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Abstract. This paper presents a way of checking the correctness of
artifact-centric business process models defined using the BAUML frame-
work. To ensure that these models are free of errors, we propose an ap-
proach to verify (i.e. there are no internal mistakes) and to validate them
(i.e. the model complies with the business requirements). This approach
is based on translating these models into logic and then encoding the
desirable properties as satisfiability problems of derived predicates. In
this way, we can then use a tool to check if these properties are fulfilled.
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1 Introduction

Business process modeling (BPM) is a critical task in the business’s definition,
as these processes are directly involved in the achievement of an organization’s
goals. Business processes may be modeled following an artifact-centric approach
which represents both the dynamic (i.e. the activities or tasks) and the structural
(i.e. the data) dimensions of the process. Including the data in the model makes
it possible to define precisely what each of the tasks does. This is why this
approach has grown in importance in recent years.

It is essential to evaluate the correctness of these models as early as possible,
to avoid the propagation of errors through the development of the business.
Several research has been done on this topic [2, 6, 9, 17]. However, most of these
specify the processes in different variants of logic, resulting in specifications that
are complex and difficult to understand by the domain experts. They have also
been proposed at a theoretical level: there is no tool that can perform the tests.

The correctness of an artifact-centric BPM can be assessed from two differ-
ent perspectives. Verification ensures that the model is right, i.e. that it does
not include contradictions or redundancies. Validation guarantees that we are
building the right BPM, i.e., that the model fulfills the business requirements.

The main contribution of our work is to propose an approach to verify and
validate an artifact-centric BPM specified in BAUML [4], which uses a combi-
nation of UML and OCL models. To do this, we provide a method to translate
all BAUML components into a set of logic formulas. The result of this trans-
lation ensures that the only changes allowed are those specified in the model,
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and that those changes are taking place according the order established by the
model. Having obtained this logic representation, these models can be validated
by any existing reasoning method able to deal with negation of derived predi-
cates. We also show the feasibility of our approach by using an implementation
of an existing method that is able to carry out verification and validation tests.

To our knowledge, ours is the first approach able to check the correctness of
artifact-centric BPMs in practice with reliable results since previous proposals
always dealt with this problem at a theoretical level or bounded the number of
objects considered. It is also the first one to handle together reasoning on class
diagrams, state transition diagrams, activity diagrams and operation contracts.

This paper extends our previous work in several ways. In [8] we dealt with
this problem at a theoretical level. In [14] we did not consider the notion of
business artifact, nor state transition diagrams and activity diagrams during
reasoning. In [4] we identified sufficient conditions over BAUML models which
guarantee decidability of verification, and which can be applied to this work.

2 Motivation and Running Example

We base our work on the BALSA framework [12], which establishes four differ-
ent dimensions that should be present in any artifact-centric business process
model. They are the following. Business Artifacts represent the information
required by the business, whose evolution we wish to track. Lifecycles are used
to represent the evolution of an artifact during its life, from the moment it is cre-
ated until it is destroyed. Associations establish the execution flow for services.
Services (also known as tasks) are atomic units of work in the business pro-
cess. As such, they make changes to artifacts by creating, updating and deleting
them. Apart from artifacts, businesses keep data which may change but whose
potential states are not relevant from the business’s point of view. We will refer
to it as objects.

In this paper we adopt the BAUML modeling approach [4], which represents
the BALSA dimensions using UML and OCL: UML class diagrams for business
artifacts; UML state transition diagrams for lifecycles; UML activity diagrams
for associations, and OCL operation contracts for services.

As an example, consider the artifact-centric BPM of a city bicycle rental sys-
tem. Figure 1 shows its UML class diagram. Bicycle is the only business artifact
since we wish to track in the system the bicycle’s evolution. A Bicycle may be
in state Available, InUse or Unusable (we shortened the names for convenience;
they should be called AvailableBicycle, etc.). The rest of the classes correspond
to objects and specify the data required to rent a bicycle.

The textual constraints for Figure 1 are shown below.

1. Bicycles and Users are identified by their id. AnchorPoints by their number.
2. inServiceSince must be earlier or equal to lastReturn, startTime, and date in Unusable.
3. expectedReturn must be later or equal to startTime.

