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Abstract:

The aim of the present study is to simulate and analyze the interaction of two dimensional
flow past a square cylinder in a laminar regime with an upstream mixing layer developed
by an axis symmetrical horizontal splitter plate. The mixing layer is generated upstream of
the square cylinder by mixing two uniform streams of fluid with different velocities above
and below the splitter plate. A range of upstream domain lengths, distances between the
splitter plate and the square cylinder, and upstream velocity ratios between the two streams
of fluid are analyzed. Unconfined flow over a square cylinder placed in uniform upstream
flow is initially analyzed as it plays a crucial role in understanding the properties of the
wake. The results are compared with the existing literature to validate the code developed
and they are found to be in very good agreement. It is observed from the present study that
at smaller velocity ratios, the vortices shed into the wake consist of both clockwise and
anticlockwise moment vortices. As velocity ratio is increased only clockwise moment
vortices are shed downstream and anticlockwise vortices are shed as Kelvin-Helmholtz
instabilities. In all simulations undertaken the same phenomena is observed independent of
the upstream Reynolds number, indicating that velocity ratio is a primary parameter
influencing the flow. Different instability modes were observed and they were highly
dependent on the upstream velocity ratio.

Keywords: Square cylinder, Mixing layer, Splitter plate, Wake-Mixing Layer Interaction,
Laminar Flow

Nomenclature:

a Side of the square cylinder

A Dimensional side of the square cylinder [m]
Cb Drag coefficient

CL Lift coefficient

f Dimensional frequency [Hz]
Fo Dimensional drag force [N]
Fs Flux through face f of the control volume

FL Dimensional lift force [N]
H Height of the domain

L Length of the domain

n

p

r

Re

Outward normal of the surface S

Non dimensional Pressure

Ratio of Reynolds number above and below the splitter plate
Reynolds number



S Surface onto the control volume
St Strouhal number
spl Length of the flat plate

t Non-dimensional Time

ul Upstream Length of the physical domain

dl Downstream length of the physical domain

dt Non dimensional time step

u Non-dimensional Velocity in X direction below the splitter plate

U Free stream velocity in X direction at the inlet below the splitter plate [m/sec]
% Non-dimensional Velocity in Y direction

A

Control Volume

X Non-Dimensional Eulerian coordinates in horizontal direction

y Non-Dimensional Eulerian coordinates in vertical direction

p Fluid density. [Kg/m?]

u Fluid viscosity [Kg/(m s)]

1. Introduction.

Studies on the problems of wake development and vortex shedding behind a
rectangular/square cylinder in free-stream flows was investigated both numerically and
experimentally among others by, Franke (1991), Franke et al. (1990), Kelkar and Patankar
(1992), Davis and Moore (1982), Davis et al. (1984), Okajima (1982, 1990), Okajima et al
(1992), Mukhopadhyay et al. (1992), Suzuki et al. (1993) and Sohankar et al (1998, 1999).

Based on experimental investigations, Okajima (1982), working with rectangular cylinders,
found periodic vortex motion at Re=70. A smaller critical Reynolds for periodic vortex
motion, Re=54, was determined by Kelkar and Patankar (1992) based on the flow stability
analysis, they studied unconfined flow past a square cylinder. With a further increase of the
Reynolds number, the flow undergoes a further bifurcation at around Re=150-200,
Sohankar et al (1999), and becomes three-dimensional but remains time periodic. In reality,
the onset of this phenomenon is not clearly defined in the literature, Okajima (1982) and
Franke (1991), defined a range of Re=100 to 150 for the 3D bifurcation to appear. Luo et al
(2003), (2007), experimentally studied the transition phenomena generated by uniform flow
onto a square cylinder. They found two instability modes similar to the ones found by
Williamson (1996) in circular cylinders.

It was shown by previous investigations on circular cylinders, e.g., Jordan and Fromm
(1972), Kiya et al. (1980), Kwon et al. (1992), Mukhopadhyay et al. (1999), Xu and Dalton
(2001), Sumner and Akosile (2003), that the flow approaching with linear shear greatly
alters the vortex dynamics in the wake, when compared to the uniform flow case. They
attributed this phenomenon to the constant vorticity embedded in the free-stream. For
square-sectional cylindrical bodies, shear flow effects were reported by, e.g., Ayukawa et
al. (1993), Hwang and Sue (1997), Saha et al. (2001), Bhattacharyya and Maiti (2004,
2006), Cheng et al. (2005, 2007) and Lankadasu and Vengadesan (2008). Saha et al. (2001)
studied the same problem numerically for a wide range of Reynolds numbers. They showed
that due to the influence of shear, Karman Vortex Street mainly consisted of clockwise
vortices, whose decay was very slow when compared to that of uniform flow. Cheng et al.



(2005, 2007) reported that vortex shedding disappeared for large shear parameters. The
mean lift and drag coefficients tended to decrease with increasing the shear parameter.
They also observed that the vortex shedding frequency tended to decrease with the increase
of the shear parameter, although they highlighted that this observation was opposite to the
one obtained by Kiya et al. (1980) when studying shear flow past circular cylinders.

