IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Thread Assignment
of Multithreaded Network Applications
in Multicore/Multithreaded Processors

Petar Radojkovié, Vladimir Cakarevié, Javier Verdu, Alex Pajuelo,
Francisco J. Cazorla, Mario Nemirovsky and Mateo Valero

Abstract—The introduction of multithreaded processors comprised of a large number of cores with many shared resources makes
thread scheduling, and in particular optimal assignment of running threads to processor hardware contexts to become one of the most
promising ways to improve the system performance. However, finding optimal thread assignments for workloads running in state-of-
the-art multicore/multithreaded processors is an NP-complete problem.

In this paper, we propose BlackBox scheduler, a systematic method for thread assignment of multithreaded network applications
running on multicore/multithreaded processors. The method requires minimum information about the target processor architecture
and no data about the hardware requirements of the applications under study. The proposed method is evaluated with an industrial
case study for a set of multithreaded network applications running on the UltraSPARC T2 processor. In most of the experiments, the
proposed thread assignment method detected the best actual thread assignment in the evaluation sample. The method improved the
system performance from 5% to 48% with respect to load balancing algorithms used in state-of-the-art OSs, and up to 60% with respect

to a naive thread assignment.

Index Terms—Chip Multithreading (CMT), Process scheduling, Performance modeling

1 INTRODUCTION

Lightweight Kernel (LWK) implementations strive to pro-
vide applications with predictable performance and maximum
access to the hardware resources of the system. In order
to achieve these goals, Operating System (OS) services are
restricted to only those that are absolutely necessary. Fur-
thermore, the provided services are streamlined, reducing to
the minimum the overhead of the LWK. Also, LWKs usually
apply simplified algorithms for thread scheduling and memory
management that provide a significant and predictable amount
of the processor resources to the running applications.
Dynamic scheduling may vary the amount of processing
time made available to applications during their execution,
which can significantly affect the performance of High Per-
formance Computing (HPC) applications [19][29], and reduce
the performance provided by commercial network processors.
As a result, many systems already use LWKs with static
scheduling, such as CNK [36] in BlueGene HPC systems, and
Netra DPS [2][3] mainly used in network environments.
Multithreaded processors ! support concurrent execution of
several threads which improves the utilization of hardware
resources and the overall system performance. On the other
hand, the execution of several threads at a time significantly
increases the complexity of thread scheduling. As concurrently
running threads (co-runners) interfere in processor resources,

e P Radojkovi¢ and V. Cakarevi¢ are with Barcelona Supercom-
puting Center (BSC), Barcelona, Spain. email: {petar.radojkovic,
viadimir.cakarevic} @bsc.es

o J. Verdii and A. Pajuelo are with Universitat Politécnica de Catalunya
(UPC), Barcelona, Spain. email: {jverdu, mpajuelo}@ac.upc.edu

o F. Cazorla is Scientific Researcher in the Spanish National Research
Council (IIIA-CSIC) and with BSC, Barcelona, Spain. email: fran-
cisco.cazorla@bsc.es

o M. Nemirovsky is ICREA Research Professor and with BSC, Barcelona,
Spain. email: mario.nemirovsky@bsc.es

e M. Valero is with UPC and BSC, Barcelona, Spain. email: ma-
teo@ac.upc.edu

1. In this paper, we use the term “multithreaded processor” to refer to any
processor that has support for more than one thread running at a time. Chip
Multiprocessors, Simultaneous Multithreading, Coarse-grain Multithreading,
Fine-Grain Multithreading processors, or any combination of them are mul-
tithreaded processors.

system performance significantly depends on the characteris-
tics of the co-runners and their distribution on the processor.

Multithreaded processors that comprise several cores, where
each core supports several concurrently running threads, have
different levels of resource sharing [41]. For example, in a
CMP processor where each core supports concurrent execution
of several threads through SMT, all co-running threads share
global resources such as the last level of cache or the I/O.
In addition to this, threads running in the same core share
core resources such as the instruction fetch unit, or the L1
instruction and data cache. Therefore, the way that threads
are assigned to the cores determines which resources they
share, which may significantly affect system performance (see
Section 2.2 of the supplementary file). In processors with
several levels of resource sharing, thread scheduling comprises
two steps. In the first step, usually called workload selection,
from all ready-to-run threads, the OS selects the set of threads
(workload) that will be executed on the processor in the next
time slice. In the second step, called thread assignment, each
thread in the workload is assigned to a hardware context
(virtual CPU) of the processor.

In this paper, we propose BlackBox scheduler, a systematic
method for a thread assignment of multithreaded network
applications running on processors with several levels of
resource sharing. Based on minimum information about the
target processor architecture, and without any data about the
hardware requirements of the applications under study, the
proposed method determines a set of profiling thread assign-
ments that can be used to model the interference between
concurrently running threads. The profiling assignments are
executed on the processor under study and the performance
of each assignment is measured. Finally, the method uses
the measured performance of the profiling thread assignments
to estimate the performance of any assignment composed of
applications under study. BlackBox scheduler enhances the
TSBSched [31] that is, to the best of our knowledge, the first
scheduler that addresses the problem of thread assignment of
multithreaded applications. As we explain in Section 2.4 of the
supplementary file, the main limitation of TSBSched is that
it requires significant knowledge about the application source
code and changes of the code. If the application source code is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

not available, TSBSched cannot be used. BlackBox scheduler
is designed to overcome these limitations.

The proposed thread assignment method is evaluated with
an industrial case study for a set of multithreaded networking
applications running on the UltraSPARC T2 processor. In
most of the experiments, BlackBox scheduler detected the best
actual (measured) thread assignment. The highest performance
difference between the thread assignment provided by the
method and the actual best thread assignments in the evalua-
tion sample is only 1.4%. BlackBox scheduler also provides a
significant performance improvement with respect to the state-
of-the-art thread assignment techniques.

The rest of the paper is organized as follows. Section 2
introduces multithreaded processors with several levels of
resorce sharing and describes the UltraSPARC T2 processor
used in the study. The details of BlackBox scheduler are
described in Section 3. Section 4 describes the experimental
environment used in the study. The results of the experiments
used in the evaluation of BlackBox scheduler are presented in
Section 5. The related work is presented in Section 6, while
Section 7 lists the conclusions of the study.

2 MULTITHREADED PROCESSORS WITH

SEVERAL LEVELS OF RESOURCE SHARING
In this paper, we focus on the problem of thread assignment of
multithreaded network applications that are running on multi-
threaded processors with several levels of resource sharing.
Multithreaded processors that comprise several cores where
each core supports concurrent execution of several threads,
have different levels of resource sharing. For example, in a
CMP processor where each core can execute several threads
at a time through multithreading, co-running threads share and
compete for globally-shared resources such as the last level of
cache or the I/O. In addition to this, the threads running on the
same core also share the resources that are private to each core,
such as the integer and floating point unit, or the L1 instruction
and data cache. Therefore, the way that the threads are as-
signed to the processor cores determines which resources they
share, which may significantly affect the system performance.

2.1 The UltraSPARC T2 processor
A good example of the multithreaded processor with several
levels of resource sharing is the UltraSPARC T2 processor.
The UltraSPARC T2 [1] is a multithreaded processor that
comprises eight cores connected through the crossbar to the
shared L2 cache (see Figure 1). Each of the cores includes
eight hardware contexts for a total of 64 software threads
being executed concurrently. Hardware contexts inside the
core are divided into two groups of four contexts, forming two
hardware execution pipelines. Thus, threads that concurrently
execute on the UltraSPARC T2 processor share (and compete
for) different resources in three different levels depending on
how they are distributed on the processor (see Figure 1).
The resources at the InterCore level are shared between
all threads concurrently executing on the processor [41].
Resources shared at this level are mainly the L2 cache, the
on-chip interconnection network (crossbar), the memory con-
trollers, and the interface to off-chip resources such as the I/O.
In addition to resources shared at InterCore level, threads
running in the same core share IntraCore processor resources:
the L1 instruction and data cache, the instruction and data
TLBs, the Load Store Unit (LSU), the Floating Point and
Graphic Unit (FPU), and the Cryptographic Processing Unit.

