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Summary: Inthis article, the pattern variation of the veapropagation in a pipeline is studied
by means of Principal Component Analysis (PCA) sode extensions to indirectly evaluate
the tensile stress in a pipeline. This method campdientially used in-situ and real time for
continuous condition monitoring. The test benchzei in this research represents a mimic
of an actual installation. A 1” sch 40 A-106 pipsdi is supported at the free ends by fixed
support. Then, a variable load is applied in théf lodthe length emulating the stress condition
produced by a fault in the foundation. The mechalrand geometrical characteristics of the
pipeline were considered to optimize the experincenfiguration and the selection of the
guided ultrasonic mode at a suitable frequency.iédoscopé is used for signal generation
(Gaussian pulse signal of nine cycles) and acdaisidf the guided wave. A dedicated Maflab
software is implemented to perform processing @$ wignal. Data captured by the
piezoelectric sensor for each load condition arejgcted into the PCA model-based. Results
of each load scenario are presented and discussatbdstrating the feasibility of using this
formulation in the evaluation of the tensile strespipelines.

1 INTRODUCTION

Health monitoring of pipeline in service is an imamt research topic and a challenging task.
Pipeline systems in service are continuously agigdty different factors: corrosion, erosion,
chemical attack, stress, extreme climate conditiam®ng others. Stresses in the pipeline have
great influence in the performance during the apmma affecting its strength, expected
operational life and dimensional stability.

Some stresses in the pipeline are developed inceewhich are difficult to diagnose and
identify; they can unexpectedly appear and tura invisible due to the apparent absence of
an external load, such as the associated to tferatitial settlement in the foundation of the
pipeline supports.

The stress or strain in a structural element caddbermined using either non-destructive
or destructive methods. Several destructive metkadt for measuring absolute stress and a
deep explanations are found in [1]. Destructivehods are based on measuring the strain
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relaxation (change of length), when a part of @melnt in service is removed.

On the other hand, the use of strain gauges isobtige most common non-destructive
methods to measure relative surface stress. Howieévases are limited to determine the stress
after the sensor is attached to the element. hatame directly used to measure, for example,
residual stresses introduced in manufacture ostiiess state of a previously un-instrumented
structure. Additionally, the use of the strain gagemited to determine the strain in a specific
position, which is a disadvantage when the specimesubjected to variable stress in
magnitude and position, as the case of a pipelittedifferential settlement in the foundation.

Various physical properties are directly relatedh® state of stress or strain in a structure
and can potentially be exploited for measuring aliscstress. Some of this properties are
displacement, capacitance, inductance and elelctasestance, which can be used in a strain
gage, with the previously mentioned limitations dkbnally, some other NDT techniques are
also used for measuring stress, such as eddy tutrermoelectric, ultrasonic [2]. All of these
exhibit measurably high sensitivity to strain, they are also affected by other variables such
as grain structure and magnetic properties.

Among the available techniques for monitoring streome of them present limitations
such as: low level of penetration, only relativeess measurement, high sensitivity to other
variables, and restricted use in field due to theure of the equipment required. Thus, a
suitable alternative is the use of low-frequendyasonic guided waves.

The guided waves propagating under a stress megliesent changes in the wave pattern,
which are subjected to be monitored. Variationthenwave travelling under stress could be
traced under two monitoring approaches. The fire, dased on the Acoustoelastic Effect,
involves the evaluation of the change of ultrasdmilk wave velocities. The second one, relies
on particular features in the waveform attributedhe propagation in a medium under stress.
Changes in the wave pattern can be followed udatgscs tools, such as PCA and time and
frequency indicators. PCA is exploited in this wdik evaluate the stress condition in a
pipeline.

The acoustoelastic effect has been widely studiestfess monitoring since the second half
of the 20" century. Some recent works are focused on theuatiah of the changes in the
velocity using signal processing. In [3] the Wighalle transform technique is used to
determinate the Time Of Flight (TOF) of each fregmecomponent in the group velocity of a
guided waves propagating under stress. Incfdnges in wave group velocity of longitudinal
waves as a function of stress are determined bgumieg the arrival time delays of the signals
with respect to the stress-free case. The crogsiation technique is employed for the
accurate determination of time delays.

