
Computing Explanations for Unlively Queries in Databases 
Guillem Rull1,2 Carles Farré2 Ernest Teniente2 Toni Urpí2

Universitat Politècnica de Catalunya 
Jordi Girona 1-3 

08034 - Barcelona 
phone: +34934137887 

{grull | farre | teniente | urpi}@lsi.upc.edu 
 
 

ABSTRACT 
A query is lively in a database schema if it returns a non-empty 
answer for some database satisfying the schema. Debugging a 
database schema requires not only determining queries (as well as 
views or tables) that are not lively, but also fixing them. To make 
that task easier it is required to provide the designer with some 
explanation of why a query is not lively. To the best of our 
knowledge, the existing methods for liveliness checking in 
databases do not provide such explanations. An explanation is 
understood as the minimal set of constraints that are responsible 
for the non-liveliness of the tested query. In this paper we propose 
a method for computing such explanations which is independent 
of the particular method used to determine liveliness of a given 
query. Our method provides three levels of search: one 
explanation, a maximal set of non-overlapping explanations, and 
all explanations. The first two levels require only a linear number 
of callings to the underlying method. In addition, we propose a 
filter to reduce the number of callings to the underlying liveliness 
method. We also experimentally compare our method with a more 
naive method for query liveliness and with the best known 
method for finding unsatisfiable subsets of constraints. 

1. INTRODUCTION 
 A query is lively [2,4,8] in a database schema if it returns a 
non-empty answer for some database satisfying the schema. 
Clearly, queries which are not lively are meaningless since they 
will always have an empty extension. Unliveliness of a certain 
query may be due either to the query definition itself (which may, 
for instance, contain a contradiction) or to the integrity constraints 
of the schema that prevent the query to ever have any instance. In 
a similar way, liveliness applies also to views and tables of the 
schema. 
 Debugging a database schema requires not only determining 
queries, views or tables that are not lively, but also fixing them. 
To make that task easier it is required to provide the designer with 
some explanation of why a query is not lively. However, as far as 
we know, existing methods for liveliness checking in databases do 
not provide such explanations. 
 An explanation is understood as the minimal set of constraints 
that are responsible for the non-liveliness of the tested query. 
Minimality ensures that no proper subset of an explanation will 
also be an explanation. In general, there may be more than one 
explanation for a certain liveliness test. Note that the empty set of 
constraints will also be an explanation when the query definition 
itself already contains a contradiction. 
 The explanations are intended to help the database designer to 
find the problem and to fix it. Assuming that all the tables and 
views mentioned in the definition of the tested query have already 
been checked and, thus, they are known to be lively, the designer 

only should focus on the constraints forming the explanation and 
on the tested query definition itself. 
 The main goal of this paper is to propose a method that, given 
any known method for liveliness checking in databases, allows 
this method to compute explanations when it determines that a 
given query is not lively. I.e., our method will allow computing 
explanations independently of the particular method used to 
determine liveliness. 
 We analyze two different approaches to compute such 
explanations. The forward approach follows the straightforward 
way, which consists on checking all subsets of constraints as a 
candidate explanation, starting with the empty set and moving to 
subsets with higher cardinality. In contrast, the backward 
approach is intended to find a first explanation quickly and then to 
use the knowledge from that explanation to find the remaining 
ones.1 2

 The method we propose is based on the backward approach 
and, in addition to be more efficient, it provides three levels of 
explanation search. The first level is aimed at finding just one 
explanation. This is done by reducing the number of constraints in 
the schema until only the constraints forming the explanation 
remain. In the second level, our method finds the maximal set of 
non-overlapping explanations, which includes the one found in 
the previous phase. Finally, in the third level, we compute all 
explanations by taking advantage of the fact that the remaining 
explanations must overlap with the ones found in the previous 
phases. The first two levels require only a linear number of calls 
to the underlying liveliness method, with respect to the number of 
constraints in the schema. The third level introduces an 
exponential number of such calls. 
 We also propose a filter that can be used in both approaches to 
reduce the number of times that the underlying method for 
liveliness checking is called to compute the explanations. The 
filter is based on discarding those candidate subsets that contain 
constraints that are not relevant for the liveliness test. The non-
relevant constraints are those that refer to tables or views that are 
not required to contain tuples to make the tested query lively. 
 We provide an experimental evaluation to compare the 
backward approach with respect to the forward approach and also 
with respect to the best known method for finding minimal 
unsatisfiable subsets of constraints, the hitting set dualization 
approach, proposed in [1] for the context of type error and circuit 
error diagnosis. We also study the behavior of the backward 
approach when varying some parameters like the number and size 
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of the explanations. These experiments have been performed 
using our CQC Method [3] as liveliness method. The CQC 
Method is able to handle a broader class of database schemas and, 
thus, we are able to consider schemas with a high degree of 
expressiveness. 
 The rest of the paper is organized as follows. Section 2 
introduces background concepts. Section 3 describes the two 
approaches for computing explanations for non-lively queries in 
databases, the backward and forward approaches, and the filter. 
Section 4 introduces the experiments we performed and comment 
on the results. Section 5 exposes the related work and, finally, 
section 6 presents the conclusions and future work. 

2. BACKGROUND 
 In this section, we introduce the basic concepts and the logic 
notation used thorough the paper. 
 A database schema S is a tuple (DR, IC) where DR is a finite 
set of deductive rules and IC a finite set of constraints. A 
deductive rule has the form: 
 

 p(X̄) ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧  
 ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct
 

A constraint (or condition) has the denial form: 
 

 ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧  
 ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct. 
 

The symbols p and r1, ..., rm are predicates. The tuples X̄, X̄1, ..., 
X̄n, Ȳ1, ..., Ȳs contains terms, which are either variables or 
constants. Each Ci is a built-in literal in the form of t1 θ t2, where 
t1 and t2 are terms and operator θ is <, ≤, >, ≥, = or ≠. The atom 
p(X̄) is the head of the rule, and r1(X̄1), ..., rn(X̄n), ¬rn+1(Ȳ1), ..., 
¬rm(Ȳs) are positive and negative ordinary literals (those that are 
not built-in). We require every rule and constraint be safe, that is, 
every variable occurring in X̄, Ȳ1, ..., Ȳs, C1, ..., Ct must also appear 
in some X̄i. Note that we express constraints stating what may not 
happen instead of what should happen. 
 Predicates that appear in the head of a deductive rule are 
derived predicates also called intensional database (IDB) 
predicates. They correspond to views or queries. The rest are base 
predicates also called extensional database (EDB) predicates. 
They correspond to tables. 
 For a database schema S = (DR, IC), a database D is an EDB, 
that is, a set of ground facts about the base predicates of S (the 
tuples stored in the database). We denote by DR(D) the whole set 
of ground facts about base and derived predicates that are inferred 
from an instance D, i.e., the fix-point model of DR∪D. 
 A database D violates a constraint ← L1 ∧ ... ∧ Lk if (L1 ∧ ... ∧ 
Lk)σ is true on DR(D) for some ground substitution σ. A database 
D is consistent with the schema S if it violates no constraint in IC. 
 A query over a database schema is a finite set of deductive 
rules that define the same n-ary predicate. Given a database 
schema S = (DR, IC) and a database D, the answer to a query Q, 
defining the predicate q, over S on D, written AQ(D), is the set of 
all ground facts about q obtained evaluating the deductive rules 
from both Q and DR on D, i.e., AQ(D) = {q(ā) | q(ā) ∈ 
(Q∪DR)(D)}. 