Core 0 Core 1 Core 7
Hardware Hardware
Pipeline 0 Pipeline 1
IFU IFU
IEU IEU
LSuU
L1 Instruction Cache
L1 Data Cache
DTLB
ITLB
(Crossbar)
o)(L2 Cache)

Fig. 1. Schematic view of the three resource sharing
levels of the UltraSPARC T2 processor

Finally, the threads that execute in the same hardware
pipeline also share IntraPipe resources: the Instruction Fetch
Unit (IFU) and the Integer Execution Units (IEU).

In order to fully utilize the performance of the multithreaded
processors like the UltraSPARC T2, it is important to under-
stand which hardware resources are shared on each resource-
sharing level, and to distribute the concurrently running threads
in such a way that the collision in the shared resources is
minimized. On the other hand, the sharing of the hardware
resources can also improve the performance. Threads running
in the same processor core communicate through the shared
L1 cache, while threads running in different cores share data
and instructions only at globally shared L2 cache which
has significantly higher access time. Therefore, the threads
that share instructions or data should be co-scheduled in the
same L1 cache domains (the same cores in the case of the
UltraSPARC T2 processor) in order to improve the code reuse
and reduce the latency of the inter-thread communication.

3 BLACKBOX SCHEDULER

We present a systematic method for thread assignment of
multithreaded network applications running on processors with
several levels of resource sharing. The purpose of this method
is to estimate the performance of different (many) thread
assignments and to determine the assignments that provide
a good performance.

Without any data about the hardware requirements of the
applications under study, and using the minimum informa-
tion about the processor under study, the method determines
a set of thread assignments (profiling thread assignments)
that are used to model the interference between co-running
threads. Based on the measured performance of profiling
thread assignments, the method estimates the performance of
any assignment composed of the applications under study.

The proposed thread assignment method does not require
the information about the execution time of each application
thread nor does it analyze the slowdown experienced by each
thread independently. When the method analyzes the slow-
down due to inter-thread interferences, the application is seen
as a black box. Therefore, we refer to the proposed method
as BlackBox scheduler. BlackBox scheduler is designed to
accomplish two main objectives:

(1) Remove the need for detailed knowledge about the
hardware requirements of applications under study: In
order to select a good assignment, scheduling methods have
to be aware of the interaction between concurrently running
threads. Modeling application interference in shared processor
resources is a challenging task. Most of the studies that address
this problem (see Section 6) profile each thread independently,
and then predict the performance when several threads execute

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

concurrently on a processor. We measure directly the interac-
tion between concurrently running threads for a limited set of
thread assignments, and use this data to model the interference
in hardware resources between co-running threads in any given
assignment. The main benefit of this approach is that the infor-
mation about the application hardware requirements is not in-
corporated into the thread assignment method, but it is encap-
sulated into the data passed to the method (the profiling data).
(2) Architecture independence: The only architectural data
that the method requires is the hierarchy of different levels of
resource sharing and the number of hardware contexts (virtual
CPUs) in each of them. For example, for the UltraSPARC T2
processor, the architecure description contains the information
that: (1) The processor resources are shared in three different
levels (IntraPipe, IntraCore, and InterCore); (2) The processor
contains eight cores, each of them contains two hardware
pipelines, and each hardware pipeline has support for four
concurrently running threads. The method does not require
any information about which hardware resources are shared on
each level, nor the microarchitecture details of the processor
resources (e.g. the size of the cache memory, the number and
the characteristics of the execution units, etc.). This is the
main reason why the application of this method to different
processor architectures requires minimum adjustments.

3.1 The algorithm

Figure 2 presents the schematic view of BlackBox scheduler.
The method is comprised of three phases: (1) Application
profiling, (2) Performance prediction, and (3) Selection phase.

(1) Application profiling phase: We profile the set of
applications that we want to schedule. The output of this
phase are the Base Time Table and Slowdown Table. These
tables contain all the information that is needed to predict
the performance of any thread assignment comprised of the
applications under study.

(2) Performance prediction phase: The model predicts the
performance for different thread assignments based on the data
stored in the Base Time Table and Slowdown Table.

(3) Selection phase: This is an optional step of the algo-
rithm. In the Selection phase, the predicted N best-performing
thread assignments (e.g. 5 or 10 assignments) are executed
on the target processor and the assignment with the highest
measured performance is selected as the final outcome of the
method. If the predicted best-performing assignment is not the
actual best one, the selection phase can improve the provided
performance.

The following sections describe each phase of the thread
assignment method in detail.

3.1.1 Phase 1: Application profiling

Application profiling is the first phase of BlackBox sched-
uler. In this phase, we measure the interference between
concurrently running threads for the profiling set of thread
assignments. The thread assignment method models two as-
pects of interferences between concurrently running threads:
(1) Collision in shared hardware resources, and (2) Benefit of
data and instruction sharing.

(1) Collision in shared hardware resources: Interference
in shared processor resources between concurrently running
threads depends on the hardware resources that the threads
use. We did a detailed characterization of the resource sharing
levels of the UltraSPARC T2 processor [41] as a represen-
tative of processors with several levels of resource sharing.

[Phase 1: Application profiling J
2

1) Base Time Table
2) Slowdown Table

Phase 2:
Performance prediction

Thread assignments (TAs)
under study

Predict the performance of
TAs under study
It

N2

Predicted performance
of TAs under study

Predicted Predicted N
best-performing best-performing
TA TAs

Phase 3:
Selection phase
Run predicted N best-performing
TAs on the target processor
(UltraSPARC T2)

Monitor the performance
][

The TA with the highest

Predicted best-performing TA measured performance

Fig. 2. Schematic view of the thread assignment method

The results of this analysis show that, during the workload
selection, it is very important to consider the interference
between threads in all levels of resource sharing: IntraPipe,
IntraCore, and InterCore, in the case of UltraSPARC T2. On
the other hand, once the workload is selected, the execution
of threads running on core N is negligibly affected by the
assignment of threads that do not run on core N (that run on
remote cores). This fact significantly reduces the complexity
of BlackBox scheduler. Instead of the analyzing all the threads
running on the processor, the thread assignment method can
reduce the scope of the analysis only to threads that execute
on the same core. Based on this conclusion, when we model
the interference between co-running threads, we focus on the
interaction between threads running on the same core, i.e. we
disregard the threads running on the remote cores.

The fact that we can reduce the scope of the analysis to
the thread running on a single processor core, enables us to
perform a brute force exploration, i.e. to execute all possible
thread assignments inside the core. We execute each thread
under study (the target thread) with all possible combinations
of the workload inside the processor core. We measure the
performance of the target thread in each experiment, and store
this data into a table. As this data shows the slowdown that
the target threads experience because of the collision with co-
running threads, we refer to this table as the Slowdown Table.

We illustrate the experiments and the Slowdown Table
with an example in which several IPFwd instances execute
concurrently on the UltraSPARC T2 processor. The IPFwd is
a low-layer network application comprised of three threads:
Receiving (R), Processing (P), and Transmitting (T) (see Sec-
tion 4.3). The UltraSPARC T2 core comprises two hardware
pipelines, and each pipeline supports the concurrent execution
of up to four threads.

