
Computing Explanations for Unlively Queries in Databases
Guillem Rull1,2 Carles Farré2 Ernest Teniente2 Toni Urpí2

Universitat Politècnica de Catalunya
Jordi Girona 1-3

08034 - Barcelona
phone: +34934137887

{grull | farre | teniente | urpi}@lsi.upc.edu

ABSTRACT
A query is lively in a database schema if it returns a non-empty
answer for some database satisfying the schema. Debugging a
database schema requires not only determining queries (as well as
views or tables) that are not lively, but also fixing them. To make
that task easier it is required to provide the designer with some
explanation of why a query is not lively. To the best of our
knowledge, the existing methods for liveliness checking in
databases do not provide such explanations. An explanation is
understood as the minimal set of constraints that are responsible
for the non-liveliness of the tested query. In this paper we propose
a method for computing such explanations which is independent
of the particular method used to determine liveliness of a given
query. Our method provides three levels of search: one
explanation, a maximal set of non-overlapping explanations, and
all explanations. The first two levels require only a linear number
of callings to the underlying method. In addition, we propose a
filter to reduce the number of callings to the underlying liveliness
method. We also experimentally compare our method with a more
naive method for query liveliness and with the best known
method for finding unsatisfiable subsets of constraints.

1. INTRODUCTION
 A query is lively [2,4,8] in a database schema if it returns a
non-empty answer for some database satisfying the schema.
Clearly, queries which are not lively are meaningless since they
will always have an empty extension. Unliveliness of a certain
query may be due either to the query definition itself (which may,
for instance, contain a contradiction) or to the integrity constraints
of the schema that prevent the query to ever have any instance. In
a similar way, liveliness applies also to views and tables of the
schema.
 Debugging a database schema requires not only determining
queries, views or tables that are not lively, but also fixing them.
To make that task easier it is required to provide the designer with
some explanation of why a query is not lively. However, as far as
we know, existing methods for liveliness checking in databases do
not provide such explanations.
 An explanation is understood as the minimal set of constraints
that are responsible for the non-liveliness of the tested query.
Minimality ensures that no proper subset of an explanation will
also be an explanation. In general, there may be more than one
explanation for a certain liveliness test. Note that the empty set of
constraints will also be an explanation when the query definition
itself already contains a contradiction.
 The explanations are intended to help the database designer to
find the problem and to fix it. Assuming that all the tables and
views mentioned in the definition of the tested query have already
been checked and, thus, they are known to be lively, the designer

only should focus on the constraints forming the explanation and
on the tested query definition itself.
 The main goal of this paper is to propose a method that, given
any known method for liveliness checking in databases, allows
this method to compute explanations when it determines that a
given query is not lively. I.e., our method will allow computing
explanations independently of the particular method used to
determine liveliness.
 We analyze two different approaches to compute such
explanations. The forward approach follows the straightforward
way, which consists on checking all subsets of constraints as a
candidate explanation, starting with the empty set and moving to
subsets with higher cardinality. In contrast, the backward
approach is intended to find a first explanation quickly and then to
use the knowledge from that explanation to find the remaining
ones.1 2

 The method we propose is based on the backward approach
and, in addition to be more efficient, it provides three levels of
explanation search. The first level is aimed at finding just one
explanation. This is done by reducing the number of constraints in
the schema until only the constraints forming the explanation
remain. In the second level, our method finds the maximal set of
non-overlapping explanations, which includes the one found in
the previous phase. Finally, in the third level, we compute all
explanations by taking advantage of the fact that the remaining
explanations must overlap with the ones found in the previous
phases. The first two levels require only a linear number of calls
to the underlying liveliness method, with respect to the number of
constraints in the schema. The third level introduces an
exponential number of such calls.
 We also propose a filter that can be used in both approaches to
reduce the number of times that the underlying method for
liveliness checking is called to compute the explanations. The
filter is based on discarding those candidate subsets that contain
constraints that are not relevant for the liveliness test. The non-
relevant constraints are those that refer to tables or views that are
not required to contain tuples to make the tested query lively.
 We provide an experimental evaluation to compare the
backward approach with respect to the forward approach and also
with respect to the best known method for finding minimal
unsatisfiable subsets of constraints, the hitting set dualization
approach, proposed in [1] for the context of type error and circuit
error diagnosis. We also study the behavior of the backward
approach when varying some parameters like the number and size

1 This work was supported in part by Microsoft Research through the
European PhD Scholarship Programme.
2 This work was partially supported by the Spanish Ministerio de
Educación y Ciencia under project TIN2005-05406.

of the explanations. These experiments have been performed
using our CQC Method [3] as liveliness method. The CQC
Method is able to handle a broader class of database schemas and,
thus, we are able to consider schemas with a high degree of
expressiveness.
 The rest of the paper is organized as follows. Section 2
introduces background concepts. Section 3 describes the two
approaches for computing explanations for non-lively queries in
databases, the backward and forward approaches, and the filter.
Section 4 introduces the experiments we performed and comment
on the results. Section 5 exposes the related work and, finally,
section 6 presents the conclusions and future work.

2. BACKGROUND
 In this section, we introduce the basic concepts and the logic
notation used thorough the paper.
 A database schema S is a tuple (DR, IC) where DR is a finite
set of deductive rules and IC a finite set of constraints. A
deductive rule has the form:

 p(X̄) ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧
 ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct

A constraint (or condition) has the denial form:

 ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧
 ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct.

The symbols p and r1, ..., rm are predicates. The tuples X̄, X̄1, ...,
X̄n, Ȳ1, ..., Ȳs contains terms, which are either variables or
constants. Each Ci is a built-in literal in the form of t1 θ t2, where
t1 and t2 are terms and operator θ is <, ≤, >, ≥, = or ≠. The atom
p(X̄) is the head of the rule, and r1(X̄1), ..., rn(X̄n), ¬rn+1(Ȳ1), ...,
¬rm(Ȳs) are positive and negative ordinary literals (those that are
not built-in). We require every rule and constraint be safe, that is,
every variable occurring in X̄, Ȳ1, ..., Ȳs, C1, ..., Ct must also appear
in some X̄i. Note that we express constraints stating what may not
happen instead of what should happen.
 Predicates that appear in the head of a deductive rule are
derived predicates also called intensional database (IDB)
predicates. They correspond to views or queries. The rest are base
predicates also called extensional database (EDB) predicates.
They correspond to tables.
 For a database schema S = (DR, IC), a database D is an EDB,
that is, a set of ground facts about the base predicates of S (the
tuples stored in the database). We denote by DR(D) the whole set
of ground facts about base and derived predicates that are inferred
from an instance D, i.e., the fix-point model of DR∪D.
 A database D violates a constraint ← L1 ∧ ... ∧ Lk if (L1 ∧ ... ∧
Lk)σ is true on DR(D) for some ground substitution σ. A database
D is consistent with the schema S if it violates no constraint in IC.
 A query over a database schema is a finite set of deductive
rules that define the same n-ary predicate. Given a database
schema S = (DR, IC) and a database D, the answer to a query Q,
defining the predicate q, over S on D, written AQ(D), is the set of
all ground facts about q obtained evaluating the deductive rules
from both Q and DR on D, i.e., AQ(D) = {q(ā) | q(ā) ∈
(Q∪DR)(D)}.

