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Abstract

We analyze the computational complexity of the problem of deciding whether, for a given simple game,
there exists the possibility of rearranging the participants in a set of j given losing coalitions into a set of
j winning coalitions. We also look at the problem of turning winning coalitions into losing coalitions. We
analyze the problem when the simple game is represented by a list of wining, losing, minimal winning or
maximal loosing coalitions.
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1. Introduction

Simple games cover voting systems in which a
single alternative, such as a bill or an amendment,
is pitted against the status quo. In these sys-
tems, each voter responds with a vote of yea and
nay. Democratic societies and international organi-
zations use a wide variety of complex rules to reach
decisions. Examples, where it is not always easy
to understand the consequences of the way voting
is done, include the Electoral College to elect the
President of the United States, the United Nations
Security Council, the governance structure of the
World Bank, the International Monetary Fund, the
European Union Council of Ministers, the national
governments of many countries, the councils in sev-
eral counties, and the system to elect the major in
cities or villages of many countries. Another source
of examples comes from economic enterprises whose
owners are shareholders of the society and divide
profits or losses proportionally to the numbers of
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stocks they posses, but make decisions by voting
according to a pre-defined rule (i.e., an absolute ma-
jority rule or a qualified majority rule). See [11, 12]
for a thorough presentation of theses and other ex-
amples. Such systems have been analyzed as simple
games.

Definition 1. A simple game Γ is a pair (N,W)
in which N = {1, 2, . . . , n} and W is a collection of
subsets of N that satisfies: (1) N ∈ W, (2) ∅ /∈ W
and (3) the monotonicity property: S ∈ W and
S ⊆ T ⊆ N implies T ∈ W.

The subsets of N are called coalitions, the coali-
tions in W are called winning coalitions, and the
coalitions that are not winning are called losing
coalitions (noted by L). Moreover, we say that a
coalition is minimal winning (maximal losing) if it
is a winning (losing) coalition all of whose proper
subsets (supersets) are losing (winning). Because
of monotonicity, any simple game is completely de-
termined by its set of minimal winning (maximal
losing) coalitions denoted by Wm (LM ). Note that
a description of a simple game Γ can be given by
(N,X ), where X is W, L, Wm or LM , see [12]. We
focus on the process of exchanging or trading where
a motivating example is the following:

Example 1. Consider two English football clubs
that are in trouble and in danger of leaving Premier
League. Maybe the two clubs could trade with each
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other and exchange players so they both could avoid
relegation. We consider the complexity of figuring
out if such an exchange is possible for various ways
of knowing what it takes to form a strong team
that is able to stay in Premier League. This can be
viewed as a simple game where a winning coalition
corresponds to a strong team of players.

The considered property is the so called j-trade
property for simple games. Loosely speaking, a
simple game is j-trade if it is possible to rearrange
the players in a set of j winning (losing) coalitions
into a set of j losing (winning) coalitions, in such
a way that the total number of occurrences of each
player is the same in both sets. Thus, it is possi-
ble to go from one set to the other via participant
trades. This notion was introduced by Taylor and
Zwicker [12] in order to obtain a characterization of
the weighted games, a subfamily of simple games.
Recall that any simple game can be expressed as the
intersection of weighted simple games. This leads
to the definition of the dimension concept, the min-
imum number of required weighted games whose in-
tersection represents the simple game [2, 6, 3]. Due
to this fact, the problem of deciding whether a sim-
ple game is weighted has been of interest in several
contexts. With respect to tradeness, it is known
that a simple game is weighted if and only if it is not
j-trade for any non-negative integer j [12]. Freixas
et al. [5] studied the computational complexity of
deciding whether a simple game is weighted among
other decision problems for simple games. In par-
ticular, they showed that deciding whether a simple
game is weighted is polynomial time solvable when
the game is given by an explicit listing of one of the
families W, L, Wm, LM . On the other hand, the
j-trade concept was also redefined as j-invariant-
trade of simple games [4] and extended as (j, k)-
simple games [7].

Here we provide a definition of j-trade that uses a
formalism that differ from the classic one for j-trade
robustness applied to a simple game (see [1, 12, 4])
in order to ease the proofs of our new results.