In order to model the interference between threads that
execute concurrently on the processor core, we run one farget
application Ry4-Pyy-Ty, with several instances of stressing
applications Ry -Ps-Tg:. Target and stressing applications
perform the same processing of network packets. The only
difference is that we monitor the performance of the target
application, and do not monitor it for the stressing application
instances. The purpose of the stressing applications is to cause

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

the interference in shared processor resources that could affect
the performance of the target application in a given thread as-
signment. In order to quantify the slowdown that Ry4-P;4-Ty,
application experiences when R;, interferes with co-running
threads, we execute thread assignments in which one target
thread R;;, executes on the same processor core with all
possible combinations of stressing threads Rg;, Pst, and Ty
i.e. Ry runs on the same core with threads: [Rg; [RetRst];
[RstRstRst]; [Pst]; [Pstpst]; [Pstpstpst}; [Rstpstht]; etc.
The Slowdown Table for R;, thread has as many entries as
different layouts of stressing threads running on the same core
with R4, and each entry contains the performance of the
target application Ry 4-Py4-T,, in the given thread assignment.
In all the experiments for Ry, thread, P;; and Ty, threads
execute in isolation on remote cores. This way we are sure
that the cause of the observed performance variation is the
interference between Ry and stressing threads, and not any
slowdown of the threads P;, and T;,. The experiments needed
to characterize P, and Tj, threads are analogous to IR,
experiments.

(2) Benefit from data and instructions sharing: Threads
running on the same UltraSPARC T2 core share the LI
instruction and data cache. Therefore, if several threads share
data or instructions, they may benefit from co-scheduling on
the same processor core.

In order to detect whether an application can experience
performance improvement when the threads share L1 in-
struction and data cache, we execute a single application
instance in all possible thread assignment and measure the
application performance in each of them. The results of these
experiments are stored in the Base Time Table. The table has
as many entries as there are different thread assignments of
a single application, and each entry contains the application
performance in a given assignment.

We illustrate the experiments needed for the Base Time
Table using the same example of 3-stage IPFwd application
running on the UltraSPARC T2 processor. When consecutive
IPFwd threads (Receiving and Processing, or Processing and
Transmitting) run on the same processor core, they communi-
cate through L1 data cache. When the threads run in different
cores, the communication is through L2 cache, what causes
additional L1 cache misses and the overhead in the application
execution time.

In order to measure the impact of communication through
L1 or L2 cache on application performance, we execute all
possible thread assignments of a single IPFwd application
instance (11 assignments in total), and measure the application
performance in each assignment. The set of experiments is
presented in Figure 3. For example, in the thread assignment
11 (TAIl), R, P, and T threads execute in different cores.
Therefore, in case that these threads share the data, any update
of the values will be proceeded through globally-shared L2
cache. On the other hand, in 7A7, R and T threads execute
on the same core, thus any data update will be proceeded
locally in L1 cache and it will not require invalidation of the
cache lines in remote cores. Therefore, the comparison of the
performance of the application in TA7 and TAIl can provide
the information about the benefit of data and instruction
sharing between R and T threads.

3.1.2 Phase 2: Performance prediction
Performance prediction is the second phase of the thread
assignment method, see Figure 2. In this phase, based on the

Core N (—__Core N+1 Core N+2
HWPipe 0 || HWPipe 1 HWPipe 0| HWPipe 1 HWPipe 0| HWPipe 1

B N COR O I | L TAs
)Y SR I | |) TAs
iy N R] | AT
i v CE O I) A8
IS & I | LTae
1 O O I |} a0
@Q L 1) * }TA11

Threads communicate
through L1 data cache

Threads communicate through L2 cache

Fig. 3. Experiments for the Base Time Table

profiling data, the Base Time Table and Slowdown Table,
BlackBox scheduler predicts the performance for any thread
assignment composed of the applications that are analyzed
in the application profiling phase. The output of performance
prediction phase is the list of different thread assignments
(thousands of them) with the predicted performance for each
assignment. The performance prediction phase is comprised
of three steps:

In Step 1, we analyze each application in the workload
independently, as it executes in isolation. Hence, we disregard
the interference between different applications running on the
processor, and model only the interaction between threads that
belong to the same application. In this step, each application
in the workload is associated with its base_performance, the
performance that the application would have as if it was
executed in isolation.

In Step 2 of the performance prediction, we model the
effect of collision in hardware resources between different
applications or different instances of the same application. In
this step, we take into account the interference between all the
threads in a given thread assignment.

Finally, in Step 3, based on the analysis in Step I and
Step 2, we compute the predicted performance of a given
thread assignment.

We illustrate the application of BlackBox scheduler with an
example thread assignment that is presented in Figure 4. The
assignment is comprised of two IPFwd instances, R1-P1-T1
and R2-P2-T2, that execute on four processor cores, Core N
to Core N+3. In this example, threads R1, R2, and P2 execute
on the same hardware pipeline (HWPipe 0) in core N, while
other threads execute in different processor cores.

Step 1: In Step I, we analyze application instances R1-
P1-T1 and R2-P2-T2 independently, as if each of them were
executed in isolation. For example, when we analyze RI-
P1-T1 application we disregard R2, P2, and T2 threads
from the original thread assignment, and vice versa (see
Figure 4). In this step, each application is associated with
its base_performance, the performance that the application
would have if it was executed alone on the processor. The
base_performance is directly read from the Base Time Table
(see Section 3.1.1).

In Step 1.1, we analyze R1-P1-T1 application in the example
thread assignment presented in Figure 4. We directly read the
base_performance of R1-P1-T1 application from the field of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Core N Core N+1

Core N+2

Core N+3

[HWPipe 0/[HWPipe 1|| {[HWPipe 0/[HWPipe 1]

[HWPipe 0/[HWPipe 1]

[HWPipe 0][HWPipe 1]

Example TA

N\ Step 1.1: Analysis of
R1-P1-T1 in isolation
N Step 1.2: Analysis of
R2-P2-T2 in isolation

Fig. 4. Performance prediction. Step 1: Analysis of each application instance in isolation.

the Base Time Table that corresponds to the thread assignment
11 (TA11I) presented in Figure 3 (R, P, and T threads assigned
to different cores). The base_performance of R2-P2-T2 ap-
plication is computed analogously. First we observe R2-P2-
T2 application as if it was executed in isolation (Step 1.2 of
Figure 4). Then we read the corresponding field of the Base
Time Table, the field that corresponds to 7A3 presented in
Figure 3.

Step 2: In Step 2, we model the collision in hardware
resources between threads that belong to different applica-
tions or different application instances. As we explained in
Section 3.1.1, we focus on interference between threads that
execute on the same processor core. All the information
needed to quantify the slowdown because of the collision
between threads that are co-scheduled on the same processor
core is stored in the Slowdown Table. Figure 5 presents the
part of the example thread assignment that we use to illustrate
the Step 2 of the performance prediction. The part of the thread
assignment that we analyze comprises three threads, R1, R2,
and P2, that execute on the same hardware pipeline of core /V.
Figure 5 present also the entries of the Slowdown Table that
are used in the analysis.

In Step 2.1 presented in Figure 5, we compute
slowdown(R1), the slowdown that the application R1-P1-T1
experiences because of the interference of thread RI1
with threads R2 and P2. The most important part of this
analysis is to match the thread assignment under study with
corresponding entries of the Slowdown Table. As R1 thread
is the thread under analysis, it corresponds to the Ry in
the Slowdown Table. We want to detect the slowdown that
threads R2 and P2 cause to R1-P1-T1 application. Thus,
threads R2 and P2 correspond to Py and T threads in the
Slowdown Table. First, from the Slowdown Table, we read the
performance of the target application R-Pi-Ti; when thread
Ry executes alone on the processor core (performance 1).
This entry corresponds to the thread assignment in which
thread R1 executes in isolation on the processor core. Later,
we read the performance of the application Ry-Pis-Tis when
thread Ry runs on the same hardware pipeline with one
Ry and one Py thread (performance 2). This corresponds
to thread R1 running with threads R2 and P2 on the same
hardware pipeline in a processor core. Finally, the slowdown
that the application R1-P1-T1 experiences because of the
interference of thread R1 with threads R2 and P2 is computed
as the ratio between performance [and performance 2,

slowdown(R1):w. In all the experiments,
per formance 2

threads P;, and T;, are executed in isolation on remote cores.