3. COMPUTING EXPLANATIONS
 We assume that we have a procedure isLively to perform
liveliness tests of query predicates. Therefore, a liveliness test is a

call to isLively(Q, S), which will return true if Q is lively in S and
false otherwise. We say that an explanation for a liveliness test is
a subset of integrity constraints appearing in the database schema
such that they prevent the test to return true. In other words, the
predicate we are testing is still not lively when we remove all
integrity constraints that are not in the explanation.

 DEFINITION 3.1. An explanation E for a liveliness test
isLively(Q, S = (DR, IC)) that returns false is a minimal subset of
constraints from S such that considering only these constraints the
tested predicate Q is still not lively, i.e., isLively(Q, S’ = (DR, E))
returns false too.

 Note that, because E is minimal, isLively(Q, S’’ = (DR, E’))
will return true for any E’ ⊂ E, i.e. the query Q is lively for any
proper subset of E.
 For the sake of example, let us consider a schema S with two
tables, R(A,B,C) and T(D,G). Table R has a check constraint
defined over column B stating that B has to be lower than 10.
Table T has a check constraint that forces column G to be greater
than 30. Finally, there is a foreign key defined in table R over
column C that references column D in table T. More formally,
schema S is:

 ← R(A,B,C) ∧ B ≥ 10
 ← T(D,G) ∧ G ≤ 30
 ← R(A,B,C) ∧ ¬fkRtoT(C)
 fkRtoT(C) ← T(C,G)

Note the use of an auxiliary derived predicate to express the
foreign key constraint. That is necessary, as we require negation
to be safe.
 Let us assume now that we also have a query Q that we want to
check if it is lively in S:

 Q(A) ← R(A,B,C) ∧ T(C,G) ∧ B > G

 As we can see, the query Q performs a join with the two tables
on R.C and T.D with the additional condition of selecting only
those pairs of tuples from R and T such that R.B > T.G.
 Since, in this example, isLively(Q, S) returns false, we want to
figure out the reason for that, i.e., the set of possible explanations.
Here, there is only one explanation E:

 E = {← R(A,B,C) ∧ B ≥ 10, ← T(D,G) ∧ G ≤ 30}

 Explanation E can be interpreted as follows. The requisite that
all the values in column B of R must be lower than 10 together
with the one that forces the values in column G of T to be greater
than 30 makes impossible to find any pair of tuples from R and T
where R.B > T.G.
 It is worth to note that the foreign key constraint is not included
in the explanation. The reason is that the join performed by Q on
R.C and T.D is not only compatible with that constraint but,
indeed, it selects those pairs of tuples of R and T bound together
to fulfill the constraint.
 In this paper, we address the problem of finding all possible
explanations in a way that is independent of the particular
liveliness checking method that we use to perform the liveliness
tests. Therefore, isLively is a black-box procedure that we call
several times, modifying the (sub)set of integrity constraints
considered in each call. This can be done forward, that is, by
calling isLively with an increasing number of constraints -starting
from the empty set of constraints; or backward, if isLively is

called decreasing each time the number of constraints that are
considered.

3.1. Computing Explanations Forward
 This is the most straightforward approach to compute the
explanations. It consists in trying all the subsets of integrity
constraints of the schema.
 We start with the empty subset, and then we check the subsets
with only one integrity constraint, then the subsets with two
integrity constraints, and so on.
 If the liveliness test for a given subset E, isLively(Q, S’ = (DR,
E)), returns false then E is an explanation and there is no point to
check any superset of it. Recall that, by the definition 3.1,
supersets of explanations are not explanations because they are
not minimal.
 This process ends when all the subsets that still have not been
checked are supersets of the explanations already founded.
 In the case that the liveliness test for the initial empty subset,
isLively(Q, S’ = (DR, ∅)), returned false, this would mean that the
non-liveliness of the query Q is not related to any integrity
constraint. Therefore, the reason should be found in a
contradiction in the definition itself of Q, in which may be
involved not only the deductive rules defining Q but also those
rules in DR that define the derived predicates mentioned directly
or indirectly by Q.
 The major drawback of this forward approach is the possibly
huge number of subsets to be checked. In order to discard some of
them in advance to avoid unnecessary executions of the liveliness
test, we can apply some filters. Section 3.3 below discusses this
point.

3.2. Computing Explanations Backward
 In summary, the backward approach obtains explanations by
discarding successively those constraints that are not included in
any explanation. Therefore, in contrast with the forward approach,
liveliness tests are performed with a decreasing number of
constraints starting from the initial full set.
 The backward approach consists of three phases. In the first
one, we obtain just one explanation. In the second phase, we
obtain those explanations that do not overlap with the one
obtained in the first phase nor with other explanations found in
this phase. We say that two explanations overlap if they share at
least one constraint. Finally, in the third phase, we obtain the
remaining explanations, that is, those that overlap with the
explanations obtained in the two previous phases. The interesting
point of the backward approach is that the two first phases require
a linear number of repetitions of the test, independently of the size
of the explanations.

3.2.1. Phase 1
Let us assume that a given predicate Q is not lively on a certain
database schema S, so, isLively(Q, S) returns false. Phase 1 starts
with performing the liveliness test of Q on a new schema
containing all the integrity constraints from the former schema
except one, c. If isLively(Q, S-{c}) returns false, this means that
there is at least one explanation that does not contain c. Therefore,
we can discard c definitely and repeat the liveliness test removing
another constraint. Note that this does not mean that c does not
belong to any explanation but only that c will not be included in
the single explanation that we will obtain at the end of this phase.
In contrast, if isLively(Q, S-{c}), this means that there are one (at
least) or more explanations, each of them including c. Therefore,

c cannot be discarded and, thus, it is re-introduced in the schema
and we repeat the liveliness test removing another constraint. We
continue this process of removing a constraint, testing liveliness,
discard or reintroduce, removing another constraint and so on
until all the constraints in the schema have been considered.
 If at the end of this process all the constraints have been
removed from the schema, we obtain an empty explanation,
meaning that the predicate Q is not lively even without
constraints. Otherwise, we have obtained just one explanation
consisting of all those constraints that remain in the schema, that
is, the ones that have been considered but not discarded during the
process described above. The algorithm in Figure 1 formalizes
such a process.

phase_1(Q: predicate, S = (DR, IC): schema): explanation
U := IC // set of “unchecked” constraints
E := IC // explanation
while (∃c ∈ U)

E := E – {c}
if (isLively(Q, S’ = (DR, E)))

E := E ∪ {c}
endif
U := U – {c}

endwhile
return E

Figure 1: Phase 1 of the backward approach.

