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Abstract. In Finite Element Methods for solving electromagnetic field problems, the
use of Edge Elements has become very popular. In fact, Edge Elements are often said
to be a cure to many difficulties that are encountered (particularly eliminating spurious
solutions) and are claimed to yield accurate results [9, 16, 17]. We will shortly describe
the mathematical formulation of linear edge elements and we go through the particular
issues related to the implementation of these elements in order to solve geophysical elec-
tromagnetic problems. In particular, we describe a simple, flexible and parallel Fortran
90 implementation for Edge Elements. The code is based on an abstract data structure,
which allows to use different kinds of solvers with little effort. The result is an imple-
mentation that allows users to specify Edge-based Finite Element variational forms of
H(curl). Finally, we also show the performance of the code in terms of efficiency, ac-
curacy and reliability, which will shape our future line of work in order to solve more
complex problems.

1 INTRODUCTION

The Sobolev spaces H(div) and H(curl) play an important role in many applications
of Edge-based Finite Element methods (Edge Elements) to partial differential equations
(PDE). Examples include second-order elliptic PDE’s, Maxwell’s Equations for electro-
magnetism, and the linear elasticity equations, among others. Edge-based Finite Ele-
ment methods may provide advantages over standard H' Finite Element discretizations
in terms of improved flexibility, stability and robustness. However, implementing H (div)
and H (curl) methods requires additional code complexity for constructing basis functions
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and evaluating variational forms, which together with its relative novelty helps explaing
their relative scarcity in practice.

The most important difference between the Nodal Finite Element (Lagrange FE) and
the Edge-based Finite Element method (Nédélec Elements) is that the basis functions
are not defined on the nodes of 2D triangular and 3D tetrahedral meshes, but on edges
and faces, respectively [14]. Edge Elements provide only partial continuity over element
boundaries: continuity of the normal vector component for H(div) problems and conti-
nuity of the tangential vector component for H (curl) problems.

The method of FE applied to H(div) and H (curl) problems and its implementation
has been well documented [1, 16, 17]. Users can find many software codes such as NG-
SOLVE [3] or FEniCS [12], which are written in object oriented languages allowing for
higher order elements defined on elements with curved boundaries. Such codes are well
suited for high complexity computations and also provide a certain flexibility via user
interface. However, if some features are not available, it is usually difficult to understand
the source code and modify it. We believe that our Fortran 90 code is more suitable for
students and researchers who wish to become familiar with Edge Elements and prefer to
make their own modifications. As our target application is exploration geophysics, our
computational solution considers the lowest order linear Edge Elements defined on 2D tri-
angles for H(curl) problems only. There is a large bibliography dedicated to constructing
nodal elements, but only few publications related to Edge Elements. Our implementation
takes may practical ideas from literature [1, 6, 16, 17].

The paper is divided as follows: Section 2 shortly describes the theory associated to
linear edge elements without going into details. In Section 3 we go through the particular
constructions related to the implementation of these elements. Strong emphasis is placed
on aspects not easily found in the literature, such as the choice of orientation of geometric
entities. Section 4 describes the software stack, including the most important functions
such as the interface that allows to use different kinds of solvers with little effort. In
particular, we use the BLAS library [2]. Section 5 shows the performance of the code in
terms of efficiency, accuracy and reliability. Finally, we make some concluding remarks in
Section 6.

2 LINEAR NEDELEC ELEMENTS FORMULATION

When using nodal elements (Lagrange elements) in electromagnetism, spurious solu-
tions can occur [9, 10, 17]. In this section we summarize some basic facts about the
Sobolev space H(curl) and we discuss conforming finite elements associated with them.
The reader is referred to [16] for a more thorough analysis of H(curl).

We denote by Q an open, bounded and connected Lipschitz domain in R?, where d €
{2,3} denotes the space dimension. The rotation of a vector valued function w : Q — R?
is defined as:
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Ohws — O3ws,
VXxw= 83w1 — 81103, (1)
Oywe — 321017

Following the approach of [16, 17], we consider two types of rotation operators in 2D,
the vector operator curl and the scalar operator curl:

cunty = (%)) @
curlw = djwy — Oy, (3)

In literature, the operator curl is frequently called the co-gradient. The operators give
rise to the standard Sobolev spaces:

(e (R |V x v € [AQRY)} ifd=3
H(V < Q) = {{ueB(QR?) |V x v el2Q))  ifd=2 )

where L? denotes the space of the square Lebesgue integrable functions. Assuming that
2 is discretized by a triangular (2D) or a tetrahedral (3D) mesh M, Nédélec Elements
represent basis functions in H(curl,M) spaces. Figure 1 shows the numbering of the
degrees of freedom of the linear Edge elements.