Lankadasu and Vengadesan (2008) also reported a decrease in the mean lift and drag
coefficients with increasing shear, and for a given Reynolds number. The same
phenomenon was observed for a given shear when the Reynolds number was increased. It
was also found that the critical Reynolds number at which the flow becomes unsteady
periodic, was reduced as shear increased. Bhattacharyya and Maiti (2004, 2006) studied
laminar shear flow past a square cylinder placed near a wall, for Reynolds up to 1400. For a
gap height of 0.25 times the square cylinder height, vortex shedding suppression and
steadiness of the wake was observed up to a Reynolds 250. For a Reynolds number equal
and above 500, only negative vortices behind the cylinder at closed proximity to the wall
were found. They also investigated laminar flow over a square cylinder placed nearby a
wall, Reynolds <1500, and found that the critical gap height for vortex shedding
suppression was dependent on the Reynolds number.

There are typical situations, where the non-uniformity of the approaching flow is due to the
effect of a body located in front of or behind the one to be studied. For example, when a
small cylinder is placed in the separated shear layer of a large main cylinder to alter the
vortex shedding phenomena behind the main cylinder, the small cylinder is inevitably
subjected to the effect of shear induced from the large cylinder. The onset of periodic flow
from the small cylinder induces oscillatory forces on the body, which may trigger flow-
induced vibrations, and in turn alter the vortex shedding on the main cylinder.

Some of the most relevant recent numerical simulations of flow past a square cylinder with
the incorporation of a control plate to alter the wake, which have close similarities to the
present study, were carried out among others by Lesage and Gartshore (1987), Sakamoto et
al (1991, 1997), Zhou et al (2005), Doolan (2009), Sukri et. al. (2011), (2012), Malekzadeh
and Sohankar (2012) and Salinas et al (2014). Some of these studies are presented below.

Sukri et. al. (2011), carried out a 2D numerical study for flow over a square cylinder with
and without a splitter plate at Reynolds number, Re=150. The splitter plate was stationary
and attached to the square cylinder's trailing face. Strong hydrodynamic interactions in the
near wake of the cylinder were induced by the splitter plate and the length of the plate was
found to significantly affect the flow structure. In the study, flow behavior was categorized
into three different modes based on the length of the splitter plate. The first mode occurred
for splitter plate lengths in the range of 0<L<D, it was observed that the free shear layers
were convected further downstream before rolling up and the Strouhal number decreased as
the plate length was increased. When the splitter plate length L, was increased to 1.25D, a
sharp increase in the Strouhal number was found, indicating the onset of a new mode. This
second mode appeared, for intermediate lengths in the range of 1.25D<L<4.75D; a
secondary vortex was reported to be seen around the trailing edge of the splitter plate and
the shear layers began to roll up closer to the trailing edge. The Strouhal number in this
mode first increased with the increase in length of the splitter plate until L=2D, before



decreasing with the increase in the length of the splitter plate until L=4.75D. When the
length of the splitter plate was L > 5D, a sudden decrease in the Strouhal number was
found, indicating the onset of the third mode. In Sukri et. al (2012), a 2D numerical study
of the square cylinder wake alteration using a detached downstream thin flat plate was
carried out. A uniform upstream flow with constant Reynolds number Re=150, based on
the side length of the cylinder D, was used. A critical gap distance of G.=2.3D was
reported, indicating the existence of two flow modes. Mode | was characterized by the
completion of the vortex formation occurring downstream of the gap, but for mode II,
formation was found to be occurring within the gap. The plate was found to have no effect
on the formation of the Von-Karman vortex street for a gap G>5.6D. With the aim to
achieve total lift cancellation, the plate length was reduced and it was found that for a plate
of length L=0.26D at G = 5.6D, located downstream of the square cylinder, a significant
reduction in the lift fluctuation of the system was obtained, although a total lift cancellation
was not observed. The reason behind non-occurrence of total lift cancellation was identified
as the loss of fluctuating lift signal sinusoidal form, due to the plate undergoing stall.

Malekzadeh and Sohankar (2012), performed a 2D numerical investigation to reduce the
fluid forces acting on a square cylinder in laminar flow regime by using passive flow
control. The results of the heat transfer from the square cylinder in the presence of a control
plate were also presented at a constant Reynolds number, Re=160 and Prandtl number,
Pr=0.71. It was reported that the optimum plate-cylinder distance and control plate width,
were respectively 3D and 0.5D. Three different flow modes were discovered at this
Reynolds number, the vortex shedding from the control plate was completely suppressed in
modes | and I1, in mode 111 the Karman vortex street was generated behind the control plate
and cylinder. Independently of the flow mode, the incorporation of the control plate
significantly reduced the mean and fluctuating fluid forces on the cylinder.

