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Abstract

An adaptive strategy for nonlinear finite element analysis, based
on the combination of error estimation and h-remeshing, is presented.
The two main ingredients are a residual-type error estimator and an un-
structured quadrilateral mesh generator. The error estimator is based
on simple local computations over elements and so-called patches. Con-
trary to other residual estimators, no flux splitting is required. The
adaptive strategy is illustrated by means of a complex nonlinear prob-
lem: the failure analysis of a single-edge notched beam. The quasi-
brittle response of concrete is modelled by means of a nonlocal damage
model.
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1 Introduction

Adaptive strategies are nowadays a standard tool in practical finite element
computations. For any problem, adaptivity is an essential tool to obtain
numerical solutions with a controlled accuracy. For some problems (typically
in the nonlinear domain), adaptive strategies are even more fundamental:
without them, a finite element solution simply cannot be computed. This is
the case, for instance, with problems in nonlinear solid mechanics involving
large strains or localization.



The two main ingredients of an adaptive procedure are 1) a tool for
assessing the error of the solution computed with a given mesh and 2) an
algorithm to define a new spatial discretization [1].

Two different approaches may be used for assessing the error: error
estimators or error indicators. Error estimators approximate a measure of
the actual error in a given norm. Error indicators, on the other hand, are
based on heuristic considerations. For each particular application, a readily
available quantity is chosen, in an ad-hoc manner, as an indicator of error.

The second ingredient of an adaptive procedure is the definition of a
new spatial discretization. The goal is to increase or decrease the richness
of the interpolation according to the output of the error assessment. Three
main types of strategies may be used: h-adaptivity, p-adaptivity and r-
adaptivity. h-adaptivity consists on changing the size of the finite elements.
In p-adaptivity, the degree of the interpolating polynomials is increased.
r-adaptivity consists on relocating the nodes, without changing the mesh
connectivity.

This paper discusses the combination of error estimators and h-adaptivity.
A general overview of adaptive strategies can be found in Reference [1].

Error estimators for linear problems are standard and perform well [2, 3].
Error estimators may be classified mainly into two groups: 1) flux projection
or ZZ-like [4] error estimators and 2) residual type error estimators [5, 6, 7],
see also [8] for a study of their relationship. Many nonlinear generalizations
have been defined from linear estimators. Nevertheless, most of them loose
the sound theoretical basis of the linear counterpart because they are based
on properties that stand only for linear problems [9, 10, 11, 12, 13, 14].

Here, a residual estimator for linear and nonlinear problems is discussed
[15, 16]. The performance of this estimator does not depend on super-
convergence properties, which have only been proved for linear problems.
Moreover, the presented approach can be applied to general unstructured
meshes with different element types (for instance, triangles and quadrilater-
als). Consequently, assuming that a sound equation for the error is provided,
this estimator is easily applied to nonlinear problems. Here the nonlinear
error equation is linearized by means of a tangent Taylor expansion.

The remainder of the paper is structured as follows. Section 2 states
the problem and introduces the notation. In section 3 the philosophy and
the mechanism of the linear error estimator introduced in [15] is described.
The presentation of the linear estimator is oriented to easily extend it to the
nonlinear case [16], as discussed in section 4. The nonlinear error estimator is
then combined with A-remeshing to provide an adaptive strategy, see section
5, which is illustrated by means of some numerical examples in section 6.



The examples deal with the failure of concrete structures. Finally, section 7
includes some concluding remarks.

2 Model problem

Let Q be a bounded domain in IR? with a smooth boundary 0. The
boundary 0€ is divided into two parts I'p and 'y such that 9Q =T > U r N
and I'p 'y = . The standard Sobolev space

H%D(Q) :={v € H'(Q) such that v=0onT'p}

is introduced as the natural space containing the concerned functions. The
unknown function w is the solution of the following boundary-value problem:
find u in HILD(Q) such that

a(u,v) = [(v) for all v € H%D(Q), (1)

where the forms a(-, -) and I(-) are defined in H}._(Q)x H: () and H{. (%),
respectively.

Remark 1 Although u belongs to H%D (Q) (that is, u =0 onT'p) the Dirich-
let boundary conditions on I'p in the original boundary value problem may
be non-homogeneous.