Figure 2 shows the lifecycle of the artifact Bicycle. When a Bicycle is regis-
tered it is Available. When a User picks it up to rent it, he may return it to its



3

Fig. 1. Class diagram of our example Fig. 2. State diagram of Bicycle.

anchor point if it is not in good shape and the bicycle is Unusable. Otherwise, it
is InUse. When the user returns the bicycle, it is Available again. An Unusuable
bicycle may be repaired, so that it is again Available. Otherwise, it is destroyed.

Figure 3 shows the activity diagram for transition Register New Bicycle. To
do this, the bicycle has to be created first and then assigned to an anchor point.
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Fig. 3. Activity diagram of Register New Bicycle

The operation contracts for the tasks in Figure 3 are shown below. For the
sake of simplicity, and without loss of generality, we leave out class attributes.

operation createNewBicycle (): Bicycle
post: Available.allInstances ()->exists (b | b.oclIsNew () and

result=b.oclAsType(Bicycle))

operation assignToAnchorPoint(b: Bicycle , ap: AnchorPoint)
pre: AnchorPoint.allInstances ()->includes(ap) and ap.available ->isEmpty ()

and ap.unusable ->isEmpty ()
post: ap.available = b.oclAsType(Available)

BAUML provides a high-level of abstraction that allows specifying artifact-
centric BPMs from a technology-independent perspective, making these models
understandable to model experts. However, it is very difficult to manually as-
sess that the model is correct. For instance, is it possible to create an unusable
bicycle? Will external event Pick Up Bicycle ever be executed? Are Blacklisted
users forbidden from renting a bicycle? Automated reasoning techniques can aid
the designer in this important task. This is the main goal of this paper.
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3 Basic Concepts

This section formally presents the BALSA UML models that we use and the logic
formalization in which they are translated in order to check their correctness.

The BAUML Model A BAUML model B is a tuple 〈M,S,P, T 〉, describing
the four dimensions of the BALSA framework:

Class Diagram: M is a UML class diagram, in which some classes represent
(business) artifacts. We denote the set of artifacts inM as artifacts(M) and,
when convenient, we use artifacts(B) interchangeably. Each artifact is the
top class of a hierarchy whose leaves are subclasses with a dynamic behavior
(their instances change from one subclass to another). Each subclass represents
a specific state in which an artifact instance can be at a certain moment in
time. These subclasses must fulfill the covering and disjointness constraints (i.e.
the artifact must exactly have one of the subclasses type at a certain point in
time.) We denote the classes inM as classes(M), and the associations inM as
associations(M). When convenient, we may refer to them as classes(B) and
associations(B). A class diagram will also have a set of graphical and textual
(defined in OCL) integrity constraints, which we denote as O.

State Transition Diagrams: S is a set of UML state transition diagrams, one per
artifact in artifacts(M). More formally, for each artifact A ∈ artifacts(M),
S contains a state transition diagram SA = 〈V, V0, E, T 〉, where V is a set of
states, V0 ⊆ V is the set of initial states, E is a set of events, and T ⊆ V ×
OCLM×E×C×V is a set of transitions between pairs of states, where OCLM
is an OCL condition overM and C is a tag on the result of the execution of the
event in E. The states V of SA exactly mirror the subclasses of A.

Transitions have the following form (elements inside parenthesis are op-
tional): ([OCLM]) ExternalEvent(a1, ..., an) ([C]), where a1, ..., an are the
artifacts manipulated by ExternalEvent. The transition will take place if
OCLM is true when the external event is received. The execution of the event
results in tag C (as we shall see, its possible values are success and fail).

OCLM is an OCL boolean expression over M. ExternalEvent(a1, ..., an)
must appear at least in a transition of the state transition diagram of each
artifact ai. The execution of external events and the tags C resulting from this
execution are driven by activity diagrams.

Activity Diagrams: P is a set of UML activity diagrams, such that for every state
transition diagram S=〈V, V0, E, T 〉 ∈ S, and for every event ε ∈ extEvents(S)
there exists exactly one activity diagram Pε ∈ P.

Pε is a tuple 〈N,no, nf , F 〉, where N is a set of nodes, no ∈ N is the initial
node, nf ⊂ N is the set of final nodes and F ⊆ N × G × C × N is a set of
transitions between pairs of nodes where C is a tag (success or fail) denoting
the correct or incorrect execution of the transition, and G a guard condition.