In Salinas et al (2014), a LES 3D numerical analysis of a square cylinder with a vertical flat
plate placed upstream was presented. Three different flow configurations were observed, in
the first one, two quasi-stationary symmetric vortices were formed between the two bodies.
The second configuration was characterized by asymmetric vortices appearing between the
plate and the square cylinder. The appearance of fully developed turbulence in the wake
behind the plate was defined as the third configuration.

Despite the fact that the present study has many similarities to the ones just presented,
according to the authors knowledge this is the first time interaction between the wake of
square cylinder and mixing layer has been numerically simulated and analyzed.

2. Problem Statement.

2.1 Physical and computational domains.

Figure 1 presents the physical domain with a square cylinder and a splitter plate placed
upstream of the cylinder. The computational domain consists of a two-dimensional square
cylinder of non-dimensional side length, a. The inlet boundary consists of two uniform
fluid streams of different velocities above and below the splitter plate, as seen in figure 1.
The ratio of velocities above and below the splitter plate is defined as velocity ratio, r. The
computational domain length, L and height, H are taken as 32 times and 16 times the square
cylinder length respectively, as seen in figure 1.
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Figure 1: Physical Domain of the Inclined Step

According to Sohankar et al (1998), when using Neumann boundary conditions, a
minimum downstream length of 20 times the square cylinder side length is required to
isolate the effects of outlet boundary on the flow and wake properties. In the present study a
downstream length of dI=25a units was considered for all cases simulated.

A frictionless wall boundary condition is applied to the top and bottom boundary of the
physical domain as presented in figure 1. In Sohankar et al (1995), flow past a square
cylinder was analyzed with frictionless wall boundary conditions with a blockage ratio of
7%, which converts to a physical domain height slightly higher than 14 units. It was
observed that the boundary conditions above and below were not adversely affecting the
flow behavior. Yoshida et al (1993), when studying unconfined flow past a square cylinder,
used a height of 16 units for the physical domain and reported that boundary conditions had
no effect on the flow. Therefore, for the present study, the physical domain height was
taken as 16 units to make the flow independent of boundary conditions at the top and
bottom of the physical domain. Three different upstream lengths ul, the distance between
inlet and the square cylinder leading edge, were studied, namely ul=5a, 6a and 7a. For all
three cases a constant splitter plate length, spl=3a, was considered in order to facilitate the
development of laminar boundary layer. Splitter plate thickness was considered to be
negligible.

Figure: 2a. Non-uniform structured grid for discretization of the domain. 2b. Closer view of
the grid point collocation at the wall of the step for accurate resolution of the boundary
layer.



Figures 2(a), (b), present the grid of the proposed problem. Figure 2(a), clearly shows the
four subdomains used to generate the grid. The first subdomain is the region upstream of
the square cylinder which includes the horizontal splitter plate. The second and third
subdomains are the regions located just below and above the square cylinder respectively.
The region downstream of the square cylinder is the fourth sub domain. Non-uniform
structured grid has been generated in the four sub-domains using the stretching
transformation proposed by Roberts (1971), which refines the grid in the vicinity of the
solid walls

2.2 Governing Equations.

Non-dimensional form of the governing equations was used to simulate the flow. To non
dimensionalize the equations, the side of the square cylinder, A, was taken as the
characteristic length, the free stream velocity under the splitter plate at the inlet, U, was
considered as the characteristic velocity, characteristic pressure was pU? and characteristic
time was defined as characteristic length divided by the characteristic velocity, A/U.

Reynolds number, Re was defined as re=PYA  Fluid density, p and viscosity, | were
il

considered to be constant. Flow was regarded as isothermal.
The non-dimensional conservative form of the momentum and continuity equations for
laminar flow, in two dimensions, reads:
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Where u and v are the non-dimensional velocity components in X and Y direction, p is the
non-dimensional pressure, X and y are non-dimensional Eulerian coordinates in the X and Y
directions respectively. The non-dimensional time is denoted by t. A finite volume approach
was chosen for the simulation.

2.3 Numerical Strategy and Boundary Conditions.

A second-order Adams Bashforth-Crank Nicholson scheme for temporal discretization was
applied to Navier Stokes equations in finite volume formulation to obtain equation (4).
Equation (5) is the continuity equation applied over a control volume.
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Where F; represents the flux through the face f. Subscript P represents the center of the
control volume with volume, V.



The boundary conditions used in the simulation were depicted in figure 1; a brief
description of the different boundary conditions follows.

At the inlet, free stream condition for velocity and Neumann boundary condition for
pressure were used. Equation (6) was used below and equation (7) above the splitter plate.

u=u, v=0, a—pzo (6)
OX

Uu=ru, v=0, @20 (7)
OX

A no-slip boundary condition was applied on solid boundaries as presented in equation (8)

u=0,v=0and Vp.n=0 (8)
Where N is the unit normal vector perpendicular to the surface.