2 THEORICAL FRAMEWORK

2.1 Acoutodlastic effect

In 1937 Murnaghan [5] published “Finite Deformasoof an Elastic Solid “. In this work
Murnaghan presented a model of the linear elabgori, including finite deformation in
elastic isotropic materials, describing the vapiatof the bulk velocities whilst the waveguide
is subjected to an initial static stress field (Astelastic Effect). The Acoustoelastic Effect is
a non-linear effect of the constitutive relatiotvibeen mechanical stress and finite strain in a
material of continuous mass. It includes highereorelxpansion of the constitutive relation
between the applied stress and resulting strairghwields bulk velocities dependent of the
stress state of the material. This new model ireduthree Third-Order Elastic Constants
(TOEC), the acoustoelastic constants.
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The modern theory of acoustoelasticity was develdpel953 by Hughes and Kelly [6].
They were interested in calculating the (TOEC)nystals using third order energy terms in
their constitutive equations and Murnaghan's thebfinite displacements. Hughes and Kelly
determined that in addition to the two Lamé constanandy, three additional constants,
[,m,n are required to describe the wave propagatiosdtropic materials subject to uniaxial
stress. Once the values bin,n of a particular material specimen are determiread
experimental measure of one of the bulk velocite®als the stress at which the specimen is
subjected to.

These constants are determined experimentallydasaring acoustic phase velocities and
solving a system composed by a set of 5 equatieash equation describes a particular bulk
velocity in a predefined direction and polarizatias a stress function. Hughes and Kelly
experimentally determined the TOEC of polystyreran, and Pyrex glass.

TOEC highly depend on the material processing, sisctasting, rolling, or drawing. This
dependence on processing was traced to the presémesidual, or internal, stresses. The
degree, depth, and location of residual stresskgente the acoustoelastic properties. So, a
new stage of applications started using acoustibelasestimate the residual stress [7].

The most current researches in the Acoustoeladfiect= have been oriented to the
measuring of residual stress. Three major diffiealiare impeding the advancement of this
technology [8]. First, the Acoustoelastic Effecsmall, typically about of 0.001% per MPa of
applied stress, for metals. These small variationEose high precision in experimentation.
Second, the inherent or induced preferred oriemmatof crystalline grains affects
acoustoelasticity. This orientation, called textur@uses an anisotropic effect in the material
properties. The third major problem is the unknamfluence of localized plastic deformation.
This problem is also caused by material procesaiyis closely related to residual stresses.
The plastically deformed lattices will not have #ame acoustoelastic properties as the elastic
lattices and hence must be accommodated for.

Therefore, Acoustoelasticity is not the only cadise variations in acoustic velocity.
Processing anisotropy and residual stress can eans¢ions in acoustic velocity comparable
to those caused by material nonlinearity. In additichanges in microstructure with service
life also cause changes in acoustic velocity. Thadditional sources of nonlinearity
complicate experimentation and physical interpretat

Although, the model of the acoustoelasticity predithe change of ultrasonic bulk
velocities. Some recent works have shown the exters this behavior to the guided waves.
Therefore, a new subject of research has beenngaihe attention, the disperse behavior of
the guided waves propagating under stress. Inaysoach, the velocity is no longer only
frequency dependent but also stress dependent. &reat works have been using this
behavior, such as [9,10], where the longitudinatlenb(0,1) is used to track the variations of
the phase velocity in a rod waveguide exposedrésstIn [11] a finite element technique for
modelling the dispersion characteristics of guigeles in a waveguide of arbitrary cross
section subjected to axial load is presented. Aedisionless quantity of the sensitivity of phase
and group velocity to load is defined. The sengitito strain levels term shows that the change
in velocity is proportional to the strain and dexses as the frequency increases. In [12], the
dispersion curves for a plate are obtained conisigenitially the material isotropic, but later
the dispersion curves are determined assumingit@apecimen under uniaxial stress becomes
unstressed anisotropic. This problem is similgh&lamb wave propagation in an anisotropic
plate, except for the fourth order tensor in theuleng wave equation, which has not the same
symmetry as the unstressed anisotropic plate. Tthes, constitutive equation relating
incremental stress to incremental strain is moreplicated.