There are four different types of nodes n ∈ N in an activity diagram Pε: initial
nodes (denoted as ini(Pε)), final nodes (final(Pε)), gateways (gateways(Pε)
and tasks (tasks(Pε)). Initial and final nodes indicate the points where the
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activity diagram flow begins and ends, respectively. Gateways are used to control
the sequence flow, they include decision nodes and merge nodes. Finally, each
task is associated to an operation contract, which expresses a precondition on
the executability of the task, and a postcondition describing its effect, both
formalized in terms of OCL queries over M.

We only allow guard conditions over a transition f = 〈ns, g, c, nt〉 ∈ F if ns
is a decision node, and g corresponds to an OCL condition over M. Similarly,
we only allow c over f ∈ F such that f = 〈ns, g, c, nt〉 and nt ∈ final(Pε).

We make the following assumptions: decision nodes have one incoming flow
and more than one outgoing flow; merge nodes have more than one incoming
flow and exactly one outgoing flow; tasks have exactly one incoming and one
outgoing flow; initial nodes have no incoming flow and exactly one outgoing
flow; and final nodes have one or several incoming flows but no outgoing flow. In
addition, the external event must, at the end of its execution, bring the artifact
to the target state of the transition in the state machine diagram.

During the execution of an activity diagram the constraints may be violated,
but they must be met at the end of the execution, otherwise the transition in
the state transition diagram does not take place and the changes are rolled back.

Tasks: T is a set of atomic tasks, each of which has an OCL operation con-
tract. A task can only be executed when the current information base satisfies
its precondition and, once executed, it brings the information base to a new
state that satisfies its postcondition. If, during the execution of an activity dia-
gram the precondition of one of the tasks is not met, then we assume that the
corresponding transition does not take place and that no changes are made.

Given an artifact A ∈ M, we denote by tasks(A) the set of tasks appearing
in the state transition diagram SA, also considering all activity diagrams related
to SA. Moreover, we assume that every task in tasks(A) that does not belong
to the activity diagram of an initial transition has as input an instance of the
artifact in SA.

Logic Formalization For the formalization of our models, we use formulas in
first-order logic. A term T is a variable or a constant. If p is a n-ary predicate
and T1, ..., Tn are terms, then p(T1, ..., Tn) or p(T ) is an atom. An ordinary literal
is either an atom or a negated atom. A built-in literal has the form of A1θA2,
where A1 and A2 are terms. θ is either <, ≤, >, ≥, = or 6=.

A normal clause has the form: A← L1 ∧ ...∧Lm with m ≥ 0, where A is an
atom and each Li is an ordinary or built-in literal. All the variables in A, and in
each Li, are assumed to be universally quantified over the whole formula. A is
the head and L1 ∧ ...∧Lm is the body of the clause. A normal clause is either a
fact, p(a), where p(a) is a ground atom, or a deductive rule, p(T )← L1∧ ...∧Lm

with m ≥ 1, where p is the derived predicate defined by rule.
A condition is a formula of the (denial) form: ← L1 ∧ ... ∧ Lm with m ≥ 1.

Finally, a schema S is a tuple (DR, IC) where DR is a finite set of deductive
rules and IC is a finite set of conditions. All formulas are required to be safe, i.e.
every variable occurring in their head or in negative or built-in literals must also
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occur in an ordinary positive literal of the same body. An instance of a schema S
is a tuple (E,S) where E is a set of facts about base predicates. DR(E) denotes
the whole set of ground facts about base and derived predicates that are inferred
from an instance (E,S), and corresponds to the fixpoint model of DR ∪ E.

4 Verification and Validation of BAUML Models

Given a BAUML model, our goal is to ensure that it is correct (verification) and
that it satisfies the user requirements (validation). To do so, we need to transform
the model into the logic described in section 3. After this, we will obtain a set of
derivation rules and conditions (a schema) representing the BAUML model. A
desirable property of the model will be then tested by checking the satisfiability
of a derived predicate.

The work we present here clearly differs from [14], where only class diagrams
and operation contracts were considered. Note that in this case no restrictions
were imposed on the execution of the tasks nor on the checking of the constraints.

