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D. O. López,* B. Robles-Hernández, J. Salud,
M. R. de la Fuente, N. Sebastián, S. Diez-Berart, X. Jaen,
D. A. Dunmur and G. R. Luckhurst

We have developed a Landau model that predicts a first Q3
order twist-bend nematic–nematic phase transition
consistent with heat capacity measurements.

Please check this proof carefully. Our staff will not read it in detail after you have returned it.

Translation errors between word-processor files and typesetting systems can occur so the whole proof needs to be read.
Please pay particular attention to: tabulated material; equations; numerical data; figures and graphics; and references. If you
have not already indicated the corresponding author(s) please mark their name(s) with an asterisk. Please e-mail a list of
corrections or the PDF with electronic notes attached – do not change the text within the PDF file or send a revised
manuscript. Corrections at this stage should be minor and not involve extensive changes. All corrections must be sent at the
same time.

Please bear in mind that minor layout improvements, e.g. in line breaking, table widths and graphic placement, are
routinely applied to the final version.

Please note that, in the typefaces we use, an italic vee looks like this: n, and a Greek nu looks like this: n.

We will publish articles on the web as soon as possible after receiving your corrections; no late corrections will be made.

Please return your final corrections, where possible within 48 hours of receipt, by e-mail to: pccp@rsc.org



Queries for the attention of the authors

Journal: PCCP

Paper: c5cp07605f

Title: Miscibility studies of two twist-bend nematic liquid crystal dimers with different average molecular
curvatures. A comparison between experimental data and predictions of a Landau mean-field theory for
the NTB–N phase transition

Editor’s queries are marked on your proof like this Q1, Q2, etc. and for your convenience line numbers are
indicated like this 5, 10, 15, ...

Please ensure that all queries are answered when returning your proof corrections so that publication of your
article is not delayed.

Query
reference Query Remarks

Q1 For your information: You can cite this article before you
receive notification of the page numbers by using the
following format: (authors), Phys. Chem. Chem. Phys.,
(year), DOI: 10.1039/c5cp07605f.

Q2 Please carefully check the spelling of all author names.
This is important for the correct indexing and future
citation of your article. No late corrections can be made.

Q3 Please check that the Graphical Abstract text fits within
the allocated space indicated on the front page of the
proof. If the entry does not fit between the two horizontal
lines, then please trim the text and/or the title.

Q4 Ref. 50: Please provide the year of publication.



Miscibility Q1 Q2studies of two twist-bend nematic
liquid crystal dimers with different average
molecular curvatures. A comparison between
experimental data and predictions of a Landau
mean-field theory for the NTB–N phase transition

D. O. López,*a B. Robles-Hernández,ab J. Salud,a M. R. de la Fuente,b N. Sebastián,c

S. Diez-Berart,a X. Jaen,a D. A. Dunmurd and G. R. Luckhurste

We report a calorimetric study of a series of mixtures of two twist-bend liquid crystal dimers, the 100,700-

bis(4-cyanobiphenyl)-40-yl heptane (CB7CB) and 100-(20,4-difluorobiphenyl-40-yloxy)-900-(4-cyanobiphenyl-

40-yloxy) nonane (FFO9OCB), the molecules of which have different effective molecular curvatures.

High-resolution heat capacity measurements in the vicinity of the NTB–N phase transition for a selected

number of binary mixtures clearly indicate a first order NTB–N phase transition for all the investigated

mixtures, the strength of which decreases when the nematic range increases. Published theories predict

a second order NTB–N phase transition, but we have developed a self-consistent mean field Landau

model using two key order parameters: a symmetric and traceless tensor for the orientational order and

a short-range vector field which is orthogonal to the helix axis and rotates around of the heliconical

structure with an extremely short periodicity. The theory, in its simplified form, depends on two effective

elastic constants and explains satisfactorily our heat capacity measurements and also predicts a first-

order NTB–N phase transition. In addition, as a complementary source of experimental measurements,

the splay (K1) and bend (K3) elastic constants in the conventional nematic phase for the pure compounds

and some selected mixtures have been determined.

1 Introduction

The mesogenic behavior of liquid crystalline materials is
often enriched by the appearance of several mesophases with
different symmetries when the sample is cooled from the
isotropic phase. The observation of more than one nematic
phase in certain materials and the corresponding phase transi-
tions is a matter of great current interest, in particular the
twist-bend nematic. One of the early studies of a liquid crystal
dimer, with an odd spacer, showing a nematic–nematic transi-
tion was reported by Sepelj et al.1 although the nature of the

low-temperature nematic phase was not identified and so was
labelled Nx. Similar dimers with odd spacers having a Nx–N
transition were reported by Panov et al.2 and the behaviour
of such dimers has also been studied3–5 but again without the
low-temperature nematic being properly identified. Cestari
et al.6 have examined an odd liquid crystal dimer and observed
a nematic–nematic transition but, as the result of an extensive
investigation based on numerous techniques, were able to
identify the low-temperature nematic as we shall see shortly.
A slightly different dimer again with an odd spacer but having
one chiral mesogenic group has been reported by Zep et al.,7

surprisingly this system is found to form seven nematic phases
over a narrow temperature range.

The theoretical possibility for the existence of different
uniaxial nematic phases of achiral molecules, differing in their
local director distributions was proposed by Meyer,8 over 40
years ago; he argued that a local spontaneous polarization may
cause distortion of the nematic director distribution, although
this was largely ignored. Later the same idea was pursued by
Lorman and Mettout,9 who proposed a theoretical Landau
model based on local ferroelectric polarisation for the
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nematic–nematic transition,10 which was further developed
by others.11,12

In 2001, Dozov13 developed a purely elastic Landau theore-
tical model for achiral bent-core molecules in which elastic
distortions induce local spontaneous bend in the nematic
director, resulting in structural deviation from the uniformly-
aligned nematic phase. A uniform bend deformation in the
nematic phase is geometrically impossible giving rise to a
symmetry-breaking transition resulting in two possible differ-
ent nematic ground states, either the modulated splay-bend
state which is achiral or the heliconical twist-bend which is
chiral. In parallel with Dozov’s study, Memmer14 independently
generated similar results through Monte Carlo simulations of
rigid and non-polar V-shaped molecules which yielded the
heliconical twist-bend nematic phase (NTB).

