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Summary:  In this article, the pattern variation of the wave propagation in a pipeline is studied 
by means of Principal Component Analysis (PCA) and some extensions to indirectly evaluate 
the tensile stress in a pipeline. This method can be potentially used in-situ and real time for 
continuous condition monitoring. The test bench utilized in this research represents a mimic 
of an actual installation. A 1” sch 40 A-106 pipeline is supported at the free ends by fixed 
support. Then, a variable load is applied in the half of the length emulating the stress condition 
produced by a fault in the foundation. The mechanical and geometrical characteristics of the 
pipeline were considered to optimize the experiment configuration and the selection of the 
guided ultrasonic mode at a suitable frequency. A Picoscope® is used for signal generation 
(Gaussian pulse signal of nine cycles) and acquisition of the guided wave. A dedicated Matlab® 
software is implemented to perform processing of this signal. Data captured by the 
piezoelectric sensor for each load condition are projected into the PCA model-based. Results 
of each load scenario are presented and discussed demonstrating the feasibility of using this 
formulation in the evaluation of the tensile stress in pipelines.  
 
1 INTRODUCTION 

Health monitoring of pipeline in service is an important research topic and a challenging task. 
Pipeline systems in service are continuously affected by different factors: corrosion, erosion, 
chemical attack, stress, extreme climate conditions, among others. Stresses in the pipeline have 
great influence in the performance during the operation, affecting its strength, expected 
operational life and dimensional stability.  

Some stresses in the pipeline are developed in service, which are difficult to diagnose and 
identify; they can unexpectedly appear and turn into invisible due to the apparent absence of 
an external load, such as the associated to the differential settlement in the foundation of the 
pipeline supports. 

The stress or strain in a structural element can be determined using either non-destructive 
or destructive methods. Several destructive methods exist for measuring absolute stress and a 
deep explanations are found in [1]. Destructive methods are based on measuring the strain 
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relaxation (change of length), when a part of an element in service is removed. 
On the other hand, the use of strain gauges is one of the most common non-destructive 

methods to measure relative surface stress. However, its uses are limited to determine the stress 
after the sensor is attached to the element. It cannot be directly used to measure, for example, 
residual stresses introduced in manufacture or the stress state of a previously un-instrumented 
structure. Additionally, the use of the strain gage is limited to determine the strain in a specific 
position, which is a disadvantage when the specimen is subjected to variable stress in 
magnitude and position, as the case of a pipeline with differential settlement in the foundation. 

Various physical properties are directly related to the state of stress or strain in a structure 
and can potentially be exploited for measuring absolute stress. Some of this properties are 
displacement, capacitance, inductance and electrical resistance, which can be used in a strain 
gage, with the previously mentioned limitations. Additionally, some other NDT techniques are 
also used for measuring stress, such as eddy current, thermoelectric, ultrasonic [2]. All of these 
exhibit measurably high sensitivity to strain, but they are also affected by other variables such 
as grain structure and magnetic properties. 

Among the available techniques for monitoring stress, some of them present limitations 
such as: low level of penetration, only relative stress measurement, high sensitivity to other 
variables, and restricted use in field due to the nature of the equipment required. Thus, a 
suitable alternative is the use of low-frequency ultrasonic guided waves. 

The guided waves propagating under a stress medium present changes in the wave pattern, 
which are subjected to be monitored. Variations in the wave travelling under stress could be 
traced under two monitoring approaches. The first one, based on the Acoustoelastic Effect, 
involves the evaluation of the change of ultrasonic bulk wave velocities. The second one, relies 
on particular features in the waveform attributed to the propagation in a medium under stress. 
Changes in the wave pattern can be followed using statistics tools, such as PCA and time and 
frequency indicators. PCA is exploited in this work to evaluate the stress condition in a 
pipeline.  

The acoustoelastic effect has been widely studied for stress monitoring since the second half 
of the 20th century. Some recent works are focused on the evaluation of the changes in the 
velocity using signal processing. In [3] the Wigner-Ville transform technique is used to 
determinate the Time Of Flight (TOF) of each frequency component in the group velocity of a 
guided waves propagating under stress. In [4], changes in wave group velocity of longitudinal 
waves as a function of stress are determined by measuring the arrival time delays of the signals 
with respect to the stress-free case. The cross-correlation technique is employed for the 
accurate determination of time delays.  