 For the sake of example, let us assume that Q is a query defined
as follows:

 Q ← R(X,Y,Z) ∧ V(Z,A,B) ∧ T(Z,U,V) ∧
 Y > 5 ∧ B < X ∧ V = 2

Let us also assume that S is a database schema with no deductive
rules but containing the following constraints, labeled as c1, c2,
c3 and c4, repectively:

 ← T(X,Y,Z) ∧ Z = 2 (c1)
 ← R(X,Y,Z) ∧ Y > X (c2)
 ← R(X,Y,Z) ∧ X > 5 (c3)
 ← V(X,Y,Z) ∧ Z < 10 (c4)

In this case predicate Q is not lively in S. Concretely, there exist
three explanations:

 E1 = {c1}
 E2 = {c2, c3}
 E3 = {c3, c4}

Let us call phase_1(Q, S), with S = {c1, c2, c3, c4} to find one of
these three explanations. If we assume that the constraints are
considered in the order that they were listed above, c1 is
considered first. Since isLively(Q, {c2, c3, c4}) returns false, c1 is
discarded. Constraint c2 is considered next. Since isLively(Q, {c3,
c4}) returns false, c2 is also discarded. Constraint c3 is considered
next. In this case, isLively(Q, {c4}) returns true. Therefore, c3 is
not discarded. Finally, constraint c4 is considered. Since
isLively(Q, {c3}) returns true, c4 may not be discarded either. As
a result, phase_1(Q, S) returns {c3, c4}, that is, explanation E3.
Note that if the constraints had been considered in reverse order,

for instance, the returned explanation would have been another:
{c1} = E1.

3.2.2. Phase 2
 The second phase of this backward approach assumes that we
already found a non-empty explanation in the previous phase. The
goal now is to obtain, at the end of the phase, a maximal set of
explanations such that all the explanations in the set are disjoint,
i.e., there is no constraint belonging to more than one explanation.
One of these explanations will be the one we already found in
phase 1.
 This phase proceeds as follows. We take the original schema
and remove all the constraints included in the first explanation we
found. In this way, we “disable” that explanation, in order to
discover the other explanations, if any, that in phase 1 were
“hidden” by it. Next, we perform the liveliness test with the
remaining constraints. If the test returns false that means there is
still, at least, another explanation non-overlapping with the one
we have. To find out such a new explanation, we apply the first
phase over the remaining explanations. On the contrary, if after
removing the constraints from the former explanation, the
liveliness test returns true that means that all the remaining
explanations, if any, overlap with the first we had.
 We repeat the process, removing the constraints from all the
explanations we have found (the one from the first phase and the
new ones we already found in this phase), until there are no more
explanations that do not overlap with the ones we already have.
The algorithm in Figure 2 formalizes such a process.

phase_2(Q: predicate, S = (DR, IC): schema,
 EP1: explanation): Set(explanation)

SE := {EP1} // set of explanations
R := IC - EP1 // set of “remaining” constraints
while (not isLively(Q, S’ = (DR, R)))

E := phase_1(Q, S’ = (DR, R))
SE := SE ∪ {E}
R := R – E

endwhile
return SE

Figure 2: Phase 2 of the backward approach.

 Continuing with the example that we introduced to illustrate
Phase 1, recall that we found that {c3, c4} was an explanation for
the fact that isLively(Q, {c1, c2, c3, c+4}) had returned false.
According to Phase 2, we start now by calling isLively(Q, {c1,
c2}). Since this call returns false too, it means that there is another
explanation in {c1, c2}. Therefore, we call phase_1((Q, {c1, c2}),
which returns {c1} as a new explanation. Next, we call
isLively(Q, {c2}), which returns true and, thus, Phase 2 ends. The
final output for this phase is {{c3, c4}, {c1}} as a set of disjoint
explanations.

3.2.3. Phase 3
 The third phase assumes that we already obtained a set of
disjoint explanations by performing the previous phases. The goal
now is to find all the remaining explanations, that is, those that
overlap with some of the explanations that we already have. To do
this, we must remove one constraint from each known explanation
to “disable” them, and then apply the first and second phases over

the remaining constraints. The drawback here is that there could
be many constraints in each explanation and, thus, many
constraints to be the one that will be removed to disable each
explanation. Nevertheless, we should try all combinations to
ensure we find all the remaining explanations.
 Once we have removed one constraint for each explanation and
executed the previous two phases over the remaining constraints,
we get some new explanations that we will add to the set of
explanations we already have. Next, we should repeat this third
phase, taking into account these added explanations, until no new
explanations are found. The algorithm in Figure 3 formalizes such
a process.

phase_3(Q: predicate, S = (DR, IC): schema,
 SE: Set(explanation)): Set(explanation)

AE := SE
Combo := combinations(AE)
while (∃C ∈ Combo)

R := IC – C
if (not isLively(Q, S’ = (DR, R)))

E := phase_1(Q, S’ = (DR, R))
NE := phase_2(Q, S’ = (DR, R), E)
AE := AE ∪ NE
Combo := combinations(AE)

endif
Combo := Combo – {C}

endwhile
return AE

combinations(SE: Set(explanation)): Set(Set(constraint))
// returns all possible sets of constraints that can be obtained
by selecting one constraint from each explanation in SE.

Figure 3: Phase 3 of the backward approach.

