Multisource electromagnetic modeling using block Krylov subspace methods

Vladimir Puzyrev and José Maria Cela

1 Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center,
2 Polytechnic University of Catalonia.

SUMMARY

Practical applications of controlled-source electromagnetic modeling require solutions for multiple sources at several frequencies, thus leading to a dramatic increase of the computational cost. In this paper we present an approach using block Krylov subspace solvers that are iterative methods especially designed for problems with multiple right-hand-sides. Their main advantage is the shared subspace for approximate solutions, hence, these methods are expected to converge in less iterations than the corresponding standard solver applied to each linear system. Block solvers also share the same preconditioner, which is constructed only once. Simultaneously computed block operations have better utilization of cache due to the less frequent access to the system matrix. In this paper we implement two different block solvers for sparse matrices resulting from the finite-difference and the finite-element discretizations, discuss the computational cost of the algorithms and study their dependence on the number of right-hand sides given at once. The effectiveness of the proposed methods is demonstrated on two electromagnetic survey scenarios, including a large marine model. As the results of the simulations show, when a powerful preconditioning is employed, block methods are faster than standard iterative techniques in terms of both iterations and time.

Keywords: Numerical modeling; Marine electromagnetic; Iterative solutions; Block methods.

1 INTRODUCTION

Electromagnetic (EM) methods have become established exploration tools in geophysics, finding application in areas such as hydrocarbon and mineral exploration, reservoir monitoring, CO₂ storage characterization, geothermal reservoir imaging and many others. Controlled-source electromagnetic (CSEM) surveys in marine and land environments typically include tens or hundreds of transmitters/receivers, while in airborne electromagnetics the number of sources in one simulation experiment can reach thousands (Newman 2014). This poses serious challenges to forward modeling and results in a high computational cost of 3D inversion.

In the context of CSEM multisource problems, special attention has been recently given to
direct solvers based on Gaussian elimination (e.g. Streich 2009; Oldenburg et al. 2013). The most computationally demanding part of these methods is the factorization, which involves only the system matrix and thus needs to be performed just once. The solutions for different right-hand sides (RHS) are then obtained only at the cost of two back substitutions each. The same factorization can be also reused for symmetric matrices during the solution of the adjoint problem required by the inversion algorithm (Schwarzbach & Haber 2013). Among the most popular direct solvers in geophysics today one can mention a distributed-memory multifrontal MUMPS (Amestoy et al. 2006) and a shared-memory supernodal PARDISO (Schenk & Gartner 2004). However their huge computational and memory requirements (which in 3D grow like $O(N^2)$ for time and $O(N^{4/3})$ for memory, where N is the number of unknowns) impose severe limitations on the size of the problem. Gutknecht (2007) reported a series of tests showing that direct solvers are competitive with the iterative methods for two-dimensional problems, but not for three-dimensional ones. With the recent progress in parallel direct solvers, these techniques have been successfully applied also for 3D models, though their scalability is limited by relatively low computation-to-communication ratio (Grayver et al. 2013).

Iterative methods, such as Krylov subspace solvers, are significantly less expensive in terms of memory and computational time than direct methods. They typically require one or two matrix-vector products and a few vector operations at each iteration, and hence can be efficiently implemented on parallel computers. However, to be effective on real-world complex problems, iterative solvers need a good preconditioner. Many of general-purpose preconditioners are fairly robust and result in good convergence rates, but are highly sequential and difficult to implement efficiently in parallel environments (Benzi & Tuma 1999). Several preconditioning schemes have been developed or tuned for geophysical EM modeling purposes, including specific ones such as of Weiss & Newman (2003) and general approaches like multigrid, both geometric (Mulder 2006) and algebraic (Haber & Heldmann 2007; Koldan et al. 2014). In general, iterative solvers will be efficient for large-scale 3D problems if 1) a good preconditioning scheme is applied; 2) multisource problems are treated with some kind of reuse technique.