2 THEORICAL FRAMEWORK 

2.1 Acoutoelastic effect 

In 1937 Murnaghan [5] published “Finite Deformations of an Elastic Solid “. In this work 
Murnaghan presented a model of the linear elastic theory, including finite deformation in 
elastic isotropic materials, describing the variation of the bulk velocities whilst the waveguide 
is subjected to an initial static stress field (Acoustoelastic Effect). The Acoustoelastic Effect is 
a non-linear effect of the constitutive relation between mechanical stress and finite strain in a 
material of continuous mass. It includes higher order expansion of the constitutive relation 
between the applied stress and resulting strain, which yields bulk velocities dependent of the 
stress state of the material. This new model includes three Third-Order Elastic Constants 
(TOEC), the acoustoelastic constants. 
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The modern theory of acoustoelasticity was developed in 1953 by Hughes and Kelly [6]. 
They were interested in calculating the (TOEC) in crystals using third order energy terms in 
their constitutive equations and Murnaghan's theory of finite displacements. Hughes and Kelly 
determined that in addition to the two Lamé constants, λ and µ, three additional constants, 
�, �, � are required to describe the wave propagation in isotropic materials subject to uniaxial 
stress. Once the values of �, �, � of a particular material specimen are determined, any 
experimental measure of one of the bulk velocities reveals the stress at which the specimen is 
subjected to.   

 These constants are determined experimentally by measuring acoustic phase velocities and 
solving a system composed by a set of 5 equations. Each equation describes a particular bulk 
velocity in a predefined direction and polarization as a stress function. Hughes and Kelly 
experimentally determined the TOEC of polystyrene, iron, and Pyrex glass.  

TOEC highly depend on the material processing, such as casting, rolling, or drawing. This 
dependence on processing was traced to the presence of residual, or internal, stresses. The 
degree, depth, and location of residual stresses influence the acoustoelastic properties. So, a 
new stage of applications started using acoustoelastic to estimate the residual stress [7]. 

The most current researches in the Acoustoelastic Effect, have been oriented to the 
measuring of residual stress. Three major difficulties are impeding the advancement of this 
technology [8]. First, the Acoustoelastic Effect is small, typically about of 0.001% per MPa of 
applied stress, for metals. These small variations impose high precision in experimentation. 
Second, the inherent or induced preferred orientation of crystalline grains affects 
acoustoelasticity. This orientation, called texture, causes an anisotropic effect in the material 
properties. The third major problem is the unknown influence of localized plastic deformation. 
This problem is also caused by material processing and is closely related to residual stresses. 
The plastically deformed lattices will not have the same acoustoelastic properties as the elastic 
lattices and hence must be accommodated for. 

Therefore, Acoustoelasticity is not the only cause for variations in acoustic velocity. 
Processing anisotropy and residual stress can cause variations in acoustic velocity comparable 
to those caused by material nonlinearity. In addition, changes in microstructure with service 
life also cause changes in acoustic velocity. These additional sources of nonlinearity 
complicate experimentation and physical interpretation.   

Although, the model of the acoustoelasticity predicts the change of ultrasonic bulk 
velocities. Some recent works have shown the extension of this behavior to the guided waves. 
Therefore, a new subject of research has been gaining the attention, the disperse behavior of 
the guided waves propagating under stress. In this approach, the velocity is no longer only 
frequency dependent but also stress dependent. Some recent works have been using this 
behavior, such as [9,10], where the longitudinal mode L(0,1) is used to track the variations of 
the phase velocity in a rod waveguide exposed to stress. In [11] a finite element technique for 
modelling the dispersion characteristics of guided waves in a waveguide of arbitrary cross 
section subjected to axial load is presented. A dimensionless quantity of the sensitivity of phase 
and group velocity to load is defined. The sensitivity to strain levels term shows that the change 
in velocity is proportional to the strain and decreases as the frequency increases. In [12], the 
dispersion curves for a plate are obtained considering initially the material isotropic, but later 
the dispersion curves are determined assuming that the specimen under uniaxial stress becomes 
unstressed anisotropic. This problem is similar to the lamb wave propagation in an anisotropic 
plate, except for the fourth order tensor in the resulting wave equation, which has not the same 
symmetry as the unstressed anisotropic plate. Thus, the constitutive equation relating 
incremental stress to incremental strain is more complicated. 
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An experimental approach simplifies the acoustoelastic analysis by introducing a lineal 
model of velocity change with the stress, Ec. (1). The coefficient K is obtained by achieving 
an acoustoelastic calibration test in laboratory.  