On the other hand, we denote the global edge basis functions by n, and by x =
(71,22, 73)" the spatial variable in Q. Similarly, we define the reference basis functions
and the spatial variable simply by adding the hat *, for instance, © denotes the spatial
variable in the reference element. The reference basis functions of the Nédélec Elements
are as follows [1, 14, 16, 17]:

2D case : ny (1) = (;?) ny(#) = <x1_f21) na(2) = (1 ;;@) (5)

1-— i’g — 92‘2 iZ
3D case : ny(2) = 1 , na(2)= [1—235—2 (6)
i‘l i'2
JA/’3 _5%2
ng(&) = T3 , na(Z) = )
1— 29— Iy 0
0 T3
n5(§c) = —Zi'g s Tlﬁ(i‘) = 0
ig _fl

In the following, Fx denotes the affine element mapping Fx := BgZ + by from the
reference element to an element K in the mesh. In order to preserve the tangential
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Figure 1: Degrees of freedom of linear Edge Elements (Reference configuration).

continuity of the reference basis functions, we need to use the so-called Piola mappings.
We refer the reader to [4, 13] for a more thorough treatment. In our case, the values are
mapped as follows [1, 14, 16, 17]:

n(w) = B n(Fy' () (7)
Finally, the rotation is mapped differently depending on the dimension [1, 16, 17]:
curl n(Fit () (8)

1
2D case : n(z) = B
et By,

1 —1
= JeiB, Bk curl n(Fg (z))

3 PARTICULARITIES OF EDGE ELEMENTS

3D case : n(z)

In this section we shortly describe three particularities to construct an Edge Elements
solution: Piola mapping in order to guarantee global continuity of H(curl) problems,
numbering scheme and edges direction.

3.1 Piola mapping

First, it follows from Stokes theorem that in order for piecewise H(curl) vector fields
to belong to in H (curl) globally, the traces of tangential components over patch interfaces
must be continuous. In order to do that, one must consider the covariant Piola mapping
which is defined by:

Fcurl(q)> — JfT(I) o Ffl (9)
Figure 2 depicts the vector field ® between two triangles using the covariant Piola

mapping which preserves tangential traces of vector fields [16].
We refer the reader to [4, 16, 17] for a more thorough treatment.
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Figure 2: Covariant Piola mapping of vector field ® in 2D case.

3.2 Numbering strategy

In order to guarantee global continuity with Piola mapping, special care has to be taken
with regard to the numbering strategy. Our implementation is based on UFC (Unified
Form-assembly Code), which is a unified framework for finite element assembly. More
precisely, it defines a fixed interface to communicate low level routines (functions) for
evaluating and assembling FE variational forms [12].

In short, the numbering strategy works as follows. A global index is assigned to each
node of the mesh M (consisting of triangles or tetrahedra). If an edge adjoints two nodes
n; and n;, we define the direction of the edge as going from node n; to node n; if 7 < j.
This gives a unique orientation of each edge. The same philosophy is used locally to
determine the directions of the local edges on each element. Thus, if an edge connects
the second and the third node of a tetrahedron, then the direction is from the second to
the third node.

A similar numbering scheme is employed for faces, the key point now is to require that
the nodes of each element are always ordered based on the their global indices. More
details may be found in [9, 13].

3.3 Edges direction

Since the degrees of freedom are integrals over edges or faces, we need to know how
they are oriented. To do that, we need to include what is the positive orientation for an
edge or a face in the mesh M. Then, we proceed as follows. First, for every element we
have an affine mapping from the reference element to the element in the mesh. Second,
the reference element has a certain orientation for the edges and faces. Thus, if the
orientation of an edge, or the orientation of a face is mapped in the same direction as
positive direction we had agreed upon, we assign +1 for this edge/face. Otherwise we
assign —1. These directions are depicted in Figure 3 [1, 16, 17].