It is the NTB that is of prime interest in the current study.
There had been a number of reports of nematic–nematic phase
transitions for bent-core or banana mesogens, but the struc-
tural characteristics of the new nematic phases had not been
identified.1,2–5,15–17 However, recently a very detailed investiga-
tion of the flexible bent-shaped liquid crystal dimer 100,700-bis(4-
cyanobiphenyl)-40-yl heptane (CB7CB)6 concluded that one of
the two nematic phases exhibited by this compound is the twist-
bend nematic phase (NTB), in agreement with Dozov’s predictions.13

The mesogen CB7CB now appears to be the model liquid crystal on
which research about this new phase is mainly focused.18–26

The heliconical twist-bend nematic phase appears as a state
in which the spontaneous bend of the director is accompanied
by a twist deformation in order to satisfy topological con-
straints. The induced twist can be left-or right-handed and
the sample is expected to form a conglomerate of degenerate
domains having opposite chirality even though the constituent
molecules are achiral.23 The directors are arranged into a helix
with the director being tilted with respect to the helix axis and
with a periodicity (p) predicted and measured from about
7 nm,13,21,22,24,25 up to 15 nm for rigid bent-core mesogens.27

One of the open questions is the nature of the primary
physical and molecular mechanism responsible for the twist-
bend nematic phase. It is obvious that molecular bend or
curvature is necessary, but is not sufficient since most of the
bent-core mesogens fail to exhibit the twist-bend nematic
phase.28 At this point, the authors think that any bent molecule
should form the NTB phase. However, the transition tempera-
ture may be so low that other phases intervene before the NTB

phase is formed. Clearly, the formation of the twist-bend phase
depends critically on the details of the mesogenic structure, but
the core-flexibility of molecules in certain liquid crystal dimers
seems to promote effective molecular curvatures favouring
heliconical structures; however the ultimate physical mecha-
nism causing the director modulation is controversial. On the
one hand, some researchers attribute the existence of the twist-
bend nematic phase to a flexoelectric coupling between bend
deformation and electric polarization8–12 although non-polar
molecules do yield the NTB phase. Alternative formulations of
the theory only consider purely elastic distortions of the direc-
tor due to molecular curvature.13,14,21 Both theoretical

approaches can be developed in the framework of a Landau
theory on the basis of the Oseen–Frank elastic free energy.
Dozov13 described the twist-bend nematic phase with a negative
bend elastic constant (K3) and the purely elastic free energy
needs to be developed to fourth order to provide an upper bound
to the energy. One of the most important concerns arises from
the fact that the theory needs a drastic simplification of the
number of terms and the simplified version predicts a second-
order NTB–N phase transition, which is not supported by experi-
mental determinations.3,6,26 In the case of flexoelectric coupling,
Shamid et al.11 have considered the polar order as an additional
order parameter, but again such a Landau theory needs to be
simplified and the approximate solution also predicts a second-
order NTB–N phase transition. The same authors11 proposed the
definition of an effective bend elastic constant (Keff

3 ) which could
be negative in the NTB phase and positive in the uniform nematic
phase. The problem here is that at the phase transition, Keff

3 as
defined by Shamid et al.,11 tends to minus infinity and there
have been no experimental indications of this possibility.

Regarding the negative bend elastic constant required in
Dozov’s elastic theory, molecular calculations on certain non-
symmetric odd liquid crystal dimers provide negative K3 values
for high enough nematic order parameters but such com-
pounds were not found to exhibit the twist-bend nematic
phase.29 As for the experimental determinations of the bend
elastic constant over the uniform nematic phase of twist-bend
liquid crystal dimers, it is observed that the bend elastic
constant decreases as temperature decreases on approaching
the N–NTB phase transition, leading to small values at the phase
transition but increasing slightly or being nearly temperature
independent before NTB is reached.25,30–32 In addition, very
recently Yun et al.33 have tried to measure K3 in the NTB phase
of CB7CB showing anomalous and positive values.

One of the main difficulties with the Oseen–Frank theory is
that in the free energy, the bend elastic constant is only
properly defined for the conventional uniform nematic phase.
However, it has been suggested that alternative elastic con-
stants are appropriate for the NTB-phase34,35 in the application
of the classic Oseen–Frank theory.29

It seems to be evident that one possible way to further the
understanding of the physical mechanisms for the nematic
twist-bend phase is the experimental study of the nematic to
twist-bend nematic phase transition. Additional carefully cho-
sen accurate measurements should allow us to provide data to
test or improve existing theoretical models or to propose
others. It is particularly interesting to cite the efforts to general-
ize the Maier–Saupe theory to the twist-bend nematic phase.35

This is based on just three key order parameters: a single
microscopic order parameter (the orientational order) and
two macroscopic order parameters (the conical angle and the
pitch of the heliconical structure) which characterize the
position-dependence of the director. From such an approach
it appears that the role of the curvature of the V-shaped
molecule is essential for a coherent picture of the NTB–N phase
transition, and that the dependence of the transitional proper-
ties on this curvature is delicate.

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

2 | Phys. Chem. Chem. Phys., 2016, 00, 1�11 This journal is �c the Owner Societies 2016

Paper PCCP



In this paper, we report high-resolution heat capacity mea-
surements in the vicinity of the NTB–N phase transition in
binary mixtures of two twist-bend liquid crystal dimers, the
molecules of which have different effective molecular curva-
tures. In addition a self-consistent mean-field Landau model is
developed to describe these measurements. The components of
the mixtures, for which experimental results are reported, are
the classic compound CB7CB and 100-(20,4-difluorobiphenyl-4 0-
yloxy)-900-(4-cyanobiphenyl-40-yloxy)nonane (hereafter referred
to by the acronym FFO9OCB) which has recently been shown
to exhibit a monotropic NTB-phase.32 Measurements are also
reported of the splay (K1) and bend (K3) elastic constants in the
conventional nematic phase for the pure compounds and some
selected mixtures, as a function of both temperature and mole
fraction. These experimental results provide further insight
into the nature of the NTB–N phase transition, and the validity
of our proposed model used to describe the phase transition.