Several attempts have been made to combine direct and iterative methods. One of them is to construct expensive ILU preconditioners and to re-use them for different source vectors (Um et al. 2013). Oldenburg et al. (2013) compared the performance of direct and iterative solvers for time-domain EM problems, however due to the application of the preconditioner without re-use and quite conservative drop tolerance value (10^{-10}), the iterative method performed poorly. Ren et al. (2014) used a mixed direct/iterative solution approach for parallel finite-element method based on nonoverlapping subdomains. More sophisticated solver techniques use Krylov subspace projection as a model reduction technique for simultaneous solutions at multiple frequencies (hence, dealing
with multiple system matrices). The spectral Lanczos decomposition method and its extensions (Druskin et al. 1999) can compute solutions for several frequencies at low cost which is, however, sensitive to conductivity contrasts since convergence depends as a root of the fourth-order of the condition number. Borner et al. (2008) developed a model reduction approach using rational Krylov subspace projection. Zaslavsky et al. (2013) presented an inversion of large-scale 3D problems with multiple sources and receivers with a forward solver based on the rational Krylov subspace reduction algorithm with an optimal subspace selection allowing for a logarithmic convergence on the condition number.

For the solution of a sequence of linear systems that have the same coefficient matrix, but differ in right-hand sides, is often more efficient to use a special version of the solver instead of applying the standard one to each of the systems individually. A group of methods called block Krylov subspace solvers were successfully used in many areas of computational science and engineering. Their two main benefits are much larger search spaces leading to a reduction in total number of iterations and a use of block vector operations that can considerably reduce the number of matrix accesses. For a detailed overview on block Krylov subspace methods we refer the reader to Gutknecht (2007). During the last two decades, several different block solvers have been developed and applied to many problems, ranging from electromagnetic scattering (Boyse & Seidl 1996) to acoustic full waveform inversion (Calandra et al. 2012).

In this paper we present efficient strategies for multisource EM modeling problems in frequency domain using iterative block methods. We consider two underlying methods for spatial discretization - the finite-difference electric-field method and the finite-element method based on the reformulation in potentials, both briefly described in Section 2. The rest of the paper is organized as follows. In Section 3 we review existing Krylov subspace solvers, introduce the block QMR and block GMRES\(m\) methods and discuss preconditioning strategies. Both solvers have been implemented in parallel and their scalability is compared to a direct method. Efficiency of the block solvers for EM geophysical problems is demonstrated in Section 4. We examine convergence behavior of the solvers, influence of the number of source vectors given at once, solver parameters and different preconditioners on the performance. Finally, we draw some conclusions and point out possible directions for further work in Section 5.

2 PROBLEM STATEMENT

Assuming harmonic time dependence \(e^{-i\omega t}\), the diffusive Maxwell’s equations are:
\[\nabla \times \mathbf{E} = i \omega \mu_0 \mathbf{H}, \quad \nabla \times \mathbf{H} = \mathbf{J}_s + \sigma \mathbf{E}. \]

(1)

Here \(\mathbf{E} \) is the electric field, \(\mathbf{H} \) is the magnetic field, \(\omega = 2\pi f \) is the angular frequency and \(\mathbf{J}_s \) is an electric current source. The electric conductivity tensor \(\sigma \) varies in three dimensions, while the magnetic permeability is assumed to be equal to the free space value \(\mu_0 \). In the numerical examples displacement currents are assumed to be negligible (since at low frequencies as \(\sigma \gg \omega \varepsilon \)), though the codes support complex value \(\sigma = \tilde{\sigma} - i \omega \varepsilon \tilde{\mathbf{I}} \) and transverse electrical anisotropy. By substituting \(\mathbf{H} \) from the first equation of (1) into the second, we obtain the second-order electric field equation

\[\nabla \times \nabla \times \mathbf{E} - i \omega \mu_0 \tilde{\sigma} \mathbf{E} = i \omega \mu_0 \mathbf{J}_s. \]

(2)

The first method that we employ is based on a finite-difference (FD) discretization in the frequency domain using staggered grids (Yee 1966). Until recently this was, perhaps, the most popular approach for EM modeling in geophysics. It has been previously used for the simulations of magnetotelluric (Mackie et al. 1994), CSEM (Newman & Alumbaugh 1995), and direct current (Spitzer 1995) problems. The formulation is relatively simple and mesh building is straightforward. Using the primary-secondary field formulation \(\mathbf{E} = \mathbf{E}^p + \mathbf{E}^s \), Eq. (2) reads

\[\nabla \times \nabla \times \mathbf{E}^s - i \omega \mu_0 \tilde{\sigma} \mathbf{E}^s = i \omega \mu_0 (\tilde{\sigma} - \tilde{\sigma}^p) \mathbf{E}^p. \]