The form a(-,-) is linear with respect to its second argument. In linear
problems, a(-, ) is bilinear. In particular, for second order linear self-adjoint
problems, a(-, ) is bilinear and symmetric. Moreover, in many problems (for
instance, in linear elasticity), a(-,-) is also positive definite and, hence, it is
a scalar product.

The Galerkin finite element method provides an approximation uy to u,
lying in a finite-dimensional space V}, C H%D (©2) and verifying

a(up,vp) = l(vy) for all v, € Vj,. (2)

The finite-dimensional space V}, is associated with a finite element mesh
of characteristic size h. The elements of this mesh are denoted by €,
k=1,2,... and its is assumed that Q = (J, Q.

The goal of a posteriori error estimation is to assess the accuracy of the
approximate solution wy. This is done analyzing the error e := u — uy and
estimating both global and local measures of the error. Local measures are
used to describe the spatial distribution of the error and the global measure,



which is employed to verify the acceptability criterion, is obtained summing
up the local contributions.

Thus, a norm to measure the error must be defined. One of the most
popular options (in the linear case) is the energy norm induced by a(-,-):

lel] = [a(e, e)] /. (3)

The reasons for choosing || - || are: it has physical meaning, it is equivalent
to standard Sobolev norms and it can be easily restricted in order to obtain
associated local norms.

In the following, the restriction of a(-,-) to the element Q. (k =1,2,...)
of the mesh is denoted by a(+,-). Thus, the restriction of || - || to Qu, || - ||x,
is induced by ak(+,-). The value of ||e]|; in each element must be estimated
in order to describe the spatial distribution of e. A suitable extension of
the linear estimator maintaining most of its properties is defined for the
nonlinear case.

3 Linear a posteriori error estimation

Typically, for linear elasticity, linear heat diffusion, etc, a(-,-) is a scalar
product. Then wuy is the projection of u on V} and the error e = u — uy,
is orthogonal to V}, in the sense of a(:,-). As previously said, the objective
of this error estimator is to assess both a global value of the error and its
spatial distribution.

Assuming that a(-,-) is bilinear, Eq. (1) can be easily rearranged to
obtain a weak equation for the error. The error e is the element in H%D ()
that verifies

a(e,v) = 1l(v) — a(up,v) for all v € H%D(Q). (4)

Note that the right-hand-side of Eq. (4) is a residual term which accounts
for the non-verification of Eq. (1).

3.1 The reference error

The error e is unknown and it is impossible to obtain its exact value. Thus,
the only attainable goal is to obtain an approximation to e, say e;. This
approximation to the error can be easily defined from a new approximation
to u, say uj, more accurate than u,. For instance, u; may be a finite
element approximation associated with a finer mesh of characteristic size h
(fNL << h). The associated interpolation space V; is much richer than V.
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Then wj, is much more precise than u, and, therefore, e; = uj; —uyp is a
good approximation of e. This is formally shown in [17] as a consequence of
the a priori convergence analysis of the finite element method.

Remark 2 The a priori error analysis of the finite element method gives
error bounds like (see [18])

lell = llu = unll < CR” and  lu— || < CRP, (5)

where p stands for the degree of the interpolating polynomial. Applying
Richardson extrapolation and the orthogonality between ej and u — uj, it
can be shown that

1/2

AN
luj, = unl = llej || = 1—(5) lell. (6)

That is, zfiz is one fourth of h and p is one, the reference error, e;, is 97%
of the actual error e.

In the following, the finer mesh of element size i is denoted as the refer-
ence mesh, as well as the associated solution, uj, is the reference solution
and ej, is the reference error. Note that the discretization can be enriched
using different strategies: instead of the the h-refinement approach (reduce
the element size), the p-refinement approach (increase the degree of the in-
terpolation polynomial) can also be used to increase the accuracy of the
interpolation and define a reference solution. Here, for the simplicity of the
presentation, only the h-refinement approach is presented.