J. Quiroga, R. Villamizar, L. Mujica, et al

An experimental approach simplifies the acoustoielanalysis by introducing a lineal
model of velocity change with the stress, Ec. The coefficient K is obtained by achieving
an acoustoelastic calibration test in laboratory.

v, —V, Ly At _ (1)

where 1, andV are the velocities at unstressed and stressesb staspectively; is the
strain,l, is the initial lengthl,,is the grip length at = 0,At is the difference between the total
Time Of Flight (TOF) under stress and the TOF i@ sipecimen before loading, o is the
stress applied axially to the waveguide d@ds a constant . It should be noted thatkhealue
depends on material properties, on waveguide demaeid on the probing frequency.

2.2 PCA

PCA is a statistical tool with a wide variety ofesd.e. data dimensional reduction, pattern
recognition, data compression and extraction. Tded gf PCA is to discern among a set of
data which are significant for the system, whioh mdundant and which are just noise. This
is achieved by determining a new space (coordih&ba®-express the original data, filtering
noise and redundancies, based on the variance+aos@rstructure of the original data. The
aim of PCA is to re-express the original data imea basis where the data are arranged along
directions of maximal variance and minimal redurgjan

In Structural Health Monitoring (SHM), PCA has besxtiensively applied for extracting
structural damage features [13-14] and to discraefieatures from damaged and undamaged
structures [15-16], among others applicatioinsthe above references just the principal
components or theirs projections were studied, ewd?CA provides additional statistical
features that can be considered as indices.

For SHM PCA-based the data can be arranged in axnxaas follows in Eq. (2)
rfn X12 X1j l
e e e )
X= Xi1 Xijp - Xjj 1= [191|192| |19]| 1971] ( )

This X matrix contains information from the measureneridn experimental trials. Each
row vector (x;) represents measurements from the sensors attachib@ tstructure for a
specific experiment trial. In the same way, eadroa vector(d;) represents samples from
sensors (one variable) in the whole set of experirtréals. Usually, each sensor vectbris
re-scaled to have zero mean and unity variance.

Given a data matriX in (2), which has been previously scaled, the damae matrix is
defined in Eq. (3).

1
Cx = r 3
x = — XX ()

The diagonal terms dly are the variancegfj of the corresponding variables, Eq. (4):
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The off-diagonal termsﬁj,vk are the covariance between pairs of variables(%q.

n
1 1 5
Oipe = ——= 9] Oy = —z XijXik ®)

Large covariance values correspond to high redwydand small values to low
redundancy.

Consider gxn linear transformation matri®, which is used to transform the original data
matrix X into the form expressed by Eq. (6):

T = XP (6)

To achieve the minimal redundancy goal, a transébion matrix P is determined such that
the covariance of the new data matffixs diagonal, Eq. (7):

Cr=—T"T =—PTXTXP = PT(yP 0

Consequently, the row vectors of the transformed deatrixT are uncorrelated and their
respective variances are given by the eigenvaltidseccovariance matrigy of the original
data.Cx hasj real eigenvalues; (variances) anflorthonormal eigenvectogsg, which form a
basis in thej-dimensional space. Then, the transformation masixhosen having the
eigenvectors in their columns, that is:

p= [P1|Pz|--- |pj| ...'pn] (8)
With this matrix the following property is satisfidy Eq. (9):
CyP = PA 9)
With A = diag(44, 4, ...., 4,,) SO, Eq (10) is satisfied
Cr =PTPA=A (10)

Usually, the eigenvectors; forming the transformation matri are sorted according to
the eigenvalues by descending order and they #esl tlhe Principal Componentsf the data
set. The eigenvector with the highest eigenvaliubasmost representative value for the data
with the largest quantity of informatiotGeometrically, thej™-column vectort; of the
transformed data matrik is the projection of the original data over theediion of vectorp;

(j" principal component). The projection of the datshie new frame is characterized by being
uncorrelated and have the maximal data variancs, with best potential to exhibit process
features.
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Since eigenvectors are ordered according to theuatmaf information, it is possible to
reduce the dimensionality of the data Xety choosing only a reduced numbesf principal
components, those corresponding to the first eigieies.