(3)

After Eq. (3) is solved, the magnetic field is interpolated from the electric field values using the Faraday’s law. From the computational point of view, it is important to note that finite-difference discretizations on Cartesian grids produce banded or block-banded matrices. The code can be easily organized in a matrix-free approach when no explicit storage of the matrix is required. However, the simplicity of the FD discretizations comes with the well-known drawbacks of using rectangular grids. The number of model parameters required to simulate realistic 3-D geologies can exceed tens of millions (Commer & Newman 2008), hence using a direct solver becomes not feasible. At low frequencies the convergence of iterative methods stagnates because of the null-space arising from a curl–curl operator in (2) or (3). To avoid this, a scheme involving static divergence correction (Smith 1996) or special preconditioning (Weiss & Newman 2003) can be used.

For a large-scale multisource survey, using local grids for each source may be favorable instead of one global grid (Commer & Newman 2008) since for structured grids the refinement potential near the sources is very limited. A good 1D background model can be useful in this case (Streich 2009), though, of course, it could not overcome all limitations of structured grids. In this
context, finite-element (FE) methods are considered as an alternative. The two main benefits of unstructured meshes are their natural adaptivity to complex geometrical structures and large reduction in the number of elements necessary to obtain a required accuracy of the solution. In the context of multisource modeling, one mesh can be used for all sources. However, using unstructured meshes is also a challenge, since robust adaptive mesh generation in 3D is still an open question.

The second approach that we use here is the FE method based on a reformulation of Eq. (1) in terms of gauged vector and scalar potentials, a common practice to solve EM problems in geophysics (Everett et al. 2001; Weiss 2013; Ansari & Farquharson 2014). The following system consisting of a vector and a scalar equation is to be solved:

\[
\nabla^2 A_s + i\omega\mu_0\sigma(A_s + \nabla\Psi_s) = -i\omega\mu_0\Delta\sigma(A_p + \nabla\Psi_p),
\]

\[
\nabla \cdot [i\omega\mu_0\sigma(A_s + \nabla\Psi_s)] = -\nabla \cdot [i\omega\mu_0\Delta\sigma(A_p + \nabla\Psi_p)];
\]

where the electromagnetic fields are connected to the magnetic vector and the electric scalar potential as \(\mathbf{H} = \mu_0^{-1}\nabla \times \mathbf{A} \), \(\mathbf{E} = i\omega(\mathbf{A} + \nabla\Psi) \). The implementation details are given in Puzyrev et al. (2013). The discretization of Eqs. (3) or (4) with the FD or FE method leads to a large sparse linear system of equations for each of the \(s \) source positions

\[
K \cdot x_k = b_k.
\]

The RHS vectors \(b_k \), \(k = 1, s \) contain information on the source current density. Boundary conditions, typically Dirichlet, are embedded into matrix \(K \), keeping it symmetric (but not Hermitian). In structured rectangular grids each internal node has the same number of neighbors (6 for 3D) and hence banded matrices resulting from standard Yee discretizations have up to 13 nonzeros per row with complex entries located only on the main diagonal. Matrices resulting from FE discretizations on unstructured tetrahedral meshes usually are several times denser since each node is spatially linked to more neighbors.

Two completely different parallel codes are used in the numerical examples below. They are based on Eqs. (3) and (4), respectively, and are referred to as FD and FE codes.

3 EFFICIENT SOLUTIONS STRATEGIES

In this section we discuss approaches to the iterative solution of the system (5), which is the most computationally expensive part of the forward modeling. Before proceeding to the block
methods, we give a short overview of traditional Krylov solvers to better motivate our choice. Then
we discuss several preconditioners that were used with the block solvers to speed up the
convergence and make them more efficient in terms of computational time.