3. COMPUTING EXPLANATIONS 
 We assume that we have a procedure isLively to perform 
liveliness tests of query predicates. Therefore, a liveliness test is a 

call to isLively(Q, S), which will return true if Q is lively in S and 
false otherwise. We say that an explanation for a liveliness test is 
a subset of integrity constraints appearing in the database schema 
such that they prevent the test to return true. In other words, the 
predicate we are testing is still not lively when we remove all 
integrity constraints that are not in the explanation. 
 
 DEFINITION 3.1. An explanation E for a liveliness test 
isLively(Q, S = (DR, IC)) that returns false is a minimal subset of 
constraints from S such that considering only these constraints the 
tested predicate Q is still not lively, i.e., isLively(Q, S’ = (DR, E)) 
returns false too. 
 
 Note that, because E is minimal, isLively(Q, S’’ = (DR, E’)) 
will return true for any E’ ⊂ E, i.e. the query Q is lively for any 
proper subset of E. 
 For the sake of example, let us consider a schema S with two 
tables, R(A,B,C) and T(D,G). Table R has a check constraint 
defined over column B stating that B has to be lower than 10. 
Table T has a check constraint that forces column G to be greater 
than 30. Finally, there is a foreign key defined in table R over 
column C that references column D in table T. More formally, 
schema S is: 
 

 ← R(A,B,C) ∧ B ≥ 10 
 ← T(D,G) ∧ G ≤ 30 
 ← R(A,B,C) ∧ ¬fkRtoT(C) 
 fkRtoT(C) ← T(C,G) 
 

Note the use of an auxiliary derived predicate to express the 
foreign key constraint. That is necessary, as we require negation 
to be safe. 
 Let us assume now that we also have a query Q that we want to 
check if it is lively in S: 
 

 Q(A) ← R(A,B,C) ∧ T(C,G) ∧ B > G 
 

 As we can see, the query Q performs a join with the two tables 
on R.C and T.D with the additional condition of selecting only 
those pairs of tuples from R and T such that R.B > T.G. 
 Since, in this example, isLively(Q, S) returns false, we want to 
figure out the reason for that, i.e., the set of possible explanations. 
Here, there is only one explanation E:  
 

 E = {← R(A,B,C) ∧ B ≥ 10, ← T(D,G) ∧ G ≤ 30} 
 

 Explanation E can be interpreted as follows. The requisite that 
all the values in column B of R must be lower than 10 together 
with the one that forces the values in column G of T to be greater 
than 30 makes impossible to find any pair of tuples from R and T 
where R.B > T.G.  
 It is worth to note that the foreign key constraint is not included 
in the explanation. The reason is that the join performed by Q on 
R.C and T.D is not only compatible with that constraint but, 
indeed, it selects those pairs of tuples of R and T bound together 
to fulfill the constraint. 
 In this paper, we address the problem of finding all possible 
explanations in a way that is independent of the particular 
liveliness checking method that we use to perform the liveliness 
tests. Therefore, isLively is a black-box procedure that we call 
several times, modifying the (sub)set of integrity constraints 
considered in each call. This can be done forward, that is, by 
calling isLively with an increasing number of constraints -starting 
from the empty set of constraints; or backward, if isLively is 



called decreasing each time the number of constraints that are 
considered. 

3.1. Computing Explanations Forward 
 This is the most straightforward approach to compute the 
explanations. It consists in trying all the subsets of integrity 
constraints of the schema. 
 We start with the empty subset, and then we check the subsets 
with only one integrity constraint, then the subsets with two 
integrity constraints, and so on. 
 If the liveliness test for a given subset E, isLively(Q, S’ = (DR, 
E)), returns false then E is an explanation and there is no point to 
check any superset of it. Recall that, by the definition 3.1, 
supersets of explanations are not explanations because they are 
not minimal. 
 This process ends when all the subsets that still have not been 
checked are supersets of the explanations already founded. 
 In the case that the liveliness test for the initial empty subset, 
isLively(Q, S’ = (DR, ∅)), returned false, this would mean that the 
non-liveliness of the query Q is not related to any integrity 
constraint. Therefore, the reason should be found in a 
contradiction in the definition itself of Q, in which may be 
involved not only the deductive rules defining Q but also those 
rules in DR that define the derived predicates mentioned directly 
or indirectly by Q. 
 The major drawback of this forward approach is the possibly 
huge number of subsets to be checked. In order to discard some of 
them in advance to avoid unnecessary executions of the liveliness 
test, we can apply some filters. Section 3.3 below discusses this 
point. 

3.2. Computing Explanations Backward 
 In summary, the backward approach obtains explanations by 
discarding successively those constraints that are not included in 
any explanation. Therefore, in contrast with the forward approach, 
liveliness tests are performed with a decreasing number of 
constraints starting from the initial full set. 
 The backward approach consists of three phases. In the first 
one, we obtain just one explanation. In the second phase, we 
obtain those explanations that do not overlap with the one 
obtained in the first phase nor with other explanations found in 
this phase. We say that two explanations overlap if they share at 
least one constraint. Finally, in the third phase, we obtain the 
remaining explanations, that is, those that overlap with the 
explanations obtained in the two previous phases. The interesting 
point of the backward approach is that the two first phases require 
a linear number of repetitions of the test, independently of the size 
of the explanations. 