 Following the example of the previous sections, we already had
found two explanations: {c3, c4} and {c1}. Now, if there is still
some other explanation it will overlap with these. Thus, to avoid
these explanations to hide the remaining ones, we select one
constraint from each explanation and remove them from the
original schema. In this example, there are two possibilities:

1) remove {c1, c3}
2) remove {c1, c4}

 Let us consider the first option. In this case, isLively(Q, {c2,
c4}) returns true and, thus, no further explanation can be found.
 In contrast, if we consider the second option, we get that
isLively(Q, {c3, c2}) returns false. Therefore, we can still find
further explanations. Next, we call phase_1(Q, {c3, c2}), which
returns a new explanation: {c3, c2}. Clearly, phase_2(Q, {c3, c2},
{c3, c2}) will return {{c3, c2}} as a new set of explanations.
 As we have found new explanations, we must repeat the
process taking now into account all the explanations discovered
so far. This time, there are four possible ways of removing one
constraint from each explanation:

1) remove {c1, c2, c3}

2) remove {c1, c2, c4}
3) remove {c1, c3}
4) remove {c1, c3, c4}

It is worth to note the option 3. As one of the constraints of the
new explanation is shared with other explanation, by removing it
we are “disabling” two of the three explanations. This is the case
of constraint c3. Thus, the option 3 requires removing only two
constraints as a difference from the other options that require
three.
 After trying the four possibilities, we reach the conclusion that
there are no further explanations and, thus, the phase 3 is ended.
The outcome of this phase and of the entire approach is the set
formed by the three explanations: {{c3, c4}, {c1}, {c3, c2}}.

3.3. Filtering Candidates with Non-Relevant
Constraints
As we have seen, both the forward approach and the backward
approach require performing several calls to isLively. In the case
of the forward approach to check if the current subset of
constraints is really an explanation and in the case of the
backward approach to check if it is, indeed, a superset of an
explanation. The filter described in this section consists in
detecting those candidates that contain some constraint that we
can ensure it is not relevant for the liveliness test. We can say that
a constraint is not relevant for the test when to get a fact about the
tested predicate it is not required to have also a fact about all the
positive ordinary predicates in the constraint. The idea is that we
do not need to perform the liveliness test for these candidates.
 For example, let us assume that we have the following database
schema:

 ← R(X,Y,Z) ∧ ¬fkRtoS(Z)
 ← R(X,Y,Z) ∧ Z < 5
 ← S(X,Y) ∧ X ≥ 5
 ← T(X,Y,Z) ∧ Y < Z

 fkRtoS(Z) ← S(Z,Y)

Let us also assume that we are testing if the query Q is lively,
being Q defined by the following rule:

 Q(X,Y) ← R(X,Y,Z)

Let us suppose that we are using the forward approach. During the
process, we will reach the following candidate for being an
explanation:

 {← R(X,Y,Z) ∧ Z < 5, ← S(X,Y) ∧ X ≥ 5}

Taking into account that our candidate does not contain the
foreign key from R to S, Q is lively if we consider only these two
constraints and, thus, this candidate is not an explanation.
Applying the filter, we can see that the second constraint, ←
S(X,Y) ∧ X ≥ 5, is not relevant for the liveliness test of Q when it
is performed over the schema containing only these two
constraints. The constraint is not relevant because there is no need
to have a fact about S in order to get a fact about Q, e.g. the
database {R(0,0,5)}. Therefore, we could avoid performing the
liveliness test for this candidate and go directly to the next one.
 The filter can be applied in the two approaches for computing
explanations. Next, we are going to explain how apply the filter in
each case.
 To apply the filter in the forward approach, we can follow the
next steps:

1. First, before starting the process, we could remove the
integrity constraints that are already not relevant for the test
when this is performed over the original database schema.

2. Then, during the process, for each candidate, we could
compute the constraints that are relevant for the test not over
the original schema but over the schema containing only the
constraints in the candidate. The key point is that constraints
that were relevant in the original schema may be not relevant
now.
3. If at least one of the constraints in the candidate is not

relevant, then we can directly discard the candidate. If the
candidate was make the test fail, then the same would
happen after removing the non-relevant constraint and thus
the candidate would be not minimal.

4. If all the constraints in the candidate are relevant, then we
should perform the liveliness test to check whether it is an
explanation or not.

 Let us take again the previous example. In step 1, we would
find that the constraint ← T(X,Y,Z) ∧ Y < Z is not relevant for the
liveliness test of V over the original schema. Thus, we would
remove it and perform the backward approach considering the
schema only with the three remaining constraints. Let us suppose
now that we have reached the candidate we mentioned earlier:
{← R(X,Y,Z) ∧ Z < 5, ← S(X,Y) ∧ X ≥ 5}. Applying step 2, we
would recompute the relevant predicates. Now, as we are not
considering the foreign key, the predicate S is not relevant and,
thus, neither the constraint ← S(X,Y) ∧ X ≥ 5. Applying step 3, we
would discard the candidate without performing the liveliness
test, and we would move to the next candidate.
 In the backward approach, the filter can be applied along the
phase 1 (which is called also from phases 2 and 3). The steps are
the following:

1. Before starting the phase 1, we could remove the constraints
that are already non-relevant for the test over the original
schema (as we did with the forward approach).

2. During the phase 1, when we remove one integrity constraint
ICi from the schema, we could recompute what predicates are
relevant for the test when it is performed over the schema
containing only the remaining constraints.
3. If some of the remaining constraints are not relevant, we

can remove them before performing the test.
4. If then the test says that the predicate is still not lively

we will have removed more than just one constraint
and thus reduced the number of test execution we will
have to do.

5. Otherwise, if the test says that the predicate is now
lively, we will have to put back the constraint ICi we
initially removed together with the non-relevant ones.

6. If all the constraints are relevant, we can do nothing but
continue the normal execution of the phase 1.

Let us consider again the same example as before. As in the case
of the forward approach, in step 1 we would detect that the
constraint ← T(X,Y,Z) ∧ Y < Z is not relevant and, thus, we could
eliminate it and perform the phase 1 over the remaining three
constraints. Let us suppose that we follow the order in which the
constraints were listed before. Then, we first would eliminate the
foreign key constraint. That would leave two constraints in the
schema: ← R(X,Y,Z) ∧ Z < 5 and ← S(X,Y) ∧ X ≥ 5, this is, the
same candidate we mentioned before. As we said, the later
constraint is non-relevant for the liveliness test when the schema

contains only these two constraints. Thus, we could remove it and
perform the test with only one constraint: ← R(X,Y,Z) ∧ Z < 5.
Because the predicate becomes lively, we should put back the two
removed constraints (the foreign key and the one about S). The
phase 1 would remove then the next constraint: ← R(X,Y,Z) ∧ Z <
5, and it would continue its execution in a similar way.
 To characterize formally the constraints that are relevant for a
certain liveliness test, we are going to assume that each constraint
is reformulated as a rule defining a derived predicate ICi in such a
way that the constraint is violated when its corresponding
predicate ICi has a fact in the database.
 Let Q be a generic derived predicate defined by the following
rules:

 Q(X̄) ← PP

1
1(X̄) ∧ ... ∧ P1

1 P s1(X̄s1) ∧ C1
1 ∧ ... ∧ C1

r1
 ∧ ¬S1

1(X̄1) ∧ ... ∧ ¬S1
m1(X̄m1)

 ...
 Q(X̄) ← PP

k
1(X̄) ∧ ... ∧ Pk

1 P sk(X̄sk) ∧ Ck
1 ∧ ... ∧ Ck

rk
 ∧ ¬Sk

1(X̄1) ∧ ... ∧ ¬Sk
mk(X̄mk)

The symbols PP

1
1, ..., P1

P s1, S1
1, ..., S1

m1, ..., PP

k
1, ..., Pk

sk, Sk
1, ..., Sk

mk
are predicates and C1

1, ..., C1
r1, ..., Ck

1, ..., Ck
rk are built-in literals.