2 Materials and methods

Both pure liquid crystal dimers CB7CB and FFO9OCB were
synthesized according to the procedures reported earlier.32,36,37

Fig. 1 shows the molecular geometry of both liquid crystal
dimers with the spacer in the all-trans conformation. For
CB7CB, molecular calculations6 show that for higher values
of the nematic order parameter (low temperatures) the more
extended conformers, with angles (w) on average of about 1201
between the long or para axes of the terminal mesogenic
groups, are stabilized at the expense of the less extended
conformers, with angles on average of about 301. Unfortunately,
no calculations are available for the conformational distribu-
tion of FFO9OCB, but for the shorter-chain homologue
FFO5OCB, calculations made by Cestari et al.29 indicate that
the most extended conformers have angles w, on average, of
about 1201 for the order parameters comparable to those found

from the calculations for CB7CB dimer. For such conformers
the angle between the terminal mesogenic groups tends to
increase as the length of the flexible chain increases, resulting
in a FFO9OCB dimer in which the most probable conformers
are likely to be more extended than those of the CB7CB dimer.
This also results from the difference in the links between the
spacer and the mesogenic groups of ether and methylene.38

Binary mixtures with mole fractions of CB7CB of 0.10, 0.21,
0.36, 0.48 and 0.82 were prepared, with great care, in sealed
hermetic aluminum pans. These pans with the corresponding
amount of pure compounds for every mixture were placed into
a glass bottle which was heated up to 400 K (the isotropic
phase) in an oil-bath and was ultrasonicated for about four
hours to ensure a homogeneous mixture. The samples were
then introduced to a cooling room for 12 hours. The quality of
mixing was assessed by analysing for possible mass loss, and by
means of high resolution calorimetry in the vicinity of the N–I
phase transition. If the mixture is not homogeneous, the
preparation process is repeated as many times as necessary.

Heat capacity measurements at atmospheric pressure were
performed using a DSC-Q2000 from TA-Instruments working in
the modulated mode (MDSC) which, like an alternating current
(AC) calorimeter, besides providing heat capacity data, simulta-
neously gives phase shift data (f) that allow the determination of
the two-phase coexistence region for weakly first-order phase
transitions. In our work, the experimental conditions were
adjusted in such a way that the imaginary part of the complex
heat capacity data vanished. The system is also calibrated by
using precise latent heat data measured for other homologues
through adiabatic calorimetry; the MDSC-technique is also
suitable for quantitative measurements of latent heats of first
order transitions, even if they are weak. A more detailed descrip-
tion of the MDSC technique can be found elsewhere.39,40

Capacitance measurements to determine the splay (K1) and
bend (K3) elastic constants were carried out using 8 mm anti-
parallel planar aligned cells. The method consists of inducing
the planar to homeotropic Fréedericksz transition in the sam-
ple by applying an AC signal at a frequency of 5 kHz from an
Agilent Precision LRC meter E4890A. The capacitance of the
sample is monitored as a function of the applied voltage which
is varied from 0.1 Vrms to 16 Vrms, with a waiting time of 30 s
between the application of the AC signal and the acquisition of
the capacitance value. Ultimately, values of the K1 and K3 elastic
constants are extracted by fitting the entire voltage dependence
of the capacitance to the theory.41 A more detailed description
of the technique can be found elsewhere.42

3 Experimental results

The binary phase diagram for FFO9OCB + CB7CB mixtures is
shown32 in the inset of Fig. 2. Initial studies of the phase
transition properties of binary mixtures were obtained from
MDSC measurements of the heat capacity over heating runs at
1 K min�1 from about 240 K up to the isotropic phase, for
samples previously cooled down slowly (at the rate of 1 K min�1),
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Fig. 1 Chemical structures of (a) the non-symmetric odd ether-linked
dimer FFO9OCB and (b) the symmetric odd methylene-linked dimer
CB7CB.
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with the exception of pure FFO9OCB and the mixture with
XCB7CB = 0.10. Fig. 2 shows, as an example, the heat capacity
measurements for three selected mixtures recorded on heating
(marked by the vertical dashed-line arrows in the phase dia-
gram). The total set of mixtures investigated shows the same
phase sequence on cooling from the isotropic phase as the pure
CB7CB:6 I–N–NTB–NTB,gl (glassy NTB). However, the heating
phase sequence is different depending upon the composition
of the mixture. The cooling phase sequence is reversible on
heating at least for samples with a mole fraction of CB7CB of
0.36 or higher. The richer the mixture is in FFO9OCB, the more
likely there will be for hot crystallization on heating the sample.
This is the case with the mixture XCB7CB = 0.21 (blue empty
symbols in Fig. 2) for which the supercooled NTB ([NTB]spc)
phase crystallizes irreversibly on heating at about 300 K
([NTB]spc - [Cr]), and then at 330 K the crystal state passes
directly to the N-phase ([Cr] - [N]): consequently, the NTB–N
phase transition is not observed. However, the monotropic
nature of the NTB phase can be circumvented by cooling down
to temperatures no lower than 315 K, which allows us to
observe the NTB–N phase transition in a heating experiment,
as observed in Fig. 2 for blue solid symbols. It seems that the
addition of a methylene-linked dimer (CB7CB) to an ether-
linked dimer (FFO9OCB) enhances the stability of the twist-
bend nematic phase, as expected and previously observed in
other detailed miscibility studies.31

An interesting question concerns the character of the NTB–N
phase transition for the pure FFO9OCB dimer, for which it has

not been possible to obtain high-resolution calorimetry mea-
surements,32 and nothing has been concluded about it.
However, it is known that pure CB7CB dimer exhibits a first-
order NTB–N phase transition.6 The inset of Fig. 2 shows how the
nematic range increases from pure CB7CB dimer when the concen-
tration of CB7CB in the binary mixtures decreases, showing a
behaviour analogous to binary mixtures exhibiting the smectic A
(SmA) to nematic phase transition.39 For this phase transition, the
SmA–N latent heat (or the entropy change) is reduced as the
nematic range is increased and this experimental observation
was explained firstly by Kobayashi43 and McMillan44 and shortly
after by de Gennes,45 who developed a phenomenological theory
for the SmA–N transition based on a Landau mean-field approach.
Recently, Mukherjee46 has developed an improved theoretical
analysis within the Landau phenomenological theory about the
influence of the chain flexibility on the SmA–N phase transition.