Definition 2. Given a simple game Γ, a j-trade
application is a set of 2j coalitions (S1, . . . , S2j)
such that ∃I ⊆ {1, . . . , 2j} that satisfies:

1. |I| = j

2. ∀i ∈ {1, . . . , 2j}, Si ∈ W ⇐⇒ i ∈ I
3. ∀p ∈ N , |{i ∈ I : p ∈ Si}| = |{i ∈ {1, . . . , 2j}\
I : p ∈ Si}|

Definition 3. A simple game Γ is j-trade if it ad-
mits a j-trade application.

Example 2. The simple game defined by
(N,Wm) = ({1, 2, 3, 4}, {{1, 3}, {2, 4}}) is 2-
trade because it admits a 2-trade application.
For instance, we can consider the following set
of coalitions ({1, 3}, {2, 4}, {1, 2}, {3, 4}) where
{1, 3}, {2, 4} ∈ W, but {1, 2}, {3, 4} ∈ L.

Example 3. It is easy to generate a simple game
that will be 2j-trade, for an integer j. For in-
stance, we can take the simple game (N,Wm)
where N = {1, . . . , 2j} and Wm = {{i, i + 1} | i ∈
1, 3, 5, . . . , 2j − 1}. It is clear that coalitions Li =
{i, i + 1}, for all i ∈ {2, 4, 6, . . . , 2j − 2}, and
L2j = {1, 2j} are losing. Thus, the set of 2j coali-

tions Wm ∪
(
∪ji=1L2i

)
generates a j-trade applica-

tion.

Definition 4. A simple game Γ is j-trade robust if
it is not j-trade.

Before formally defining the decision problems we
focus on, we consider two functions α and β asso-
ciating games with various types of sets of coali-
tions. The allowed types are the following α(Γ) ∈
{W,L,Wm,LM} and β(Γ) ∈ {W,L}, respectively.
Moreover, given the β application we consider the
function β that provides the complementary type
with respect to the function β.

β(Γ) =

{
W, if β(Γ) = L
L, if β(Γ) =W

Now we can state the definition of the considered
computational problems, observe that the value of
α provides the type of coalitions used in the rep-
resentation of the input game while the β function
indicates the type of the coalitions to be exchanged.

Definition 5. The (α, β, j)-trade problem, where
j ∈ N, is

Input: A simple game Γ given by (N,α(Γ)) and
j coalitions S1, . . . , Sj ∈ β(Γ).

Question: Do there exist Sj+1, . . . , S2j ∈ β(Γ)
such that (S1, . . . , S2j) is a j-trade application?

Definition 6. The (α, β)-Trade problem is the
(α, β, 2)-trade problem.
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α(Γ) \ β(Γ) W
W polynomial
Wm NP-complete
L polynomial
LM polynomial

α(Γ) \ β(Γ) L
W polynomial
Wm polynomial
L polynomial
LM NP-complete

Table 1: Complexity for the (α, β)-Trade problem, where
polynomial means polynomially time solvable.

In the remaining part of the paper we analyze the
computational complexity of the above problems.
Table 1 summarizes all results about the (α, β)-
Trade problem. We present first the results for the
(α, β)-Trade problem and then the results for the
general case. We finalize with some conclusions and
open problems.

2. The computational complexity of trading
two given coalitions

We present first the types for which the (α, β)-
Trade problems are polynomial time solvable.

Proposition 1. The (α, β)-Trade problem is poly-
nomially time solvable when α(Γ) ∈ {W,Wm,L}
and β(Γ) = L.

Proof. We analyze each case separately. Let S1, S2

be two coalitions and assume that both are of type
β(Γ) = L.

• Case α(Γ) =W. Observe that we only need to
check whether there are two coalitions S3, S4 ∈
W such that (S1, S2, S3, S4) is a 2-trade appli-
cation. This property can be trivially checked
in polynomial time by considering all the pairs
of coalitions in W. Therefore in polynomial
time with respect to the input size.