We will define neg_preds(Q) as the predicates of those negative
literals that appear in the definition of Q, taking into account all
possible unfoldings. Formally:

 neg_preds(Q) = {{Sj
i | 1 ≤ i ≤ mj} | 1 ≤ j ≤ k} ∪

 {{neg_preds(PP

j
i) | 1 ≤ i ≤ s } | 1 ≤ j ≤ k} j

 neg_preds(R) = ∅ if R is a base predicate

 We are going to define what predicates are relevant for the
liveliness test of a certain predicate P. There will be two types of
relevancy: p-relevancy and q-relevancy. The p-relevant predicates
will be those that in order to build a database where P is intended
to be lively, it may be required to insert some fact about them in
that database. The q-relevant predicates will be the derived
predicates such that although it is not explicitly required for them
to be lively in order to make P lively, they may become lively as a
result of the facts inserted in the database.

 DEFINITION 3.2. Assuming that we are testing the liveliness of a
certain predicate P, we can say the following:

• Predicate P is p-relevant.
• If Q is a derived predicate and it is p-relevant, then PP

j
i with 1 ≤

i ≤ s and 1 ≤ j ≤ k, are also p-relevant predicates. j
• If Q is a derived predicate and PP

j
1, ..., Pj

P sj are p-relevant or q-
relevant, for some 1 ≤ j ≤ k, then Q is q-relevant.

• If Q is a derived predicate and there is a negated literal about
Q in the body of a rule of some p-relevant derived predicate,
and PP

j
1, ..., Pj

P sj are p-relevant or q-relevant predicates, for some
1 ≤ j ≤ k, then Sj

1, ..., Sj
mj and the predicates in

neg_preds(PP

j
1

• If IC
)∪...∪neg_preds(Pj

P sj) are p-relevant.
i ← P1(X̄1) ∧ ... ∧ Ps(X̄s) ∧ C1 ∧ ... ∧ Cr ∧ ¬S1(X̄1) ∧ ... ∧

¬Sm(X̄m) is an integrity constraint and P1, ..., Ps are p-relevant
or q-relevant predicates, then ICi is q-relevant and the
predicates in neg_preds(ICi) are p-relevant.

It is worth to note that a predicate defined by an integrity
constraint cannot be p-relevant, as it is not mentioned anywhere
but in the head of the constraint and, thus, only the third point of
the definition is applicable.

 DEFINITION 3.3. We will say that an integrity constraint ICi ←
L1 ∧ ... ∧ Ln is relevant for the liveliness test of P if and only if the
derived predicate ICi is q-relevant for that test.

 As an example, let us assume that we have the following
database schema:

 V(X,Y) ← R(X,A,B) ∧ S(B,C,Y) ∧ ¬W(A,C)
 W(X,Y) ← P(X,Y) ∧ Y > 100
 P(X,Y) ← T(X,Y) ∧ ¬H(X)
 Q(X) ← S(X,Y,Z) ∧ Y ≥ 5 ∧ Y ≤ 10
 IC1 ← R(X,Y,Z) ∧ ¬T(Y,Z)
 IC2 ← F(X,Y) ∧ X ≤ 0

Derived predicates IC1 and IC2 correspond to two constraints. Let
us also assume that we want to test if V is lively in this schema.
Let us now compute what predicates are relevant for this
liveliness test:

(1) We star with p-relevant = ∅ and q-relevant = ∅
(2) The first point in the definition of predicate’s relevancy says

us that, as we are testing the liveliness of V, V is a p-relevant
predicate.

(3) Then, p-relevant = {V} and q-relevant = ∅
(4) Now that we know V is p-relevant, by the second point of the

definition we can infer that R and S are also p-relevant.
(5) p-relevant = {V, R, S} and q-relevant = ∅
(6) As long as S is p-relevant, by the third point of the definition

we can say that Q is q-relevant,
(7) p-relevant = {V, R, S} and q-relevant = {Q}
(8) By the fifth point, as R is p-relevant we can say that IC1 is q-

relevant and that T is p-relevant.
(9) p-relevant = {V, R, S, T} and q-relevant = {Q, IC1}
(10) Once we know that T is p-relevant, by the third point again

we can conclude that P is q-relevant.
(11) p-relevant = {V, R, S, T} and q-relevant = {Q, IC1, P}
(12) We can apply now the fourth point of the definition. The

derived predicate W appears negated in the rule of V and V is
p-relevant. The predicates appearing positively in W, that is,
P, are also relevant. Thus, we can infer that the predicates
appearing negated in W or some of its unfoldings are p-
relevant. That means H is p-relevant.

(13) p-relevant = {V, R, S, T, H} and q-relevant = {Q, IC1, P}
(14) We still can apply the third point and say that as P is q-

relevant then W is q-relevant also.
(15) p-relevant = {V, R, S, T, H} and q-relevant = {Q, IC1, P, W}
(16) We cannot infer anything new and, thus, there are no other

relevant predicates.

Finally, we can say that IC1 is a relevant constraint for the
liveliness test of V and that IC2 is not relevant. It is easy to see
intuitively that IC2 is not relevant because predicate F is not
mentioned anywhere else (it is also non-relevant).

 PROPOSITION 3.4. Let P be a non-lively predicate and let ICi be
a constraint from the database schema. If ICi is not relevant for
the liveliness test of P, then P is still non-lively after removing ICi
from the schema.