Fig. 3 shows high-resolution heat capacity data for several
FFO9OCB + CB7CB mixtures in the vicinity of the NTB–N phase
transition. Such measurements were made in quasi-static
mode, with heating rates of 0.01 K min�1, a temperature
amplitude modulation of �0.07 K and an oscillation period
of 23 s. It is easy to observe how the heat capacity peak
representative of the phase transition becomes smaller as the
mole fraction passes from pure CB7CB to pure FFO9OCB. The
shape of the heat capacity peak of the mixture XCB7CB = 0.82 is
analogous to that found for pure CB7CB6 dimer and represents
a first-order NTB–N phase transition. The other mixtures of 0.48
and 0.36 exhibit first-order phase transitions and the heat
capacity peaks although weaker still show features of that for
pure CB7CB. The inset in Fig. 3 highlights the two mixtures
investigated with mole fractions closer to pure FFO9OCB,
for which the heat capacity peaks are extremely small. As for
XCB7CB = 0.21, the NTB–N phase transition is still first-order as
observed for the small peak in the f-phase shift data around
the phase transition (red symbols). Regarding the mixture with
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Fig. 2 Heat capacity data as a function of temperature for three selected
binary mixtures FFO9OCB + CB7CB (XCB7CB = 0.82-red; XCB7CB = 0.48-
black; XCB7CB = 0.21-blue) on heating mode. In the case of the mixture
XCB7CB = 0.21, cooling down to 315 K and the subsequent heating are
shown. The top-left inset shows the phase diagram for FFO9OCB +
CB7CB mixtures. Full symbols (circles, squares, diamonds and stars)
correspond to heat capacity measurements recorded on heating at
1 K min�1. The open diamonds are related to the monotropic NTB–N-
phase transition on cooling mode.

Fig. 3 High-resolution heat capacity data as a function of temperature in
the vicinity of the NTB–N phase transition for some selected binary
mixtures FFO9OCB + CB7CB. The inset shows in detail those mixtures
closest to pure FFO9OCB.
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a mole fraction close to pure FFO9OCB (XCB7CB = 0.10), the NTB–
N phase transition is only seen on cooling and no conclusions
can be reached about the order of the transition because the
calorimeter is operating at the limit of its sensitivity. In addition,
during the long time of measurement, the sample in the NTB

phase tends to crystallize as evidenced by the drift in the heat
capacity stabilization. It should be stressed that for the binary
phase diagram investigated the heat capacity peak associated
with the NTB–N phase transition literally disappears for a suffi-
ciently wide nematic range. This is an important difference with
those binary phase diagrams exhibiting the SmA–N phase transi-
tion where the transitional entropy decreases as the nematic
range increases but the heat capacity peak associated with the
SmA–N phase transition is not suppressed even when the
transitional entropy is very small or zero.39,47–49

Fig. 4 shows the K3 and K1 elastic constants for pure
FFO9OCB and CB7CB and three selected binary mixtures as a
function of the shifted temperature, T � TNTB–N, in the N-phase.
As regards K1, and irrespective of the sample, the elastic
constant increases as the temperature decreases on approach-
ing the N–NTB phase transition. It is interesting to observe that
the value of K1 at TNTB–N depends on the sample and in this case
on the nematic range, the highest value being that of FFO9OCB
(that is the widest nematic range) and the lowest being that of
CB7CB (that is the narrowest nematic range): binary mixtures
necessarily exhibit intermediate values. As regards K3, there is
an initial increase in the elastic constant at temperatures close
to the isotropic phase, but the general behavior is to decrease as
the temperature decreases on approaching the N–NTB phase
transition. It is important to note that pure compounds and
binary mixtures follow the same trend towards a similar value
for K3 at TN–NTB

close to zero but with a pretransitional increase
as in other twist-bend liquid crystal dimers.32,42 The near

universality of this behaviour is consistent with previous theo-
retical calculations.5,29

4 Theoretical Landau model and
discussion

The uniform uniaxial nematic phase can be described by a
symmetric and traceless tensor order parameter QN

ab =
Q0(T)[nanb � (1

3)dab], where a, b = x, y, z are the coordinate axes
that define the phase symmetry. De Gennes50 suggested that
the tensor order parameter can be defined in terms of any
second rank tensor property. The normalization constant Q0(T )
varies between 0 and 1, and for any particular property can be
determined by setting QN

zz = 1 for a fully-oriented system. In
practice, Q0(T) is often identified with the value of the Saupe major
order parameter for the primary molecular axis, expressed as the
second-rank Legendre polynomial (hP2(cosci)i; ci is the angle
made by the ith molecular axis with respect to the nematic
director), na is the nematic director and dab is the Kronecker delta.

The Landau theory employed to describe the NTB–N phase
transition requires, as a first step, the identification of the physical
mechanism responsible for the generation of the twist-bend
nematic phase from the uniform nematic phase and proceeds
by making some simplifying assumptions. In our case, we follow
Dozov’s procedure,13,21 according to which the elastic distortion
causing the director curvature would be the main cause. As an
approximation, we suppose that the nematic order parameter
related to the director jumps at the N–NTB phase transition by
dQ as evidenced experimentally for some systems.26 In fact, we
assume that the elastic distortion produces an increase in the
value of the scalar order parameter which does not coincide with
Q0(T) in the absence of such distortion. In such a way, we consider
the following modification of the symmetric and traceless tensor
order parameter for the nematic phase:

Qab ¼ QðTÞ nanb �
1

3
dab

� �
(1)

where Q(T) = Q0(T) + dQ. Of course, in the uniform nematic phase
dQ vanishes, thus being a natural choice of a scalar order
parameter for the NTB phase. However, other physical properties
could be considered as order parameters. For example, Kats and
Lebedev51 introduce as a natural choice for another NTB order
parameter, a characteristic short-range vector field ja which is
orthogonal to the helix axis and rotates around the heliconical
structure with an extremely short periodicity (of the order of
several molecular lengths). The absolute value of the vector ja

is related to the tilt angle (y0) as sin y0 (denoted hereafter as j)
and has also been chosen as an order parameter by
other authors.11,13,21,26,35 Dozov and collaborators13,21,26,35 and
Shamid et al.11 also proposed the absolute value of the wave
vector, q0, related with the pitch or periodicity of the helix
(q0 = 2p/p) as a further order parameter. However, Kats and
Lebedev51 consider that the N–NTB phase transition takes place
at a finite q0 in a similar way as weak crystallization phase
transitions or the SmA–N phase transition. In contrast the
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Fig. 4 Temperature dependence of the splay (K1)-empty symbols- and
bend (K3)-full symbols- elastic constants as a function of the shifted tempera-
ture (T � TNTB) in the nematic phase for pure FFO9OCB, CB7CB and some
selected mixtures: XCB7CB = 0.21, XCB7CB = 0.48 and XCB7CB = 0.82.
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predictions of the extended Maier–Saupe theory35 show that the
pitch can change with temperature depending on the magnitude
of the molecular curvature.

The Landau free energy density of the twist-bend nematic
phase can be written in four parts:

fTB(Qab,ja) = f (Qab) + f (@gQab) + f (ja) + f (@gja) (2)

The term f (Qab) is developed in powers of the scalars formed by
contraction of the tensor indices:

f Qab
� �

¼ 1

2
A1QabQab þ � � � ¼ fN Q0ð Þ þ 1

2
aðdQÞ2 þ � � � (3)

Eqn (3) is the homogeneous part of the nematic free energy
density with the Landau coefficients (A1, A2,. . .) chosen in a
convenient way to obtain a minimum for dQ = 0, being fN(Q0)
the free energy density of the uniform nematic state. For
simplicity, we only consider the first term in powers of dQ that
represents the free energy density cost of increasing the orien-
tational order parameter with respect to the director over fN(Q0).
The a-parameter (a 4 0) is a response function (a(T)) which
depends on the temperature range of the uniform nematic
phase (hereafter denoted as NR) and its value is assumed to be
dependent on the average bend angle w (w = 1801 for rod
molecules and decreases as they are bent) and probably the
flexibility of the molecules. For binary mixtures formed by
molecules with different effective average curvature and flex-
ibility, the mole fraction X(T), along the NTB–N transition
depends on NR and acts as an external perturbation changing
the response function in such a way that a is a function of the
mole fraction (a(X)). For temperatures close to TNI, Q0 is
relatively far from saturation and the a-parameter is small but
finite because it is easy to increase the orientational order
parameter. On the contrary, when T { TNI the a-parameter is
large because Q0 is nearly saturated and so it is very hard to
increase it.

The second term f (@gQab) corresponds to the spatial deriva-
tives of the Qab given by eqn (1). The lowest order terms for
f (@gQab) can be written as:

f @gQab
� �

¼ 1

2
L1 @aQbg
� �

@aQbg þ
1

2
L2 @aQag
� �

@bQbg þ . . . (4)

where L1 and L2 are the lowest order elastic coefficients. If we
assume that for Qab only the director (na) changes spatially,
eqn (4) can be written as:

f @gQab
� �

¼ L1Q
2 S2 þ T2 þ B2
� �

þ 1

2
L2Q

2 S2 þ B2
� �

þ . . . (5)

in terms of the splay vector Sa = na(@gng), the twist pseudo-scalar
T = naeabg@bng and the bend vector Ba = eanmnnembg@bng. Eqn (5)
can be developed according to eqn (1) as:

f @gQab
� �

¼ L1 þ
L2

2
þ � � �

� 	
Q0

2S2 þ L1Q0
2 þ � � �

� �
T2

þ L1 þ
L2

2
þ � � �

� 	
Q0

2B2 þ 2 L1 þ
L2

2
þ � � �

� 	
Q0dQB2 þ � � �

(6)

Let us consider the following relationships according to the
Oseen–Frank theory:

(2L1 + L2 + � � �)Q0
2 = K1 (7a)

2L1Q0
2 + � � � = K2 (7b)

(2L1 + L2 + � � �)Q0
2 = K3 (7c)

where K1, K2 and K3 in eqn (7) are the so-called elastic constants
for splay, twist and bend respectively. If in eqn (4) only terms to
second order in Qab are considered a degeneracy in the splay
and bend elastic constants through eqn (7a) and (7c) would be
obtained, a fact which is contrary to experimental measure-
ments. A third order extra term in Qab must be taken into
account. With these definitions, eqn (6) is the classical Oseen–
Frank free energy for the N phase with additional terms
representing the coupling between dQ and the bend distortion
as well as other couplings. If we consider the first term in dQ to
be of prime importance for generating the twist-bend nematic
phase, then we must introduce a parameter l defined by:

(2L1 + L2 + � � �)Q0 = l (8)

The significance of l will be discussed later. Eqn (6) can be
written as follows:

f @gQab
� �

¼ 1

2
K1S

2 þ 1

2
K2T

2 þ 1

2
K3B

2 þ ldQB2 þ . . . (9)

The third term in eqn (2) can be written in powers of the scalars
corresponding to the short-range vector field ja. In fact, a
vector order parameter only has a scalar invariant, the length
squared of the vector jaja = j2 and the successive even powers
in such a way that the third term of eqn (2) can be developed as:

f jað Þ ¼
1

2
a0 T � T0ð Þj2 þ � � � (10)

where a0 is definite positive and a0(T � T0) is positive in the
uniform nematic phase but negative in the NTB phase giving
rise to a negative free energy that favours the tilt of the director
with respect to the helix axis.

The last term in eqn (2) corresponds to the spatial deriva-
tives of the short-range vector field ja and it is needed in order
to guarantee a finite and stable value of the helical pitch for the
twist-bend nematic phase. This idea was earlier developed by
Mukherjee52 in the Landau model for the SmC–I phase transi-
tion in order to guarantee a finite wave-length for the smectic
density wave. The lowest order terms can be written as:

f @gja

� �
¼ �1

2
b0 @ajað Þ2�1

2
b1 @g@gja

� �
@b@bja þ � � � (11)

where b0 and b1 are defined positive and the term given by
eqn (11) gives rise to a negative free energy that favours a finite
pitch for a tilted director.