In the far field, since in the present study flow past a square cylinder is unconfined, a
frictionless wall boundary was considered at a distance 8a measured from the center of the
square cylinder, as shown in figure 1

a_uzo,V:Oand@:() 9)

oy oy

The outlet boundary is of paramount importance when studying flows with unsteady wake
or convecting vortices, since it not only changes the flow pattern but also affects
convergence. In the present case the Newman boundary condition (NBC) was used for all
dependent variables, as presented in equation (10).

ﬁzo, é=u,v,p (10)
OX

A 200x150 grid was used for all the simulations carried out in the present study, with 50
cells on the square cylinder's sides in both the x and y directions. The time step considered
was dt=0.001. In the present study the respective pressure correction factors in all the
neighboring cells were considered, this is an improvement of the original MAC (Marker
and Cell) method, presented by Harlow and Welch (1965), to minimize the error involved
in the calculation.

Lift and drag coefficients evaluate the average normal and shear stresses acting on the sides
of the square cylinder. To calculate lift and drag coefficients, the expressions presented in
equation (11) were used. It is important to realize that as the flow under study is unsteady
and periodic, hence the concept of average lift and drag coefficients has to be used.

F .

CD=1 DZ 2!C:Lzl LZ 2’ (11)
—pU"A —pU"A
2p 2p

Fp and F__ are respectively the dimensional drag and lift forces due to the pressure and shear
stresses acting on the square cylinder. Drag force was taken as positive when acting in the
positive X axis direction, and lift force was regarded as positive when acting in the positive



Y axis direction. The equation to derive Strouhal number, St is presented as equation (12), f
being the vortex shedding frequency in the square cylinder wake.

fA
St=—— 12
5 (12)

3. Code Validation.

The code was validated by simulating the unconfined flow past a square cylinder, under
upstream uniform free stream flow. The results were compared with the ones presented in
the existing literature. It was observed that the flow was steady for Reynolds numbers 50
and 52, see figure 3, and unsteady periodical at Re=55. According to Sohankar et al (1998),
Von Karman vortex street appeared and therefore vortex shedding was happening in the
wake of the square cylinder at Re=51.2+1. Kelkar and Patankar (1992) via flow stability
analysis, found that the critical Reynolds number for the onset of vortex shedding was 54,
which is in line with the results obtained and presented in figure 3.

Figure: 3. Steady state streamlines plots of flow past a square cylinder, (a) Re=50, (b)
Re=52, (c) unsteady periodic streamlines Re=55
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Figure: 4. (a) Average drag coefficient, Cp versus Reynolds nljmber (b) Strouhal number, St
plots versus Reynolds number for unconfined flow past a square cylinder.

For unconfined flow past a square cylinder in an unsteady periodic flow regime under the
Reynolds number range 100<Re<200, average drag coefficients and Strouhal numbers were
compared with the results presented by Franke et al (1990) and Sohankar et al (1997; 1998;
1999). In all cases identical flow and boundary conditions were used. Figures 4(a), (b)
present the Drag coefficient, Cp and Strouhal number, St versus the upstream flow
Reynolds number. The present work and the research undertaken in the four previous



papers are compared. The present results compare well with the published literature,
especially in the case of Strouhal number, which can be considered as a stringent parameter
for comparison.

4]

Figure: 5. Boundary layer and mixing layer development vector plots of flow over the
splitter plate at Reynolds number, Re=100 for (a) r=2 (b) r=3 and (c) r=4.

The development of the laminar boundary layer and mixing layer behind the splitter plate
can be seen in the vector plots presenting the flow over the splitter plate and upstream of
the square cylinder for a Reynolds number, Re=100 and ratios, r=2, 3 and 4, figure 5. The
development of Blasius profile of velocity gradient in the boundary layer over the splitter
plate, as expected from a laminar boundary layer, can be clearly seen in figure 5 and
validates the formation and development of the laminar boundary layer over the splitter
plate. The fully developed boundary layers above and below the splitter, merge into a
mixing layer in the wake of the splitter plate, due to the difference in the free stream
velocities above and below splitter plate, which interacts with the flow in the wake of the
square cylinder.

3.1 Effects of Grid Refinement:

A grid refinement study was carried out on three progressively refined grids for Re=200
and r=4, namely 180x120, 200x150 and 240x180, where the number of grid nodes
distributed over the side of the square cylinder are 40, 50 and 60 respectively, cell widths
are given in brackets.

Grid 180x120 200x150 240x180
No. of Cells on square side | 40 (0.025) 50 (0.020) 60 (0.017)
Drag Coefficient 19.125 19.412 19.490

Table 1: Results of the grid refinement study




The variation in the drag coefficient, Cp was around 1.5% when the grid was refined from
coarsest to the intermediate level. But when the grid was further refined to the finest level,
the variation reduced further and became close to 0.4%, see table (1). Therefore, this has
led to the use of a grid size of 200x150 for all the simulations.