 
 �� − ��

��
= 
 − ��

���
Δ�
��

= �� 
(1) 

     
where  �� and �� are the velocities at unstressed and stressed states, respectively, 
 is the 

strain, �� is the initial length, ���is the grip length at � = 0, Δ� is the difference between the total 
Time Of Flight (TOF) under stress and the TOF in the specimen before loading ��, � is the 
stress applied axially to the waveguide and  � is a constant . It should be noted that the K value 
depends on material properties, on waveguide diameter and on the probing frequency. 

2.2 PCA 

PCA is a statistical tool with a wide variety of uses i.e. data dimensional reduction, pattern 
recognition, data compression and extraction. The goal of PCA is to discern among a set of 
data which are significant for the system, which are redundant and which are just noise. This 
is achieved by determining a new space (coordinates) to re-express the original data, filtering 
noise and redundancies, based on the variance–covariance structure of the original data. The 
aim of PCA is to re-express the original data in a new basis where the data are arranged along 
directions of maximal variance and minimal redundancy.  

In Structural Health Monitoring (SHM), PCA has been extensively applied for extracting 
structural damage features [13-14] and to discriminate features from damaged and undamaged 
structures [15-16], among others applications. In the above references just the principal 
components or theirs projections were studied, however, PCA provides additional statistical 
features that can be considered as indices.  
 

For SHM PCA-based the data can be arranged in a matrix X as follows in Eq. (2) 
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This X matrix contains information from the measurement j and � experimental trials. Each 

row vector %��& represents measurements from the sensors attached to the structure for a 
specific experiment trial. In the same way, each column vector '!�( represents samples from 
sensors (one variable) in the whole set of experiment trials. Usually, each sensor vector !� is 
re-scaled to have zero mean and unity variance. 

Given a data matrix X in (2), which has been previously scaled, the covariance matrix is 
defined in Eq. (3). 

 

 )* = 1
� − 1 ,-, (3) 

 
The diagonal terms of )* are the variances �.��  of the corresponding variables, Eq. (4): 
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�0�
 

(4) 
 

 
The off-diagonal terms �.�,.1�  are the covariance between pairs of variables, Eq. (5) 
 

 �.�,.1� = 1
� − 1 !�-!1 = 1

� − 1 / �����1
�

�0�
 

(5) 
 

 
Large covariance values correspond to high redundancy and small values to low 

redundancy. 
Consider a 2�� linear transformation matrix P, which is used to transform the original data 

matrix X into the form expressed by Eq. (6): 
 

 3 = 45 (6) 
 
To achieve the minimal redundancy goal, a transformation matrix P is determined such that 

the covariance of the new data matrix T is diagonal, Eq.  (7): 
 

 )- = �
�6� 3-3 = �

�6� 5-4-45 = 5-)*5  
(7) 

 
 
Consequently, the row vectors of the transformed data matrix T are uncorrelated and their 

respective variances are given by the eigenvalues of the covariance matrix )* of the original 
data. )* has j real eigenvalues, 7� (variances) and j orthonormal eigenvectors 8�, which form a 
basis in the j-dimensional space. Then, the transformation matrix is chosen having the 
eigenvectors in their columns, that is: 

 
 8 =  8�|8�|… |8�# … 8�$ (8) 

 
With this matrix the following property is satisfied by Eq. (9): 
 

 )*5 = 5Λ (9) 
 
With Λ = diag%7�, 7�, … . , 7?& so, Eq (10) is satisfied 
 

 )- = 5-5Λ = Λ (10) 
 
