depend on the realism of the system. The correction signals computed by the CPF. Such relation has been carefully studied to obtain safe integrity margins in the worldwide rover network consisting several ionospheric conditions.

ACKNOWLEDGMENT

This work has been sponsored by the ESA Network Partner Initiative Nr. 220-211 with the industrial partner (UC3I) Technical University of Catalonia (UPC), Project: GNAVIS from EC-FFP Grant Nr. 287283 and ANRT-DIDA CT 3220 R-24132 also contribute.