Step 2.2 determines the slowdown that the application
R2-P2-T2 experiences because thread R2 interferes with the
threads running in the same core (slowdown(R2)). In Step 2.3,
we compute slowdown(P2), the slowdown that application
R2-P2-T2 experiences because thread P2 collides in processor
core resources with threads R1 and R2. As we show in
Figure 5, Step 2.2 and Step 2.3 are analogous to Step 2.1.
Threads P1, T1, and T2 of the example thread assignment

Slowdown Table

a Core N N
| HWPipe 0 | HWPipe 1

ﬁ“ﬁZﬁZ

(s o e — same core
rfi 1
ﬁtg periormance } Step 2.1: Computing the

T @ performance2| [slowdown for thread R1
| ARtg LIRst Ll Pst

Threads of the sample
} TA running on the

Entries of the ﬁtﬁ’st performance1 } Step 2.2: Computing the

@ performance2| [slowdown for thread R2
Rst ERtgl|Pst

ﬁst Ptg performance Step 2.3: Computing the
@ ? performance2 slowdown for thread P2
_ RstlIRst BPtg

Fig. 5. Performance prediction. Step 2: Modeling the
collision in hardware resources.

execute alone on different processor cores (see Figure 4), thus
they do not experience any slowdown because of collision in
Processor core resources.

Step 3: In Step 3 of the performance prediction, we compute
the predicted performance of a given thread assignment. First,
we read the base_performance of each application in a
given thread assignment (see Step I). Later, as we explained
in Step 2, we compute the slowdown that the application
experiences because the threads it comprises interfere in
shared processor resources with co-running applications.
The slowdown that a multithreaded application experiences
because of the collision in hardware resources corresponds
to the highest slowdown of each thread independently.
For example, the slowdown that the application R1-P1-T1
experiences is computed as: slowdown(RI1-P1-T1) =

= MAX[slowdown(R1), slowdown(P1), slowdown(TI)].

The performance of each application is com-
puted as a ratio Dbetween the base_performance
and slowdown of the application. For example:

base_per formance(R1—P1-T1
performance(R1-P1-T1) = slowdown(Rl—(Pl—Tl))

The base_per formance(R1-P1-T1) corresponds to the
performance that the application would have had if it was
executed alone on the processor. Factor slowdown(R1-P1-T1)
quantifies the the impact on R1-P1-T1 performance because
of collision with co-running threads. Finally, the performance
of a given thread assignment is a sum of performance of all
the applications that it comprises.

In the Prediction phase, we predict the performance of
thousands of different thread assignments. The output of
BlackBox scheduler can be the thread assignment with the
highest predicted performance, or, optionally, the prediction
can be improved in the Selection phase.

3.1.3 Phase 3: Selection phase

Selection phase is the final phase of BlackBox scheduler, see
Figure 2. Although BlackBox scheduler predicts the thread
assignment performance with a high accuracy (as we show in
Section 5), the thread assignment with the predicted highest
performance could be wrongly-predicted. In order to avoid
the performance loss in this case, in the Selection phase,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

the actual performance of several predicted best-performing
thread assignments is measured on the target processor. The
final outcome of BlackBox scheduler is the assignment with
the highest measured (actual) performance. If the predicted
best-performing thread assignment exhibits a low performance,
the Selection phase will filter out this assignment, and the
final outcome will be 2", 3™, or N predicted best-performing
assignment. In Section 5, we analyze also the impact of the
Selection phase to the performance of BlackBox scheduler.
The results show that the performance improvement of the
Selection phase in which only five predicted best-performing
thread assignments are executed on the real processor ranges
up to 8%, which is significant.

3.2 Scalability

The data used to predict the performance of thread assignments
is stored in the Base Time Table and the Slowdown Table. In
order to collect data for the Base Time Table, we have to exe-
cute all thread assignments of a single application on the target
processor. The Slowdown Table requires running all possible
layouts of application threads on a single processor core.

Since state-of-the-art networking applications comprise few
threads [3][42], the execution of experiments needed to fill
the Base Time Table and the Slowdown Table is feasible, and
BlackBox scheduler can be applied. Most of the low-layer
network applications are composed of few threads because the
packet processing is short, so splitting it into many threads in-
troduces communication overheads that overcome the benefits
of multithreading. Complex network applications, like network
security, usually comprise up to three threads (Receiving-
Processing-Transmitting), due to complexity of splitting the
processing among different threads in an optimal way.

It is important to notice that the application profiling is
one-time effort, and that the process can be fully automated,
thus the execution of the experiments and the data processing
require no interaction with the programmer. In Table 1, we
present the number of profiling experiments needed to char-
acterize workloads comprised of different number of threads
running on the UltraSPARC T2 processor. We use this analysis
to understand whether BlackBox scheduler can be used if the
number of application threads increases. The first column of
Table 1 lists the number of threads that comprise a single
application instance. The second and the third column show
the number of application instances and the total number of the
threads in the workload (Total threads = Application threads
x Application instances). The following columns show the
number of input experiments needed for the Base Time Table
and the Slowdown Table, respectively. Finally, the last two
columns of the table show the time required to execute all
the profiling experiments. The experimentation time is calcu-
lated using the assumption that a single experiment can be
executed in two seconds, which is correct in our experimental
environment. We present results when the experiments can be
executed on a single server, and when four servers can be used
to simultaneously execute the experiments.

We reach several conclusions from the results presented
in Table 1. For four, six, and eight application threads, the
time needed to execute the profiling experiments on a single
server is 5.5 hours, 2.5 days, and 17 days, respectively.
However, as the experiments needed for application profiling
are independent, they can be executed simultaneously on N
servers which will reduce the experimentation time by N

6
Scalability of the proposed thread assignment method
—r— . - - ——
Application| Apg - Db of sl:\pu; experieme Experimentation time
threads | instances [threads| oo ''Me[>OWEOWR) - po) 1 server 4 servers
Table Table
8 32
4 49 9,800 9,849 5.5 hours 1.3 hours
16 64
5 30
6 1,526 105,840 | 107,366 2.5 days 15 hours
10 60
4 32
8 s o1 74,376 653,400 | 727,776 17 days 4.2 days
1 32 31] 31,1023 23
32 5 4 1.4x 10" | 4.7 x 10° (1.4 x 10°{9x10%° years|2.3x10%> years

times. For example, when four servers are used, the profiling
experiments for applications that are comprised of four, six,
and eight threads can be executed in 1.3 hours, 15 hours,
and 4.2 days, respectively, which is feasible in most of the
industrial environments. Also, it is important to notice that the
number of the profiling experiments does not increase with the
total number of threads in the workload, but with the number
of threads that compose a single application instance. The
proposed thread assignment method can be used to determine
good thread assignments for fully-utilized processor (60 to
64 simultaneously running threads) as long as the number of
threads that compose a single application instance is not high.

For the applications that are comprised of a large number of
threads, running all profiling experiments becomes infeasible.
For example, for application that comprise 32 threads, running
all the profiling experiments would require 9x 10?3 years. If
the workload is composed of different multithreaded applica-
tions, BlackBox scheduler also has to consider interference
between thread that belong to different applications. In this
case, the profiling experiments needed to fill the Base Time
Table would not change. For each application, the Base
Time Table would be constructed as the application is to be
executed in isolation (see Section 3.1.1). On the other hand,
including a new application in the workload would require new
experiments that would extend the existing Slowdown Table.
The experiments needed to fill the Slowdown Table require the
execution of all possible combinations of the workload inside
the processor core.