In 3D, we need to again know which edge unit tangential vectors to use, hence, the
calculation of the orientations is identical to the 2D case.

988



Octavio Castillo, Josep de la Puente, Vladimir Puzyrev and José Maria Cela

2D Nédélec
(Tangential direction)

Figure 3: Orientation of 2D edge elements sharing an edge (the thick line denotes the agreed positive
direction).

4 SOFTWARE STACK

In this section we describe the software stack of our solution including the most impor-
tant data structures. An outline on the primary groups of functions in our implementation
is given in Figure 4. A more detailed explanation is the following:

1.

Mesh. This module stores geometric and topological properties of a mesh: how
are the elements connected and where are their nodes. The properties and data of
meshes are almost always queried through loops over all elements, possibly querying
all faces of each element as well (3D). Our implementation is able to read as input
nodal-based meshes.

Edge-FE. Describe the properties of a Edge-based Finite Element space as defined
on the reference element. This includes, for example, individual shape functions at
edges on the reference element.

Quadrature. As with FE, quadrature objects are defined on the reference element.
Includes the location of quadrature points on the unit element, and the weights of
quadrature points thereon.

Initializer. This module is the confluence of meshes and Edge-FE, in other words,
Edge-FE describes how many degrees of freedom it needs per node or edge, and
Initializer module allocates this space so that node or edge of the mesh has the
correct number of them. It also gives them a global numbering.

Mapping. Computes matrix and right hand side (RHS) entries or other quantities on
each element in the mesh, using the shape functions of a Edge-FE shape functions
and quadrature points defined by a quadrature rule. To do that, it is necessary
to map (Affine mapping) the shape functions, quadrature points and quadrature
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Figure 4: Upper view of software stack

weights from the unit element to each element in the mesh. This is directly done
by Mapping module. It also provides support to compute signs for each edge in 2D
or faces in 3D.

. EdgeFE _values. This module takes the Edge-FE and evaluate its shape functions
and their values at the points defined by a quadrature rule when mapped to the real
element.

. Assembly. This module assembles the system matrix and RHS of the linear system.
We will determine the solution of our problem from this linear system. To this
end, we have subroutines that store and manage in an efficient way the entries of
matrices and vectors.

. Solver interface. In order to find the solution of a linear system, one needs linear
solvers. In FE applications, they are frequently iterative, but sometimes one may
also want to use direct solvers. Since our implementation takes advantages of ex-
ternal solvers such as BLAS Library or PETSC to name a few, we need the Linear
solver module, which allows communication with the external solvers.

. Output. Once one has obtained a solution of a Edge-FE problem on a given mesh,
one will to postprocess it using a visualization program. Our software doesn’t do
the visualization by itself, but rather generates output files with the final results
[12]. It also gives timing values in order to evaluate the performance.
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10. Common modules. Finally, our implementation has three fundamental services:
parallel service, memory service and I/O service. In other words, common modules
is a toolbox that provide a variety of independent procedures to be called by other
modules or subroutines.

About data structures, our implementation is based on ideas of [1, 5, 9]. We consider
triangles in 2D and tetrahedra in 3D and denote by #w the number of elements in the set
of w, and by N, &, F and T the sets of Nodes, Edges, Faces and Elements, respectively.
Table 1 describes the elemental matrices that are needed in order to implement Edge
Elements. All structures are based on Column-Major Order approach.

Table 1: Elemental matrices to represent Edge Elements.

Name Dimensions Description
nodes2coord 2/3 x #N Nodes defined by their 2/3 coordinates in 2D /3D
edges2nodes 2 x #& Edges defined by their 2 nodes in 2D /3D
faces2nodes 3 X #F Faces defined by their 3 nodes in 3D

With the previous matrices available, we can express every element by the list of its
nodes, edges or faces as states Table 2, note that faces F exist only in 3D case.