3.1 Krylov subspace methods

Krylov subspace solvers are a common choice for solving large sparse systems of linear
equations due to their low memory requirements and good scalability in parallel applications. A
total number of algorithms and their modifications is more than 100, however the number of
principal methods is one order of magnitude smaller. These methods differ in applicability, stability,
rate of convergence, memory and computational requirements. Since the fundamental operation that
dominates computing is the matrix-vector product (MVP), this number is crucial for determining
the cost of one iteration.

Due to historical reasons Krylov subspace methods are generally divided into two classes:
those for Hermitian matrices and those for general matrices. However, in computational
electromagnetics the matrix usually is symmetric but non-Hermitian, which makes impossible the
use of classical methods such as CG (Lanczos 1952), MINRES (Paige & Saunders 1975) or their
derivatives. Nevertheless, some algorithms can be applied at the cost of only one MVP per iteration.
Based on Arnoldi’s process the generalized minimal residual (GMRES) method by Saad & Schultz
(1986) is one of the most popular and well-studied solvers suitable for non-symmetric and non-
Hermitian indefinite systems. Another important group of Krylov subspace solvers is based on the
Lanczos biorthogonalization procedure. These methods include the biconjugate gradient (BiCG,
Lanczos 1952; Fletcher 1975), its modification, the biconjugate gradient stabilized (BiCGStab, van
der Vorst 1992) and the quasi-minimal residual (QMR, Freund & Nachtigal 1991) among others.
For symmetric systems, the crucial point in terms of computational efficiency is that some of these
general non-Hermitian solvers can take advantage of the matrix symmetry. Indeed, QMR and BiCG
applied for symmetric problems involve only one MVP per iteration versus two for the general
versions and hence perform faster, though their stability and rate of convergence are often worse
than those of BiCGStab. The latter possesses many attractive properties and in the years following
the original publication was generalized to BiCGStab2 and BiCGStab(l), also appeared a variant
based on multiple Lanczos starting vectors called ML(k)BiCGSTAB. Finally, we should mention
the recently developed IDR(p) method (Sonneveld & van Gijzen 2008), which is based on the
induced dimension reduction theorem proposed in 1980 and not used as a solver for almost 30 years.
After the second attempt, the method attracted considerable attention since published studies
showed the fast convergence of IDR(p) for the values $p > 1$. The convergence of BiCGStab and IDR is often better than the one of the above-mentioned symmetric solvers, however they always require at least 2 MVPs, which is impractical for symmetric matrices.

Fig. 1 illustrates the typical convergence scenario for three methods that require only one MVP per iteration: GMRES with three different restart parameters, symmetric BiCG and symmetric QMR. The system originates from a land CSEM scenario described in Section 4. We use preconditioners of three different quality levels (presented in more detail below) to show the differences in the solvers' behavior. First one (Jacobi) is “cheap” implying that the cost of each iteration is very low, second one is “mediocre” (ILU with drop tolerance 10^{-4}), and the third one is “good” (ILU with drop tolerance 10^{-6}). With a cheap preconditioner (Fig. 1a) the convergence is slow, residual norms of GMRES decrease monotonically, though QMR and BiCG typically have a similar rate of convergence (the latter has rapid oscillations in the error norm). Alumbaugh et al. (1996) compared BiCG and QMR methods and chose the former because of its more stable nature. When the preconditioner is “mediocre” (Fig. 1b), QMR fails to converge, while GMRES (expectedly) and BiCG (quite surprisingly) perform well. When the preconditioner is sufficiently good, all methods perform reliably (Fig. 1c). All variants of GMRES again converge slightly faster in terms of iterations and computational time.

3.2 Block solvers

A straightforward approach to CSEM forward modeling using iterative methods is to solve each system separately with parallelization over sources and frequencies, but without parallelization of the solver (e.g. Plessix et al. 2007). This results in a very small cost of communications since only problem data and the resulting solution need to be distributed among the computational nodes. However, the overhead for a multisource problem is quite large since this approach presumes independent initialization, construction of the preconditioner and storage of multiple copies of matrices and vectors for each source. Large-scale, massively parallel schemes typically use a domain decomposition paradigm and parallelize solver (Alumbaugh et al. 1996). The achieved speedup slowly degrades with increasing number of cores, because of the overhead due to message passing. The preconditioner for iterative methods, as well as LU factorization for direct ones, can be constructed only once and then re-used for different RHS (Um et al. 2013).