 PROOF. Let us assume that after removing ICi from the schema
P becomes lively. It follows that exists some minimal database D
such that D is consistent and some fact about P is true in D.
Database D is minimal in the sense that there is no database D’

with less tuples than D, such that D’ is also consistent and
contains some fact about P.
 As long as P becomes lively after removing ICi, database D
should violate ICi. Our goal now is to show that it follows that ICi
is q-relevant for the liveliness test of P. To reach that, we will do
induction over the unfolding level of the predicates. A base
predicate has an unfolding level of 0. A derived predicate such
that the maximum unfolding level of the predicates appearing
positively in its rules is n, has an unfolding level of n+1 The base
case will be thus when the predicate is a base predicate. Let T be
this predicate. We assume that there is at least one fact about T in
D. Given that D is minimal, there are only two possibilities. The
first is that a fact about T may be required to satisfy the definition
of P, i.e., a positive literal about T appears in the definition of P
(taking into account all possible unfoldings). The second
possibility is that the satisfaction of P leads to the violation of
some integrity constraint that can be repaired by means of the
addition of a fact about T, i.e., there is some constraint with a
negative literal about T and such that all its positive literals are
true in D. In both cases, the conclusion is that predicate T is p-
relevant for the liveliness test of P. The induction case will be
when T is a derived predicate. As long as some fact about T is true
in D, some rule defining T should have all its literals true in D. By
an induction, we can conclude that all the predicates from the
positive literals in that rule are p-relevant or q-relevant and then
that T is q-relevant itself.
 Finally, as ICi is true in D, we can conclude that ICi is q-
relevant, and thus, we reach a contradiction. ■

4. EXPERIMENTAL EVALUATION
 We have performed some experiments to compare the
efficiency of the backward approach with respect to one of the
forward approach and also with the best known method for
finding minimal unsatisfiable subsets of constraints, the hitting set
dualization approach [1]. We have also evaluated the behavior of
the backward approach when varying some parameters: the size
of the explanations, the number of explanations for each test, and
the number of constraints in the schema. We executed the
experiments on an Intel Core 2 Duo, 2.16 GHz machine with
Windows XP (SP2) and 2 GB RAM.
 To perform the liveliness tests in the experiments, we used our
Constructive Query Containment (CQC) Method [3] and precisely
the version implemented as a core of SVT (Schema Validation
Tool) tool [7]. Remind anyway that our approach is independent
of the method used. We have used here the CQC Method since it
may handle a broader class of database schemas and, thus, we are
able to consider schemas with a high degree of expressiveness.
 Next, we do a brief overview of the CQC Method and SVT,
and then we describe the experiments and comment on the results.

4.1. CQC Method and SVT
 The CQC (Constructive Query Containment) Method [3],
originally defined for query containment, performs a validation
test by trying to build a consistent instance for a database schema
in order to satisfy a given goal (a conjunction of literals). It is able
to deal with database schemas having integrity constraints, safe-
negated EDB and IDB literals, and comparisons.
 The method starts with the empty instance and uses different
Variable Instantiation Patterns (VIPs), according to the syntactic
properties of the views/queries and constraints in the schema, to
generate only the relevant facts to be added to the instance under
construction. If the method is able to build an instance that

satisfies all literals in the goal and does not violate any constraint,
then that instance is a solution and it shows that the goal is
satisfiable. The key point is that the VIPs guarantee that if
instantiating the variables in the goal using the constants they
provide the method does not find any solution, then no solution
exists.
 As proved in [3], the CQC Method always terminates when
there is a finite consistent instance satisfying the goal, or when the
goal is unsatisfiable.
 SVT (Schema Validation Tool) [7] is a prototype tool designed
to perform some validation tests on database schemas, in
particular the liveliness test in which we are interested here. It
accepts the following subset of the SQL language:
− Primary key, foreign key, boolean check constraints.
− SPJ views, negation, subselects (exists, in), union.
− Data types: integer, real, string.

 The current implementation of SVT assumes a set semantics of
views and queries and it does not allow null values neither
aggregate nor arithmetic functions.
 SVT implements the CQC Method as a backtracking algorithm.
It adds facts to the EDB under construction in order to make true
the literals in the goal. After adding a new fact, it checks if the
EDB violates some constraint. When it detects that some
constraint is violated or some literal in the goal is evaluated to
false (e.g. a comparison), it backtracks and reconsiders the last
decision. Some constraints, like foreign keys, can be repaired by
adding new literals to the goal and thus no backtracking is
required in these cases.
 Using the CQC Method, and thus SVT, for checking the
liveliness of a given predicate requires just providing the database
schema and the goal. The goal will only be one literal
corresponding to the predicate we want to check if it is lively.

4.2. Experiments
 The first experiment, shown in Figure 4, is aimed at comparing
the two approaches for computing explanations that we proposed
on Section 3, the backward and the forward approaches, with the
hitting set dualization approach proposed in [1]. We have used an
implementation of the dualization approach that uses incremental
hitting set calculation, as described in [1], but replacing the calls
to the satisfiability method by calls to the CQC Method. We
performed the experiment using a database schema formed by K
chains of tables, each one with length N:

 R1
1(A1

1,B1
1), ..., R1

N(A1
N,B1

N)
 ...
 RK

1(AK
1,BK

1), ..., RK
N(AK

N,BK
N)

Each table has two columns and two constraints: a foreign key
from its second column to the first column of the next table, i.e.
Rj

i.Bj
i references Rj

i+1.Aj
i+1, and a check constraint requiring that

the first column must be greater that the second, i.e. Rj
i.Aj

i >
Rj

i.Bj
i. Additionally, the first table of each chain has a check

constraint stating that its first column must not be greater than 5,
i.e. Rj

1.Aj
1 ≤ 5. The last table of each chain has another check

constraint stating that its second column must not be lower than
100, i.e., Rj

N.Bj
N ≥ 100. This schema is designed to allow us to

study the effect of varying the number and size of explanations.
Note that the value of N determines the size of the explanations
and that the value of K determines their number. When N is set to
1 we found explanations of size 3 and each increment in the value
of N results in 2 additional constraints in each explanation. For the

case of K, its value is exactly the number of explanations we
found.
 Note also that in this experiment all the explanations are
disjoint. Each chain of tables in the schema provides one
explanation, and all the chains are disjoint. That means, when we
execute the phase 3 of the backward approach it will not provide
any new explanation with respect to the first two phases.

 We computed the explanations for the liveliness test of the
following derived predicate P: Backward (phases 1, 2 and 3), Forward and Dualization ([1])

approaches, Backward and Forward without filter
Varying the size of explanations, Each test has 2 disjoint explanations

0

2000

4000

6000

8000

10000

12000

14000

3 5 7 9 11

Size of explanations

R
un

ni
ng

 ti
m

e
(s

ec
s)

forward dualization [1] backward

Figure 4: Comparison of the backward, forward and
dualization [1] approaches.