3.2.1. Phase 1 
Let us assume that a given predicate Q is not lively on a certain 
database schema S, so, isLively(Q, S) returns false. Phase 1 starts 
with performing the liveliness test of Q on a new schema 
containing all the integrity constraints from the former schema 
except one, c. If isLively(Q, S-{c}) returns false, this means that 
there is at least one explanation that does not contain c. Therefore, 
we can discard c definitely and repeat the liveliness test removing 
another constraint. Note that this does not mean that c does not 
belong to any explanation but only that c will not be included in 
the single explanation that we will obtain at the end of this phase. 
In contrast, if isLively(Q, S-{c}), this means that there are one (at 
least) or more explanations, each of them including c. Therefore, 

c cannot be discarded and, thus, it is re-introduced in the schema 
and we repeat the liveliness test removing another constraint. We 
continue this process of removing a constraint, testing liveliness, 
discard or reintroduce, removing another constraint and so on 
until all the constraints in the schema have been considered. 
  If at the end of this process all the constraints have been 
removed from the schema, we obtain an empty explanation, 
meaning that the predicate Q is not lively even without 
constraints. Otherwise, we have obtained just one explanation 
consisting of all those constraints that remain in the schema, that 
is, the ones that have been considered but not discarded during the 
process described above. The algorithm in Figure 1 formalizes 
such a process. 
 

phase_1(Q: predicate, S = (DR, IC): schema): explanation
U := IC // set of “unchecked” constraints 
E := IC // explanation 
while (∃c ∈ U) 

E := E – {c} 
if (isLively(Q, S’ = (DR, E)))  

E := E  ∪ {c}  
endif 
U := U  – {c} 

endwhile 
return E  

 

Figure 1: Phase 1 of the backward approach. 
 
 For the sake of example, let us assume that Q is a query defined 
as follows: 
 

 Q ← R(X,Y,Z) ∧ V(Z,A,B) ∧ T(Z,U,V) ∧ 
 Y > 5 ∧ B < X ∧ V = 2 
 

Let us also assume that S is a database schema with no deductive 
rules but containing the following constraints, labeled as c1, c2, 
c3 and c4, repectively: 
 

 ← T(X,Y,Z) ∧ Z = 2 (c1) 
 ← R(X,Y,Z) ∧ Y > X (c2) 
 ← R(X,Y,Z) ∧ X > 5 (c3) 
 ← V(X,Y,Z) ∧ Z < 10 (c4) 
 

In this case predicate Q is not lively in S. Concretely, there exist 
three explanations: 
 

 E1 = {c1} 
 E2 = {c2, c3} 
 E3 = {c3, c4} 
 

Let us call phase_1(Q, S), with S = {c1, c2, c3, c4} to find one of 
these three explanations. If we assume that the constraints are 
considered in the order that they were listed above, c1 is 
considered first. Since isLively(Q, {c2, c3, c4}) returns false, c1 is 
discarded. Constraint c2 is considered next. Since isLively(Q, {c3, 
c4}) returns false, c2 is also discarded. Constraint c3 is considered 
next. In this case, isLively(Q, {c4}) returns true. Therefore, c3 is 
not discarded. Finally, constraint c4 is considered. Since 
isLively(Q, {c3}) returns true, c4 may not be discarded either. As 
a result, phase_1(Q, S) returns {c3, c4}, that is, explanation E3. 
Note that if the constraints had been considered in reverse order, 



for instance, the returned explanation would have been another: 
{c1} = E1. 

3.2.2. Phase 2 
 The second phase of this backward approach assumes that we 
already found a non-empty explanation in the previous phase. The 
goal now is to obtain, at the end of the phase, a maximal set of 
explanations such that all the explanations in the set are disjoint, 
i.e., there is no constraint belonging to more than one explanation. 
One of these explanations will be the one we already found in 
phase 1. 
 This phase proceeds as follows. We take the original schema 
and remove all the constraints included in the first explanation we 
found. In this way, we “disable” that explanation, in order to 
discover the other explanations, if any, that in phase 1 were 
“hidden” by it. Next, we perform the liveliness test with the 
remaining constraints. If the test returns false that means there is 
still, at least, another explanation non-overlapping with the one 
we have. To find out such a new explanation, we apply the first 
phase over the remaining explanations. On the contrary, if after 
removing the constraints from the former explanation, the 
liveliness test returns true that means that all the remaining 
explanations, if any, overlap with the first we had. 
 We repeat the process, removing the constraints from all the 
explanations we have found (the one from the first phase and the 
new ones we already found in this phase), until there are no more 
explanations that do not overlap with the ones we already have. 
The algorithm in Figure 2 formalizes such a process. 
 

phase_2(Q: predicate, S = (DR, IC): schema, 
 EP1: explanation): Set(explanation) 

SE := {EP1} // set of explanations 
R := IC - EP1 // set of “remaining” constraints 
while (not isLively(Q, S’ = (DR, R))) 

E := phase_1(Q, S’ = (DR, R)) 
SE := SE ∪ {E} 
R := R – E 

endwhile 
return SE 

 
 

Figure 2: Phase 2 of the backward approach. 
 
 Continuing with the example that we introduced to illustrate 
Phase 1, recall that we found that {c3, c4} was an explanation for 
the fact that isLively(Q, {c1, c2, c3, c+4}) had returned false. 
According to Phase 2, we start now by calling isLively(Q, {c1, 
c2}). Since this call returns false too, it means that there is another 
explanation in {c1, c2}. Therefore, we call phase_1((Q, {c1, c2}), 
which returns {c1} as a new explanation. Next, we call 
isLively(Q, {c2}), which returns true and, thus, Phase 2 ends. The 
final output for this phase is {{c3, c4}, {c1}} as a set of disjoint 
explanations. 

3.2.3. Phase 3 
 The third phase assumes that we already obtained a set of 
disjoint explanations by performing the previous phases. The goal 
now is to find all the remaining explanations, that is, those that 
overlap with some of the explanations that we already have. To do 
this, we must remove one constraint from each known explanation 
to “disable” them, and then apply the first and second phases over 

the remaining constraints. The drawback here is that there could 
be many constraints in each explanation and, thus, many 
constraints to be the one that will be removed to disable each 
explanation. Nevertheless, we should try all combinations to 
ensure we find all the remaining explanations. 
 Once we have removed one constraint for each explanation and 
executed the previous two phases over the remaining constraints, 
we get some new explanations that we will add to the set of 
explanations we already have. Next, we should repeat this third 
phase, taking into account these added explanations, until no new 
explanations are found. The algorithm in Figure 3 formalizes such 
a process. 
 

phase_3(Q: predicate, S = (DR, IC): schema, 
 SE: Set(explanation)): Set(explanation) 

AE := SE 
Combo := combinations(AE)  
while (∃C ∈ Combo) 

R := IC – C 
if (not isLively(Q, S’ = (DR, R))) 

E := phase_1(Q, S’ = (DR, R)) 
NE := phase_2(Q, S’ = (DR, R), E) 
AE := AE ∪ NE 
Combo := combinations(AE) 

endif 
Combo := Combo – {C} 

endwhile 
return AE 

 
combinations(SE: Set(explanation)): Set(Set(constraint)) 
// returns all possible sets of constraints that can be obtained 
by selecting one constraint from each explanation in SE. 