In fact, computing u; and then obtaining e; is equivalent to directly
solving the error equation (4) using the finer mesh. That is, solving Eq. (1)
using Vj, is equivalent to solving Eq. (4) using the same interpolation space.
Thus, e;, is the element of V; that verifies

a(ej,v;,) = l(v;) — a(uy,v;) for all v; € V;. (7)

Nevertheless, the standard computation of e; must be avoided due to its
prohibitive computational cost: the refined mesh generating V; has a number
of degrees of freedom much larger than the original mesh and, therefore, the
cost of computing e;, is usually prohibitive.

In the remainder of this section a method for approximating e; by low
cost local computations is presented. This method is split in two phases.
First, a simple residual problem is solved inside each element and an interior
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Figure 1: (a) The reference submesh is mapped into (b) an element to get
(c) an elementary submesh

estimate is obtained. Second, a new family of simple problems is considered
and the interior estimate is complemented adding a new contribution. The
first phase is called interior estimation and the latter is called patch estima-
tion.

3.2 Interior estimation

Solving the global reference problem, see Eq. (7), implies the resolution of
a very large system of equations with a prohibitive computational cost. In
order to avoid unaffordable computations, the error estimation must be per-
formed solving local problems. In fact, standard residual-type error estima-
tors solve elementary problems because the natural partition of the domain
is the set of elements of the “coarse” computational mesh, Q, £k =1,2,....

Here, each element €2y, is discretized by an elementary submesh built from
a discretization of the reference element and mapped into €, see Figure 1.
Then, the reference mesh is constructed by the assembly of the elementary
submeshes discretizing each element, see Figure 2. That is, each element €2,
of the mesh is associated with a local interpolation space Vﬁ,k’ induced by
the corresponding elementary submesh. In fact, this space Vﬁ,k is a finite-
dimensional subset of H'(£). Notice that the functional space €D, Viik
does not coincide with V; because the former includes functions which are
discontinuous along the element edges.

Then, the elementary submeshes can be used to solve the error equation,
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Figure 2: Set of elementary submeshes and associated reference mesh

see Eq (4), on each element €2 of the original mesh. However, the solution
of such problems requires proper boundary conditions for the error. Most
of residual type error estimators (see [5, 6, 7]), solve Eq. (4) prescribing the
flux around each element €2, that is, solving pure Neumann problems. The
prescribed values of error fluxes are found splitting the jump of the fluxes of
up, across the element edges. The computation of the flux jumps across the
edges is expensive. The splitting procedure usually equilibrates the fluxes
around the element and, therefore, is generally involved.

In this work, the elementary problems are solved in a straightforward
manner imposing homogeneous Dirichlet conditions for the error, along the
boundary of each element €, see [15]. That is, the approximation to the
error is prescribed to zero in all the boundary nodes of the elementary sub-
mesh. In other words, the local problem is solved in the interpolation space
Viiko = Vi N H¢ (%), where
H} (%) == {v € H* () such that v = 0 in 9Q \ (0 (N Tn)}. The func-
tions in Vh k.0 have their support in € but they can be continuously ex-
tended in the whole domain by setting them to zero elsewhere (that is,
in Q\ Q). In the remainder of the paper the same notation is used for

every local function and its continuous extension. In that sense, Vh k.0 is

also seen as a subspace of H%D(Q). Thus, a(-,-) may apply to elements in
Vi 1o and, in this case, it coincides with a(-,-). this allows to write the
local elementary problem using only the global forms a(-,-) and I(-). The



solution of this local problem is the function g, verifying:
a(ek, vy) = l(vy) — a(up,vy) for all v; € Vj ;. (8)

Remark 3 According to the definition of Vﬁ,k,w the error is set equal to zero
on T'p (which is a true condition because up, is equal to u on T'p, up to the
accuracy of the discretization) but also on the interior element boundaries
(where it is unknown). That is, the error is artificially set to zero along the
(interior) interelement boundaries. Notice that the fluxz of the error can be
computed on T'n and this condition is implicitly imposed in Eq. (8) via the
residual right-hand-side term.

Remark 4 Assuming that a(-,-) is a scalar product, €y is the projection
of e (and e) on Vj , . Thus, ej, — cx (and e — i) is orthogonal to every
element in V;, o and, in particular a(ej;, — e, ex) = ale — ep,e) = 0. This
orthogonality condition stands even locally, that is,

ar(e; =€k, ) = ag(e—eg, ex) = 0 because,as previously said, a(-,-) coincides
with ak(+,-) if at least one of the arguments have compact support in .