• Case α(Γ) = Wm. The algorithm is the fol-
lowing. First, we look for the existence of two
coalitions S3, S4 ∈ Wm such that, ∀p ∈ N ,
|{i ∈ {3, 4} : p ∈ Si}| ≤ |{i ∈ {1, 2} : p ∈ Si}|.
Observe that if such a pair of coalitions exists
we can add the missing players (if any) in such
a way that, ∀p ∈ N , |{i ∈ {3, 4} : p ∈ Si}| =
|{i ∈ {1, 2} : p ∈ Si}| and obtain a 2-trade
application.

• Case α(Γ) = L. Now we compute Wm from
L using the polynomial time algorithm shown
in [5] and reduce the problem to the previous
case.

The same result can be proven when β(Γ) =W.

Proposition 2. The (α, β)-Trade problem is poly-
nomially time solvable when α(Γ) ∈ {L,LM ,W}
and β(Γ) =W.

Proof. Arguments are symmetric to Proposition 1.
Let S1, S2 be two coalitions and assume that both
are of type β(Γ) =W.

• Case α(Γ) = L. Here it is enough to check
all pairs of losing coalitions. The reasoning is
symmetric to the first case of Proposition 1.

• Case α(Γ) = LM . The algorithm is symmet-
ric to the second case of Proposition 1. We
check whether there are two maximal loos-
ing coalitions S3 and S4 so that, ∀p ∈ N ,
|{i ∈ {3, 4} : p ∈ Si}| ≥ |{i ∈ {1, 2} : p ∈ Si}|.
If this is the case, by removing the additional
players we get a 2-trade application.

• If α(Γ) = W, we compute LM from W using
the polynomial time algorithm given in [5] and
use the algorithm for the previous case.

In the following results we isolate the types giving
rise to computationally hard cases.

Proposition 3. The (α, β)-Trade problem is NP-
complete when α(Γ) = LM and β(Γ) = L.

Proof. The considered (α, β)-Trade problem is eas-
ily seen to be a member of NP. We show that
it is also NP-hard providing a reduction from the
SAT problem. Recall that the SAT asks whether
a given boolean formula φ given in conjunctive
normal form is satisfiable or not. The SAT prob-
lem is a famous NP-complete problem [8]. We let
X = {x1,¬x1, x2,¬x2, . . . , xn,¬xn} be the literals
of φ and let Xi be the set of literals in the i’th
clause of φ. Let m denote the number of clauses of
φ. Our reduction transforms φ into an equivalent
instance of the considered (α, β)-Trade problem in
polynomial time.
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The set of players of the associated game Γ =
Γ(φ) contains the literals and two extra players a
and b: N = X ∪ {a, b}. A set of players Y can
win if and only if at least one of the following two
conditions are met:

a ∈ Y ∧ ∀i = {1, 2, . . . ,m} : Y ∩Xi 6= ∅ (1)

b ∈ Y ∧∀j = {1, 2, . . . , n} : xj ∈ Y ∨¬xj ∈ Y (2)

It is not hard to see that this is indeed a simple
game since any superset of a winning set is also
winning. We now have to show how to construct the
set of maximal loosing coalitions LM for this game
in polynomial time. A set of players S is loosing
if and only if (1) and (2) are both violated. This
happens if and only if at least one of the following
four conditions are met:

S ⊆ N \ {a, b} (3)

∃i : S ⊆ N \ (Xi ∪ {b}) (4)

∃j : S ⊆ N \ {a, xj ,¬xj} (5)

∃i, j : S ⊆ N \ (Xi ∪ {xj ,¬xj}) (6)

If we consider all possible combinations of i and j
then the sets on the right hand side of these ex-
pressions form a set of loosing sets. Any loosing
set is contained in at least one of those sets. If we
pick the maximal sets of this family – which can be
done in polynomial time – we get LM for the game
Γ. The sets S1 and S2 are constructed as follows:
S1 = {a, b} and S2 = X.

Now assume that φ is a yes-instance to SAT. Let
S3 be the set formed by the player a and all liter-
als corresponding to a truth-assignment satisfying
φ and let S4 be the set formed by the remaining
literals and the player b. It is easy to see that coali-
tions (S1, S2, S3, S4) are a 2-trade application of Γ,
where S1, S2 ∈ L and S3, S4 ∈ W.