 
 

Figure 3: Phase 3 of the backward approach. 
 
 Following the example of the previous sections, we already had 
found two explanations: {c3, c4} and {c1}. Now, if there is still 
some other explanation it will overlap with these. Thus, to avoid 
these explanations to hide the remaining ones, we select one 
constraint from each explanation and remove them from the 
original schema. In this example, there are two possibilities: 
 

1) remove {c1, c3} 
2) remove {c1, c4} 

 

 Let us consider the first option. In this case, isLively(Q, {c2, 
c4}) returns true and, thus, no further explanation can be found. 
 In contrast, if we consider the second option, we get that 
isLively(Q, {c3, c2}) returns false. Therefore, we can still find 
further explanations. Next, we call phase_1(Q, {c3, c2}), which 
returns a new explanation: {c3, c2}. Clearly, phase_2(Q, {c3, c2}, 
{c3, c2}) will return {{c3, c2}} as a new set of explanations. 
 As we have found new explanations, we must repeat the 
process taking now into account all the explanations discovered 
so far. This time, there are four possible ways of removing one 
constraint from each explanation: 
 

1) remove {c1, c2, c3} 



2) remove {c1, c2, c4} 
3) remove {c1, c3} 
4) remove {c1, c3, c4} 

 

It is worth to note the option 3. As one of the constraints of the 
new explanation is shared with other explanation, by removing it 
we are “disabling” two of the three explanations. This is the case 
of constraint c3. Thus, the option 3 requires removing only two 
constraints as a difference from the other options that require 
three. 
 After trying the four possibilities, we reach the conclusion that 
there are no further explanations and, thus, the phase 3 is ended. 
The outcome of this phase and of the entire approach is the set 
formed by the three explanations: {{c3, c4}, {c1}, {c3, c2}}. 

3.3. Filtering Candidates with Non-Relevant 
Constraints 
As we have seen, both the forward approach and the backward 
approach require performing several calls to isLively. In the case 
of the forward approach to check if the current subset of 
constraints is really an explanation and in the case of the 
backward approach to check if it is, indeed, a superset of an 
explanation. The filter described in this section consists in 
detecting those candidates that contain some constraint that we 
can ensure it is not relevant for the liveliness test. We can say that 
a constraint is not relevant for the test when to get a fact about the 
tested predicate it is not required to have also a fact about all the 
positive ordinary predicates in the constraint. The idea is that we 
do not need to perform the liveliness test for these candidates. 
 For example, let us assume that we have the following database 
schema: 
 

 ← R(X,Y,Z) ∧ ¬fkRtoS(Z) 
 ← R(X,Y,Z) ∧ Z < 5 
 ← S(X,Y) ∧ X ≥ 5 
 ← T(X,Y,Z) ∧ Y < Z 
 

 fkRtoS(Z) ← S(Z,Y) 
 

Let us also assume that we are testing if the query Q is lively, 
being Q defined by the following rule: 
 

 Q(X,Y) ← R(X,Y,Z) 
 

Let us suppose that we are using the forward approach. During the 
process, we will reach the following candidate for being an 
explanation: 
 

 {← R(X,Y,Z) ∧ Z < 5,  ← S(X,Y) ∧ X ≥ 5} 
 

Taking into account that our candidate does not contain the 
foreign key from R to S, Q is lively if we consider only these two 
constraints and, thus, this candidate is not an explanation. 
Applying the filter, we can see that the second constraint, ← 
S(X,Y) ∧ X ≥ 5, is not relevant for the liveliness test of Q when it 
is performed over the schema containing only these two 
constraints. The constraint is not relevant because there is no need 
to have a fact about S in order to get a fact about Q, e.g. the 
database {R(0,0,5)}. Therefore, we could avoid performing the 
liveliness test for this candidate and go directly to the next one. 
 The filter can be applied in the two approaches for computing 
explanations. Next, we are going to explain how apply the filter in 
each case. 
 To apply the filter in the forward approach, we can follow the 
next steps: 

 

1. First, before starting the process, we could remove the 
integrity constraints that are already not relevant for the test 
when this is performed over the original database schema. 

2. Then, during the process, for each candidate, we could 
compute the constraints that are relevant for the test not over 
the original schema but over the schema containing only the 
constraints in the candidate. The key point is that constraints 
that were relevant in the original schema may be not relevant 
now. 
3. If at least one of the constraints in the candidate is not 

relevant, then we can directly discard the candidate. If the 
candidate was make the test fail, then the same would 
happen after removing the non-relevant constraint and thus 
the candidate would be not minimal. 

4. If all the constraints in the candidate are relevant, then we 
should perform the liveliness test to check whether it is an 
explanation or not. 

 

 Let us take again the previous example. In step 1, we would 
find that the constraint ← T(X,Y,Z) ∧ Y < Z is not relevant for the 
liveliness test of V over the original schema. Thus, we would 
remove it and perform the backward approach considering the 
schema only with the three remaining constraints. Let us suppose 
now that we have reached the candidate we mentioned earlier: 
{← R(X,Y,Z) ∧ Z < 5, ← S(X,Y) ∧ X ≥ 5}. Applying step 2, we 
would recompute the relevant predicates. Now, as we are not 
considering the foreign key, the predicate S is not relevant and, 
thus, neither the constraint ← S(X,Y) ∧ X ≥ 5. Applying step 3, we 
would discard the candidate without performing the liveliness 
test, and we would move to the next candidate. 
 In the backward approach, the filter can be applied along the 
phase 1 (which is called also from phases 2 and 3). The steps are 
the following: 
 

1. Before starting the phase 1, we could remove the constraints 
that are already non-relevant for the test over the original 
schema (as we did with the forward approach). 

2. During the phase 1, when we remove one integrity constraint 
ICi from the schema, we could recompute what predicates are 
relevant for the test when it is performed over the schema 
containing only the remaining constraints. 
3. If some of the remaining constraints are not relevant, we 

can remove them before performing the test. 
4. If then the test says that the predicate is still not lively 

we will have removed more than just one constraint 
and thus reduced the number of test execution we will 
have to do. 

5. Otherwise, if the test says that the predicate is now 
lively, we will have to put back the constraint ICi we 
initially removed together with the non-relevant ones. 