This discrete local problem leads to a system of equations
K}%,k €k =T}, (9)

where K% . is the stiffness matrix resulting of discretizing a(-,-) in a basis of
sz,k,o which is the set of the standard finite element interpolation functions
associated with the elementary submesh. The column vector rj results of
discretizing the residual form [(-) — a(up, ), see Eq. (8), in the same basis.
The vector g is the expression of ¢ in the chosen basis. The local energy
norm of the interior estimate £ can be directly computed since

ekl = aler,ex) = eFKE e = efrj. (10)

Thus, since ¢ has its support in {2, local and global norms are equal:
llexll = llekllk- Recall that the local restriction of the norm || - || to the
element €, || - [|%, is used to obtain elementary measures of the error and
to describe the error distribution.

Once the elementary problems are solved, the local interior estimates
can be assembled to build up a global estimate ¢ having values in the whole

domain 2,
€= Z&tk . (11)
k



The interior estimates £j and £y associated with different elements (k # ')
are orthogonal because they have disjoint supports (Qx [ Qx = 0). Then,
Pythagoras theorem holds and the norm of € can be easily computed:

lel® =" llexl®. (12)
k

Both local, e, and global, £, interior estimates are projections of e (and
also of e;) on the respective subspaces Vﬁ,k,o and @, Vﬁ,k,ov which are in-
cluded in V; (the inclusion in V; is verified because of the homogeneous
Dirichlet boundary condition, which preserves global continuity: note that
Viko C Vi and @, Vj, o C Vj). Consequently the norm of the interior
estimate is a lower bound of the actual and reference errors:

el < llegll < llell- (13)

Moreover, the local estimates are also lower bounds of the actual and the
reference local errors, that is:
Proposition

lerlle < llegllx and  [lellr < [lelle-

Proof These inequalities are proven using the local orthogonality conditions
stated in Remark 4, see [15].

lepll7 = ak(ej, e;) = ar([e; — ex] + ek, [ej, — ex] + ck)
= llej, — exll} + llexllz + 2ar(ej, — ex,ex)

) =0
2 [lexllk

The same rationale is used to prove ||ex || < |le]|x O

The choice of the artificial boundary condition may imply that ||e|| <<
|le]l. This is a consequence of forcing the approximation e to be zero along
the interelement boundaries. Since the reference error e; is generally nonzero
in all these points, ¢ may be a poor approximation to e;. In other words,
interior residuals are considered in the right-hand-side term of Eq. (8) but
the information contained in the flux jumps is ignored.

3.3 Patch estimation and complete estimate

Once the interior estimate is computed a new contribution must be added
in order to account for the flux jumps. This is equivalent to improve the
error estimation by adding nonzero values in the interelement boundaries.



Figure 3: Patch submesh centred in a node of the computational mesh

In this section, this is done following the same idea of the interior estima-
tion, precluding the direct computation of flux jumps and avoiding the flux
splitting procedure.

The interior estimate is based on solving local problems within the ele-
ments Q, k = 1,2,.... But other partitions can also be used: let us consider
a new family of disjoint subdomains (A;, [ =1,2,...) covering Q. Each one
of these subdomains A; overlaps a few number of elements. Moreover, these
subdomains include the interelement boundaries. In order to simplify the
exposition, in the following, the subdomains A; are called patches. Using
the elementary submeshes of Figure 1, the most natural choice for patch
subdomains is to associate them with the nodes of the mesh: each patch is
associated with a node and includes a fourth of every element sharing that
node (see Figure 3 for an illustration and [15] for a detailed presentation).