The Landau free energy density of the twist-bend nematic
phase (see eqn (2)) obtained by adding eqn (3), (9), (10) and (11)
can be written as a function of two variational parameters
(dQ,j) assuming that Q0 is the scalar order parameter of
the uniform nematic phase and characterized only, as an
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approximation, by the term fN(Q0):

fTBðdQ;jÞ ¼ fN Q0ð Þ þ 1

2
aðdQÞ2 þ 1

2
K1S

2 þ 1

2
K2T

2

þ 1

2
K3B

2 þ ldQB2 þ 1

2
a0 T � T0ð Þj2

� 1

2
b0 @ajað Þ2�1

2
b1 @g@gja

� �
@b@bja þ � � �

(12)

The overall free energy fTB(dQ,j) of eqn (12) must then be
minimized with respect to dQ, giving

dQ ¼ �l
a
B2 (13)

The value of dQ given by eqn (13) must be positive in the twist-
bend nematic phase. Thus l should be negative to ensure that
dQ increases the nematic orientational order parameter with
respect to the director in the NTB phase. This is also supported
by the fact that l represents the coupling parameter between dQ
and the director bend, so the contribution to the free energy
density in eqn (12) must be negative because the local sponta-
neous bend of the director must be favoured in the NTB phase.
By substituting eqn (13) into eqn (12) the overall free energy
density of the NTB phase can be written as:

fTBðjÞ ¼ fNðQ0Þ þ
1

2
K1S

2 þ 1

2
K2T

2 þ 1

2
K3B

2 � l2

2a
B4

þ 1

2
a0 T � T0ð Þj2 � 1

2
b0 @ajað Þ2

� 1

2
b1 @g@gja

� �
@b@bja þ . . .

(14)

For simplicity in eqn (14), we can consider a 1D distortion of
the director na = (j cos(q0z), j sin(q0z), (1 � j2)1/2) and the
short-range vector field ja = (j cos(q0z), j sin(q0z), 0) in such a
way that it is verified: S2 = 0; T2 = q0

2j4; B2 = q0
2j2(1 � j2);

(@aja)
2 = 0; (@g@gja)@b@bja = q0

4j2. Eqn (14) takes the following
form depending now on two variational scalar parameters, j
and q0:

fTB j; q0ð Þ ¼ fN Q0ð Þ þ 1

2
K3q0

2j2 þ 1

2
a0 T � T0ð Þj2

þ 1

2
K2 � K3ð Þq02j4 � l2

2a
q0

4j4

þ l2

a
q0

4j6 � 1

2
b1q0

4j2 þ . . .

(15)

Minimization of eqn (15) with respect to the absolute value of
the wave vector q0 gives:

q0
2 ¼ K3 þ K2 � K3ð Þj2

�4l
2

a
j4 þ 2l2

a
j2 þ 2b1

� K3

2b1
þ

K2 � K3ð Þb1 �
K3l2

a
2b12

j2 þ � � �

(16)

At this point it is important to interpret carefully the physical
meaning provided by eqn (16). At first glance, q0 should take a

finite value even if j at the phase transition is null. This result
agrees with the consideration of Kats and Lebedev51 and also
with one of the conclusions of Barbero et al.53 Eqn (15) takes
the following form by substituting eqn (16) and reordering in
powers of j:

fTBðjÞ ¼ fN Q0ð Þ þ 1

2
Keff

3 j2 þ 1

4
Keff

2 j4 þ 1

6
Ej6 þ � � � (17)

where

Keff
3 ¼

K3
2

4b1
þ a0 T � T0ð Þ (18a)

Keff
2 ¼

K3

b1
K2 � K3 �

l2K3

2ab1

� �
� K3

b1
K2 �

l2K3

2ab1

� �
(18b)

E ¼ 3l2K3
2

2ab1
þ 3 K2 � K3ð Þ

b1
þ � � � (18c)

Eqn (18a) defines an effective bend elastic constant (Keff
3 ) which

is a function of temperature because K3 varies with temperature
for liquid crystal dimers,29 but is definite positive in the uni-
form nematic phase according to experimental determina-
tions,25,31–34,54 as shown in Fig. 4. Thus, Keff

3 is positive in the
uniform nematic phase and negative in the twist-bend nematic
phase as discussed previously by Dozov.13 In the following, the
combination of both effects can be written as Keff

3 = K3,0(T � TC)
where K3,0 defined as positive and TC is a virtual critical
temperature renormalized from T0, the meaning of which will
be discussed later.

Eqn (18b) is denoted by Keff
2 because it is expressed as a

correction to the twist elastic constant (K2 defined as positive)
by both K3 and (l2K3)/(2ab1). Calculations29 for odd liquid
crystal dimers as well as experimental data31 give K2 4 K3

and at temperatures close to the N–NTB phase transition the
effect of K3 over K2 may be neglected in such a way that the
important correction to K2 comes from (l2K3)/(2ab1). It is just
the value of this last term, defined as positive, that drives Keff

2

from positive to negative. As we have mentioned, for binary
mixtures, the response function a may be thought of as
depending upon the composition of the mixture or the nematic
range (NR). As regards K2, there are no experimental determi-
nations in a binary system but calculations of K2 made by
Cestari et al.29 suggest a comparable behaviour with tempera-
ture as K1, with K2 o K1. Fig. 4 shows how K1 at the NTB–N
phase transition is a function of the composition and a similar
behaviour could be assumed for K2 in such a way that Keff

2 may
be considered as a function of the mole fraction in a binary
system (Keff

2 (X)).
Eqn (18c) defines a parameter E that may be thought of as

composition dependent in a binary system but is always positive.
The equilibrium value of the j-order parameter is obtained

by minimizing eqn (17) with respect to j([@fTB/@j] = 0). This
means that for the NTB phase:

jTB
2 ¼ 1

2E
�Keff

2 þ Keff
2

� �2 � 4EK3;0 T � TCð Þ

 �1

2

" #
(19)
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and jN = 0 in the uniform nematic phase. The transition
temperature (TNTB–N) can be determined using the condition
fTB = fN in eqn (17) and also the minimization condition ([qfTB/
qj] = 0). Two mathematical solutions are obtained at the phase
transition:

jNTB–N = 0 (20a)

jNTB�N
2 ¼ �3K

eff
2

4E
(20b)