6. If all the constraints are relevant, we can do nothing but 
continue the normal execution of the phase 1. 

 

Let us consider again the same example as before. As in the case 
of the forward approach, in step 1 we would detect that the 
constraint ← T(X,Y,Z) ∧ Y < Z is not relevant and, thus, we could 
eliminate it and perform the phase 1 over the remaining three 
constraints. Let us suppose that we follow the order in which the 
constraints were listed before. Then, we first would eliminate the 
foreign key constraint. That would leave two constraints in the 
schema: ← R(X,Y,Z) ∧ Z < 5 and ← S(X,Y) ∧ X ≥ 5, this is, the 
same candidate we mentioned before. As we said, the later 
constraint is non-relevant for the liveliness test when the schema 



contains only these two constraints. Thus, we could remove it and 
perform the test with only one constraint: ← R(X,Y,Z) ∧ Z < 5. 
Because the predicate becomes lively, we should put back the two 
removed constraints (the foreign key and the one about S). The 
phase 1 would remove then the next constraint: ← R(X,Y,Z) ∧ Z < 
5, and it would continue its execution in a similar way. 
 To characterize formally the constraints that are relevant for a 
certain liveliness test, we are going to assume that each constraint 
is reformulated as a rule defining a derived predicate ICi in such a 
way that the constraint is violated when its corresponding 
predicate ICi has a fact in the database. 
 Let Q be a generic derived predicate defined by the following 
rules: 
 

 Q(X̄) ← PP

1
1(X̄ ) ∧ ... ∧ P1

1 P s1(X̄s1) ∧ C1
1 ∧ ... ∧ C1

r1  
 ∧ ¬S1

1(X̄1) ∧ ... ∧ ¬S1
m1(X̄m1) 

 ... 
 Q(X̄) ← PP

k
1(X̄ ) ∧ ... ∧ Pk

1 P sk(X̄sk) ∧ Ck
1 ∧ ... ∧ Ck

rk  
 ∧ ¬Sk

1(X̄1) ∧ ... ∧ ¬Sk
mk(X̄mk) 

 

The symbols PP

1
1, ..., P1

P s1, S1
1, ..., S1

m1, ..., PP

k
1, ..., Pk

sk, Sk
1, ..., Sk

mk 
are predicates and C1

1, ..., C1
r1, ..., Ck

1, ..., Ck
rk are built-in literals. 

We will define neg_preds(Q) as the predicates of those negative 
literals that appear in the definition of Q, taking into account all 
possible unfoldings. Formally: 
 

 neg_preds(Q) = {{Sj
i | 1 ≤ i ≤ mj} | 1 ≤ j ≤ k} ∪  

 {{neg_preds(PP

j
i) | 1 ≤ i ≤ s } | 1 ≤ j ≤ k} j

 neg_preds(R) = ∅   if R is a base predicate 
 

 We are going to define what predicates are relevant for the 
liveliness test of a certain predicate P. There will be two types of 
relevancy: p-relevancy and q-relevancy. The p-relevant predicates 
will be those that in order to build a database where P is intended 
to be lively, it may be required to insert some fact about them in 
that database. The q-relevant predicates will be the derived 
predicates such that although it is not explicitly required for them 
to be lively in order to make P lively, they may become lively as a 
result of the facts inserted in the database. 
 
 DEFINITION 3.2. Assuming that we are testing the liveliness of a 
certain predicate P, we can say the following: 
 

• Predicate P is p-relevant. 
• If Q is a derived predicate and it is p-relevant, then PP

j
i with 1 ≤ 

i ≤ s  and 1 ≤ j ≤ k, are also p-relevant predicates. j
• If Q is a derived predicate and PP

j
1, ..., Pj

P sj are p-relevant or q-
relevant, for some 1 ≤ j ≤ k, then Q is q-relevant. 

• If Q is a derived predicate and there is a negated literal about 
Q in the body of a rule of some p-relevant derived predicate, 
and PP

j
1, ..., Pj

P sj are p-relevant or q-relevant predicates, for some 
1 ≤ j ≤ k, then Sj

1, ..., Sj
mj and the predicates in 

neg_preds(PP

j
1

• If IC
)∪...∪neg_preds(Pj

P sj) are p-relevant. 
i ← P1(X̄1) ∧ ... ∧ Ps(X̄s) ∧ C1 ∧ ... ∧ Cr ∧ ¬S1(X̄1) ∧ ... ∧ 

¬Sm(X̄m) is an integrity constraint and P1, ..., Ps are p-relevant 
or q-relevant predicates, then ICi is q-relevant and the 
predicates in neg_preds(ICi) are p-relevant. 

 

It is worth to note that a predicate defined by an integrity 
constraint cannot be p-relevant, as it is not mentioned anywhere 
but in the head of the constraint and, thus, only the third point of 
the definition is applicable. 
 

 DEFINITION 3.3. We will say that an integrity constraint ICi ← 
L1 ∧ ... ∧ Ln is relevant for the liveliness test of P if and only if the 
derived predicate ICi is q-relevant for that test. 
 
 As an example, let us assume that we have the following 
database schema: 
 

 V(X,Y)  ← R(X,A,B) ∧ S(B,C,Y) ∧ ¬W(A,C) 
 W(X,Y) ← P(X,Y) ∧ Y > 100 
 P(X,Y)  ← T(X,Y) ∧ ¬H(X) 
 Q(X)  ← S(X,Y,Z) ∧ Y ≥ 5 ∧ Y ≤ 10 
 IC1  ← R(X,Y,Z) ∧ ¬T(Y,Z) 
 IC2  ← F(X,Y) ∧ X ≤ 0 
 

Derived predicates IC1 and IC2 correspond to two constraints. Let 
us also assume that we want to test if V is lively in this schema. 
Let us now compute what predicates are relevant for this 
liveliness test: 
 

(1) We star with p-relevant = ∅ and q-relevant = ∅ 
(2) The first point in the definition of predicate’s relevancy says 

us that, as we are testing the liveliness of V, V is a p-relevant 
predicate. 