Table 1 shows the number of input experiments for
UltraSPARC T2 processors that comprise eight cores and
eight hardware contexts per core. The number of profiling
experiments is significantly lower for processors with lower
number of cores and hardware contexts per processors core.

As a part of future work, we plan to enhance the appli-
cation profiling and the performance prediction algorithm, so
BlackBox scheduler requires less profiling experiments. Our
goal is to reduce the time needed to execute the applica-
tion profiling experiments and to make BlackBox scheduler
applicable for applications that comprise large number of
threads running on processors with large number of cores and
hardware contexts per core.

4 EXPERIMENTAL ENVIRONMENT

We evaluate BlackBox scheduler on a set of real multithreaded
network applications running on the UltraSPARC T2 proces-
sor. In order to avoid interferences between user applications
and operating system processes, we execute our experiments
in Netra DPS, a low-overhead environment used in network
processing systems [2][3]. We briefly describe Netra DPS
being focused on the differences between this environment
and fully-fledged operating systems, such as Linux or Solaris.
At the end, we present the set of multithreaded network

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

applications and the methodology we use to evaluate the
BlackBox scheduler.

4.1 Hardware environment

In order to evaluate BlackBox scheduler, we use an industrial
experimental environment used in network systems. The envi-
ronment comprises two SPARC Enterprise T5220 servers [4]
that manage the generation and the processing of the network
traffic. Each T5220 server comprises one UltraSPARC T2
processor and 64GB of the memory. One server executes the
Network Traffic Generator (NTGen) [3]. NTGen is a software
tool, developed by Oracle that generates IPv4 TCP/UDP
packets with configurable various packet header fields. NTGen
transmits the network packets through the 10Gb link to the sec-
ond T5220 server in which we execute the benchmarks under
study. NTGen generates enough traffic to saturate the network
processing machine in all experiments presented in the study.
Thus, in all experiments the performance bottleneck is the
speed at which packets are processed, which is determined by
the performance of the selected thread assignments.

4.2 Netra DPS
Networking systems use lightweight runtime environment to
reduce the overhead introduced by fully-fledged OSs. One of
these environments is Netra DPS [2][3] developed by Oracle.
Netra DPS does not incorporate virtual memory nor run-
time process scheduler, and performs no context switching.
The assignment of running tasks to processor hardware con-
texts (virtual CPUs) is performed statically at the compile
time. It is the responsibility of the programmer to define
the hardware context in which each particular task will be
executed. Netra DPS does not provide any interrupt handler
nor daemons. A given tasks runs to completion on the assigned
hardware context without any interruption.

4.3 Benchmarks

Netra DPS is a lightweight runtime environment that does not
provide functionalities of fully-fledged OSs such as system
calls, dynamic memory allocation, or file management. There-
fore, benchmarks included in standard benchmark suites can-
not be executed in this environment without previous bench-
mark adjustments. The benchmarks we use in the study are de-
signed based on the IP Forwarding application (IPFwd) that is
included in the Netra DPS distribution [2]. IPFwd is one of the
most representative low-layer network applications. The appli-
cation reads a packet header and makes the decision where to
forward the packet based on the destination IP address. The
IPFwd application that we use in the experiments consists of
three threads that form a software pipeline (see Figure 6):

o The receiving thread (R) reads a packet from the Network
Interface Unit (NIU) and writes the pointer to the packet
into the R—P memory queue.

o The processing thread (P) reads the pointer to the packet
from the memory queue, processes the packet by hashing
on the lookup table, and writes the pointer to the P—T
memory queue.

« Finally, the transmitting thread (T) reads the pointer from
the P—T memory queue and transmits the packet to the
network through the NIU.

The default IPFwd comprises a simple processing stage.
Howeyver, current and future network services include other
applications, like Deep Packet Inspection and Intrusion Detec-
tion that perform complex processing of the packets. Complex

7
Traffic from
NTGen 1
Network
(R et 7]
Unit

¥ 1
Memory Queue # P # Memory Queue

Fig. 6. One instance of the IPFwd application
packet processing increases the number of instructions that are
executed during the packet processing and increases the work-
ing data set. In addition to this, depending on the features of
network applications and the network traffic, the applications
can have significantly different memory behavior.

In order to mimic a variety of network applications we
create nine variants of the IPFwd application in which we
explore different memory behavior and different complexity of
the processing thread. We start by adjusting the IPFwd lookup
table to cover from the best to the worst case in terms of
cache utilization: (1) The lookup table fits in the L1 data cache
(hashi_L1); (2) The table does not fit in the L1 data cache,
but it fits in the L2 cache (hashi_L2); (3) The lookup table
entries are initialized to make IPFwd continuously access the
main memory (hashl_Mem) that is representative of the worst
case assumptions used in network processing studies [35].

In order to emulate more complex packet processing and
multiple accesses to memory (e.g. Deep Packet Inspection),
we repeat the hash function call and the hash table lookup
N times (three times in experiments presented in this paper).
We refer to this application as hashN. Again, we use three
different configurations to analyze complementary scenarios
of cache utilization: hashN_LI1, hashN_L2, and hashN_Mem.

Finally, in order to mimic CPU-intensive network applica-
tions, such as high-layer packet decoding or URL decoding
we design intadd, intmul, and intdiv benchmarks. intadd,
intmul, and intdiv benchmarks are developed by inserting a
set of integer addition, multiplication, and division instruc-
tions, respectively, at the end of the IPFwd processing stage.
These benchmarks put high stress to IntraPipe and IntraCore
processor resources.

The benchmarks that we use in the study perform different
kinds of processing and stress different processor resources.
They have different duration of processing threads and
different bottleneck threads. The presented benchmarks
stress the UltraSPARC T2 hardware resources at all three
sharing levels, and stress the most critical hardware resources
at each level: the Instruction Fetch Unit at IntraPipe, the
non-pipelined execution units at IntraCore, and the L2 cache
at InterCore level [41]. Considering all this, we argue that
these benchmarks represents a good testbed for the BlackBox
scheduler evaluation.

4.4 Baseline

Since the number of possible thread assignments is
vast [13][14][20][31], it is unfeasible to do the exhaustive
search in order to find the thread assignment with the highest
performance. Also, the analytical analysis of the optimal
thread assignment is an NP-complete problem [18].

Previous studies that address thread assignment prob-
lem [5][14][31] verify their proposals with respect to a naive
thread assignment in which the threads are randomly assigned
to the virtual CPUs of the processor, or with respect to bal-
anced thread assignments. In balanced assignments the threads
are equally distributed among processor hardware domains.
State-of-the-art scheduling algorithms used in Linux and
Solaris [7][32] intend to equally distribute the running threads

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

among different hardware domains (for UltraSPARC T2 pro-
cessor, among processor cores and hardware pipelines). The
purpose of this approach is to distribute running threads
to equally stress the hardware resources of the processor.
Since the current Linux and Solaris load balancing algorithms
disregard inter-thread dependencies and different resource re-
quirements of each thread, the balanced thread assignments
exhibit non-optimal performance in general case.

In addition to the naive and balanced thread assignment,
we compare the performance of the method presented in this
paper with the performance provided by TSBSched (Thread-
to-Strand Binding Scheduler)[31], which is, to the best of
our knowledge, the only systematic method for thread as-
signment of multithreaded applications. State-of-the-art thread
assignment approaches are described in Section 2.3 of the
supplementary file.

4.5 Methodology

In order to assure that the measurements are taken while
the system was in the steady state, we measured the perfor-
mance of thread assignments when each application instance
processed from three to four million packets. This means
that each application thread was executed from three to four
million times. The duration of each experiment is at least 1.5
seconds, and it depends on the benchmark, the number of the
application instances, and the distribution of the concurrently
running threads. For each experiment, we computed the mean
value and the standard deviation of the measured performance.
In all the experiments presented in the paper, the standard
deviation is negligible, thus we do not report it in the presented
charts. This is expected because the experiments were executed
in Netra DPS, a low-overhead runtime environment that is
designed to provide a stable execution time [30].