4.1 Translation Algorithms

Our translation process is divided into four steps, shown in Algorithm 1. To
begin with, we focus on the generic steps: obtaining derivation rules for classes
and associations, translating the integrity constraints, generating the derivation
rules from the tasks, and adding the required conditions to ensure that tasks
execute properly, in the context given by state transition and activity diagrams.

The first step creates the derivation rules for the read-write set of classes and
associations. To determine if a class or association is read-only or read-write, it is
only necessary to examine the postcondition of all the tasks as described in [14].
The predicate corresponding to each read-write class and association will have a
time component t indicating that the element exists at time t, whereas read-only
elements will not include the time t and will be treated as base predicates.

The algorithm also takes into consideration if a class is created or created
and deleted in the model. The general form of these rules is:

C(oid, p, t)← addC(p, t1) ∧ ¬deletedC(pj , t1, t) ∧ t ≥ t1 ∧ time(t),

where p corresponds to the attributes in the class (including its OID [unique
object identifier]) or the participants in the association, pj represents the iden-
tifier of the class (its OID) or association (OID of the classes that participate
and identify it) C, and thus pj ⊆ p, and t and t1 represent the time. We will see
how addC(...) and deletedC(...) are obtained later on.

The rule basically states that a class or an association will exist at time t if
it has been created previously, at t1 (t1 ≤ t), and it has not been deleted in the
meantime. For instance, Bicycle is encoded as:

Bicycle(b, t)← addBicycle(b, t1) ∧ time(t) ∧ ¬deletedBicycle(b, t1, t) ∧ t1 ≤ t,
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Algorithm 1 TranslateToLogic(B = 〈M,S,P, T 〉)
// Step 1: Creating rules for read/write classes and associations
r := ∅
for all c ∈ classes(M) do

if c is created in P ∧ c is not deleted in P then
r := r ∪ {C(p, t)← addC(p, t1) ∧ time(t) ∧ t ≥ t1}

else if c is created in P ∧ c is deleted in P then
r := r ∪ {C(p, t)← addC(p, t1) ∧ ¬deletedC(pj , t1, t) ∧ t ≥ t1 ∧ time(t)}
r := r ∪ {deletedC(pj , t1, t2)← delC(pj , t) ∧ time(t1) ∧ time(t2) ∧ t ≤ t2 ∧ t > t1}

end if
end for
for all a ∈ associations(M) do

if a is created in P ∧ a is not deleted in P then
r := r ∪ {A(p, t)← addA(p, t1) ∧ time(t) ∧ t ≥ t1}

else if a is created in P ∧ a is deleted in P then
r := r ∪ {A(p, t)← addA(p, t1) ∧ ¬deletedA(pj , t1, t) ∧ t ≥ t1 ∧ time(t)}
r := r ∪ {deletedA(pj , t1, t2)← delA(pj , t) ∧ time(t1) ∧ time(t2) ∧ t ≤ t2 ∧ t > t1}

end if
end for
// Step 2: Translate integrity constraints
icSet := translateIC(O)
for all condition cond ∈ icSet do

cond := cond + {∧validState(t)}
end for
taskRules := ∅
// Step 3: Generate rules for class and association creation and deletion for every task
for all t ∈ T do

resRules := translateTask(t)
taskRules := taskRules ∪ resRules

end for
// Step 4: Generate necessary rules and conditions to ensure correct execution order
taskRules := taskRules ∪ generateConstraintsTaskExecution(B)
return 〈r, icSet, taskRules〉

whereas User is encoded as User(u). Bicycle is a derived predicate created and
deleted by some of the tasks. On the other hand, User is a base predicate as it
is not created nor deleted by any task.

Step 2 of the algorithm translates the constraints O into a set of formulas in
denial form, following [15], but we need to add an atom ∧validState(t) to each
of them to ensure that they are only checked at the end of the execution of a
state transition diagram transition, following the semantics of the framework.

For instance, the covering constraint in the hierarchy of Bicycle indicates
that a Bicycle must have one of its subclasses’ type. Then the condition:
← Bicycle(b, t)∧¬IsKindOfBicycle(b, t)∧ validState(t) states that there can-
not be a bicycle which has not any of its subtypes (predicate IsKindOfBicycle),
where IsKindOfBicycle is a derived predicate from InUse, Available and
Unusuable. This condition only applies when there are no transitions taking
place, indicated by predicate validState.