Usually, the eigenvectors 8� forming the transformation matrix P are sorted according to 

the eigenvalues by descending order and they are called the Principal Components of the data 
set. The eigenvector with the highest eigenvalue is the most representative value for the data 
with the largest quantity of information. Geometrically, the j th-column vector tj of the 
transformed data matrix T is the projection of the original data over the direction of vector pj 
(j th principal component). The projection of the data in the new frame is characterized by being 
uncorrelated and have the maximal data variance, thus with best potential to exhibit process 
features. 
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Since eigenvectors are ordered according to the amount of information, it is possible to 
reduce the dimensionality of the data set X by choosing only a reduced number r of principal 
components, those corresponding to the first eigenvalues. 

Two statistics scores associated to the PCA are the Hotteling T2 statistics and the Q statistics. 
The first one is based on analyzing the residual data matrix 4@ to represent the variability of the 
data projection in the residual subspace. It only detects variation in the subspace of the first r 
principal components, which are greater than what can be explained by the common-cause 
variations. In other words, T2-statistic is a measure of the variation of each sample within the 
PCA model. The T2-statistic of the i th sample (or experiment) is defined in the form of Eq.(11) 
. 

 3�� = / �����

7�

A

�0�
= ���Λ6����- = ��5Λ6�5-��- (11) 

 
Besides, Q-statistic denotes the change of the events that are not explained by the model of 

principal components. It is a measure of the difference, or residual between a sample and its 
projection into the model. The Q-statistic of the ith sample (or experiment) vector xi is defined 
as follows by Eq. (12): 

 
 B� = �C��C�- = ��%D − 55-&��- (12) 

 
where �C� is its projection into the residual subspace. Normally, Q-statistic is much more 
sensitive than T2-statistic. This is because Q is very small and therefore any minor change in 
the system characteristics will be observable. T2 has great variance and therefore requires a 
great change in the system characteristic to be detectable. 

Information about the experiments can also be obtained directly from plotting the scores T2 
and Q for the relevant principal components. The scores present different values in presence 
of a new dynamic providing information to detect changes. In this way, the plots of Q and T2 
are hypothesis tests that clearly distinguish experiments with abnormal behavior, whereas the 
inspection of the scores plot is a qualitative tool. 

2 STRESS MONITORING PCA BASED APPROACH 
In this work a relative stress monitoring approach for a piezo-actuated pipeline, based on 

the ultrasonic guided wave pattern recognition, is proposed. Information of the wave 
propagated along pipeline in its nominal stage is statistically processed by means of PCA, in 
order to obtain a baseline model represented by the principal components. The stress conditions 
diagnosis stage is executed by projecting the sensed ultrasonic wave data onto the baseline 
model, and, scores and T2 and Q-Statistics indices are computed to distinguish a new 
experiment respect to the baseline case.   

Data organization and preprocessing 

In the proposed methodology, the actuated and sensed signals are coupled by using cross-
correlation, before implementing the PCA model, Eq. (13).  

 

 ��%E& ≝ / G∗I�JKI� + EJ
M

?06M
 (13)  
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where G∗ denotes the complex conjugate of G (actuated signal) and K is the sensed signal. In 
the proposed PCA model, the cross-correlation is arranged in the matrix X, Eq. (2). The 
multivariate data is acquired from a set of signals or experiments (I experiments x K samples 
per experiment). The matrix X represents the cross-correlation between actuated and sensed 
signal for all the measurements in one sensor. So, the matrix X is I x 2K-1, since the cross-
correlation doubles the size of each vector. As explained previously, before applying PCA it is 
necessary to normalize the data matrix X since PCA is scale variant. Each sensor vector is re-
scaled to have zero mean and unity variance. 

The baseline is built by applying PCA to the matrix that contains received guide wave of 
the pipeline without deflection (normal condition) as illustrated in Figure 1. Applying PCA to 
build a baseline means to calculate the projection matrix P, which offers a better and 
dimensionally reduced representation and a greater capture of the relevant dynamics of the 
original data X.  