Table 1: Number of calls to the CQC Method in Figure 4

Size of
explanations

Forward
(no filter)

Dualization Backward
(no filter)

3 51 46

 P ← R1
1(X1

1,X1
2) ∧ ... ∧ RK

1(XK
1,XK

2)

The symbols X1
1, X1

2, ..., XK
1, XK

2 are different fresh variables.
Due to the previous database schema definition, the liveliness test
of P does not reach any solution, i.e., P is not lively in the
previous described schema.
 Figure 4 shows the running times for different values of N.
More precisely, ranging N from 1 to 5. The value of K was set to
2. We executed both, the backward and forward approaches
without using the filter described in Section 3.3. For the backward
approach, we performed the three phases described in Section 3.2.
 As seen in the graphic, the forward approach is considerably
slower than the other two. This is an expected result since the
forward approach is a naive approach and we executed it without
the filter. We can also see that the dualization approach is quite
much slower than our backward approach. It is worth noting,
however, that the dualization approach [1] was proposed for the
context of type error and circuit error diagnosis and that we are
applying it now in a different context. While in [1] the authors use
an incremental satisfiability method for Herbrand equations, in
query liveliness there are no incremental methods to check it.
Moreover, the dualization approach computes the explanations by
means of the relationship existing between the minimal
unsatisfiable sets (the explanations) of constraints and the
maximal satisfiable sets of constraints. Thus, it finds first a
maximal unsatisfiable set, makes its complement, accumulates
this complement in a set, and then computes the hitting sets for
this set of complements. The resulting hitting sets are the
candidates for being explanations. In a different way, the
backward approach finds first a maximal set of disjoint
explanations with a linear number of test executions and then
focuses on finding other explanations taking into account that
they must overlap with the ones already found. In this way, it can
significantly reduce the number of candidates to attempt. Table 1
shows the number of calls to the CQC Method performed by each
approach. Table 2 shows the detail of the running times.

19
5 963 161 41
7 16131 400

 Figure 5 focuses on the backward approach. It shows the
behavior of this approach when there are 1, 2 and 3 disjoint
explanations, and the size of each explanation increases. We used
the same database schema than in the previous experiment and the
same derived predicate P. The graphic shows an increasing of
running time when the number of explanations increases, which is
higher when going from 2 to 3 explanations. This is expected
since although phases 1 and 2 imply a linear number of test
executions, phase 3 still requires an exponential number of them.
 In Figure 6, we compare the backward approach with its three
phases against the first two phases only. This time, we used a
database schema similar to the one we used in the previous
experiments but formed now by the following two chains:

 R1
1(A1

1,B1
1), ..., R1

N-1(A1
N-1,B1

N-1), R1
N(A1

N,B1
N,C1

N)
 R2

1(A2
1,B2

1), ..., R2
N(A2

N,B2
N)

71
9 261123 734 109
11 4190211 1290 155

Table 2: Running times (secs) in Figure 4

Size of
explanations

Forward
(no filter)

Dualization Backward
(no filter)

3 0.05 0.28 0.05
5 1.08 4.31 0.22
7 27.89 38.87 1.14
9 611.31 346.11 5.34
11 12587.67 2606.53 29.59

Backward approach, Varying the size of the explanations
Phases 1, 2 and 3 with filter; All explanations are disjoint

0

100

200

300

400

500

600

700

800

3 5 7 9 11

Size of explanations

R
un

ni
ng

 ti
m

e
(s

ec
s)

3 explanations 2 explanations 1 explanation

Figure 5: Effect of the number of explanations in the
backward approach.

The integrity constraints are also similar than those in the
previous schema but with two additions: a check constraint in R1

N
stating A1

N ≥ C1
N, and another check, also in R1

N, stating C1
N ≥

200. The derived predicate P is now the following:

 P ← R1
1(X,Y) ∧ R2

1(U,V)

In this schema, there will be three explanations for the liveliness
test of P. The first chain will provide two of them, which will

Backward approach (without filter)
Varying the size of the explanations

Each test has 3 explanations, 2 overlapping and the other disjoint

0

200

400

600

800

1000

1200

1400

1600

3 5 7 9 11

Size of explanations

R
un

ni
ng

 ti
m

e
(s

ec
s)

phases 1, 2 and 3 phases 1 and 2 only

Figure 6: Comparison of the three phases of the backward
approach and the first two phases only.

Table 3: Number of calls to the CQC Method in Figure 6

comparing with dualization [1] approach

Size of
explanations

Dualization Backward
phases 1,2 and 3

(no filter)

Backward
phases 1 and 2

(no filter)
3 98 44

Backward approach (phases 1, 2 and 3)
Varying the size of the schema

Each test has 2 disjoint explanations

0

20

40

60

80

100

120

140

160

180

11 29 55

Number of constraints in the schema

N
um

be
r o

f p
er

fo
rm

ed
 te

st
s

without filter with filter

Figure 7: Effect of the filter described in Section 3.3 in the

number of test executions.

Table 5: Running times (secs) from Figure 7

Number of
constraints

Backward
without filter

Backward
with filter

11 0.17 0.16
29 2.25 0.81
55 294.98 108.64

15

5 270 98

overlap. These two explanations will share all its constraints
except those in R1

N; one explanation will have the constraints: A1
N

≥ B1
N and B1

N ≥ 100, and the other explanations the constraints:
A1

N ≥ C1
N and C1

N ≥ 200. The second chain will provide the third
explanation. Therefore, phase 1 will find one of these three
explanations, phase 2 will find an explanation disjoint with the
previous, and finally the third phase will find the remaining one.
This way, as long as each phase provides one explanation, we will
be able to compare them.
 The graphics in Figure 6 show a big increment of running time
when we introduce the third phase. This is expected since, as we
explained, the third phase requires selecting one constraint from
each already found explanation and trying all possible
combinations. It can also be seen that the graphic for the case of
phases 1 and 2 only has also an exponential shape although they
require just a linear number of test executions. This result is
clearly due to the cost of each one of these test executions. The
exponential cost of the used method (in this case, the CQC
Method) cannot be avoided because of the complexity of the
liveliness problem.

 Tables 3 and 4 show the number of calls to the CQC Method
and the running times, respectively, from Figure 6, and compare
them with the dualization approach [1].

21
7 605 176 27
9 1089 278 33
11 1726 404

 In Figure 7, we study the effect of the filter described in
Section 3.3 in reducing the number of tests executions when
applied in the backward approach. This time we used a database
schema similar to the one from the first experiment but with some
additions. First, we added a new chain of tables:

 S1(A1,BB1), ..., SN(AN,BNB)

39

Table 4: Running times (secs) in Figure 6 comparing with
dualization [1] approach

Size of
explanations

Dualization Backward
phases 1,2 and

3 (no filter)

Backward
phases 1 and 2

(no filter)
3 2.05 0.53 0.