Step 3 is the most complex and it is decomposed into various algorithms. It
generates the derivation rules that link the creation and deletion of the classes
and associations with the tasks that perform these changes, and ensures that all
tasks execute at the right time. This is done by calling Algorithms 2 and 3.

Finally, step 4 generates the remaining necessary constraints to ensure the
correct execution of the tasks by calling Algorithm 4. For instance, if there is
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a sequence of tasks that execute in the activity diagram, it ensures that all of
them execute and creates the derivation rules to generate predicate validState
at the end of the execution of the activity diagram.

Algorithm 2 translateTask(task)
rules := ∅
prevRules := getContextPreviousTasks(task, t) // t represents a time term
createList contains the classes and associations created by task
delList contains the classes and associations deleted by task
for all ruleFragment ∈ prevRules do

for all el ∈ createList do
r := addEl(p, t)← task(p, x, t) ∧ pretask(t− 1) ∧ time(t) ∧ ruleFragment
rules := rules ∪ r

end for
for all el ∈ delList do

r := delEl(pj , t)← task(pj , y, t) ∧ pretask(t− 1) ∧ time(t) ∧ ruleFragment
rules := rules ∪ r

end for
rules := rules ∪ {task′(pa, t)← task(pa, z, t) ∧ pretask(t− 1) ∧ time(t) ∧ ruleFragment}

end for
return rules

We will now analyze the details of the remaining algorithms. Algorithm 2 is
aimed at translating the atomic tasks. As they make changes to the instances of
the class diagram, this translation will result in the derivation rules that generate
predicates addEl and delEl, where el is a class or an association. In [14], these
rules are generated by analyzing the postcondition of each task and determining
if the task creates or deletes some instance. If the task has a precondition, then
its translation (following [15]) is also added to the body of the derivation rule to
ensure that it is true at time t−1, where t represents the time the task executes.

However, this translation does not impose any restrictions over the order for
task execution. In BAUML tasks execute following the restrictions and the order
established by the state transition and activity diagrams. In particular, taskk
can only execute if pretaskk

is true and the previous task taskk−1 has executed
at t− 1.

Algorithm 2 generates the creation and deletion rules as described, invoking
Algorithm 3 to obtain the part of the rule that refers to the successful execution
of the previous tasks. At the end, Algorithm 2 generates a rule of the form:

task′(pa, t)← task(pa, z, t) ∧ pretask(t− 1) ∧ time(t) ∧ ruleFragment,

where pa corresponds to the OID of the business artifact, which we use to ensure
the proper evolution of the system, and z corresponds to the remaining param-
eters or terms of task. The derived predicate of this rule, task′(...), will be used
as an indicator that task has executed properly by the next task.

Algorithm 3 is in charge of generating the part of the derivation rules that
depends on the previous node(s) of a certain node. Its complexity lies in the
fact that we consider not only linear activity diagrams, but that we also allow
decision and merge nodes. We assume that control nodes do not add execution
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Algorithm 3 getContextPreviousTasks(n,t)
result := ∅
prevSet contains the previous nodes of n
for all np ∈ prevSet do

if np is task then
result := result ∪ n′

p(pa, t− 1)
else if np is decision node then

guard := getGuard(np, n)
res := getContextPreviousTasks(np, t)
for all el ∈ res do

result := result ∪ {el ∧ guard(t− 1)}
end for

else if np is merge node then
res := getContextPreviousTasks(np, t)
result := result ∪ res

else if np is initial node then
transitions contains the transitions in which the activity diagram appears
for all t ∈ transitions do

ss is the source state of t
cond is the translation of condition of t
if ss is not initial pseudostate ∧ cond is not empty then

result := result ∪ {ss(p, t− 1) ∧ cond(t− 1)}
else if ss is not initial pseudostate then

result := result ∪ {ss(p, t− 1)
else if cond is not empty then

result := result ∪ {cond(t− 1)}
end if

end for
end if
return result

end for

time to our diagrams and that they are traversed immediately. So, given a node
n that belongs to an activity diagram Pε and time t, the algorithm:

1. Obtains the previous nodes of n, stores them in prevSet and initializes result
to the empty set.

2. For each np ∈ prevSet, it checks its type.

(a) If np is a task, it then adds the n′p(...) predicate to the existing result,
indicating that the task np will have executed successfully.