4. Results and Discussion.

4.1 Unsteady periodic flow of wake and mixing layer interactions:

In order to evaluate unsteady periodic vortex shedding, simulations were carried out for
Reynolds numbers 100, 150 and 200, for each Reynolds number velocity ratios of r = 1.5,
2, 2.5, 3, 3.5 and 4 were considered. For each case, three different upstream lengths of
ul=5a, 6a and 7a, measured between the free stream inlet and the square cylinder leading
edge, were studied. Additionally, velocity ratios of r=1.6, 1.8, 1.9, 2.6, 2.8, 2.9, 3.6, 3.8 and
3.9 were also evaluated for ul=6a and ul=7a. When studying flow past a square cylinder,
Okajima et al (1992) realized that, for a Reynolds number of Re=1000, flow instabilities
suffered a sudden increase when compared to the flow patterns appearing at lower
Reynolds numbers. Scarano et al (2009) studied the flow around a square cylinder
experimentally and observed that the transitional Reynolds number between laminar and
turbulent flow happened to be at Re=1080, below which the flow remained laminar. On the
other hand, Sau (2009), Luo et al (2003) and Salinas et al (2014) reported the appearance of
three dimensional structures at much lower Reynolds numbers. The authors of the present
paper are very much aware that, especially for the higher Reynolds numbers and velocity
ratios presented in the present research, the flow must be seen as three dimensional.
Nevertheless, considering this is the first time this flow is being simulated on a wide range
of parameters and having in mind the richness of the flow structures appearing, the
evaluation of the flow in 2D shall be seen as the first step in understanding the proposed
configuration.

A typical laminar periodic vortex shedding is presented in Figure 6, in the form of
instantaneous vorticity and streamlines contour plots corresponding to six equally spaced
time instants within a shedding cycle of time period T. The Reynolds number was taken as
100, the velocity ratio being r=1.5. The distance between the splitter plate and the square
cylinder was considered to be 3 units, being the upstream length, ul = 6 units. Two types of
inviscid critical points, namely ‘center’ and ‘saddle’ can be observed. A critical point is a
location where the slope of streamline becomes indefinite; the point of zero velocity is
referred to as the ‘center’ while the point where two streamlines running in opposite
directions touch each other, is referred to as a ‘saddle’ point. From figure 6 it is clearly seen
that the saddle point of a shed vortex disappears before a new vortex is shed. Instantaneous
vorticity contours, further reveals the formation and shedding of vortices from the rear edge
of the square cylinder. The positive and negative vorticity, corresponding respectively to
counter-clockwise and clockwise motion, are presented by solid and dashed lines. The two
vortices in the rear of the cylinder exhibit a flapping motion while the mixing layer moves
into these growing vortices in the wake, only to be convected downstream in the form of a
vortical structure which scales with the height of the cylinder.

As seen in figure 6 for ratio r=1.5, the vortex shedding occurs alternatively with positive
and negative moment vortices. It was also found that alternate shedding was occurring at
ratios r=1.6 to 1.9, ul=6a. A similar shedding pattern was found for ul=5a and 7a for r<2.



As velocity ratio increased, the dissipation frequency of positive moment vortices
decreased before finally being dissipated as Kelvin-Helmholtz (KH) instability. This was
found to be occurring from ratio r=2 and above. Figure 7 presents the case when r=4, where
the KH instability was more prominent. According to the results obtained, the threshold
velocity ratio separating the cases for which positive and negative vortices are dissipated
alternatively into the wake, and the cases in which only negative moment vortices are being
shed and the positive moment vortices are being shed as Kelvin-Helmholtz instability, was
found to be around r =2, such threshold remained constant for the three upstream lengths
and Reynolds numbers studied, ul=5a, ul=6a, ul=7a, Re=100, 150 and 200.

When comparing the results obtained at different ratios, it was observed that whenever the
ratio was below r=3, the vortex dissipation had a higher regularity, but the simulations at r
>3, showed much faster and less organized vortex dissipation, as more random vortical
structures were being dissipated in the wake. For these cases, the mixing layer formed
upstream of the square cylinder, tended to break down before reaching the square cylinder,
therefore inducing very random vortex shedding into the wake with no regular pattern or
single shedding frequency, as presented in figure 11 from the FFT analysis of the drag
signal. The same phenomenon appeared with the increase of Reynolds number, although
the effect was much weaker than the similar one happening when the Reynolds number was
maintained constant and the ratio r increased.

For ul=7a, Reynolds 100 and velocity ratio r=4, the mixing layer breaks just upstream of
the square cylinder, creating random small vortical structures which are convected into the
wake of the square cylinder and causing disorganized downstream vortex shedding. It was
observed that the same phenomena occurred when ul=6a, ratio 4, but the Reynolds number
was 150. This can be attributed to the fact that when ul=7a the mixing layer has a longer
development length and therefore the shear stresses have more time to induce flow
instabilities in the upstream mixing layer, causing it to break away. For ul=5a, the mixing
layer was breaking upstream when r=4 and Reynolds number was 200. Therefore, it can be
concluded that for shorter upstream lengths the mixing layer tends to break at higher
Reynolds number. The breaking up of the mixing layer can be clearly seen with the help of
the vorticity contours in figure 8 for ul=6a, Re=200.