Instead of solving each of the systems with independent Krylov iterations, it is often more efficient to use a block version of an iterative solver. A block Krylov subspace method for solving a linear system with s RHS vectors generates approximate solutions x_m such that
\[x_m - x_0 \in B_m^r(K, r_0); \]

where \(B_m^r(K, r_0) \) is a block Krylov subspace defined as

\[
B_m^r(K, r_0) = \left\{ \sum_{j=0}^{m-1} K^j r_0 \gamma_j; \quad \gamma_j \in \mathbb{C}^{s \times s} \right\} \in \mathbb{C}^{n \times s},
\]

and \(r_0, x_0 \in \mathbb{C}^{n \times s} \) are the initial block residual and guess, respectively. It is important to note that \(\gamma_j \) are not scalars (as in the case of the global methods), but \(s \times s \) matrices. In this way, each of the \(s \) columns of \(x_m - x_0 \) is approximated by a linear combination of all the \(s \times m \) columns in the sequence \(r_0, K r_0, \ldots, K^{m-1} r_0 \). For a more detailed overview of mathematical foundations we refer the reader to Gutknecht (2007).

Similar to the standard Krylov solvers, the optimal solution is computed in an iterative manner. The main advantage of block methods is that the searching subspace for approximate solutions is the sum of all single Krylov subspaces. Hence, block solvers are expected to converge in less iterations than the corresponding standard method applied to each linear system. Possible linear dependence of residuals opens perspectives for a larger speedup, but makes an implementation more challenging. The two main drawbacks are larger memory requirements and additional operations during each iteration to maintain stability of the block method. The latter requires that either the system matrix is relatively dense or powerful preconditioners are used to make the block solvers more efficient than the standard ones.

Most of the standard Krylov subspace solvers have a block variant, however they differ a lot in stability and degree of investigation. Based on the discussion in the previous subsection, we choose two different Krylov methods to implement their block version: GMRES and QMR. Block variants of both methods exist and are well-studied, especially the first one. The block GMRES (BGMRES) method has been developed for over two decades; recent contributions include Baker et al. (2006) and Calandra et al. (2012). As a natural extension of the GMRES method, it is based on the block Arnoldi process and uses a standard block-wise construction of the basis vectors. The original method requires the computation and storage of an orthogonal basis, making memory and computational cost unacceptable for a large number of iterations, so restarted or truncated versions are applied in practice. The computational efficiency of BGMRES is influenced by the relation between the restart parameter \(m \) and the number of RHS vectors \(s \). The method is given in the Appendix.

The second method is the block QMR (BQMR) introduced by Freund & Malhotra (1997).
For complex symmetric or Hermitian matrices the classical Lanczos process simplifies, resulting in one sequence of Lanczos vectors instead of two for the general case. For the implementation, we choose the version of Malhotra et al. (1997), which, like the symmetric QMR method, exploits the matrix symmetry and thus requires twice less expensive MVPs. The basis vectors in this block method are constructed in a vector-wise approach. Another variant of BQMR for complex symmetric systems is the one of Boyse & Seidl (1996); the differences between these two approaches are discussed in Freund & Malhotra (1997). The structure of the BQMR algorithm is more complicated than of the BGMRES; for implementation details we refer the reader to Algorithm 4.1 of Malhotra et al. (1997) and to the discussion in this and other papers and technical reports by the authors.

A lot of sources (e.g. Gutknecht 2007; Du et al. 2011; Calandra et al. 2012) compare the computational cost and memory requirements of block methods and solving each system separately. The number of expensive operations with the system matrix per iteration is always the same (we recall that the block methods are expected to converge in less iterations), while for the number of vector updates \(y = \alpha x + y \) the ratio between block and non-block methods is \(O(s) \). Memory requirements of block solvers are also about \(s \) times larger, however, this estimate is excluding storage of the coefficient matrix and preconditioner, which are stored only in one instance of the solver. In the numerical examples below, we show the performance counted by both MVPs and computational time. The scheme can be summarized as follows:

1) One mesh which includes all or a subset of the sources is used for the discretization. A block solver has access to the system matrix and all RHS vectors.