5 EVALUATION

In this section, we evaluate BlackBox scheduler for the bench-
marks presented in Section 4.3. First, we execute several appli-
cation instances in different thread assignments, and measure
the performance of each assignment. Then, we use BlackBox
scheduler to predict the performance of these assignments. In
the next step, we compare the performance of the predicted
best-performing assignment with the performance of actual
best one that is captured in the evaluation sample. Finally, we
present the performance improvement of our method over a
naive scheduling, load balancing scheduling algorithms used
in the state-of-the-art OSs, and TSBSched. As a main metric,
we use the number of processed Packets Per Second (PPS).
This metric is inversely proportional to the packet processing
time, and has the same properties as the execution time for
non-packet oriented applications. We present results for 6 and
24 concurrently running application threads. The results for
9, 12, and 18 concurrently running threads are presented in
Section 3 of the supplementary file.

5.1 Six application threads

As the total number of different thread assignments for six
co-running threads is around 1500, we were able to generate,
execute, and measure the performance of all of them. The
results are presented in Figure 7. Different benchmarks are
listed along the X-axis of the figure, while the Y-axis shows
the slowdown with respect to the best actual (measured) thread
assignment. We present several groups of bars. Bars BlackBox
show the performance difference between the actual best

o O BlackBox @ Balanced - worst
£ .
- o B Naive - worst B Balanced - average
3 = 50% N Naive - average @ TSBSched
g &
4 o
o o 40%
o F
T 309
g I 30%
s 5
©
€« 20%
z @
S 8
2T 0%
2
w
0% y v 0 vz > N N
& <& O S
'\,\/' '\,\/' é\z e) §\> & t?b <& .o"b
,beao 'b‘}\ N7 B By Y & & N
A S A S
AN NG

Fig. 7. Slowdown with respect to the best actual thread
assignment (six application threads)

thread assignment and the assignment provided by BlackBox
scheduler. In these experiments, the selection phase is not
included, and the thread assignment with the predicted highest
performance is the final outcome of BlackBox scheduler. Bars
Naive-average and Naive-worst present the average and the
worst performance loss of naive scheduling with respect to
the actual best thread assignment. Bars Balanced-average and
Balanced-worst present the average and the worst slowdown of
balanced thread assignments. Finally, TSBSched bars present
the performance of TSBSched thread assignment approach.
For six concurrently running threads, BlackBox scheduler
predicts the actual best thread assignment for four out of
nine benchmarks: hashN_LI, hashN_L2, hashN_Mem, and
intdiv. The performance difference between the predicted best-
performing thread assignment and the actual best one is
always below 4%. The improvement of BlackBox scheduler
with respect to naive and balanced scheduling techniques is
significant. The performance improvement with respect to a
naive process scheduling is between 5% and 15% in average,
and it ranges up to 55% (intadd). The performance improve-
ment with respect to balanced thread assignments is between
3% and 9% in average, and it ranges up to 45% (intadd
benchmark). Finally, in the experiments for six application
threads, BlackBox scheduler has precisely the same accuracy
as the TSBSched approach for all nine benchmarks in the suite.
The main goal of BlackBox scheduler is not to improve
the performance of TSBSched approach. The performance
provided by TSBSched is already close to the optimal one,
thus it cannot be significantly improved [31]. The main en-
hancement of BlackBox scheduler with respect to TSBSched
is that our method does not require the understanding and
adjustments of the application source code. Unlike TSBSched,
BlackBox scheduler can be used when application source code
is unavailable, which is a common case in real environments.
Figure 7 presents the results when BlackBox scheduler
does not include the selection phase, but the final outcome
is the best predicted thread assignment. Figure 8 shows the
performance improvement of the selection phase. The X-axis
of the figure shows the number of thread assignment executed
in the selection phase, while the Y-axis shows the slowdown
with respect to the best actual assignment. We show results
for all nine benchmarks in the suite. Presented results show
that the selection phase additionally improves the performance
for four out of nine benchmarks in the suite. In four out
of remaining five benchmarks, the best predicted thread as-
signment is also the best actual one, so the performance
cannot be improved because it is already the highest possible.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

=== hashl_L1
=== hash1_L2
== hash1l_Mem
—<—hashN_L1
=== hashN_L2
==@==hashN_Mem
==Zi=intadd

=== intmul

—e— intdiv

4.0%
3.5%-
3.0%
2.5%
2.0%
1.5%

o\

0.5% } : —

0.0%
1 2 3 5 10 20 50
Number of TAs executed in the Selection phase

Fig. 8. The performance improvement of the selection
phase (six application threads)

Slowdown with respect to
the best actual TA [%]

Performance improvement of the selection phase ranges from
1.8% (intmul) to 3.9% (hashi_L2).

5.2 24 application threads

The results for 24 concurrently running application threads are
presented in Figure 9. Different benchmarks are listed along
the X-axis of the figure, while the Y-axis shows the slowdown
with respect to the best measured thread assignment in the
evaluation sample. We present several groups of bars. Bar
BlackBox - TOPI shows the performance difference between
actual best thread assignment in the sample and the one
predicted by BlackBox scheduler without the selection phase.
Bar BlackBox - TOP5 shows the performance difference when
five predicted best-performing assignments are executed in
the selection phase of BlackBox scheduler. The rest of the
bars is the same as in Figure 7. The number of possible
thread assignments for 24 co-running threads is vast, and it
is unfeasible to generate and to predict the performance for
each assignment. Therefore, the proposed thread assignment
method is evaluated on a sample 1000 random assignments,
which is a correct statistical approach. The method that
generates random thread assignments is described in detail in
Section 3.1.1 of the supplementary file.

When 24 application threads concurrently execute on the
processor (see Figure 9) the highest performance loss intro-
duced by the method without the selection phase is only 2.8%
(intdiv benchmark). When the selection phase is included, the
highest performance loss is only 1.4% (hashi_Mem).

As in experiments for six application threads, BlackBox
scheduler introduces significant performance improvement
with respect to a naive scheduling and load balancing algo-
rithms. The improvement with respect to a naive scheduling
is between 6% to 19% in average, and up to 45% in the worst
case (intadd benchmark). The performance improvement with
respect to load balancing scheduling techniques ranges from
6% (hashl_Mem) to 19% (intadd) in average, and up to 45%
in the worst case (intadd benchmark).

We could not execute more than 24 benchmark threads
because of the limitation in the experimental environment. The
on-chip Network Interface Unit (NIU) of the UltraSPARC T2
used in the study can split the incoming network traffic into up
to eight DMA channels and Netra DPS binds at most one re-
ceiving thread to each DMA channel. As a part of future work,
we plan to apply the presented thread assignment method to
applications with several processing threads and to workloads
with a higher number of concurrently running threads.

6 RELATED WORK

Workload Selection: Studies that address the workload
selection problem propose models that predict the impact of
interferences between co-running threads to system perfor-
mance. Snavely et al. [37][38] present the SOS scheduler,

50%
° EBalanced - worst
OBalanced - average
B TSBSched

mBlackBox - TOP 1
B BlackBox - TOP 5
W Naive - worst

E Naive - average

40%

30%
20%
10% I 1l

o B0 _H,

Slowdown with respect to
the measureed best TA [%]

AN
Fig. 9. Slowdown with respect to the measured best
thread assignment (24 application threads)

the approach that uses hardware performance counters to
find schedules that exhibit good performance. Eyerman and
Eeckhout [16] propose probabilistic job symbiosis model that
enhances the SOS scheduler. Based on the cycle accounting
architecture [15][26][27], the model estimates the single-
threaded progress for each job in a multithreaded workload.
Other approaches [12][17][21][33] propose techniques to con-
struct workloads of threads that exhibit good symbiosis in
shared caches solving problems of cache contention.