(b) If np is a decision node, the algorithm needs to obtain the predicates
corresponding to the tasks that may execute before np; therefore it in-
vokes itself, but this time with np and t as input. As np is a decision
node, there will be a guard condition in the edge between np and n. This
guard will be translated as if it was a precondition and it will have to be
true at t− 1 in order for the task to execute. Then, it will add the guard
condition to each rule-part obtained by the self-invocation,

(c) If np is a merge node, it invokes itself with parameters np and t, and it
adds the result of this invocation to variable result.

(d) If, on the other hand, np is an initial node, it adds the source state of the
state transition diagram of the transitions in which the activity diagram
appears. If there is an OCL condition, it also adds the translation of the
condition.

3. The algorithm returns variable result, containing a set of rule fragments.
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For instance, for task Assign to Anchor Point, we have the following rules:

addAvailableIsIn(b, a, t)← assignToAnchPoint(a, b, t) ∧AnchorPoint(a)

∧precondAssToAP (a, t− 1) ∧Bicycle(b, t) ∧ createNewBicycle′(b, t− 1)

assignToAnchPoint′(b, t)← assignToAnchPoint(a, b, t) ∧AnchorPoint(a)

∧precondAssToAP (a, t− 1) ∧Bicycle(b, t) ∧ createNewBicycle′(b, t− 1)

The task creates an instance of the available is in association. It has a precon-
dition which must be true at t− 1, and its translation appears in the derivation
rule of addAvailableIsIn. In addition to this, the body of the rule includes
the predicate createNewBicycle′, that guarantees that the previous operation
(Create New Bicycle) has executed successfully.

Algorithm 4 generateConstraintsTaskExecution(B)
constr := ∅
for all task ∈ tasks(B) do

nn is next node of task
if nn is task then

constr := constr ∪ {← task(pa, z, t) ∧ ¬n′
n(pa, t + 1)}

else if nn is decision node ∨ nn is merge node then
r :=← task(pa, z, t) ∧ ¬nextTask(pa, t + 1)
res := generateConstraintsNextTasks(n, task)
constr := constr ∪ r ∪ res

else if nn is final node then
constr := {validState(t)← task′(pa, t)}

end if
end for
return constr

With the algorithms that we have seen so far we have restricted the order for
the tasks execution in one direction, ensuring that task taskk can only execute if
taskk−1 has taken place. We also need to ensure that, once an activity diagram
begins execution, it finishes. Algorithm 4 generates the necessary constraints to
do so. For each task, it obtains its next node and, if the next node nn is a task,
it creates a rule of the form:← task(pa, z, t)∧¬n′n(pa, t+1), where predicate n′n
corresponds to the derived predicate generated by Algorithm 2 to ensure that
task nn has executed properly. For instance, for the tasks Create New Bicycle
and Assign to Anchor Point we have the following condition and derivation rule:
← createNewBicycle(b, t) ∧ ¬assignToAnchorPoint′(b, t+ 1).

On the other hand, if nn is a decision node or a merge node, there is the
possibility that there will be more than one task that can be executed. For this
reason, the algorithm generates this rule:← task(pa, z, t)∧¬nextTask(pa, t+1),
meaning that if task has executed at t one of its next tasks must have executed
at t + 1. nextTask is a derived predicate resulting from the execution of any
of the next tasks. These derivation rules are created in Algorithm 5 and have
the following form: nextTask(pa, t) ← task′n(pa, t). The algorithm iterates over
the nodes until the next task(s) are found. Guard conditions are not considered
because they have already been translated by the other algorithms.
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Finally, if a task is followed by a final node, we need to generate rule:
validState(t) ← task′(pa, t). This rule will ensure that the restrictions of the
model are checked at the end of the execution. For instance, in our exam-
ple the successful execution of task Assign To AnchorPoint generates predi-
cate validState as it is the last task in the activity diagram: validState(t) ←
assignToAnchorPoint′(b, t).