2) An expensive preconditioner is created once at the beginning and used in the whole iterative process.

3) A block solver is expected to be computationally more efficient than standard techniques since:

 a) Much larger subspaces lead to a significant reduction in terms of iterations required for the convergence. Hence, the number of MVPs and preconditioner applications is smaller compared to the non-block methods.

 b) Simultaneously computed block vector operations have better utilization of cache due to the less frequent access to the stored matrix or less “on the fly” computations in the matrix-free implementations (e.g. Weiss 2013 and other papers by the author). For a block-wise method, this optimization is straightforward. For BQMR, which is originally a vector-wise method, MVP implementation in a block manner is also possible (see Freund & Malhotra 1997), however, is more complicated.

 c) A block method can include a deflation – procedure to detect and remove linearly or
near-linearly dependent vectors in block Krylov subspaces. It is possible at the
beginning (the so-called initial deflation) or during the iterative process. Clearly,
deflation leads to a further reduction of MVPs needed to solve the problem.

Before proceeding further, we should note that there are two alternatives to block methods.
The first one is the so-called seed methods (see Simoncini & Gallopoulos 1995 or Gutknecht 2007
and references therein) when a single system is chosen as a seed system, a corresponding Krylov
subspace is obtained and thereafter initial residuals of all the other systems are projected to this
subspace. These techniques can be useful in the case when not all right-hand sides are available at
the same time. The second alternative is the so-called global methods (Jbilou et al. 1999), which use
a global projection onto a matrix Krylov subspace. However, both these techniques have received
less attention than block methods.

3.3 Preconditioning

It is well-known that the successful use of iterative solvers depends on preconditioning.
There are several reasons that cause convergence to stagnate, including large aspect ratios of the
elements in the model, large conductivity contrasts, low frequencies or presence of a large air layer
(the latter two directly affect the second term of Eq. (3)). A good preconditioner can make an initial
ill-conditioned system converge quite rapidly. We consider below several preconditioning schemes
to be used together with the block methods. For testing purposes, we also use a standard diagonal
(Jacobi) preconditioner, which is effective to some extent for diagonally dominant matrices.
However, the key idea is to use an expensive preconditioner which, after being computed for a
given frequency, is used in one or several block solver instances with all source vectors.

Incomplete LU (ILU) preconditioners (Saad 2003) are among the most reliable and widely
used techniques. They are based on a factorization of the original matrix into a product of a lower
triangular matrix L and an upper triangular matrix U. In general, as the fill-in level of an ILU
decomposition increases, the quality of the preconditioner improves, however with an increased
cost of the factorization and forward-backward solves. Various ILU techniques differ in strategies to
prevent an excessive fill-in. For example, ILUT uses a threshold when deleting small but nonzero
elements. For a symmetric indefinite matrix an LDL^T factorization algorithm with pivoting (Golub
& Van Loan 1996) can be applied. Indeed, if a symmetric matrix $A = A^T$ can be factored as
$A = LDU = U^TDL^T$ where D is a diagonal matrix, then $U = L^T$ and $A = LDL^T$. Thus, the
memory demand for storing the preconditioner is halved and the computational time is reduced.

Being closely related to the direct methods, ILU preconditioners share the same drawbacks.
They are feasible only when the matrix size is not prohibitively large and are not naturally suitable for parallel implementation. During the last decade several approaches for ILU parallelization have been published, however they still remain difficult to implement and lead to a degradation of performance on massively parallel machines. On the contrary, another group of methods, approximate inverse preconditioners, are well suited for a parallel implementation, but often lack robustness. For example, the performance of several tested approximate inverse preconditioners with static and dynamic sparsity pattern strategies for the systems resulting from the FD discretization was unsatisfactory in some cases. However, for the formulation in potentials, the truncated approximate inverse (TAI) preconditioner from Puzyrev et al. (2013) and its variants based on topological and geometric approaches for an a priori chosen sparsity pattern performed reliably. Hence, we use this preconditioner with the block methods in the FE code.