On the other hand, note that such 2-trade appli-
cation only exists if one of the winning sets contain
a and a set of literals defining a truth-assignment
satisfying φ. Thus, the instances to the SAT-
problem and the considered (α, β)-Trade problem
are equivalent.

Using a symmetric construction to the previous
one we have.

Proposition 4. The (α, β)-Trade problem is NP-
complete when α(Γ) =Wm and β(Γ) =W.

We conclude this section by isolating a parameter
for which one of the hard cases is fixed parameter
tractable. We do so by providing a parameterized
reduction to the SetSplitting problem.

Proposition 5. The (α, β)-Trade problem, being
α(Γ) = LM and β(Γ) = L, is fixed parame-
ter tractable when considering the parameter k =
|LM |.

Proof. Recall that according to [8] the
SetSplitting problem is the following deci-
sion problem: Given a family F of subsets of a
finite set U and an integer k, decide whether there
exists a partition of U into two subsets U1 and
U2 such that at least k elements of F are split by
this partition. Lokshtanov and Saurabh [9] show
that the SetSplitting problem is fixed parameter
tractable when the parameter is the integer k.

Now we provide a fixed parameter reduction
from our case of the (α, β)-Trade problem to the
SetSplitting problem.

Given a simple game (N,LM ) and S1, S2 ∈ L.
Let Zi = (S1 ∪ S2) \ Li for Li ∈ LM such that
S1 ∩ S2 ⊆ Li. Let F be the family of sets consist-
ing of all the Zi’s. We construct the input to the
SetSplitting problem given by U = S1 ∪ S2, F
and k = |F|.

Notice that there must be at least one member in
F since S1 and S2 are loosing coalitions. Moreover,
the number of sets in F is always less than or equal
to |LM |.

Now we prove the following claim: Given a simple
game (N,LM ) and S1, S2 ∈ L, there exists S3, S4 ∈
W where (S1, S2, S3, S4) is a 2-trade application if
and only if F is a yes-instance to the SetSplitting
problem.

If: Now assume that F is a yes-instance to the
SetSplitting problem with the sets U1 and U2

splitting the members of F . We will now prove that
the sets S3 = U1∪(S1∩S2) and S4 = U2∪(S1∩S2)
are winning coalitions. Now consider an arbitrary
member Li ∈ LM . If S1∩S2 ⊆ Li then U1∩Zi 6= ∅
implying S3 6⊆ Li. If S1 ∩ S2 6⊆ Li then we also
have S3 6⊆ Li. This holds for any Li ∈ LM im-
plying that S3 is winning. The same goes for S4.
Note that (U1, U2) is a partition of S1∪S2, so every
player appears the same number of times in S3 and
S4 as in S1 and S2.

Only if: Assume that we have a 2-trade ap-
plication (S1, S2, S3, S4) where S3, S4 ∈ W and
S1, S2 ∈ L. Let R = {L ∈ LM : S1 ∩ S2 ⊆ L}
and Ui = Si \ (∩L∈RL) for i ∈ {3, 4}. It is not hard

4



to see that U3 and U4 are disjoint. What remains
is to show that U3 and U4 split all the members of
F .

Now consider an arbitrarily chosen set Zi. The
coalition S3 is winning. Therefore it contains at
least one player that is not a member of Li ∈ LM .
This player is a member of U3 and it is also a mem-
ber of Zi, so U3 ∩ Zi 6= ∅. Finally, the same argu-
ment can be used for U4.

Using the FPT Algorithm for the SetSplitting

problem with complexity f(k)+p(n), where k = |F|
and n = |N |, for some function f and a polynomial
p, we get that the total complexity of the composed
algorithm is f(|LM |)+p(n)+O(n|LM |) as the time
of computing the associated instance is O(n|LM |).
Thus, the claim follows.

3. The computational complexity of trading
j coalitions

Note that it is enough to check combinations of
j-coalitions in LM or Wm to seek for a j-trade ap-
plication. This is so, because, if needed, we can
remove players from a maximal losing coalition or
add players to a minimal wining coalition getting
loosing or winning coalitions that matches the re-
quirements for the j-trade application.