Kwok and Asmad [24][25] present a survey and an extensive
performance study of different scheduling algorithms for mul-
tithreaded applications running on clusters of interconnected
single-threaded processors. Since each thread is executed on
a single-threaded processor, co-running threads do not collide
in processor resources. Therefore, the presented scheduling
algorithms do not analyze inter-thread interferences in shared
processor resources, which is the focus of our study.

Several studies analyze the hardware support for con-
trol of inter-thread interferences in high-performance com-
puting [6][10][40] and real-time systems [8][9][11]. These
studies use techniques such as dynamic resource partitioning
and thread priorities to improve the performance of a given
workload running on the target architecture.

Thread Assignment: Several studies show that the perfor-
mance of applications running on multithreaded processors
depends on the interference in hardware resources, which,
in turn, depends on thread assignment [S][14][31]. Acosta et
al. [5] propose a thread assignment algorithm for CMP+SMT
processors that takes into account not only the workload
characteristics, but also the underlying instruction fetch policy.
El-Moursy el al. [14] also focus on CMP+SMT processors and
propose an algorithm that uses hardware performance counters
to profile thread behavior and assign compatible threads on
the same SMT core. To the best of our knowledge, the only
study that addresses the problem of thread assignment of
multithreaded applications is our previous work in which we
present TSBSched [31]. TSBSched is a model that predicts the
performance of multithreaded network applications running on
processors with several levels of resource sharing. TSBSched
and its main limitations are described in Section 2.4 of the
supplementary file.

Other studies analyze thread scheduling for platforms com-
prised of several multithreaded processors [28][39]. McGregor
et al. [28] introduce new scheduling policies that use run-time
information from hardware performance counters to identify
the best mix of threads to run across processors and within
each processor. Tam el al. [39] present a run-time technique
for the detection of data sharing among different threads. The
proposed technique can be used by an operating system job
scheduler to assign threads that share data to the same memory

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

domain (same chip or the same core on the chip).

Kumar et al. [23] and Shelepov et al. [34] propose algo-
rithms for scheduling in heterogeneous multicore architectures.
The focus of these studies is to find an algorithm that matches
the application’s hardware requirements with the processor
core characteristics. Our study explores interferences between
threads that are distributed among the homogeneous hardware
domains (processor cores) of a processor.

Other studies propose solutions for optimal assignment of
network workloads in network processors. Kokku et al. [22]
propose an algorithm that assigns network processing tasks
to processor cores with the goal of reducing the power
consumption. Wolf et al. [43] propose run-time support that
considers the partitioning of applications across processor
cores. The authors address the problem of dynamic threads
re-allocation because of network traffic variations, and provide
thread assignment solutions based on the application profiling
and traffic analysis.

We present BlackBox scheduler, a thread assignment
method for network applications running on multithreaded
processors with several level of resource sharing. To the best
of our knowledge, BlackBox scheduler is the first approach
that predicts the performance of multithreded applications in
different thread assignments without profound understanding
and adjustments of the application source code. The method
profiles applications by measuring the overall application
performance in different thread assignments, and does not
require inserting any test probes in the application code. This
is very important because BlackBox scheduler can be applied
if the application source code or parts of it are unavailable,
which is a common case in the industry.

7 CONCLUSIONS

Optimal thread assignment is one of the most promising ways
to improve performance in LWK environments running on
multithreaded processors. However, finding an optimal thread
assignment on modern multithreaded processors comprising a
large number of cores is an NP-complete problem.

In this paper, we presented BlackBox scheduler, a method
for systematic thread assignment of multithreaded network
applications running on processors with several levels of
resource sharing. BlackBox scheduler is evaluated for a
set of multithreaded networking applications running on the
UltraSPARC T2 processor. The presented results show a high
accuracy of the method that determined the best thread assign-
ments in the evaluation sample in most of the experiments.

BlackBox scheduler demonstrated significant performance
improvement over the naive scheduling and schedulers that
apply load balancing. The method improves the performance
of naive scheduling from 6% to 23% in average, and up to
60% in the worst case. The performance improvement with
respect to load balancing schedulers ranges from 5% to 22%
in average, and up to 48% in the worst case.

REFERENCES

[1]1 OpenSPARCTM T2 Core Microarchitecture Specification.
crosystems, Inc, 2007.

Sun Mi-

[2] Netra Data Plane Software Suite 2.0 Update 2 Reference Manual. Sun
Microsystems, Inc, 2008.
[3] Netra Data Plane Software Suite 2.0 Update 2 User’s Guide. Sun

Microsystems, Inc, 2008.
[4] Oracle data sheet: Sun SPARC Enterprise T5220 Server. Oracle, 2009.
[S] C. Acosta et al, “Thread to Core Assignment in SMT On-Chip
Multiprocessors,” in SBAC-PAD 2009.

(6]
(71
(8]
[9]
(10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]

[21]

(22]
[23]

[24]

[25]

[26]
[27]
[28]
[29]

(30]
[31]
(32]
[33]
[34]
[35]
(36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]

C. Boneti et al., “Software-controlled priority characterization of power5
processor,” in ISCA 2008.

D. Bovet and M. Cesati, Understanding the Linux Kernel.
Media, Inc., 2006.

F. J. Cazorla et al., “Architectural support for real-time task scheduling
in smt processors,” in CASES 2005, ser. CASES ’05.

F. J. Cazorla et al., “Predictable performance in smt processors: Synergy
between the os and smts,” IEEE Trans. Comput., vol. 55, no. 7, 2006.
F. J. Cazorla et al., “Dynamically controlled resource allocation in smt
processors,” in MICRO 2004.

F. J. Cazorla et al., “Qos for high-performance smt processors in
embedded systems,” IEEE Micro, vol. 24, no. 4, 2004.

D. Chandra et al., “Predicting inter-thread cache contention on a chip
multi-processor architecture,” in HPCA 2005.

M. De Vuyst et al., “Exploiting unbalanced thread scheduling for energy
and performance on a CMP of SMT processors,” in IPDPS 2006.

A. El-Moursy et al., “Compatible phase co-scheduling on a CMP of
multi-threaded processors,” in IPDPS 2006.

S. Eyerman and L. Eeckhout, “Per-thread cycle accounting in SMT
processors,” in ASPLOS 2009.

S. Eyerman and L. Eeckhout, “Probabilistic job symbiosis modeling for
SMT processor scheduling,” in ASPLOS 2010.

A. Fedorova et al., “Performance of multithreaded chip multiprocessors
and implications for operating system design,” in Proceedings of the
annual conference on USENIX Annual Technical Conference, 2005.
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.
R. Gioiosa et al., “Analysis of system overhead on parallel comput-
ers,” in 4th IEEE International Symposium on Signal Processing and
Information Technology, 2004.

Y. Jiang et al., “Analysis and approximation of optimal co-scheduling
on chip multiprocessors,” in PACT 2008.

J. Kihm et al., “Understanding the impact of inter-thread cache inter-
ference on ILP in modern SMT processors,” The Journal of Instruction
Level Parallelism, vol. 7, 2005.

R. Kokku et al., “A case for run-time adaptation in packet processing
systems,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 1, 2004.

R. Kumar et al., “Single-ISA heterogenous multi-core architectures for
multithreaded workload performance,” in ISCA 2004.

Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the
task graph scheduling algorithms,” Journal of Parallel and Distributed
Computing, vol. 59, no. 3, Dec. 1999.

Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys,
vol. 31, no. 4, Dec. 1999.