(3) Then, p-relevant = {V} and q-relevant = ∅ 
(4) Now that we know V is p-relevant, by the second point of the 

definition we can infer that R and S are also p-relevant. 
(5) p-relevant = {V, R, S} and q-relevant = ∅ 
(6) As long as S is p-relevant, by the third point of the definition 

we can say that Q is q-relevant,  
(7) p-relevant = {V, R, S} and q-relevant = {Q} 
(8) By the fifth point, as R is p-relevant we can say that IC1 is q-

relevant and that T is p-relevant. 
(9) p-relevant = {V, R, S, T} and q-relevant = {Q, IC1} 
(10) Once we know that T is p-relevant, by the third point again 

we can conclude that P is q-relevant. 
(11) p-relevant = {V, R, S, T} and q-relevant = {Q, IC1, P} 
(12) We can apply now the fourth point of the definition. The 

derived predicate W appears negated in the rule of V and V is 
p-relevant. The predicates appearing positively in W, that is, 
P, are also relevant. Thus, we can infer that the predicates 
appearing negated in W or some of its unfoldings are p-
relevant. That means H is p-relevant. 

(13) p-relevant = {V, R, S, T, H} and q-relevant = {Q, IC1, P} 
(14) We still can apply the third point and say that as P is q-

relevant then W is q-relevant also. 
(15) p-relevant = {V, R, S, T, H} and q-relevant = {Q, IC1, P, W} 
(16) We cannot infer anything new and, thus, there are no other 

relevant predicates. 
 

Finally, we can say that IC1 is a relevant constraint for the 
liveliness test of V and that IC2 is not relevant. It is easy to see 
intuitively that IC2 is not relevant because predicate F is not 
mentioned anywhere else (it is also non-relevant). 
 
 PROPOSITION 3.4. Let P be a non-lively predicate and let ICi be 
a constraint from the database schema. If ICi is not relevant for 
the liveliness test of P, then P is still non-lively after removing ICi 
from the schema. 
 
 PROOF. Let us assume that after removing ICi from the schema 
P becomes lively. It follows that exists some minimal database D 
such that D is consistent and some fact about P is true in D. 
Database D is minimal in the sense that there is no database D’ 



with less tuples than D, such that D’ is also consistent and 
contains some fact about P. 
 As long as P becomes lively after removing ICi, database D 
should violate ICi. Our goal now is to show that it follows that ICi 
is q-relevant for the liveliness test of P. To reach that, we will do 
induction over the unfolding level of the predicates. A base 
predicate has an unfolding level of 0. A derived predicate such 
that the maximum unfolding level of the predicates appearing 
positively in its rules is n, has an unfolding level of n+1 The base 
case will be thus when the predicate is a base predicate. Let T be 
this predicate. We assume that there is at least one fact about T in 
D. Given that D is minimal, there are only two possibilities. The 
first is that a fact about T may be required to satisfy the definition 
of P, i.e., a positive literal about T appears in the definition of P 
(taking into account all possible unfoldings). The second 
possibility is that the satisfaction of P leads to the violation of 
some integrity constraint that can be repaired by means of the 
addition of a fact about T, i.e., there is some constraint with a 
negative literal about T and such that all its positive literals are 
true in D. In both cases, the conclusion is that predicate T is p-
relevant for the liveliness test of P. The induction case will be 
when T is a derived predicate. As long as some fact about T is true 
in D, some rule defining T should have all its literals true in D. By 
an induction, we can conclude that all the predicates from the 
positive literals in that rule are p-relevant or q-relevant and then 
that T is q-relevant itself. 
 Finally, as ICi is true in D, we can conclude that ICi is q-
relevant, and thus, we reach a contradiction.  ■ 

4. EXPERIMENTAL EVALUATION 
 We have performed some experiments to compare the 
efficiency of the backward approach with respect to one of the 
forward approach and also with the best known method for 
finding minimal unsatisfiable subsets of constraints, the hitting set 
dualization approach [1]. We have also evaluated the behavior of 
the backward approach when varying some parameters: the size 
of the explanations, the number of explanations for each test, and 
the number of constraints in the schema. We executed the 
experiments on an Intel Core 2 Duo, 2.16 GHz machine with 
Windows XP (SP2) and 2 GB RAM. 
 To perform the liveliness tests in the experiments, we used our 
Constructive Query Containment (CQC) Method [3] and precisely 
the version implemented as a core of SVT (Schema Validation 
Tool) tool [7]. Remind anyway that our approach is independent 
of the method used. We have used here the CQC Method since it 
may handle a broader class of database schemas and, thus, we are 
able to consider schemas with a high degree of expressiveness. 
 Next, we do a brief overview of the CQC Method and SVT, 
and then we describe the experiments and comment on the results. 

4.1. CQC Method and SVT 
 The CQC (Constructive Query Containment) Method [3], 
originally defined for query containment, performs a validation 
test by trying to build a consistent instance for a database schema 
in order to satisfy a given goal (a conjunction of literals). It is able 
to deal with database schemas having integrity constraints, safe-
negated EDB and IDB literals, and comparisons. 
 The method starts with the empty instance and uses different 
Variable Instantiation Patterns (VIPs), according to the syntactic 
properties of the views/queries and constraints in the schema, to 
generate only the relevant facts to be added to the instance under 
construction. If the method is able to build an instance that 

satisfies all literals in the goal and does not violate any constraint, 
then that instance is a solution and it shows that the goal is 
satisfiable. The key point is that the VIPs guarantee that if 
instantiating the variables in the goal using the constants they 
provide the method does not find any solution, then no solution 
exists. 
 As proved in [3], the CQC Method always terminates when 
there is a finite consistent instance satisfying the goal, or when the 
goal is unsatisfiable. 
 SVT (Schema Validation Tool) [7] is a prototype tool designed 
to perform some validation tests on database schemas, in 
particular the liveliness test in which we are interested here. It 
accepts the following subset of the SQL language: 
− Primary key, foreign key, boolean check constraints. 
− SPJ views, negation, subselects (exists, in), union. 
− Data types: integer, real, string. 

 The current implementation of SVT assumes a set semantics of 
views and queries and it does not allow null values neither 
aggregate nor arithmetic functions. 
 SVT implements the CQC Method as a backtracking algorithm. 
It adds facts to the EDB under construction in order to make true 
the literals in the goal. After adding a new fact, it checks if the 
EDB violates some constraint. When it detects that some 
constraint is violated or some literal in the goal is evaluated to 
false (e.g. a comparison), it backtracks and reconsiders the last 
decision. Some constraints, like foreign keys, can be repaired by 
adding new literals to the goal and thus no backtracking is 
required in these cases. 
 Using the CQC Method, and thus SVT, for checking the 
liveliness of a given predicate requires just providing the database 
schema and the goal. The goal will only be one literal 
corresponding to the predicate we want to check if it is lively. 