The solution given by eqn (20a) implies no discontinuity in the j-
order parameter and so, the NTB–N phase transition is second
order and takes place when TNTB–N = TC. However, would it be
possible for a second order NTB–N phase transition compatible
with a zero heliconical angle (y0) but with a finite non-zero q0? We
believe that both facts are irreconcilable and so, either the NTB–N
phase transition takes place when K3 is zero or is always first
order. Strangely, Barbero et al.53 consider a finite wave vector to be
compatible with a second order NTB–N phase transition. The
solution given by eqn (20b) is only possible if Keff

2 is negative, a
consequence of the term (l2K3)/(2ab1) being larger than K2. In fact,
as discussed previously, the term (l2K3)/(2ab1) decreases as
the nematic range of the binary mixtures increases. Thus,
Keff

2 becomes less negative as the nematic range increases and
the nematic range limit would occur when Keff

2 vanishes. There-
fore, the model described by eqn (17) supports the possibility of a
first order NTB–N phase transition, the strength of which
decreases as the nematic range increases. The NTB–N phase
transition is first order at a temperature TNTB–N = T1 given by

T1 ¼ TC þ
3 Keff

2

� �2
16EK3;0

(21)

Eqn (19) can be written as

jTB
2 ¼ K3;0

E

� 	1
2 �Keff

2

2 EK3;0

� �1
2

þ TK � Tð Þ
1
2

2
4

3
5 (22)

where TK represents the metastability limit of the twist-bend
nematic phase, defined as

TK ¼ TC þ
Keff

2

� �2
4EK3;0

(23)

The excess heat capacity (DCp = Cp,TB � Cp,N) can be obtained
from the excess free energy density (Df = fTB � fN) given by
eqn (17) as

DCp � �T
@2ðDf Þ
@T2

� �
V ;f
¼ TCA

� TK � T1

TK � T

� �1
2

(24)

where the new parameter A* is defined as

A� ¼ �3K3;0
2

Keff
2

(25)

In order to test the theory, we have fitted it to measurements of
the heat capacity for the mixtures reported earlier in this paper.
For example, Fig. 5 shows the excess heat capacity for XCB7CB =
0.36 taken from the heat capacity measurements of Fig. 3.

The latter is the closest binary mixture to pure FFO9OCB that
can be analysed using eqn (24) with acceptable fitting results.
More dilute mixtures (see the inset of Fig. 3) give rise to very small
heat capacity peaks, the analysis of which via eqn (24), is difficult
to achieve with the required accuracy. The f-phase shift data
allow us to delimit the phase coexistence region characteristics of
a first order phase transition. The red line shows the fitting
according to eqn (24) with A*, T1, TC and TK as fitting parameters
listed in Table 1 together with those corresponding to the other
binary mixtures analysed. The blue line corresponds to the excess
heat capacity of the nematic which must be zero according to the
assumptions of the model. It should be stressed that the tem-
perature discontinuity metric (T1 � TC) given by eqn (21) is
consistent with the results listed in Table 1, but the dependence
of (T1 � TC) with the mole fraction of CB7CB, as suggested by
eqn (21), is not straightforward because the fitting procedure
provides a certain uncertainty in giving both temperatures T1, TC.

The inset of Fig. 5 shows the integrated enthalpy for XCB7CB =
0.36 calculated, as an example, according to:

HðTÞH T0ð Þ ¼ DHNTB�N þ
ðT
T0

DCpdT (26)

where DHNTB–N is the latent heat associated with the NTB–N
phase transition. The value of DHNTB–N is easily identified in the
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Fig. 5 Detailed view of the NTB–N phase transition excess heat capacity peak
for XCB7CB = 0.36 taken from Fig. 3. Data of the f-phase shift is superimposed to
the excess heat capacity peak to delimit the coexistence region. Red line shows
the fitting according to eqn (24). The inset shows the integrated enthalpy.

Table 1 Characteristic parameters of the NTB–N phase transition accord-
ing to eqn (24) and the entropy change

XCB7CB A* (J g K2) � 103 TK (K) T1 (K) TC (K) DSNTB–N/R

1 1.7a 376.72a 376.57a 376.17a 0.066(5)
0.82 2.2 365.97 365.92 365.77 0.035(6)
0.48 0.6 350.93 350.84 350.58 0.009(7)
0.36 0.6 344.86 344.81 344.65 0.004(8)
0.21 — — — — 0.002(8)

a Data taken from ref. 6.
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inset of Fig. 5. The experimental entropy change calculated
from the latent heat data is shown in Fig. 6 as a function of the
mole fraction of CB7CB and also listed in Table 1. This
calculation is extended to pure CB7CB and all of the prepared
mixtures with the exception of XCB7CB = 0.10. The top-left inset
of Fig. 6 shows the entropy data on a logarithmic scale in such a
way that the linear trend (the best fitting function namely
DSNTB–N B 0.5(XCB7CB)5/2) implies that there is no composition
for which the entropy change could vanish. Thus, as a main
conclusion, it seems that for the mixtures of the binary system
investigated together with both pure compounds the NTB–N
phase transition is first order and their strength diminishes as
the composition moves from pure CB7CB to FFO9OCB or in
other words, as the nematic range increases.

The relationship corresponding to the entropy change at the
NTB–N phase transition (DSNTB–N) given by the Landau model
can be written from eqn (17) and (20b) as:

DSNTB�N ¼ �
@ðDf Þ
@T

� �
T¼T1

¼ �3K3;0K
eff
2

4E
(27)

Eqn (27) is consistent with a dependence of the transitional
entropy (DSNTB–N) on the mole fraction of CB7CB because
Keff

2 and E are themselves composition dependent. There is an
excellent correspondence between our experimental data and
the proposed Landau model via the following relationship for a
negative Keff

2 :

A� TK � T1½ 	
DSNTB�N

¼ 1

6
(28)

obtained by combining eqn (21), (23), (25) and (27). The bottom-
right inset of Fig. 6 shows our data for the binary mixtures
investigated with a satisfactory compatibility with eqn (27).