Table 2: Element lists by their nodes, edges or faces

Name Dimensions Description
elems2nodes 3/4 x #T Elements by their 3/4 nodes in 2D/3D
elems2edges 3/6 x #T Elements by their 3/6 edges in 2D/3D
elems2faces 4x #T Elements by their 4 faces in 3D

We recall that we use first-order elements. Hence, in 2D, if one uses the unit triangle
as the reference configuration, Nédélec Elements have a degree of freedom related to each
of the three edges. In 3D case, if one uses the unit tetrahedron as reference configuration,
Nédélec Elements will have a degree of freedom related to each of the six edges. Hence,
the structures elems2nodes, elems2edges and elems2faces define the numbering of global
degrees of freedom for a given mesh. Figure 5 provides a simple example of the mesh data
in 2D.

5 PERFORMANCE ISSUES

In order to test the performance of our solution, we focus in assembly time, solving
time, and convergence order. Our tests are based on ideas from [1], where the authors solve
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Figure 5: Elements by their nodes, edges and signs in 2D case. The element number is denoted by 1.

the eddy-current problem using Nédélec Elements. The experiments were performed on a
simple node of the Marenostrum supercomputer with two 8 — core Intel Xeon processors

E5 — 2670 at 2.6 GHz.

Uniform refinement in 2D results in 4 times more elements. In this work, the BLAS
library is compiled and linked with our code in order to use the SGESV subroutine as
solver [8]. Table 3 depicts the performance of our code with 16 OpenMP threads in terms
of assembly time and solver time. Table 3 also includes the mesh spacing (h), L? error
and the convergence order which is plotted also in Figure 6.

Table 3: Summary of results for the 2D case. Number of elements (7)), number of edges (£), assembly
time (seconds), solver time (seconds), mesh spacing (h), L? error and convergence order.

#T #E Assembly time Solver time h L? Op2
128 208 7.66- 103 6.76-1073 3.3-10~' 3.969-107! —

012 800 6.75-1073 7.72-107% 2.0-107' 9.831-107% 2.016

2,048 3,136 2.22-1072 4471072 1.1-107' 2.430-1072 2.017
8,192 12,416 1.82-10°1 2.08-10~1 5810~ 6.001-1073 1.999
32,768 49,408 4.27-1071 6.68-107% 3.0-1072 1.501-107% 2.004
131,072 197,120 1.51-10 © 2.27-10° 1.5-1072 3.741-10~* 2.002
524, 288 787,456 5.83-10 °© 6.71-10° 7.8-107% 9.340-107° 2.002
2,097,152 3,147,776 21.32-10° 24.7-10° 3.9-107% 2.333-107° 2.001

Figure 7 depicts the discrete solution of eddy-current problem in a mesh with 7 =

32,768 and £ = 49, 408.
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Figure 6: Visualization of the convergence results of the linear Edge Elements in 2D. The L? error is
plotted versus the mesh spacing h.

6 CONCLUSIONS

The relative scarcity of Edge-based Finite Elements in practical use may be attributed
to their higher theoretical and implementational cost. Indeed, more care and effort are re-
quired to implement them: basis functions, Piola mapping, edge directions and numbering
strategy. However, as demostrated in this work, the implementation of Nédélec Elements
for H(curl) conforming may be automated. Particularly, the additional challenges in the
assembly process can be viewed as not essentially different from those encountered in
other approaches such as higher order Lagrange elements.

The first version of our framework, based on a simple mathematical approach [1], is
able to resolve H (curl)-conforming problems in 2D. The described software stack relies
on a flexible implementation which allows a general point of view. The efficiency and
accuracy of the code is evaluated through a convergence test, assembly time and solver
time, with a particular emphasis on the performance when the number of elements and
degrees of freedom grows.

In our future work we will implement the 3D case, and we will also address issues
that are related to the optimization of the code, i.e. solution techniques and in particular
efficient assembly algorithms and preconditioning techniques that reduce the global system
size and allow for a significant speed-up of the linear system solver. In this context,
we will also investigate on domain decomposition techniques and parallelization in the
spirit of [10, 11, 15]. Another natural extension of the presented framework is to address
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Figure 7: Discrete solution of eddy-current problem: curl(above), x-component(bottom-left) and y-
Component(bottom-right).

inhomogeneous domains and adding dipole sources.
We believe that our Fortran 90 code is suitable for students and researchers who wish
to become familiar with Edge Elements and prefer to have their own implementation.
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