One of the most powerful groups of preconditioners are multigrid methods. In contrast to any one-level preconditioner, multigrid techniques reduce all error components, both short and long range. We have implemented a simplified geometric multigrid (MG₃) preconditioner that is used in the tests with the FD scheme. Due to implementation restrictions, the number of inner levels is limited to 3. Based on a series of experiments, as a smoother we choose three iterations of a damped Jacobi with the damping parameter $\omega = 0.4$. Undamped version of the smoother ($\omega = 1$) proved to be very unreliable. Another possible choice is Gauss-Seidel, which is a quite powerful smoother and is highly parallel when the red-black ordering scheme is used (Trottenberg et al. 2001). For our purposes to show the efficiency of the block Krylov subspace methods with a robust reusable preconditioner, ILU, TAI or MG₃ are a good choice. None of them is flawless, however development of an optimal parallel preconditioner is outside of the scope of this paper. We do not consider here variable preconditioners that can be modified during the solution process, though they also can be used together with a flexible variant of a BGMRES.

Scalable performance of a linear solver is important in order to efficiently exploit modern computational systems. As it was pointed out in the introduction, the scalability of direct methods is usually quite low and limited by implementation of the multifrontal method, while iterative methods strongly depend on the preconditioner. Fig. 2 shows the scalability in strong sense (increasing number of subdomains for a fixed problem size) of an iterative method with the above-mentioned preconditioners versus the MUMPS direct solver. As expected, the simple preconditioning techniques scale better than the more sophisticated ones, while the direct solver reaches its scalability limit at 32 MPI ranks.

Iterative solutions can be accelerated further using initial guess obtained from the previous results. To overcome the effect of rapid attenuation of the EM field in conductive media, we use an interpolation of the resulting solution from the previous source. This does not affect the solution
accuracy, but can make an iterative process converge faster. Newman & Alumbaugh (1995) used the previous solution and reported about a 10-15% reduction in the CPU time compared with a zero initial guess. The efficiency depends on the problem, for example, for complex models (e.g. with non-flat bathymetry) the gain would be smaller or non-existent. Um et al. (2013) reported inefficiency of their initial guess approach (called solution bootstrapping) for one of their models, while for another one it resulted in a 10% gain. For the marine CSEM model described below we obtained a 5% speedup using the previous solution without interpolation and up to 10% using cubic interpolation. For problems that are 1D or 2D in nature, the maximum gain was about 15% of computational time. We cannot expect a better approximation to the solution since it is limited by numerical errors of the second-order FD scheme.

4 NUMERICAL EXAMPLES

In this section we illustrate our approach using two 3D examples. The first one describes a land scenario with simplified targets and is used to test the solvers for a non-complex case and to study their convergence behavior. In the second example, we aim to demonstrate the efficiency from an application point of view on a real-size complex model in marine environment. Both FD and FE methods are used for forward modeling.

4.1 Two-anomaly CSEM model

As a first model, we consider a homogeneous 12 x 10 x 4 km half-space containing two anomalies (Fig. 3). A large conductive (1 S/m) box is located at the left part at a depth of 0.7 km, while a thin resistive (0.02 S/m) body is in the right part at a depth of 0.3 km. An air layer at the top of the model results in a huge conductivity contrast between 0.1 S/m half-space and 10^{-8} S/m air. 20 sources are placed on the surface at 1.2 km spacing. This simple model can be easily discretized with the FD method resulting in ~1.2 million of unknown electric-field values for the frequency of 5 Hz. The discretization with the FE tetrahedral elements produces about 0.4 million of unknowns. Since these systems are quite small, the simulations were performed on a desktop Intel i7 machine with two @2.8GHz cores. Both methods have shown a good agreement in the results, for example, the amplitudes and phases of the E_x field component are compared in Fig. 4 (a, b). The relative error at the receivers between these two codes stays within 1% in amplitude and 1° in phase. Fig. 4 (c)
illustrates the ratio between the E_x amplitudes in the central part of the modeling domain, the maximum error is less than 2%. Expectedly, the FE method requires nearly two thirds fewer unknowns than the FD approach. Some discrepancies in the regions with highly varying conductivity are related to the numerical differentiation of the solution of Eqs. (4) in the FE code.