On the other hand, from eqn (27), our simplified Landau
model shows how the entropy change at the NTB–N phase
transition (DSNTB–N) is directly proportional to the size of the

heat capacity peak (A*[TK � T1]1/2). Thus, in the framework of our
Landau model when DSNTB–N decreases the size of the heat
capacity peak decreases as well. Therefore, it could be said that
when the NTB–N phase transition is first order but extremely weak,
the characteristic heat capacity peak is nearly undetectable.

The proposed model could be refined by the inclusion of
fluctuations of the nematic director as in other theoretical
approaches.51 However, as we can observe from Fig. 3 or 5,
the highly asymmetric heat-capacity peak with no excess heat
capacity above the NTB–N transition is exactly what is expected
for a phase transition with negligible director fluctuations of
the nematic director.

5. Concluding remarks

Before summarising the conclusions of this study of the
nematic to twist-bend nematic phase transition in a particular
binary system, it is worth considering the general predictions of
theory concerning the nature of phase transitions in liquid
crystal systems. These have been much studied in the past for
model systems for a wide variety of different liquid crystal
phases, including many phases that have yet to be identified
experimentally.55 However, the nematic to twist-bend nematic
phase that is the object of the present study was not specifically
considered.55 Two predictions can be drawn from symmetry
considerations. Firstly if the transition is between two phases of
the same symmetry, then the transition must be first-order. The
classic example of this is the gas-isotropic liquid transition, for
which, in the pressure-temperature phase diagram, the line of
first order transitions terminates in a critical end-point. Com-
parable transitions occur in liquid crystal phases such as the
modulated smectic A phases, denoted as SmA, SmA2, and SmAd,
for which transitions between the phases must be first order.
Further interesting examples46,56 are the predicted transitions
between different SmA phases comprised of flexible molecules.
These phases are characterised as conformationally-ordered or
conformationally-disordered, and the transitions between them
are necessarily first order. While such transitions have not been
positively identified in low molecular weight systems, the theore-
tical basis may be applicable to certain types of nematic–nematic
transitions in flexible mesogens, of the type studied in this paper.

The second prediction about phase transitions that can be
derived from considerations of symmetry is the impossibility,
in the absence of external symmetry breaking, of a transition
between a chiral and an achiral phase. However, this point
introduces the complication of scale, which is ignored by simple
symmetry considerations. The traditional chiral nematic phase
(also known as cholesteric) on a scale much smaller than the
pitch is identical to an achiral nematic, so simple considerations
of symmetry can only be applied at a macroscopic scale. At this
scale, we may assert that the symmetries of the conventional
nematic phase and the twist-bend nematic phase are the same
(DNh), and that the phases are both achiral, since macroscopi-
cally the domains of opposite chirality in the twist-bend nematic
phase must compensate. These considerations suggest that the
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Fig. 6 The entropy change associated to the NTB–N phase transition as a
function of the composition of CB7CB for some selected binary mixtures
FFO9OCB + CB7CB. The top-left inset shows the entropy data in a
logarithmic scale. The bottom-right inset shows (A*[TK � T1])/DSNTB–N as
a function of the composition of CB7CB.
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phase transition between the nematic and the twist-bend
nematic should be first order, though of course other factors
such as inclusion of fluctuations and issues of different scales
could intervene.

The Landau mean-field approach for the NTB–N phase
transition proposed in this paper, embodied by eqn (17) in its
simplified form, seems to provide a satisfactory explanation of
our high-resolution heat capacity measurements in the vicinity
of the NTB–N phase transition in binary mixtures of CB7CB and
FFO9OCB. Both odd dimers have molecular conformations
with different average curvatures, and, in their mixtures, the
addition of the methylene-linked dimer (CB7CB) to the ether-
linked dimer enhances the stability of the NTB phase promoting
narrow nematic ranges.

The model gives rise to a finite value of q0 at the NTB–N
phase transition. Such a phase transition could be considered
always first order with a strength which depends on an effective
elastic constant Keff

2 that must be negative. Its absolute value
decreases as the nematic range increases.

Experimental measurements of the heat capacity for the
investigated mixtures indicate that there is no tricritical point
related to the NTB–N phase transition, in contrast to that
proposed for the SmA–N phase transition. It is observed that
the heat capacity peaks become smaller as the nematic range
increases, and ultimately seem to be suppressed. This fact is
perfectly explained by the proposed Landau model, and it
shows a quantitative difference with what we obtain for binary
mixtures showing the SmA–N phase transition. For the systems
we have studied,39,47–49 the SmA–N transition may be second-
order, but the associated heat capacity peaks are well defined as
observed in the experimental measurements.

The experimental conclusion of this work is that for the
mixed system of CB7CB and FFO9OCB mesogenic dimers, the
nematic to twist-bend nematic transition is always first-order,
and we have proposed a Landau theory which fits our experi-
mental measurements. We do not claim that this is a universal
result, and other systems may behave differently. While it is
tempting to rely on the predictions of symmetry as absolutes, it
is clear that the transitions between different liquid crystal
phases are very delicate. Additionally, given the complex mole-
cular structures of the mesogens, there are short-range factors
that can influence the nature of the phase transitions. We have
noted two of such influences, dipole–dipole interactions as
in the modulated smectic A phases, and the possibility of
conformational ordering which may indeed be important for
the flexible mesogenic dimers studied in this paper. In parti-
cular we should note that the formation of chiral domains in
the twist-bend nematic phase is driven in our flexible mesogens
by the selective stabilization of conformers of different chiral
configurations in the left and right helical domains.20 This
mechanism might not apply in other twist-bend phases, such
as those formed from rigid bent-core mesogens. Finally, the
fact that the twist-bend nematic phase is characterized by a
spatially modulated director distribution suggests that, on
some scale at least, there may be very weak (undetectable)
density modulations in the phase. This would require

additional order parameters in the theoretical description of
the nematic to twist-bend nematic phase transitions.
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Jubindo, J. Salud and S. Diez-Berart, J. Phys. Chem. B, 2011,
115, 9766.

41 S. W. Morris, P. Palffy-Muhoray and D. A. Balzarini, Mol.
Cryst. Liq. Cryst., 1986, 139, 263.

42 B. Robles-Hernández, N. Sebastian, M. R. de la Fuente,
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