Each patch submesh induces an interpolation subspace Uﬁ,l' The space
Uﬁ,z is associated with A; in the same way that sz,k is associated with .
In order to impose local boundary conditions e;, is approximated in Uﬁ,l,o =
Ui, N H{(Ay), where
H}(A)) == {v € H(A;) such that v =0 in 9A;\ (A, Twn)}. Thus, over
each patch A;, a new local estimate 7;, is computed such that it belongs to
Uj, 10 and verifies

a(m,v;) = U(v;) — alup, vy,) for all vy, € Uy 4. (14)
Eq. (14) can also be written in a matrix form analogous to Eq. (9)

K2 oy =, (15)

where matrix K%l and vectors 7; and rlp are the expressions of a(-,-), 7

and I(-) — a(up, ) in a basis of U; ,,. Thus, the norm of 7, can be easily

10



computed as
Il = i v (16)

and, again, the local estimates can be assembled to build up a global estimate
having values in the whole domain €:

n=>m (17)
l

The norm of n can be easily computed, due to the orthogonality of the
different spaces Uj , , (patches are disjoint):

Inll* =~ llmli?. (18)
l

Nevertheless, the norm of 1 cannot be directly added to the norm of the
interior estimate ¢ because 1 and € are not orthogonal. In order to easily
add the two contributions, 7 is forced to be orthogonal to £. That is, an
additional condition to each 7; is imposed in Eq. (14). This orthogonality
condition is written

a(e,m) =0, (19)

and can also be seen as a linear restriction to vector n; in Eq. (15):
sTKgl n; = 0. (20)

Remark 5 The orthogonality condition of Eq. (20) is a linear restriction
and can be imposed either a priori, modifying the system of equations (15),
or a posteriori, solving the original Eq. (15) and modifying the result. The
first option seems to be more natural since it corresponds to projecting on a
restricted space and it is easily implemented using the Lagrange multiplier
technique. The latter option consists on freely projecting e; on Uj ,,, that
is, solving Eq. (15), and then subtracting the projection of the result on
span < € >. Thus, a free projection, say nlfree, is computed first and, then,
the restricted one, 1 is obtained as

_ free a(n{ree, 6)

= £ .
T o)

Thus, 1 is computed using the orthogonality condition of Eq. (19) or
Eq. (20) and the patch estimate n can be added to the former interior esti-
mate ¢ to build up an approximation to the reference error having values in
the whole domain 2:

e; ~e, =€+ (21)

11



This estimate is denoted by e, because it is obtained performing only local
computations. The global and local norms of e, can be easily computed:

le, II” = llell® + lIn* (22)

and

le 1% = Nellz + llmllE = el + > llnllz- (23)
l

Notice that in the sum of Eq. (23) subscript [ ranges only the values such
that A; overlaps €y, that is, A;(Q # 0, see [15].

The global measure of the local estimate maintains the lower bound
properties, that is, |le, || < |le;|| because e, is the projection of e; (and
e) on a subspace of V;, see [15] for a geometrical interpretation. This
subspace is span < € > @ { [EBZ Uﬁlo] Nspan < € >L}. In fact, € is the
projection of e; (and e) on span < e > and 7 is the projection of e;
(and e) on {[@l Us 10} Nspan < € >L}. These subspaces are obviously
orthogonal and consequently e, = £+ 7 is the projection of e; (and e) on
span < € > @ { [@l Ui, 0] Nspan < € >L}. Moreover, taking into account

the contribution of the patches, the complete estimate ||e, || is a quite good
approximation of the reference error ||e; || (and also of the actual error |lef).
An analysis of the efficiency of this estimator can be found in [19].

4 Nonlinear generalization

Fully nonlinear problem

If the problem is nonlinear, the first argument of the form a(-,-) is nonlinear,
that is,
a(e + up,v) # ale,v) + a(up,v). (24)
This case includes general sources of nonlinearity. For instance, in mechan-
ical problems, both material (associated with the constitutive model) and
geometric nonlinearities are accounted for.
Consequently, the linear error equation Eq. (4), does not stand anymore.
In fact, the only available equation for the error is found re-writing Eq. (1):

a(e + up,v) =1(v) for all v € V. (25)

This equation is associated with a reference error e; in V; which could be
computed using the reference mesh:

a(ej + up,v;,) = I(v;;) for all v; € V3, (26)

12



This is unaffordable from a computational point of view, specially for nonlin-
ear problems. A method for approximating e; by local inexpensive compu-
tations is introduced in [20] for mechanical problems. This method follows
the main philosophy of the linear estimator presented in the previous sec-
tion. Thus, firstly e; is approximated solving elementary problems subject
to homogeneous Dirichlet-type boundary conditions (interior estimate) and,
secondly, the estimate is completed by adding the contribution of a new set
of approximations defined over a family of subdomains denoted as patches.