So far, from the present study it has been observed that the free shear layers shed from top
and bottom edges of the square cylinder become naturally unstable and roll up alternately to
form a large scale Vortex Street. Detailed inspection of the wakes via flow visualization,
show that there are a few distinct features in the flow structure for each of the studied cases.
For the unmodified square cylinder, the separated shear layers are deflected inwards
immediately after they pass the cylinder base. This is believed to be due to the lower fluid
velocity and pressure behind the rear edge of the square cylinder. In this region, the roll up
of the shear layer from the top side of the cylinder entrains fluid from the adjacent
irrotational flow into the growing vortex. The resulting backflow, due to this fluid
entrainment, engulfs the rear face causing the negative moment vortex to be shed
downstream. A similar mechanism occurs for the shedding of the positive moment vortices.
As a result of the present study, this phenomenon is observed to be occurring for ratios up
to r=1.9. It can be noted that for these small velocity ratios, the upstream mixing layer is



too weak to alter the vortex formation mechanism already introduced above. In the next
section this phenomenon will be addressed as the first oscillation mode.

o m () o 0
Figure (6): Vorticity and corresponding Figure (7): Vorticity and corresponding
streamline plots of vortex shedding cycle streamline plots of vortex shedding cycle
in the wake of the square cylinder for in the wake of the square cylinder for
ul=6a, Re=100 and r=1.5, (a, g) T/6; (b, ul=6a, Re=100 and r=4, (a, g) T/6; (b, h)
h) T/3; (c, i) T/2; (d, j) 2T/3; (e, k) 5T/6; T/3; (c, 1) T/2; (d, j) 2T/3; (e, k) 5T/6; (f,
fDT. NT.

At higher ratios r, the interaction of the mixing layer with the laminar boundary layer
emanating from the stagnation point, causes the free shear layer at the bottom of the square
cylinder to separate at the lower corner of the front face, whereas the free shear layer on top
of the square cylinder is attached to the surface and separates at the rear vertex of the top
edge. This causes the positive vortex formed at the bottom of the square cylinder to become
unstable, tending to break away from the free shear layer before reaching the rear edge of
the square cylinder, as seen in figure 7. Since the energy associated with the primary vortex
is much higher than that corresponding to the secondary vortex, the primary vortex grows
faster and entrains into the slowly growing secondary vortex at the bottom of the square
cylinder, causing it to be dissipated as Kelvin-Helmholtz instability. This phenomenon of
vortex shedding was found to occur for a relatively stable mixing layer; the breaking of the
mixing layer upstream was not observed. For Re=100 and ul=6a, the shedding mechanism
explained above, was found to be occurring from r=2 until r=3.9. As ratio r increased, the
stagnation point tended to move up on the front face of the square cylinder, causing the
laminar boundary layer to separate before reaching the lower corner of the front face.

The flow structures around the front and side faces of the square cylinder are qualitatively
unchanged when the splitter plate is moved upstream of the square cylinder. On the front



face, a well-defined stagnation point was observed in all cases. From this point, the fluid is
forced to move over the body and laminar boundary layers are developed along the front
surface. At the front corners of the square cylinder, the abrupt change in geometry induces
separation and free shear layers are initiated at these points. From figures 6 to 8 a distinct
stagnation point was observed for each case on the square cylinder front face. The
stagnation point displacement as a function of the velocity ratio r, ul=6a and for a Reynolds
number 100, is presented in figure 9. From figure 7, Re=100 and r=4, considering the
streamlines plots 7g to 7I, minor variations with respect to the change in the stagnation
point position can be observed. In one periodic shedding cycle, the stagnation point
oscillates between the positions (6; 8.25) and (6; 8.38), measured from the coordinate axes'
origin, see figure 2b. This stagnation point oscillation is attributed to the unstable
oscillating upstream mixing layer, which tends to break. In figure 8, for Re=200 and ratio
r=4, the stagnation point oscillates between the top and bottom corner of the square
cylinder front face, positions (6; 8.1) and (6; 8.45). It can be noted that the stagnation point
oscillation amplitude for this second case is about three times bigger than for the previous
one. This is due to the breaking up of the mixing layer upstream of the square cylinder,
which induces a wavering motion of the vortical structures generated upstream in tandem
with the vortices generated on the rear edge of the square cylinder. At this ratio r=4, the
free shear layer generated at the bottom of the square cylinder becomes unstable and
separates before reaching the leading edge lower corner. As a consequence, the positive
vortex at the bottom of the square cylinder separates before reaching the rear edge of the
square cylinder as it interacts with the breaking mixing layer formed upstream, causing a
very random and unstructured vortex dissipation in the wake of the square cylinder as seen
in the vorticity plots in figures 7 and 8 when compared to figure 6. This random dissipation
will be clearly seen from the FFT analysis of the drag coefficient presented in figure 11.