Two statistics scores associated to the PCA ardottelingT? statistics and th@® statistics.
The first one is based on analyzing the residut@ dhatrixX to represent the variability of the
data projection in the residual subspace. It oeleds variation in the subspace of the first
principal components, which are greater than what lze explained by the common-cause
variations. In other wordg??-statistic is a measure of the variation of eachg@a within the
PCA model. Th@?-statistic of tha™ sample (or experiment) is defined in the form qf(E1)

r .2
ts..
T? = % =ty A1l = x;,PA"1PTx] (11)
: j
j=1

BesidesQ-statistic denotes the change of the events teat@irexplained by the model of
principal components. It is a measure of the diffiee, or residual between a sample and its
projection into the model. TH@-statistic of thaé™ sample (or experiment) vectaris defined
as follows by Eq. (12):

Q; = %" = x;(I — PPT)x,T (12)

where X; is its projection into the residual subspadermally, Q-statistic is much more
sensitive thaT?-statistic. This is becaus@ is very small and therefore any minor change in
the system characteristics will be observaffehas great variance and therefore requires a
great change in the system characteristic to bectidile.

Information about the experiments can also be pbthdirectly from plotting the score$ T
andQ for the relevant principal components. The scpresent different values in presence
of a new dynamic providing information to detecasges. In this way, the plots @fand P
are hypothesis tests that clearly distinguish arparts with abnormal behavior, whereas the
inspection of the scores plot is a qualitative .tool

2 STRESSMONITORING PCA BASED APPROACH

In this work a relative stress monitoring approfmha piezo-actuated pipeline, based on
the ultrasonic guided wave pattern recognition,pisposed. Information of the wave
propagated along pipeline in its nominal stagdatistically processed by means of PCA, in
order to obtain a baseline model represented bgrtheipal components. The stress conditions
diagnosis stage is executed by projecting the seabmsonic wave data onto the baseline
model, and, scores ant¥ and Q-Statisticsindices are computed to distinguish a new
experiment respect to the baseline case.

Data organization and preprocessing

In the proposed methodology, the actuated and desigeals are coupled by using cross-
correlation, before implementing the PCA model, @8).

() 2 ) f[mlglm + k] (13)

m=—oo
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wheref* denotes the complex conjugatefofactuated signal) angl is the sensed signal. In
the proposed PCA model, the cross-correlation ianged in the matriX, Eq. (2). The
multivariate data is acquired from a set of sigrmalgxperimentsl (experimentx K samples
per experiment). The matriX represents the cross-correlation between actuattdensed
signal for all the measurements in one sensorttgomatrixX is | x 2K-1, since the cross-
correlation doubles the size of each vector. Adaempd previously, before applying PCA it is
necessary to normalize the data maXigince PCA is scale variant. Each sensor vect@-is
scaled to have zero mean and unity variance.

The baseline is built by applying PCA to the mathat contains received guide wave of
the pipeline without deflection (normal conditiaay illustrated in Figure Applying PCA to
build a baseline means to calculate the projectiatrix P, which offers a better and
dimensionally reduced representation and a greafgiure of the relevant dynamics of the
original datax.

In the diagnosis phase, the current structure ligested to a number of experiments to
determine its stress states and a new mzAtisxarranged with the captured data. The number
of collected samples (data-points) must be the shatdhe used in the modelling phase. This
matrix is projected into the PCA model using Eq). (Brojections onto some of the first
components are obtained and the stress indidest4tistic and)-statisti) are calculated and
compared with the baseline values. The generalepige for detecting and distinguishing
stresses on structures based on PCA can be surenharigigure 1.