4.2. Experiments 
 The first experiment, shown in Figure 4, is aimed at comparing 
the two approaches for computing explanations that we proposed 
on Section 3, the backward and the forward approaches, with the 
hitting set dualization approach proposed in [1]. We have used an 
implementation of the dualization approach that uses incremental 
hitting set calculation, as described in [1], but replacing the calls 
to the satisfiability method by calls to the CQC Method. We 
performed the experiment using a database schema formed by K 
chains of tables, each one with length N: 
 

 R1
1(A1

1,B1
1),   ..., R1

N(A1
N,B1

N) 
 ... 
 RK

1(AK
1,BK

1), ..., RK
N(AK

N,BK
N) 

 

Each table has two columns and two constraints: a foreign key 
from its second column to the first column of the next table, i.e. 
Rj

i.Bj
i references Rj

i+1.Aj
i+1, and a check constraint requiring that 

the first column must be greater that the second, i.e. Rj
i.Aj

i > 
Rj

i.Bj
i. Additionally, the first table of each chain has a check 

constraint stating that its first column must not be greater than 5, 
i.e. Rj

1.Aj
1 ≤ 5. The last table of each chain has another check 

constraint stating that its second column must not be lower than 
100, i.e., Rj

N.Bj
N ≥ 100. This schema is designed to allow us to 

study the effect of varying the number and size of explanations. 
Note that the value of N determines the size of the explanations 
and that the value of K determines their number. When N is set to 
1 we found explanations of size 3 and each increment in the value 
of N results in 2 additional constraints in each explanation. For the 



case of K, its value is exactly the number of explanations we 
found. 
 Note also that in this experiment all the explanations are 
disjoint. Each chain of tables in the schema provides one 
explanation, and all the chains are disjoint. That means, when we 
execute the phase 3 of the backward approach it will not provide 
any new explanation with respect to the first two phases. 

 We computed the explanations for the liveliness test of the 
following derived predicate P: Backward (phases 1, 2 and 3), Forward and Dualization ([1]) 

approaches, Backward and Forward without filter
Varying the size of explanations, Each test has 2 disjoint explanations
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Figure 4: Comparison of the backward, forward and 
dualization [1] approaches. 

 
Table 1: Number of calls to the CQC Method in Figure 4 

 

Size of 
explanations 

Forward 
(no filter) 

Dualization Backward 
(no filter) 

3 51 46 

 

 P ← R1
1(X1

1,X1
2) ∧ ... ∧ RK

1(XK
1,XK

2) 
 

The symbols X1
1, X1

2, ..., XK
1, XK

2 are different fresh variables. 
Due to the previous database schema definition, the liveliness test 
of P does not reach any solution, i.e., P is not lively in the 
previous described schema. 
 Figure 4 shows the running times for different values of N. 
More precisely, ranging N from 1 to 5. The value of K was set to 
2. We executed both, the backward and forward approaches 
without using the filter described in Section 3.3. For the backward 
approach, we performed the three phases described in Section 3.2. 
 As seen in the graphic, the forward approach is considerably 
slower than the other two. This is an expected result since the 
forward approach is a naive approach and we executed it without 
the filter. We can also see that the dualization approach is quite 
much slower than our backward approach. It is worth noting, 
however, that the dualization approach [1] was proposed for the 
context of type error and circuit error diagnosis and that we are 
applying it now in a different context. While in [1] the authors use 
an incremental satisfiability method for Herbrand equations, in 
query liveliness there are no incremental methods to check it. 
Moreover, the dualization approach computes the explanations by 
means of the relationship existing between the minimal 
unsatisfiable sets (the explanations) of constraints and the 
maximal satisfiable sets of constraints. Thus, it finds first a 
maximal unsatisfiable set, makes its complement, accumulates 
this complement in a set, and then computes the hitting sets for 
this set of complements. The resulting hitting sets are the 
candidates for being explanations. In a different way, the 
backward approach finds first a maximal set of disjoint 
explanations with a linear number of test executions and then 
focuses on finding other explanations taking into account that 
they must overlap with the ones already found. In this way, it can 
significantly reduce the number of candidates to attempt. Table 1 
shows the number of calls to the CQC Method performed by each 
approach. Table 2 shows the detail of the running times. 

19 
5 963 161 41 
7 16131 400 

 Figure 5 focuses on the backward approach. It shows the 
behavior of this approach when there are 1, 2 and 3 disjoint 
explanations, and the size of each explanation increases. We used 
the same database schema than in the previous experiment and the 
same derived predicate P. The graphic shows an increasing of 
running time when the number of explanations increases, which is 
higher when going from 2 to 3 explanations. This is expected 
since although phases 1 and 2 imply a linear number of test 
executions, phase 3 still requires an exponential number of them. 
 In Figure 6, we compare the backward approach with its three 
phases against the first two phases only. This time, we used a 
database schema similar to the one we used in the previous 
experiments but formed now by the following two chains: 
 

 R1
1(A1

1,B1
1), ..., R1

N-1(A1
N-1,B1

N-1), R1
N(A1

N,B1
N,C1

N) 
 R2

1(A2
1,B2

1), ..., R2
N(A2

N,B2
N) 

71 
9 261123 734 109 
11 4190211 1290 155 

 
Table 2: Running times (secs) in Figure 4 

 

Size of 
explanations 

Forward 
(no filter) 

Dualization Backward 
(no filter) 

3 0.05 0.28 0.05 
5 1.08 4.31 0.22 
7 27.89 38.87 1.14 
9 611.31 346.11 5.34 
11 12587.67 2606.53 29.59 

 

Backward approach, Varying the size of the explanations
Phases 1, 2 and 3 with filter; All explanations are disjoint
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Figure 5: Effect of the number of explanations in the 
backward approach. 

 

The integrity constraints are also similar than those in the 
previous schema but with two additions: a check constraint in R1

N 
stating A1

N ≥ C1
N, and another check, also in R1

N, stating C1
N ≥ 

200. The derived predicate P is now the following: 
 

 P ← R1
1(X,Y) ∧ R2

1(U,V) 
 

In this schema, there will be three explanations for the liveliness 
test of P. The first chain will provide two of them, which will 



Backward approach (without filter)
Varying the size of the explanations

Each test has 3 explanations, 2 overlapping and the other disjoint
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Figure 6: Comparison of the three phases of the backward 
approach and the first two phases only. 

 
Table 3: Number of calls to the CQC Method in Figure 6 

comparing with dualization [1] approach 
 

Size of 
explanations 

Dualization Backward 
phases 1,2 and 3 

(no filter) 

Backward 
phases 1 and 2 

(no filter) 
3 98 44 

Backward approach (phases 1, 2 and 3)
Varying the size of the schema

Each test has 2 disjoint explanations
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Figure 7: Effect of the filter described in Section 3.3 in the 

number of test executions. 
 