Each one of these tables has a check constraint, Si.Ai > Si.Bi, and a
foreign key to next table in the chain, Si.Bi references Si+1.Ai+1.
Then, we also added the following chain for each table Rj

i:

39
5 37.27 2.86 0.55
7 327.88 26.06 6.72
9 2834.48 158.31 31.

73
11 22968.95 1501.47 549.

 Rj
i,1(A1,B

02

B1), ..., Rj
i,N(AN,BNB)

Each one of these new tables has also the following constraints:
Rj

i,s.As > Rj
i,s.Bs and Rj

i,s.Bs references Rj
i,s+1.Bs+1. We also add an

additional foreign key to each table Rj
i that references the first

table of its corresponding chain, i.e, Rj
i.Bj

i references Rj
i,s.As. As a

difference from the previous schemas, this one allows us to study
the effect of the filter in a scenario containing not only the
constraints that form the explanations, but also containing
additional constraints that do not affect the liveliness of the tested
predicate as usually happens with the major schemas.
 The graphics in Figure 7 show the behavior of phases 1 and 2
of the backward approach with and without filter, when increasing
the number of constraints in the database schema. It can be seen
how using the filter reduces considerably the number of
executions of the liveliness test. Table 5 shows the corresponding
running times of this experiment.

5. RELATED WORK
 The approach of our backward method, with its three phases,
presents several similarities with the hitting set dualization
approach [1], which was proposed for type error and circuit error
diagnosis. As far as efficiency is concerned, we have shown in
Section 4.2 that our backward method is more efficient than

hitting set dualization by means of two experiments: one with two
disjoint explanations and the other with three explanations, two of
them overlapping; when varying the size of the explanations for
the non-liveliness of a certain query. Another significant
difference is that our backward method provides three levels of
explanation search: one explanation, a maximal set of non-
overlapping explanations, and all explanations. It is worth noting
the second level, which requires only a linear number of callings
to the underlying method. These non-overlapping explanations
seem to be the most relevant ones from a methodological
perspective since at least all of them must be fixed in order to
make the query lively.
 In Description Logics (DL), the axiom pinpointing process
described in [6] is similar to our definition of the computation of
explanations. Nevertheless, the proposed techniques for
pinpointing are strongly related with the DL context, restricted to
unfoldable ALC TBoxes, and they rely also on glass box
techniques. In [5], the authors explore black box techniques in
order to debug unsatisfiable classes in DL. This work is related to
ours in the sense that their techniques are also independent of the
concrete underlying satisfiability checking service, but the authors
focus mainly on the detection of dependencies between classes.
They also present a black box heuristic approach to trace the
axioms that lead the unsatisfiable root classes to be a subclass of
two incompatible classes. As a difference from our work, both
techniques in [5] are strongly related with the DL context and,
moreover, the later requires a reasoner that provides the two
incompatible classes.

6. CONCLUSIONS AND FURTHER WORK
 We have proposed a new method for computing explanations
for unlively queries in databases which is independent of the
particular liveliness checking method used to perform the
liveliness tests. We have shown that the backward method we
proposed is more efficient than related approaches by means of an
experimental comparison which used our CQC Method [3] as
liveliness checking method. In particular, we have compared our
backward method with a forward method also proposed in this
paper and with the best known approach for finding minimal
unsatisfiable subsets of constraints, the hitting set dualization
approach [1].
 Moreover, we have shown that the backward approach provides
three levels of search: find an explanation, find a maximal set of
disjoint explanations, and find all explanations; and that we can
find the maximal set of disjoint explanations with a linear number

of calls to the underlying liveliness method. We have also
proposed a filter to reduce the number of calls to the liveliness
method by discarding those candidates containing constraints that
are non-relevant for the liveliness test.
 As future work, it would be very interesting to combine the
backward approach with glass box techniques, that is, to use a
liveliness method able to provide at least one explanation by its
own. In this way, the phase 1 of the backward approach could be
replaced by just returning the explanation provided by the
underlying method (remind that phase 1 is also performed again
in phases 2 and 3). Although existing liveliness methods do not
provide explanations, we believe that the CQC Method [3] can be
successfully improved in order to provide one explanation in such
a way that we could also take advantage of these improvements to
increase CQC Method’s performance.

7. REFERENCES
[1] James Bailey, Peter J. Stuckey: Discovery of Minimal

Unsatisfiable Subsets of Constraints Using Hitting Set
Dualization. Practical Aspects of Declarative Languages
(PADL) 2005: 174-186

[2] Hendrik Decker, Ernest Teniente, Toni Urpí: How to
Tackle Schema Validation by View Updating.
International Conference on Extending Database
Technology (EDBT) 1996: 535-549

[3] Carles Farré, Ernest Teniente, Toni Urpí: Checking query
containment with the CQC method. Data Knowl. Eng.
53(2): 163-223 (2005)

[4] Alon Y. Halevy, Inderpal Singh Mumick, Yehoshua
Sagiv, Oded Shmueli: Static analysis in datalog
extensions. J. ACM 48(5): 971-1012 (2001)

[5] Aditya Kalyanpur, Bijan Parsia, Evren Sirin: Black Box
Techniques for Debugging Unsatisfiable Concepts.
Description Logics 2005

[6] Stefan Schlobach, Ronald Cornet: Non-Standard
Reasoning Services for the Debugging of Description
Logic Terminologies. International Joint Conference on
Artificial Intelligence (IJCAI) 2003: 355-362

[7] Ernest Teniente, Carles Farré, Toni Urpí, Carlos Beltrán,
David Gañán: SVT: Schema Validation Tool for
Microsoft SQL-Server. VLDB 2004: 1349-1352

[8] Xubo Zhang, Z. Meral Özsoyoglu: Implication and
Referential Constraints: A New Formal Reasoning. IEEE
Trans. Knowl. Data Eng. 9(6): 894-910 (1997)

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	3. COMPUTING EXPLANATIONS
	3.1. Computing Explanations Forward
	3.2. Computing Explanations Backward
	3.2.1. Phase 1
	3.2.2. Phase 2
	3.2.3. Phase 3

	3.3. Filtering Candidates with Non-Relevant Constraints

	4. EXPERIMENTAL EVALUATION
	4.1. CQC Method and SVT
	4.2. Experiments

	5. RELATED WORK
	6. CONCLUSIONS AND FURTHER WORK
	7. REFERENCES