Normal condition

Stressed state

[¥11 X1z - X1j - Xim] [¥11 X12 = X1j - Xim]

Trials

Xix Xiz - Xij o Xim

\ Trials
lxni Xn2 o Xnj ... xnmJ lxni Xn2 oo Xnj ... xnmJ Diagnosis stage

1
1
1
1
| X
1
1
1
1

»| Principal Components
Modelling

______________________ ||
1
™ Q

Figure 1: General scheme based on PCA for deteatidgistinguishing stress in structures.

3 EXPERIMENTAL SETUP

The test bench used in this research represemaledsmimic of an actual installation. A
1” 6 m of length sch 40 A-106 pipeline supportethatfree ends by fixed support is used and
a variable load is applied on the half of the léngiinulating the stress produced for a fault in
the foundation. The different stress conditionseaatteer produced by changing the magnitude
of the reaction in the variable support locatethenmiddle of the pipeline (L/2) or by adding
a concentrated force at the middle part of thelipeas shown in the Figure 2.

< L2 Concentrated force
4 Sensor
Actuator \‘I'I Y\ o j
S, A
Support t Variable support Support

Figure 2: Schematic representation of the testibenc
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The pipeline is excited with a 9 cycles Gaussiatnlated sinusoidal pulse via PZT. The
modulated signal is defined by Eq. (14).

m(t) = sin(2mfyt) (14)

where f, = 1/1, and 1, is the period of the modulated signa(t). A Gaussian window
centered at,. is defined by Eq. (15)

g(t) = e~ tt*/20° (15)
Lett. = 9t/2 so the Gaussian pulse is centered at half obthé9 cycles of the modulated
signal.o is determined by requiring thgatbe confined within the Full Width at Half Maximum

(FWHM) of the Gaussian pulse or

_ ot ot (16)
FWHM  24/21n2

o

Multiplication of (14) with (15) produces the camtious modulated Gaussian source, Eq.
@an.

E,(¢) = sin(2nfyt)e~(t-to)?/20 (17)

The power spectral density of the resulting modulatignal with a central frequency of 80
kHz is shown in Figure 3. This value of centratjuency guarantees a low dispersive behavior
in the longitudinal modes of the guided wave fog fhipeline under test, as shown in the
disperse curves in Figure 4. The dispersion cuavesobtained using the freeware PCDISP
[17].

The baseline (normal condition) of the PCA modadetermined considering the absence
of deflection in the middle variable support. Undleis condition the middle part (L/2) is
experimenting a negative bending moment and thelipg develops an internal stress of 5%
of the yield strength. The stress was measuredsinga strain gage model CEA-13-125UN-
350 of Vishay micro-measuments located in the neidqubint of the pipeline and it is also
calculated analytically. Now, the magnitude of tlaiable support is decreasing while the
pipeline deflection is increasing in steps of 5 ©hoavn of the original axis position (baseline).
Every 5 mm, deflection constitutes a different sérecenario, denominated D1 for a 5 mm of
deflection, D2 for a deflection of 10 mm and socamsecutively until D9 with 45 mm of
deflection (37.5% of the yield strength). The vaoia of the deflection yields an increase in
the magnitude of the bending moment in the middle pf the pipeline from negative in the
initial condition (-27.31 N-m) to positive upwardet 15 mm of deflection, see table 1.

Additionally, in Table 1 it can be observed theigaon of the maximum positive bending
moment along the pipeline and its location for eattidied scenario. The distance can be
indifferently measured from any end, due to themsyatnic of the loads in the pipeline.
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Although, only for the baseline the bending momienthe middle is greater than the
maximum positive bending moment in the pipelines thifference between the bending
moments in all the consecutive deflection is greatehe middle part of the pipeline. This
difference will be more sensible for a suitabletdiea used to track the changes in the stress
whether a monitoring system is implemented.