In the diagnosis phase, the current structure is subjected to a number of experiments to 
determine its stress states and a new matrix X is arranged with the captured data. The number 
of collected samples (data-points) must be the same that the used in the modelling phase. This 
matrix is projected into the PCA model using Eq. (6). Projections onto some of the first 
components are obtained and the stress indices (T2-statistic and Q-statistic) are calculated and 
compared with the baseline values. The general procedure for detecting and distinguishing 
stresses on structures based on PCA can be summarized in Figure 1. 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: General scheme based on PCA for detecting and distinguishing stress in structures. 

3 EXPERIMENTAL SETUP 

The test bench used in this research represents a scaled mimic of an actual installation. A 
1” 6 m of length sch 40 A-106 pipeline supported at the free ends by fixed support is used and 
a variable load is applied on the half of the length emulating the stress produced for a fault in 
the foundation. The different stress conditions are either produced by changing the magnitude 
of the reaction in the variable support located in the middle of the pipeline (L/2) or by adding 
a concentrated force at the middle part of the pipeline, as shown in the Figure 2. 

  
 
 
 
 
 

Figure 2: Schematic representation of the test bench 
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 The pipeline is excited with a 9 cycles Gaussian-modulated sinusoidal pulse via PZT. The 

modulated signal is defined by Eq. (14). 
 

 �%�& = NO�%2QG��& (14) 
 

where G� = 1/S� and  S� is the period of the modulated signal �%�&. A Gaussian window 
centered at �T is defined by Eq. (15) 

 
 K%�& = U6%V6VW&X/��X

 (15) 
 
Let �T = 9S/2 so the Gaussian pulse is centered at half of the total 9 cycles of the modulated 

signal. � is determined by requiring that �T be confined within the Full Width at Half Maximum 
(FWHM) of the Gaussian pulse or 

 
 � = �T

Z[\] = �T
2√2 ln 2 

(16) 

 
Multiplication of (14) with (15) produces the continuous modulated Gaussian source, Eq. 

(17). 
 

 ab%�& = NO�%2QG��&U6%V6VW&X/��X
 (17) 

 
The power spectral density of the resulting modulated signal with a central frequency of 80 

kHz is shown in Figure 3. This value of central frequency guarantees a low dispersive behavior 
in the longitudinal modes of the guided wave for the pipeline under test, as shown in the 
disperse curves in Figure 4. The dispersion curves are obtained using the freeware PCDISP 
[17]. 

 
The baseline (normal condition) of the PCA model is determined considering the absence 

of deflection in the middle variable support. Under this condition the middle part (L/2) is 
experimenting a negative bending moment and the pipeline develops an internal stress of 5% 
of the yield strength. The stress was measured by using a strain gage model CEA-13-125UN-
350 of Vishay micro-measuments located in the middle point of the pipeline and it is also 
calculated analytically. Now, the magnitude of the variable support is decreasing while the 
pipeline deflection is increasing in steps of 5 mm down of the original axis position (baseline). 
Every 5 mm, deflection constitutes a different stress scenario, denominated D1 for a 5 mm of 
deflection, D2 for a deflection of 10 mm and so on consecutively until D9 with 45 mm of 
deflection (37.5% of the yield strength). The variation of the deflection yields an increase in 
the magnitude of the bending moment in the middle part of the pipeline from negative in the 
initial condition (-27.31 N-m) to positive upward the 15 mm of deflection, see table 1. 

Additionally, in Table 1 it can be observed the variation of the maximum positive bending 
moment along the pipeline and its location for each studied scenario. The distance can be 
indifferently measured from any end, due to the symmetric of the loads in the pipeline. 
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Figure 3: Power spectral density of the Gaussian-modulated sinusoidal pulse 

 

 

 
Figure 4: Phase speed and group speed dispersion curves for a 1” Sch. 40 A-106 pipeline 
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Although, only for the baseline the bending moment in the middle is greater than the 
maximum positive bending moment in the pipeline, the difference between the bending 
moments in all the consecutive deflection is greater in the middle part of the pipeline. This 
difference will be more sensible for a suitable feature used to track the changes in the stress 
whether a monitoring system is implemented.    