Due to the high velocity ratio, r=4, the negative vortical structures generated by the
breaking mixing layer interact with the positive vortex produced by the free shear layer at
the bottom of the square cylinder, suppressing its formation. As a result, the vortices
generated at the bottom of the square cylinder are weakened while the vortices formed at
the top are shed downstream as primary vortical structures. Despite the fact that the
incoming negative vortical structures tend to weaken the positive vortex generated below
the square cylinder, the positive vortical structures gradually grow in size until they are
eventually shed downstream as KH instability.-During the vortex growing process, the
stagnation point at the square cylinder front face moves downward. The lowest position of
the stagnation point is reached when the vortex formed below the square cylinder is about
to be shed. As soon as the vortex at the bottom is shed, the stagnation point moves up
reaching its highest position and the cycle is repeated again.

Figure 9 summarizes the stagnation point oscillation as a function of the velocity ratio r for
Re=100, ul=6a. Different oscillation patterns are associated to different amplitudes which
depend on the velocity ratio r. The ranges of velocity ratios, r where the displacement
amplitude of the stagnation point remains constant, will constitute an oscillation mode. The
change in modes of dissipation is occurring at r = 1.9, 2.9, 3.9. Dissipation mode occurring
from r = 1.5 to 1.9 will be called as mode 1, vortex shedding from r = 2 to 2.9 as mode 2,
for 3<r <3.9 will be called mode 3 and at r = 4 is mode 4. A general trend characterizing all
cases studied shows that as the ratio r increases from 1.5 to 4, the stagnation point's average



position tends to move upwards on the front face of the square cylinder. This phenomenon
was previously reported by Cheng et al (2007), when studying plane shear flow around a
square cylinder.
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4.2 Lift and Drag Coefficients, Cp g C; .

Figure 10 introduces the average lift, C. and drag coefficients, Cp for all velocity ratios
studied, ul=6a, Re=100, 150 and 200. The first observation to be made is that both
coefficients exhibit a stepwise profile, indicating the existence of different modes of vortex
dissipation in the wake of the square cylinder, as it was found in the case of the stagnation
point oscillations.

At this point it is interesting to recall the work done by Williamson (1996), which presented
that for an isolated circular cylinder placed in a laminar two dimensional flow, the
transition from a two dimensional to a three dimensional laminar regime was characterized
by two distinct discontinuities i.e. two different vibration modes. Sukri et al (2012) also
found two oscillation modes when studying uniform flow around a square cylinder with a
detached thin flat plate located downstream. Also, Malekzadeh and Sohankar (2012), when
studying laminar flow around a square cylinder with a splitter plate located upstream, found
three different oscillation modes. The existence of several oscillation modes in circular and



square cylinders have been found by many researchers but never for the conditions of the
flow simulated and presented in the present paper.

Regarding the average drag coefficient, figure 10(a) shows that it increases with the
increase of the ratio r, remaining constant for any given mode, regardless of the upstream
value of Reynolds number. The occurrence of the different dissipation modes is to be
attributed to the energy thresholds, sufficient to cause a different vortex shedding pattern in
the wake. This phenomenon can also be observed from figure 9. The stagnation point’s
position oscillation has the same amplitude in a given mode until the energy associated to
the flow increases and reaches a level which initiates the onset of a new mode. Similar
variations in the upstream mixing layer behavior between different modes, can also be seen
from the vorticity plots of Figures 6-8. In a given mode the stability of the upstream mixing
layer remains constant and as the velocity ratio r increases, the upstream mixing layer
becomes more unstable and finally tends to break before reaching the front face of the
square cylinder at ratio r=4 as seen in figure 8.

The average lift coefficient presented in figure 10(b) follows the same main trend as the
drag coefficient, for a given Reynolds number, as r increases, the average lift coefficient
increases due to an increase in the pressure difference above and below the square cylinder.
This can be attributed to the fact that as the ratio r increases, the velocity over the top
surface of the square cylinder also increases, causing the normal pressure on the top surface
to decrease with respect to the square cylinder bottom surface one, where the flow velocity
remains quite constant. Consequently, the pressure difference between the top and bottom
surfaces increases, leading to an increase of the body lift. Pressure differential between top
and bottom remains rather constant for a given mode.
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It is interesting to observe that at ratio r=4, the increase in average lift and drag coefficients,
when compared to the increase suffered at smaller ratios, is very much affected by the
increase of Reynolds number, see figures 10(a) and (b). Notice that at ratio r=4, the velocity
difference between the upper and lower square cylinder surfaces is at its highest, therefore
the pressure difference between both surfaces suffers a drastic increase, this pressure
increase directly influences the lift coefficient. Nevertheless the velocity increase between
the upper and lower square cylinder faces, cannot explain why at smaller velocity ratios, the
lift coefficient remains rather constant, in a given mode and for different Reynolds