Nevertheless, often Eq. (26) can be simplified and an approximate linear
equation for the error is obtained. This is very useful because once a lin-
ear error equation is found, the philosophy and the structure of the linear
estimator presented in the previous section can be extended for nonlinear
problems in a straightforward manner. This extension is presented in the
remainder of this section.

Tangent approximation and nonlinear error estimation

The error is assumed to be small compared with the solution. This stands
also for the reference error, that is, [|ej || << [|up||. Thus, the first argument
of a(+,+), which is a nonlinear function, can be properly approximated using
a tangent expansion around uy, see [21]:

ale + up,v) = a(up,v) + a, (up;e,v). (27)

where a, (up;-,-) is the linear approximation to a(-,-) around wuy,.
Replacing Eq. (27) in Eq. (25), an approximation for the error equation
is found:
a,(up;e,v) =1l(v) — a(up,v) for all v € H%D(Q). (28)

Eq. (28) is linear and very similar to Eq. (4): the right-hand-side residual
terms are identical. However, the left-hand-side terms are different because
of the tangent form of Eq. (28).

The reference error equation can be obtained by discretizing Eq. (28).
That allows to characterize the reference error e; as the solution of a linear
problem:

ar (up; ej,v;) = U(v;;) — a(up, v;) for all v; € V;, (29)

which is analogous to Eq. (7). Although the original problem and, hence, the
error equation Eq. (27) are nonlinear, Eq. (29) is a linear system of equations.
In fact, the matrix of this linear system of equations, which is associated with
the bilinear form a.. (up; -, ), is the standard tangent matrix. Notice that the
tangent matrix (or its approximation) is typically available in finite element
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codes. The linear system of equations (29) is still unaffordable because of
its size. Nevertheless, since Eq. (29) is linear, the linear error estimator
presented in section 3 can be fully extended to this nonlinear case. The
philosophy of the method is identical: the only difference is that instead of
the linear error equation (4), the tangent version of Eq. (28) is employed.

Once interior and patch estimates are computed, they must be mea-
sured and added. Thus, in order to completely generalize the linear case, a
nonlinear energy norm must be defined. If the tangent form a, (up;-,-) is
symmetric positive definite the reference error e; computed using Eq. (29)
is the projection of the actual error e on V; following the scalar product
a,(up;-,-). Thus, the norm induced by a, (up;-,-) is taken to measure the
error.

Remark 6 The norm induced by a,(up;-,-) is analogous to the linear en-
ergy norm defined in Eq. (3) and is also interpreted, from a physical view-
point, as an energetic quantity. The measure of the error can be understood
as the energy needed to move the system from the state described by the
approzimate solution up to the state associated with the actual solution wu.

As already remarked, tangent matrices may be computed in a straight-
forward manner, consequently, the tangent versions of the local problems of
Eq. (9) and Eq. (15) may be naturally implemented in the finite element
code. Tt is worth noting that, in the patch estimation phase, the orthogo-
nality condition of Eq. (19) must be replaced by its tangent version:

ar(upsm,e) =0. (30)

This linear restriction can also be easily implemented using the Lagrange
multiplier technique.

Note that the structure and the rationale of the linear estimator is fully
respected and, consequently, the nonlinear generalization inherits all the
properties of the linear counterpart.

5 Adaptive strategy based on error estimation

The use of finite elements for practical engineering problems requires adap-
tive computations. The adaptive strategy employed in this work is based
on two main ingredients: error estimation and h-remeshing. The error dis-
tribution of the solution computed with a given mesh is computed with the
error estimator just discussed, and translated into a field of desired element
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sizes with a so-called optimality criterion [22]. An unstructured quadrilat-
eral mesh generator [23] is then used to build a mesh with the desired sizes.
This iterative process stops (typically after 2 to 4 iterations) when the rel-
ative error of the solution (i.e. energy norm of the error divided by energy
norm of the solution) is below a prescribed threshold set a priori. This
adaptive procedure is illustrated in Figure 4.