Algorithm 5 generateConstraintsNextTasks(n,task)
result := ∅
nextSet contains the set of next nodes of n
for all nn ∈ nextSet do

if nn is task then
nextTask(pa, t)← n′

n(pa, t)
else if nn is decision node ∨ nn is merge node then

res := generateConstraintsNextTasks(nn, task)
result := result ∪ res

else if nn is final node ∧ n is decision node then
guard contains the guard condition from n to nn

nextTask(pa, t)← task′(pa, z, t) ∧ guard(y, t)
validState(t)← task′(pa, z, t) ∧ guard(y, t)

end if
end for
return result

There is a special case, however. If there is a decision node n and one of the
next nodes nn ∈ final(Pε) is a final node, then these rules are needed:

nextTask(pa, t)← task′(pa, z, t) ∧ guard(y, t)

validState(t)← task′(pa, z, t) ∧ guard(y, t),

which will ensure that after the execution of task, the diagram terminates if the
corresponding guard condition is met.

4.2 Verification and Validation Tests

After applying the translation described in the previous section, we are now
interested in checking certain properties to guarantee the model’s correctness.
All tests are represented as checking the satisfiability of a derived predicate.
Any satisfiability checking method that is able to deal with negation of derived
predicates can be used to validate the schema. Note that we use the translation
of our whole running example to perform the tests.

Verification Tests. The goal of verification tests is to ensure that there are
no inherent contradictions or mistakes in the model. They can be generated and
performed automatically without requiring intervention from the modeler.

The liveliness test of a class or an association will ensure that an in-
stance of it can be successfully created and that it persists in the system
until the transition that has created it ends. Logically, it only makes sense
to apply the tests to read-write classes and associations. The general form
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of the test is the following, where el is the name of the class or association:
livelinessTestEl() ← el(p, t) ∧ validState(t). Remember that validState is a
derived predicate generated by the last task that executes in a transition. For
instance, to test the liveliness of Bicycle, we would define the following derivation
rule: livelinessTestBicycle()← Bicycle(b, t) ∧ validstate(t).

The applicability test will check whether a certain task can be executed,
that is, if the necessary requirements for its execution are met. The test will
have the following form, for task taski: applicabilityTask() ← pretask(y, t) ∧
task′i−1(pa, t).

The executability test will check if a certain task can be executed. It is par-
ticularly useful for those activity diagrams with decision nodes to ensure that all
paths can be taken. The test will have the following form: executabilityTask()←
task′(pa, t). Notice that it is equivalent to checking if the predicate task′ can be
generated, as task′ represents precisely the successful execution of task. For in-
stance, to check the executability of task Confirm Return, we would run the
following test: execConfirmReturn()← confirmReturn′(b, t).

Validation Tests. On the other hand, validation tests ensure that the model
is aligned to the user requirements. In the general case, validation tests require
the intervention from the user and thus cannot be generated automatically from
the model. An interesting validation test in our example would be to check if
a blacklisted user can rent a bicycle: blacklistUserRent() ← Blacklisted(u) ∧
BicycleRental(b, u, i, t) ∧ validState(t). The validState predicate is needed to
ensure that the BicycleRental is not deleted before the end of a transition.

5 Implementing our Approach within SVTe

We have studied the feasibility of our approach by using an existing tool, SVTe,
that is able to perform the tests described previously. This tool uses the CQCE

method [16] which is aimed at building a consistent state of a database schema
that satisfies a given goal, represented as a set of one or more literals. The
method starts with an empty solution, and given the goal, the database schema,
the constraints and the derivation rules, tries to obtain a set of base facts that
satisfy the goal without violating any of the constraints. The CQCE method is
a semidecision procedure for finite satisfiability. This means that it does not ter-
minate in the presence of solutions with infinite elements. However, termination
is assured if the model satisfies the conditions identified in [4].

To instantiate the variables during the inference process, the method uses
Variable Instantiation Patterns (VIPs), which generate only the relevant facts
that need to be added to the schema to satisfy the goal. If no instance that sat-
isfies the database schema and the constraints is found, then the VIPs guarantee
that the goal cannot be achieved with the given schema and constraints.