Table 5: Running times (secs) from Figure 7 
 

Number of 
constraints 

Backward 
without filter 

Backward 
with filter 

11 0.17 0.16 
29 2.25 0.81 
55 294.98 108.64 

 
15 

5 270 98 

overlap. These two explanations will share all its constraints 
except those in R1

N; one explanation will have the constraints: A1
N 

≥ B1
N and B1

N ≥ 100, and the other explanations the constraints: 
A1

N ≥ C1
N and C1

N ≥ 200. The second chain will provide the third 
explanation. Therefore, phase 1 will find one of these three 
explanations, phase 2 will find an explanation disjoint with the 
previous, and finally the third phase will find the remaining one. 
This way, as long as each phase provides one explanation, we will 
be able to compare them. 
 The graphics in Figure 6 show a big increment of running time 
when we introduce the third phase. This is expected since, as we 
explained, the third phase requires selecting one constraint from 
each already found explanation and trying all possible 
combinations. It can also be seen that the graphic for the case of 
phases 1 and 2 only has also an exponential shape although they 
require just a linear number of test executions. This result is 
clearly due to the cost of each one of these test executions. The 
exponential cost of the used method (in this case, the CQC 
Method) cannot be avoided because of the complexity of the 
liveliness problem. 

 Tables 3 and 4 show the number of calls to the CQC Method 
and the running times, respectively, from Figure 6, and compare 
them with the dualization approach [1]. 

21 
7 605 176 27 
9 1089 278 33 
11 1726 404 

 In Figure 7, we study the effect of the filter described in 
Section 3.3 in reducing the number of tests executions when 
applied in the backward approach. This time we used a database 
schema similar to the one from the first experiment but with some 
additions. First, we added a new chain of tables: 
 

 S1(A1,BB1), ..., SN(AN,BNB ) 
 

39 
 

Table 4: Running times (secs) in Figure 6 comparing with 
dualization [1] approach 

 

Size of 
explanations 

Dualization Backward 
phases 1,2 and 

3 (no filter) 

Backward 
phases 1 and 2 

(no filter) 
3 2.05 0.53 0.

Each one of these tables has a check constraint, Si.Ai > Si.Bi, and a 
foreign key to next table in the chain, Si.Bi references Si+1.Ai+1. 
Then, we also added the following chain for each table Rj

i: 

39 
5 37.27 2.86 0.55 
7 327.88 26.06 6.72 
9 2834.48 158.31 31.

 

73 
11 22968.95 1501.47 549.

 Rj
i,1(A1,B

02 
 

B1), ..., Rj
i,N(AN,BNB ) 

 

Each one of these new tables has also the following constraints: 
Rj

i,s.As > Rj
i,s.Bs and Rj

i,s.Bs references Rj
i,s+1.Bs+1. We also add an 

additional foreign key to each table Rj
i that references the first 

table of its corresponding chain, i.e, Rj
i.Bj

i references Rj
i,s.As. As a 

difference from the previous schemas, this one allows us to study 
the effect of the filter in a scenario containing not only the 
constraints that form the explanations, but also containing 
additional constraints that do not affect the liveliness of the tested 
predicate as usually happens with the major schemas. 
 The graphics in Figure 7 show the behavior of phases 1 and 2 
of the backward approach with and without filter, when increasing 
the number of constraints in the database schema. It can be seen 
how using the filter reduces considerably the number of 
executions of the liveliness test. Table 5 shows the corresponding 
running times of this experiment. 

5. RELATED WORK 
 The approach of our backward method, with its three phases, 
presents several similarities with the hitting set dualization 
approach [1], which was proposed for type error and circuit error 
diagnosis. As far as efficiency is concerned, we have shown in 
Section 4.2 that our backward method is more efficient than 



hitting set dualization by means of two experiments: one with two 
disjoint explanations and the other with three explanations, two of 
them overlapping; when varying the size of the explanations for 
the non-liveliness of a certain query. Another significant 
difference is that our backward method provides three levels of 
explanation search: one explanation, a maximal set of non-
overlapping explanations, and all explanations. It is worth noting 
the second level, which requires only a linear number of callings 
to the underlying method. These non-overlapping explanations 
seem to be the most relevant ones from a methodological 
perspective since at least all of them must be fixed in order to 
make the query lively. 
 In Description Logics (DL), the axiom pinpointing process 
described in [6] is similar to our definition of the computation of 
explanations. Nevertheless, the proposed techniques for 
pinpointing are strongly related with the DL context, restricted to 
unfoldable ALC TBoxes, and they rely also on glass box 
techniques. In [5], the authors explore black box techniques in 
order to debug unsatisfiable classes in DL. This work is related to 
ours in the sense that their techniques are also independent of the 
concrete underlying satisfiability checking service, but the authors 
focus mainly on the detection of dependencies between classes. 
They also present a black box heuristic approach to trace the 
axioms that lead the unsatisfiable root classes to be a subclass of 
two incompatible classes. As a difference from our work, both 
techniques in [5] are strongly related with the DL context and, 
moreover, the later requires a reasoner that provides the two 
incompatible classes. 

6. CONCLUSIONS AND FURTHER WORK 
 We have proposed a new method for computing explanations 
for unlively queries in databases which is independent of the 
particular liveliness checking method used to perform the 
liveliness tests. We have shown that the backward method we 
proposed is more efficient than related approaches by means of an 
experimental comparison which used our CQC Method [3] as 
liveliness checking method. In particular, we have compared our 
backward method with a forward method also proposed in this 
paper and with the best known approach for finding minimal 
unsatisfiable subsets of constraints, the hitting set dualization 
approach [1]. 
 Moreover, we have shown that the backward approach provides 
three levels of search: find an explanation, find a maximal set of 
disjoint explanations, and find all explanations; and that we can 
find the maximal set of disjoint explanations with a linear number 

of calls to the underlying liveliness method. We have also 
proposed a filter to reduce the number of calls to the liveliness 
method by discarding those candidates containing constraints that 
are non-relevant for the liveliness test. 
 As future work, it would be very interesting to combine the 
backward approach with glass box techniques, that is, to use a 
liveliness method able to provide at least one explanation by its 
own. In this way, the phase 1 of the backward approach could be 
replaced by just returning the explanation provided by the 
underlying method (remind that phase 1 is also performed again 
in phases 2 and 3). Although existing liveliness methods do not 
provide explanations, we believe that the CQC Method [3] can be 
successfully improved in order to provide one explanation in such 
a way that we could also take advantage of these improvements to 
increase CQC Method’s performance. 
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