6 Numerical examples

6.1 The single-edge notched beam

The proposed adaptive strategy is illustrated here by means of the single-
edged notched beam (SENB) test [24]. The geometry, loads and supports are
shown in figure 5. A plane stress analysis is performed. The concrete beam
is modelled with a nonlocal damage model. These models are nowadays a
standard approach to model the failure of concrete and other quasi-brittle
materials [25, 26, 27, 28]. A presentation of these models is beyond the
scope of this paper and can be found elsewhere [29, 30]. Two sets of mate-
rial parameters are used [30]. For material 1, there is a significant post-peak
softening in the stress-strain law for concrete. For material 2, on the con-
trary, the softening is very slight, so the residual strength almost coincides
with the peak strength [31]. The steel loading platens are assumed to be
elastic.

6.1.1 Test with material 1

The results with material 1 are shown in figures 6 to 8. The initial mesh is
shown in figure 6(a). Note that this mesh is relatively coarse, with only one
element in the notch width. The final damage distribution and deformed
mesh (amplified 300 times), corresponding to a CMSD (crack-mouth sliding
displacement) of 0.08 mm, is depicted in figure 6(b). The curved crack pat-
tern observed in experiments [24] is clearly captured. The error estimation
procedure discussed in section 4 is employed to compute the error field of
figure 6(d). The error is larger in the damaged zone and near the loading
platens. The global relative error (i.e. energy norm of the error in displace-
ments over the energy norm of displacements) is 3.96%, above a threshold
set a priori of 2%, so adaptivity is required.

The error field of figure 6(d) is translated into the mesh of figure 7(a).
Note the element concentration in the crack and the central supports. This
finer mesh leads to a better definition of the damaged zone, see figure 7(b).
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Figure 4: Flow diagram of an adaptive procedure
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Figure 6: SENB test with material 1, initial approximation in the adaptive
process. (a) Mesh 0: 659 elements and 719 nodes; (b) final damage distri-
bution; (c) final deformed mesh (x300); (d) error distribution. The global
relative error is 3.96%
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Figure 7: SENB test with material 1, after one iteration in the adaptive
process. (a) Mesh 1: 1155 elements and 1228 nodes; (b) final damage distri-
bution; (c) final deformed mesh (x300); (d) error distribution. The global
relative error is 2.11%
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Figure 8: SENB test with material 1, after two iterations in the adaptive
process. (a) Mesh 2: 1389 elements and 1469 nodes; (b) final damage distri-
bution; (c) final deformed mesh (x300); (d) error distribution. The global
relative error is 1.77%
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The error estimator now detects that the largest errors are associated to
the edges of the cracked zone, see figure 7(d). The global relative error of
2.11% is still slightly above the error goal, so another adaptive iteration is
performed. The outcome of this second iteration is shown in figure 8. The
qualitative results of iteration 1 are confirmed: (1) small elements are needed
to control the error in the damaged zones and close to the loading platens
and (2) error is larger in the edges than in the centre of the crack. The
global relative error of 1.77% is below the threshold of 2%, so the adaptive
iterative process stops.

Figure 9: SENB test with material 2, initial approximation in the adaptive
process. (a) Mesh 0: 659 elements and 719 nodes; (b) final damage distri-
bution; (c) final deformed mesh (x300); (d) error distribution. The global
relative error is 3.66%

6.1.2 Test with material 2

The SENB test is now reproduced with material 2, which has a stress-strain
law with almost no softening [30]. A very similar law has been employed to
simulate the SENB test with gradient-enhanced damage models [31].

The results are shown in figures 9 to 11. The initial mesh is the same as
before, see figure 9(a). The change in the material parameters lead to a
completely different failure pattern, dominated by bending of opposite sign
in the two halves of the beam, see figures 9(b) and 9(c). A crack at the
notch tip is also initiated, but it is only a secondary mechanism. The error
estimation procedure has no difficulties in reflecting the change in the failure
mode, see figure 9(d). The global relative error is 3.66%, so adaptivity is
required.
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Figure 10: SENB test with material 2, after one iteration in the adaptive
process. (a) Mesh 1: 776 elements and 848 nodes; (b) final damage distri-
bution; (c) final deformed mesh (x300); (d) error distribution. The global
relative error is 2.46%

Figures 10 and 11 illustrate the adaptive process. Note that meshes 1
and 2 are quite different from the ones obtained with material 1. The global
relative errors are 2.46% and 2.13%. This value is still slightly above the
threshold of 2%. However, an additional iteration is considered not necessary
for the illustrative purposes of this test.

