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A general constrained adaptive method is developed to be applied to the spectral estimation problem.
The method presented can be used in a wide range of situations, this is, we can get different estimators
with it. The algorithm is formulated in a variational approach context,and the non linear system obtained
is solved with a constrained adaptive method applied to a digitized version of the spectrum. The set
of constraints is considered to be a set of known correlation values, and they can be located in non
consecutive lags. A generalization of the method is done, so it can be used in a multidimensional
framework. As an example, a bidimensional maximum entropy spectrum is presented.

1 Introduction

The problem of estimating the power spectral density
of a random process, from a finite number of samples
of a single realization, has been widely studied. Work-
ing in an unidimensional framework, there are a lot of
different methods developed, obtaining both, paramet-
ric models and non parametric ones. Some of these
methods have been generalized to be applied in a bidi-
mensional (or multidimensional) framework, but unfor-
tunately this generalization is not always possible. An-
other limitation that usually-appears when using most
of the estimators available, is that although they work
efficiently when they are applied to particular situa-
tions, they become nearly useless in other cases. A well
known example iz the maximum entropy estimator; in
one dimension and using consecutive correlation lags,
Levinson’s algorithm solves the problem optimally, but
it cannot be used if the correlation lags are non con-
secutive or if we are in a two dimensional environment.
In this work a general iterative method to solve the
spectrum estimation problem is presented. The prob-
lem is first formulated in a variational approach frame-
work, and a gradient adaptive method with linear con-
straints is used. The method can be applied to multi-
dimensional spectral estimation and it is not imposed
that the correlation lags be consecutive.
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2 The variational approach in spectral estimation

One of the most interesting frameworks to study the es-
timation problem is the so called variational approach
[1]. An objective function is to be optimized subject
to a set of constraints. The optimization is found by
means of the Lagrange multipliers An. In this work
we are considering a general function F(S(f)) of the
spectra §(f) to be optimized

F(S(f)) = [ (8 o)

the set of constraints D is a set of @ correlation lags. It
must include the origin correlation point, but no other
restrictions are imposed.

r(n) = f S(f)eé™df neD (2)
The Lagrangian

L(S(£) = ¢(S(1) - 'Z; MnS(fleiml - (3)

is derived with respect to §(f) and equaling the deriva-
tive to gero a non linear system is obtained. The La-
grange multipliers A, are

Ao = f _.__"_‘3¢g5(,f))ef"~fdf neD  (4)

and they are in fact the spectrum parametres.

Different estimators can be achieved choosing ¢(S).
For example if ¢(S) = Ln(S) a maximum entropy spec-
trum should be obtained, or if ¢(S) = (§ — Ing — 1)
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the spectrum that should be achieved is a minimum
cross entropy one, where P( f) is the previous spectrum
knowaledge we have. On the other hand, if other sets
of constrains were considered, the estimators achieved
would also be different, but they are not studied here.

3 Adaptive gradient methods with constraints

To solve the previous problem, an adaptive gradient
method (2] with costraints is proposed to be applied to
a digitalized version of the spectrum to be estimated.
Two different algorithms are discussed. The first one is
based on Frost’s method (8], and the second one on the
General Sidelobe Canceller (GSC) proposed by Grif-
fiths [4].

Considering that the N points of the spectrum to be
estimated form the vector § = (5(0),.., $(k),..,8(n —
1))7, and the Q correlation values that form the set of
constraints are r = (r(0),..,7(1), ..,r(M — 1)) where
1 € D, a matrix M (QxN) can be formed and will
be the relationship between § and r. Thus, it can be
written

1
r=yMS (8)
where

My=¢®* ieD, k=0,,N-1 (6)

Equation b is in fact the constraint equation.
The objective function is then approximated by

F(S) =’;§¢(§m} )

and so, the Lagrangian comes to be

"Z $(5(K)) - )‘T(—M_-‘-i 0 ®)
=0

where A = (Ao, ..., A\ss—1)7 i8 the vector formed by the
Q Lagrange multipliers. The Lagrangian gradient with
respect to § is

VL=~ i) ®
where
a
8= (g ) (10)

Generalizing the results presented by the authors in [5]
in a maximum entropy context, the iterative algorithm
comes to be