 

Scenarios 

Deflection 
in the 

middle of 
the 

pipeline 
(m) 

Bending 
moment in the 
middle of the 

pipeline (N-m) 

% of yield 
strength in 
the middle 

Maximum 
positive 
bending 
moment 
(N-m) 

Position of the 
maximum 
positive 
bending 

moment (m) 

Normal 0 -27.31 5 15.25 1.1 
D1 0.005 -14.31 2.6 20.49 1.28 
D2 0.01 -1.39 0.25 26.5 1.45 
D3 0.015 11.56 2.12 33.2 1.63 
D4 0.02 24.53 4.5 40.84 1.8 
D5 0.025 37.49 6.8 49.17 1.98 
D6 0.03 50.45 9.2 58.27 2.16 
D7 0.035 63.41 11.6 68.14 2.33 
D8 0.04 76.37 14 78.79 2.51 
D9 0.045 89.34 16.41 90.2 2.68 

 
Table 1: Bending moment and yield percentage for deflection in the pipeline 

 
Based on the previous considerations, the piezoelectric transducers location is defined. The 

actuator and the sensor are located at 0.63 m equidistant from the middle, aligned with the 
pipeline axis, as shown in Figure 2. 

A number of 100 experiments have been performed and recorded for each scenario of stress 
condition. Every experiment is composed by 1000 samples and after the cross-correlation the 
number of samples is increased by 2000. The baseline is obtained using only 70 experiments 
and the rest are used to validate the model. The principal components are determined using the 
data of the baseline. PCA analysis provides the variability retained for each component, where 
99.8% of the variability is presented in the first 60 components out of 2000, as shown in Figure 
5. Then, every new study case is projected onto the selected components. 

In the diagnosis step, nine different scenarios D1 to D9, as shown in Table 1, are projected 
onto the model. Once the projections are obtained, the indices T2 and Q-Statistics are 
determined for each experiment. The results of the indices for each stress scenario studied are 
shown in Figures 6-8. In Figures 6 and 7, the damage detection indices (T2-statistic and Q-
statistic) were plotted for each experiment, shapes and colors represent different conditions of 
the specimen. In Figure 8, Q-statistic against T2-statistic are plotted. In Figure 8 is shown the 
phase shift produced in the captured wavepacket signal for the PZT in time domain attributed 
to the acuostoelasticity.  
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Figure 5: Accumulated variability versus number of components of PCA 

 

 
Figure 6. Q-Statistics versus Experiments for all scenarios studied 

 
 

 
Figure 7. T2 versus experiments for all scenarios studied 
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Figure 8. Q-Statistics versus T2 for all scenarios studied 

 

 
 

Figure 9. Phase shift in time domain due to Acoustoelasticity Effect for some scenarios 
  

4 RESULTS AND ANALYSIS  

In Figures 6-8 can be observed that the values of the indices T2-statistic and Q-statistic for 
each stress scenario are around some value and differ among the different stress scenarios; 
however in some experiments the indices are slightly overlapping, mainly in the D3 and D4 
scenarios, as shown in Figures 6-8. Based on the previous results, it can be concluded that the 
indices T2 and Q-staticstics of the PCA model provide capabilities for distinguishing among 
the different stress scenarios. Additionally, in Figure 8, it is observed a linear relationship 
between the indices, when the specimen is subject to a different stress condition. Nevertheless, 
although exists a linear relation between the values of the indices, this relation is not 
proportional with the stress magnitude.  

5 CONCLUSIONS 

The experimental results of the proposed algorithm based on PCA model shows a reliable 
and suitable capabilities for discriminate every stress condition scenario for a 1” sch 40 A-106 
pipeline under the experimental conditions. PCA technique, in particular the T2 and Q-
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staticstics indices, is a tool for detecting the presence of different stress conditions, comparing 
the values of the indices to the values of the baseline via a threshold. 

The implemented methodology is able to detect any stress condition, but the evaluation of 
the magnitude of the stress applied to the specimen requires a more extent experimentation in 
order to determine the statistically appropriate threshold to define the magnitude of the stress 
applied. For instance, by means of multivariate statistical inference. 
Therefore, the studied indices constitute a base for implementing a classifier algorithm 
allowing to discern among different deflections or stresses of the pipeline. 
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