A final comparison between the two sets of material parameters is offered
by figure 12, where the total load is plotted versus the CMSD for meshes 0
and 2. The results obtained with material 1 —a peak load of around 60 kN
and post-peak structural softening, see figure 12(a)-— are in good agreement
with the experiments [24]. With material 2, on the other hand, the peak
load is quite higher and no softening is observed, see figure 12(b).

6.2 Adaptivity for shells

The adaptive computation of shell structures also illustrates the application
of the presented techniques to complex engineering problems. In the two
presented examples the shells are assumed to exhibit nonlinear material
behavior (elasto-plastic). The error estimation strategy presented here is
used to drive the adaptive procedure.

The shell element technology used in the examples is based on the
Reissner-Midlin theory. However, in the thin shell regime the Reissner-
Midlin model suffers of shear and membrane locking. Here, degenerated
solid shell elements [32] are used to obtain locking-free elements. In particu-
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Figure 11: SENB test with material 2, after two iterations in the adaptive
process. (a) Mesh 2: 870 elements and 954 nodes; (b) final damage distri-
bution; (c) final deformed mesh (x300); (d) error distribution. The global
relative error is 2.13%
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Figure 12: Total load versus crack-mouth sliding displacement (CMSD) for
meshes 0 (solid line) and 2 (dashed line): (a) with material 1 (large soften-
ing); (b) with material 2 (very slight softening)
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Figure 13: Description of the clamped cylinder, geometry and deformed
shape

lar, the formulation introduced by Donea and Lamain[33]. The key aspects
of the generalization of the error estimator to such kind of shell elements
may be found in [34].

6.2.1 Plastic clamped cylinder

Let us consider a clamped cylinder with a transversal load. The material
is assumed to be elasto-plastic. Due to the symmetry of the geometry and
the skew-symmetry of the load only one fourth of the specimen is analyzed.
The statement of the problem and the deformed shape of the structure are
shown in figure 13.

The solution exhibits strain concentration in the corners of the specimen
(corresponding to the intersection of the loaded edge and the symmetry
planes). The error estimator detects larger errors along the loaded edge and
in an interior region. The adapted meshes are refined in these zones, where
the gradient of strains is larger, see figure 14. After two remeshing steps,
the prescribed accuracy of 3% is attained.

6.3 Cylindrical panel with central opening

A cylindrical panel with a central hole is uniformly stretched. The central
weakness introduced by the hole induces strain localization, see figure 15.
The adaptivity process driven by the error estimation strategy intro-
duced in this paper converges to a solution with an error lower than the
error threshold which is again set to 3%. The resulting mesh concentrates
small elements along the edges of the strain localization region, see figure 16.
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Figure 14: Evolution of the adaptivity procedure for the clamped cylinder

Again the adaptive process refines the mesh where the strain gradients are
larger, that is where the solution is more difficult to interpolate.

7 Concluding remarks

The residual-type error estimator for nonlinear FE analysis just discussed is
a straightforward generalization of the linear residual-type estimator. The
nonlinear version inherits all the mathematical properties of the linear coun-
terpart. Thus, the obtained estimate is a lower bound of the actual error,
that is, a systematic underestimation of the error is introduced. However,
this underestimation has been found to be small. On the other hand, this
estimator can be applied to a wide range of problems discretized by gen-
eral unstructured meshes, even with different element types. Moreover, the
efficiency of the estimator does not depend on superconvergence proper-
ties and may include the assessment of the pollution errors with a little
supplementary computational effort. Regarding algorithmic issues, the im-
plementation of the estimator in a finite element code is simple because the
basic operations are performed by standard routines.

The numerical examples illustrate the efficiency of the adaptive strat-
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Figure 16: Evolution of the adaptivity procedure for the cylindrical panel
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egy.

With two sets of material parameters leading to very different failure

modes, h-remeshing concentrates elements where needed according to the
error estimator, until the global relative error falls below an error threshold.
By keeping the discretization error under control, it is possible to ensure the
quality of the FE solution and assess the influence of the material parameters
in an objective way.
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