C. Luque et al., “ITCA: Inter-task Conflict-Aware CPU Accounting for
CMPs,” in PACT 2009.

C. Luque et al., “CPU Accounting in CMP Processors,” in IEEE
Computer Architecture Letters, vol. 8, no. 1, 2009.

R. L. McGregor et al., “Scheduling algorithms for effective thread
pairing on hybrid multiprocessors,” in IPDPS 2005.

F. Petrini et al., “The case of the missing supercomputer performance:
Achieving optimal performance on the 8,192 processors of ASCI Q,” in
SC 2003.

P. Radojkovi¢ et al., “Measuring Operating System Overhead on CMT
Processors,” in SBAC-PAD 2008.

P. Radojkovi¢ et al., “Thread to strand binding of parallel network
applications in massive multi-threaded systems,” in PPoPP 2010.

J. M. Richard McDougall, Solaris internals: Solaris 10 and OpenSolaris
kernel architecture. Sun Microsystems Press/Prentice Hall, 2006.

A. Settle et al., “Architectural support for enhanced SMT job schedul-
ing,” in PACT 2004.

D. Shelepov et al., “Hass: A scheduler for heterogeneous multicore
systems,” in ACM SIGOPS Operating Systems Review, 2009.

T. Sherwood et al, “A Pipelined Memory Architecture for High
Throughput Network Processors,” in ISCA 2003.

E. Shmueli et al., “Evaluating the effect of replacing CNK with Linux
on the compute-nodes of Blue Gene/L,” in ICS 2008.

A. Snavely et al., “Symbiotic jobscheduling with priorities for a simul-
taneous multithreading processor,” in SIGMETRICS 2002.

A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simulta-
neous multithreaded processor,” in ASPLOS 2000.

D. Tam et al., “Thread clustering: sharing-aware scheduling on SMP-
CMP-SMT multiprocessors,” in EuroSys 2007.

D. M. Tullsen and J. A. Brown, “Handling long-latency loads in a
simultaneous multithreading processor,” in MICRO 2001.

V. Cakarevi¢ et al., “Characterizing the resource-sharing levels in the
UltraSPARC T2 processor,” in MICRO 2009.

J. Verdd, Analysis and Architectural Support for Parallel Stateful Packet
Processing, PhD Thesis. Universitat Politécnica de Catalunya, 2008.
T. Wolf et al., “Design considerations for network processor operating
systems,” in ANCS 2005.

O’Reilly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Petar Radojkovié¢ is a doctoral candidate in the Computer
Architecture Department at the Technical University
of Catalonia (UPC) and a researcher at the Barcelona
Supercomputing Center, Spain. Petar received the M.Sc.
degree in Computer Science from the University of Belgrade,
Serbia, in 2006 and M.Sc. degree in Computer Architecture,
Networks and Systems from the Technical University of
Catalonia in 2009. His research interests include compilation
and scheduling for multicore multithreaded architectures.

Vladimir Cakarevié¢ is a programmer, liberal, avid
reader and occasionally a photographer. For the readers
of this biography, assumable interested in less jocular part
of his career, he received dipl. Ing. degree in Electric
Engineering from Universty of Belgrade in 2006 and M.Sc.
degree in Computer Architecture, Networks and Systems
from Technical University of Catalonia in 2008. That did
not make him much smarter, so he proceeded to doctoral
studies in Computer Architecture at the same Spanish
university. Currently, as a PhD student, Vladimir is affiliated
with Barcelona Supercomputing Center. Vladimir worked
on industry project with Sun Microsystems to facilitate
scheduling and parallelization of network applications for
their multi threaded processors. He spent three months at Sun
Microsystems’ headquarters in Menlo Park during 2008 and
also worked at IBM Research Lab Haifa during three months
in 2010, both times as an intern. For most of the time he is
interested in parallel programming, network applications and
multi threaded processors.

Javier Verdi is a tenure-track lecturer in the Computer
Architecture Department at the Technical University of
Catalonia (UPC), Spain. He has coauthored over 20
scientific international publications. His research interests
include parallel architectures, optimization of multithreaded
applications. Verdu received his PhD degree from the UPC
in 2008, as well as his B.Sc. and M.Sc. degrees in computer
science in 2001 from the University of Las Palmas de Gran
Canaria, Spain.

Alex Pajuelo is an associate professor in the Computer
Architecture Department at the Technical University of
Catalonia (Spain). He received his M.Sc. degree in computer
science in 1999 and his Ph.D. degree from the Technical
University of Catalonia (Spain) in 2005. His research interests
include performance evaluation methodologies, dynamic
binary optimization and complex computing-demanding 3D
visualization applications. He has coauthored more than 20
international publications. He has served in the organization
of several international conferences as an external reviewer.

Francisco J. Cazorla is a researcher in the Spanish
National Research Council. He leads the group on Computer
Architecture/Operating System interface (CAOS) at the
Barcelona Supercomputing Center (wWww.bsc.es/caos).
He has worked in industrial projects (Intel, IBM, Sun
Microsystems) as well as in European FP6 (SARC) and
FP7 Projects (MERASA, PROARTIS, parMERASA). He
has led two industrial projects, one with IBM and one with
Sun Microsystems (now Oracle). He currently leads the
PROARTIS project. He has two submitted patents on the
area of hard-real time systems. His research area focuses on

multithreaded architectures for both high-performance and
real-time systems on which he is co-advising ten PhD theses.
He has co-authored over 50 papers in international refereed
conferences. He spent five months as a student intern in
IBM’s T.J. Watson in New York in 2004. He is member of
HIPEAC and the ARTIST Networks of Excellence. Francisco
J. Cazorla has been selected as one of the 100 Spanish
’leaders of the future’ according to the May 2009 issue of
the Capital Magazine. This issue seeks for the 100 young
Spanish citizens that will most influence Spain’s future in all
innovation areas (www.capital.es). He has also been awarded
by the Massachusetts Institute of Technology (MIT), as one
of the 10 Spanish young innovators under 35 years, whose
technical work has been successfully applied in recent years
or has a great potential for development in the coming decades.

Mario Nemirovsky is an ICREA Research Professor at
the Barcelona Supercomputing Center. He pioneered the
concepts of Massively Multithreading (MMT) processing
for the high performance processor and the by now well
established Simultaneous Multithreding architecture (SMT).
Mario was an adjunct professor at the University of
California at Santa Barbara from 1991 to 1998. He has
done research in many areas of computer architecture,
including simultaneous multithreading, high-performance
architectures, and real-time and network processors. Presently,
he is working on Multicore/Multithreaded architectures,
Network Processors and Architectures, Big Data issues,
HPC and Cloud computing. Mario founded several USA
companies ConSentry Networks, FlowStorm Networks; and
XstreamLogic and since he has been in Barcelona he founded
Miraveo and ViLynx. Before that, he was a chief architect
at National Semiconductor, Apple Computers, Weitek and
Delco Electronics, General Motors (GM). He architected GM
engine control, being used in all GM cars for over 20 years.
Mario holds 62 issued patents.

Mateo Valero has been a full professor in the
Computer Architecture Department, Technical University
of Catalonia (UPC), since 1983. Since May 2004, he is
the director of the Barcelona Supercomputing Center (the
National Center of Supercomputing in Spain). His research
topics are centered in the area of high performance computer
architectures. He has published approximately 500 papers,
has served in the organization of more than 200 international
conferences. His research has been recognized with several
awards. Among them, the Eckert-Mauchly Award, Harry
Goode Award, the ”King Jaime I in research and two National
Awards on Informatics and on Engineering. He has been
named Honorary Doctorate by the Universities of Chalmers,
Belgrade, Las Palmas de Gran Canaria and Zaragoza in Spain
and the University of Veracruz in Mexico. He is a fellow
of the IEEE and the ACM and Intel Distinguished Research
Fellow. He is an academic of the Royal Spanish Academy of
Engineering, a correspondent academic of the Royal Spanish
Academy of Sciences, an academic of the Royal Academy of
Science and Arts and member of the Academia Europea.