Senn =Ly - -—MHM)(& +ug)+8 (1)

where Sy = M"r, and is called the minimum norm
spectrum. [ is the NxN identity matrix.
In fact, a geometrical interpretation of Eq. 11 can be
easily made. Defining P = I, — 4 M¥M as a pro-
jection matrix over the orthogonal unconstrmned sub-
space defined by 0 = MS and pointing out that Eq.
5 defines the so called constrained hiperplane (where
all the estimator candidates lay), the algorithm can
be explained as follows. The 1" estimation is modi-
fied in the objective function gradient direction. The
new vector obtained should not lay on the constrained
hiperplane, so it must be projected over the orthogonal
unconstrained subspace, and adding to that projected
vector the minlmum norm one, 3 new spectrum estl-
mation is achieved, which fulfills the set of constraints.
The algorithm convergence is controlled by the u con-
gtant, that at the same time bounds the residual error
that can be achieved.
The second method presented is based on a decompo-
sition of the vector to be adapted into two orthogonal
components. As shown in Eq. 11, the iteration can be
expressed as the addition of two vectorial components,
one is the minimum norm spectrum, which is time in-
variant, and the ofher one, which is orthogonal to it, is
in fact which will be adapted along the process. Thus,
if we were able to work in the unconstrained subspace,
the adaptive constrained algorithm would come to be
an unconstrained one. The computational cost is then
reduced by two reasons. On one hand the adaptive al-
gorithm is simpler, and on the other hand there are less
coeficients to be adapted. First of all a transformation
must be made, passing to work in the time domain in-
stead of working in the frequency one. Though, let us
consider r the constrained vector as before, and r, the
adaptive vector. The latest is in fact a correlation ex-
trapolation, and its (N-Q) components are out of the
constrained set D. The iteration equation is now an
unconstrained one, and is carried on over r, as

E“i-i-l

= 1o+ B AS, (12)

where

Ay =Rk k=0,.,N-1 (13)

s not in D,

and S, is the i spectrum estimated.

4 Using the FFT

It has to be pointed out that with the formulation used
up to here, the algorithm is solved with a high compu-
tational cost. This is mainly due to the fact of the ma-
trix by matrix, matrix by vector multiplication opera-



tions involved in the procedure. In fact, the QxN ma-
trix M is partially defining the Inverse Discrete Fourier
Transform. There are N — @ rows missing to have the
NxN square matrix associated with the IDFT. Adding
the needed rows to the matrix, and extendig the Q di-
mensional vectors in such way that they become N di-
mensional, introducing no meodifications to the formal
equations, the FFT algorithm can be ued, This is done
in a very simple way. The r vector is extended initially
with noughts located in the non constrained lags. Be-
sides that, a temporal window w(n) must be used mul-
tiplying the inverse Fourier transformoms computed,
to ensure that the constraints remain unchanged. This
window is equal to one in the constrained lags, and is
zero in the unconstrained ones. Thus, with this vector
extension Eq. 11 can be rewritten as

Sipy = Si+pd )t~ FFT{w(n)FFT{S;+ pg 1}} +§4i
(14

6 Conclusions

Thie last equation shows some of the main advantages
of the method presented, Among them we mention the
following ones. The constrain correlation points are lo-
cated through the window w(n), and no restriction is
imposed to this location, so the correlation lags might
be non consecutive. The correlation constraints are al-
ways fullfilled. This is due to the last term of Eq. 14,
go if the known correlation points were time-varying,
an adaptive version of the correlation constrained set
shuold be used just modifying this last term in each
iteration. A very important advantage that makes the
procedure very usefull is that expression 14 is directly
generalizable to a multidimensional framework. This is
done considering multidimensional Fourier transforms,
and extending the vectors and the window to the mul-
tidimensional case.

Just to present an example of the results achieved,
a maximum entropy spectrum is estimated in a bi-
dimensional case. We consider two sinusoids in white
gaussian noise as input signal.

2(3,7) = n(i, 1) + ; Vacos(2n(£(0)i + (1)) (15)

The sinusoid frequencies are (0.1,0.1) and (0.2,0.3125),
and the noise power i8 62 = 1. The number of points
used to compute the estimation is 64z64. The con-
strained set is a 525 square of known correlation points
centered in the origin. Figures 1 and 2 show the min-
imum norm spectrum and the maximum entropy one
obtained with the method presented.
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Figure 1: Minimum norm spectrum
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Figure 2: Maximum entropy spectrum