Theorem 1. For a fixed j, given a simple game
Γ = (N,W), we can decide whether such a simple
game is j-trade in polynomial time. Furthermore,
if the game is j-trade, a j-trade application can be
efficiently computed.

Proof. We start by computing LM from W using
the polynomial time algorithm given in [5]. Then,
we try all the possible combinations of j members of
W and j members of LM (repetitions are allowed)

to find a j-trade application. This requires
(|W|

j

)
combinations.

The algorithm works because there is such j-
trade application if and only if there is a j-trade
application where all losing coalitions are maximal
losing coalitions.

Next we present a similar result but for the case
in which the game is given by Γ = (N,L).

Theorem 2. For a fixed j, given a simple game
Γ = (N,L), we can decide whether such a simple
game is j-trade in polynomial time. Furthermore,
if the game is j-trade, a j-trade application can be
efficiently computed.

Proof. We start by computingWm from L in poly-
nomial time [5] and proceed as Theorem 1.

Now we adapt the result of Proposition 3 for the
(α, β)-Trade problem to the (α, β, j)-trade problem

Proposition 6. The (α, β, j)-trade problem is NP-
complete when α(Γ) = LM and β(Γ) = L.

Proof. The argument is quite similar to the one
used in the proof of Proposition 3, but consider-
ing that the set of players of the game Γ contains
the literals and 2 + 2 · (j − 2) extra players, i.e., a,
b, and c1i and c2i for i ∈ {3, . . . , j}. Thus, we have
that N = X ∪{a, b}∪ji=3 {c1i, c2i}. A set of players
Y can win if and only if at least one of the following
conditions are met:

a ∈ Y ∧ ∀i = {1, 2, . . . ,m} : Y ∩Xi 6= ∅ (7)

b ∈ Y ∧∀j = {1, 2, . . . , n} : xj ∈ Y ∨¬xj ∈ Y (8)

{c1i, c2i} ⊆ Y,∀i ∈ {3, 4, . . . , j} . (9)

As winning coalitions we have

Sj+1 = {a, all true literals corresponding to
a truth-assignment satisfying φ},

Sj+2 = {b, the remaining literals that are
not in S1},

Sj+i = {c1i, c2i} , ∀i ∈ {3, 4, . . . , j}.

Finally, as losing coalitions we distinguish two
cases:

• If j is even,

S1 = X,
S2 = {a, b},
Si = {c1i, c1,i+1} , ∀i ∈ {3, 5, 7, . . . , j − 1}
Si = {c2,i−1, c2i} , ∀i ∈ {4, 6, 8, . . . , j} .

• If j is odd

S1 = X,
S2 = {a, c1j},
Si = {c1i, c1,i+1} , ∀i ∈ {3, 5, 7, . . . , j − 1}
Si = {c2,i−1, c2i} , ∀i ∈ {4, 6, 8, . . . , j − 2}
S2j = {b, c2j} .

5



4. Related Remaining Problems

In this paper we have focused on the compu-
tational complexity of trade robustness problems
for simple games. Our results are summarized in
Table 1. Nevertheless, there remain many related
open questions. Let us highlight some of them.

Because constructing W or L from Wm or LM ,
respectively, is not polynomially solvable, we post
the following conjecture.

Conjecture 1. For a fixed j, to decide whether
a game given by either (N,Wm) or (N,LM ) is j-
trade is coNP-complete.

We recall that a simple game is weighted if and
only if it is j-trade robust for any non-negative inte-
ger j, see the characterization given by Taylor and
Zwicker [12]. This leads us to the following problem

Trade robustness problem.

Input: A simple game Γ and a non-
negative integer j.

Question: Is Γ a j-trade robust game?

Whose computational complexity remains open for
the different forms of representations of simple
games considered in this paper.

In a recent paper Molinero et al. [10] introduced
influence games. Influence games provide a suc-
cinct form of representation for simple games based
on graphs. It would be of interest to analyze the
complexity of the (α, β, j)-trade and the trade ro-
bustness problems when the simple game is given
as an influence game.
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