Figure 4 shows the result of some of the previous tests: i.e. the outcomes of
the bicycle liveliness test (top), the executability test for task Confirm Return
(middle) and the validation test (bottom). Notice that all the tests execute
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successfully, that is, there exists an instantiation of the database schema (i.e.
the translation of our model) that fulfills the given goals. The tool shows the set
of base predicates (corresponding to tasks and read-only classes and associations)
that prove the satisfiability of the test. However, notice that although the last test
also gives a positive result, it is not what should be: blacklisted users should not
be allowed to rent bicycles. The reason for this is that an integrity constraint is
missing in the class diagram, forbidding blacklisted users to have bicycle rentals.

Fig. 4. Screenshots from SVTe showing the results of the test.

6 Related Work

We examine validation and verification in two different areas related to our work:
artifact-centric business process models and UML diagrams.

Several approaches to reasoning on artifact-centric BPM use data-centric dy-
namic systems (DCDSs), grounded on logic, as the basis for reasoning [2, 3, 1]. [2]
uses a relational database to represent the data, together with a set of condition-
action rules and actions defined in logic. In contrast, [1] uses a Knowledge and
Action Base defined in a variant of Description Logics to represent this data.
Similarly, [3] maps an ontology to a DCDS in order to verify certain temporal
properties expressed in a variant of µ-calculus.

Similarly, [6] represents artifacts using a set of variables, which are updated
by services defined by pre and postconditions in first-order logic. They check
whether the resulting model fulfills a set of properties defined in LTL-FO, which
is not as powerful as µ-calculus.

All these works represent artifact-centric business process models in lan-
guages derived from logic. Consequently, the models under consideration are
formal, but they are not practical for business people. Moreover, they have been
proposed at a theoretical level and do not have a tool that implements them.
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In contrast, the Guard-Stage-Milestone (GSM) approach provides a business-
friendly representation of artifact-centric business processes. [17] studies the de-
cidability of verification over GSM models by translating them into a DCDSs.
However, the presented results are theoretical, as there is no tool that can actu-
ally perform the reasoning. [11] presents a system to model and execute artifact
systems. However, to our knowledge, the system is limited to simulating the
behavior of the model given certain data and this is different to our work in
this paper. [10] performs model checking over GSM models from a multi-agent
perspective; however the bound placed on the number of objects may sometimes
lead to unreliable results when this bound is exceeded.

Similarly to our work, [18] performs verification over process models con-
sidering the meaning of the tasks. These are annotated with preconditions and
effects defined in logic, and use an ontology to define the underlying data. Time
is not considered explicitly, which only allows for analysis of the current state of
the system, whereas in our case we can analyze the system’s evolution.

On the other hand, most of the proposals for reasoning on UML models
deal with only one diagram. For instance, [15] focuses on the class diagram, [5]
handles state-machine diagrams, and [7] focuses on activity diagrams. As far as
approaches examining various UML diagrams, [13] offers a systematic literature
review but only four of the analyzed papers perform reasoning on more than
one of the diagrams in our approach: they can handle class and state machine
diagrams. [14] handles both the class diagram and the operation contracts, but
it does not consider state transition nor activity diagrams.

7 Conclusions

We have presented a way of validating and verifying artifact-centric business
process models defined using the BAUML framework. This framework provides
us with a set of models which can be defined and are understandable by the mod-
elers. Checking the correctness of these models as early as possible is important
to avoid the propagation of errors to the execution stage of the process. These
errors can result from mistakes in the models themselves (e.g. contradictions) or
errors in the sense that the models do not fulfill the business requirements.

To ensure that they are free of errors, we translate the BAUML models into
logic and encode the desirable properties as derived predicates. We can then
use an existing tool to check if the properties are fulfilled. To the best of our
knowledge, there is no other proposal that is able to check the correctness of
artifact-centric BPMs with reliable results.

We are aware that, in some instances, the tool may not perform efficiently,
and even not terminate for some tests, due to the temporal cost of the search
for a solution and its potential infinity. Improving the efficiency of the tool and
the translation of parallelism is left as further work.
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13. Lucas, F.J., Molina, F., Álvarez, J.A.T.: A systematic review of UML model consis-
tency management. Information & Software Technology 51(12), 1631–1645 (2009)

14. Queralt, A., Teniente, E.: Reasoning on UML conceptual schemas with operations.
In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. pp. 47–62. LNCS,
Springer (2009)

15. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13 (2012)
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