numbers. The explanation in fact relies on vortex shedding. At lower ratios the mixing layer
is relatively stable and coupled with the stable shear layers on top and bottom of the square
cylinder, which leads to smaller pressure fluctuations. But at r=4, as the Reynolds number
increases from 100 to 200, the mixing layer becomes more unstable and breaks, inducing
instability in the shear layers and causing larger pressure fluctuations, the result is a higher
increase on the body average lift.
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Drag coefficient time dependent profiles, are introduced in figure 11 as a function of the
velocity ratio r, and for the three upstream Reynolds numbers, ul=6a. It can be seen that the
oscillation amplitude increases with the ratio r increase, the increase being over 80% when
the ratio r is increased from 2 to 3. A very similar amplitude increase is spotted for the three
Reynolds numbers studied Re=100, 150 and 200. For a given velocity ratio r, the oscillation
amplitude also increases with the increase of the Reynolds number, although this increase is
smaller than the one occurring when the velocity ratio r is modified. As an example, for r=2
and Reynolds number changing from 100 to 150, the oscillation amplitude increase is about
46%.

The increase of time dependent drag and lift oscillation amplitude as velocity ratio r
increases is due of two main phenomena. The first one is an earlier shear layer separation
from the square cylinder surfaces; the second one is the tendency of the mixing layer to
break. These two factors complement each other causing higher pressure fluctuations, as
can be seen from figures 11(d) to (f).



The Strouhal number, for all different velocity ratios and Reynolds numbers studied, is
presented in figure 12 for upstream distances of ul=6a and 7a. For a given Reynolds, the
Strouhal number increases with the increase of ratio r and remains constant for a given
oscillation mode. This figure clarifies that each mode is characterized by a given vortex
shedding frequency.

The evaluation of Strouhal number variation at a given mode, figure 12 (a), shows that in
mode 1, for Re =100, the Strouhal number has a value of 0.15, and when Re =200, Strouhal
number value is of 0.17. For velocity ratio, r =2, mode 2, when Reynolds number increases
from 100 to 200, the Strouhal number increases about 38%. In mode 3, the Strouhal
number increase when the Reynolds number goes from 100 to 200 is of 128% and at mode
4 the increase is about 103%.
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Figure 12: Strouhal Number, St versus Ratio, r for (a) ul=6a and (b) ul=7a

When comparing figures 12(a), (b), it can be seen that although the splitter plate distance
increases, the modes of vibration still follow the same pattern, clearly indicating a global
nature of the flow even in terms of Strouhal numbers. For a Reynolds number of 100, in
mode 1, the increase of Strouhal number between ul=6a and ul=7a is of 6%, for mode 2
there is a small decrease of 3.8%, for mode 3 the decrease is 2.8% and for mode 4 there is
an increase of 6%. Similar results are obtained for the other two Reynolds numbers studied.
Since the Strouhal number variation with the increase of splitter plate distance is very
small, it can be concluded that, for the cases studied, the splitter plate distance is not
affecting the downstream vortex shedding frequency.

The increase in Strouhal number between two consecutive modes tends to increase for
higher velocity ratios and higher Reynolds numbers, as an example, for a Reynolds number
of 100, the Strouhal number increases about 80% when going from mode 1 to mode 2. This
increase drops to 44% when moving from mode 2 to mode 3, and increases to 94% between
modes 3 and 4. It was observed that in modes 1 and 2 the predominant effect when
considering the Strouhal number change is due to the velocity ratio r, whereas in modes 3
and 4, the Reynolds number increase generates a higher variation in the Strouhal number.
This is due to difference in the fluid kinetic energy above and below the splitter plate,
which for ratios 3 and 4 is 8 and 15 times the Kinetic energy below the splitter plate
respectively. On the other hand, as the Reynolds number increases from 100 to 200, while
maintaining the same two ratios, the value of kinetic energy increase between above and



below the splitter plate, is respectively 32 times and 60 times the kinetic energy below the
splitter plate at Re=100.

Conclusions:

The wake and mixing layer interactions analyzed in the present study are primarily
dependent on the velocity ratios. Four different modes of vortex dissipation were observed
as the velocity ratio increased from 1.5 to 4. The vortex shedding mechanism in mode 1
was similar to the flow past a square cylinder with shedding of positive and negative
moment vortices alternatively due to smaller velocity ratios. In the case of modes 2, 3 and
4, however, only negative vortices are shed downstream and the positive moment vortices
are dissipated in the form of Kelvin-Helmholtz instabilities. The onset of Kelvin-Helmholtz
instabilities in the wake occurs at velocity ratio 2, independent of the upstream Reynolds
number and length, ul. Physical characteristics of the flow such as upstream mixing layer,
stagnation point oscillation amplitude, vortex shedding pattern, Strouhal number and
average lift and drag remain constant in any given mode. The tendency for the free shear
layer to separate before reaching the lower vertex of leading edge, increases with the
increase of ratio r. It was observed that the stagnation point moves upwards on the square
cylinder's front face as the ratio r increases. A sudden variation in the position of the
stagnation point was observed from mode 1 to mode 2, due to the change in the vortex
shedding mechanism. Since the instability of the upstream mixing layer increases as the
flow progresses from mode 2 to 4, the stagnation point oscillation amplitude also increases.
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