Dgflectlon . Maximum Position of the
in the Bending , y :
. . % of yield positive maximum
: middle of moment in the . . .
Scenarios . strength in bending positive
the middle of the ; .
L o the middle moment bending
p|r()el;ne pipeline (N-m) (N-m) moment (m)
m
Normal 0 -27.31 5 15.25 1.1
D1 0.005 -14.31 2.6 20.49 1.28
D2 0.01 -1.39 0.25 26.5 1.45
D3 0.015 11.56 2.12 33.2 1.63
D4 0.02 24.53 4.5 40.84 1.8
D5 0.025 37.49 6.8 49.17 1.98
D6 0.03 50.45 9.2 58.27 2.16
D7 0.035 63.41 11.6 68.14 2.33
D8 0.04 76.37 14 78.79 2.51
D9 0.045 89.34 16.41 90.2 2.68

Table 1: Bending moment and yield percentage féiedon in the pipeline

Based on the previous considerations, the piezivelé@nsducers location is defined. The
actuator and the sensor are located at 0.63 m istand from the middle, aligned with the
pipeline axis, as shown in Figure 2.

A number of 100 experiments have been performedesutded for each scenario of stress
condition. Every experiment is composed by 1000pesand after the cross-correlation the
number of samples is increased by 2000. The basisliabtained using only 70 experiments
and the rest are used to validate the model. Tiheipal components are determined using the
data of the baseline. PCA analysis provides thb#ity retained for each component, where
99.8% of the variability is presented in the fB8tcomponents out of 2000, as shown in Figure
5. Then, every new study case is projected ontge¢hexted components.

In the diagnosis step, nine different scenariogd9, as shown in Table 1, are projected
onto the model. Once the projections are obtairled, indicesT?> and QStatistics are
determined for each experiment. The results ofriliees for each stress scenario studied are
shown in Figures 6-8. In Figures 6 and 7, the dardegection indicesT¢-statistic andQ-
statistic) were plotted for each experiment, shapeiscolors represent different conditions of
the specimen. In Figure §-statistic against2-statistic are plotted. In Figure 8 is shown the
phase shift produced in the captured wavepackeakfgr the PZT in time domain attributed
to the acuostoelasticity.

10
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Figure 5: Accumulated variability versus numbecofmponents of PCA
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Figure 7. P versus experiments for all scenarios studied
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Figure 9. Phase shift in time domain due to Acaeisisticity Effect for some scenarios

4 RESULTSAND ANALYSIS

In Figures 6-8 can be observed that the valuebeoiridicesT?-statistic andQ-statistic for
each stress scenario are around some value amd diffong the different stress scenarios;
however in some experiments the indices are slighterlapping, mainly in the D3 and D4
scenarios, as shown in Figures 6-8. Based on thequis results, it can be concluded that the
indicesT? andQ-staticsticsof the PCA model provide capabilities for distifghing among
the different stress scenarios. Additionally, igue 8, it is observed a linear relationship
between the indices, when the specimen is sulgectifferent stress condition. Nevertheless,
although exists a linear relation between the \gloé the indices, this relation is not
proportional with the stress magnitude.

5 CONCLUSIONS

The experimental results of the proposed algorittased on PCA model shows a reliable
and suitable capabilities for discriminate evergss condition scenario for a 1” sch 40 A-106
pipeline under the experimental conditions. PCAhtégue, in particular thd? and Q-
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staticsticandices, is a tool for detecting the presence tiéknt stress conditions, comparing
the values of the indices to the values of thelbesgia a threshold.

The implemented methodology is able to detect &nm@gs condition, but the evaluation of
the magnitude of the stress applied to the specneguires a more extent experimentation in
order to determine the statistically appropriateshold to define the magnitude of the stress
applied. For instance, by means of multivariatésteal inference.

Therefore, the studied indices constitute a baseimfplementing a classifier algorithm
allowing to discern among different deflectionsstresses of the pipeline.
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