Next, we compare the performance of block solvers versus standard ones. Note that BQMR and BGMRES work with the vectors in a vector-wise and a block-wise manner, respectively. This means that one iteration of BQMR includes one individual MVP, while one BGMRES iteration has a multiplication of the matrix by the block of s vectors. To avoid any misinterpretation, we give the number of MVPs instead of the number of iterations. Each block MVP is counted as s MVPs though it is performed even faster due to cache effect. Fig. 5 shows the histories of the relative residual norms of BQMR and QMR, both preconditioned by the simple Jacobi method. This is a typical convergence behavior for block versus non-block solvers. BQMR saves about one-third of the MVPs required to converge. However, these results look promising only until we look at the corresponding CPU time. Indeed, in terms of the computational time BQMR ($s = 10$) actually performed worse than 10 calls to QMR: 1045 seconds versus 878 (FD code). The reason is that, since the system matrix preconditioned by the Jacobi method is very sparse, the computational cost of the MVPs is comparable to the other operations of the algorithm, such as dense vector operations. Clearly, in this case the computational overburden from the additional operations of block methods required to maintain block stability (not considered in Fig. 5) negates any gain. We recall that block methods perform faster than standard ones under the condition of relatively expensive matrix operations. For complex real-world problems, the use of efficient and expensive preconditioners is mandatory, and this is precisely the case where block algorithms perform superior to conventional methods.

In Table 1 we present the computational cost of the finite-difference simulations when expensive preconditioners, namely ILU and MG$_3$, are employed. When choosing drop tolerance for ILU, the tradeoff in performance is between reducing the number of iterations required to converge and increasing the cost of each iteration and preconditioner construction. Here we choose the value 10^{-5} in order not to make the memory requirements too large. From Table 1 we can make the following observations. First, the use of expensive preconditioners significantly reduces CPU time and makes block methods preferable, since the preconditioning and MVPs dominate the computation. For all cases considered, the block solvers required fewer MVPs and preconditioner applications than the standard methods. Second, with the increasing number of RHS vectors, the average number of MVPs per source for both block solvers is monotonically decreasing. Third, the number of MVPs is nearly the same for BGMRES(5) and BQMR. The latter performed a bit worse with the ILU preconditioner and competitively with the MG$_3$, except the case $s = 20$ when
convergence stagnated. Also, when a less accurate ILU preconditioner with the drop tolerance of 10^{-4} was used, BQMR was not able to converge. In general, with a good preconditioning the block solvers perform more efficiently in terms of computational time than standard solvers applied to the linear systems one by one. On average, the speedup for $s = 20$ is $\sim 1.8x$ and $\sim 1.55x$ for ILU and MG$_3$, respectively. When making the comparisons, we assumed that the preconditioners are computed only once and then are shared between all solvers, which is the proper way to do.

4.2 Complex marine CSEM model

In this section we demonstrate how the block solvers can be applied to large modeling problems when we have quite limited computational resources at our disposal, say, a part of a cluster. Actual simulations were performed on 32 nodes each having two 8-core Intel Xeon E5-2670 @2.6 GHz processors and 32 GB of memory. The synthetic model shown in Fig. 6 represents a marine CSEM scenario. The receivers are located at 0.7 km spacing along 8 lines on a moderate bathymetric relief ranging from 1.0 to 1.2 km. 120 positions in total were considered in the simulations. The transmitter is a horizontal electric dipole towed 30 m above the receivers. The conductivity of the seabed is considered anisotropic and varies from 1.4 to 0.02 S/m. The sea water conductivities are in the range 3.2–3.3 S/m, the air layer is set to 10^{-6} S/m. At the depth of 800–820 m below the seafloor the target thin resistive (0.021–0.018 S/m) body is located.

At 2 Hz frequency, the smallest skin depth in the sediments is around 300 m. For the FD simulations we choose the grid spacing to fulfill a requirement of 4 points per skin depth. Outside of the central region the cells are stretched in x and y. Spacing in z direction is 20 m near the seabed and slowly increasing with the depth. The final dimensions of the grid are 162 x 148 x 140, resulting in ~ 10 millions of complex unknowns. This poses a significant challenge in terms of memory for direct solvers since even a total amount of 1 terabyte will be not sufficient. With the FE method we aim at much better spatial discretization and create a mesh with various local refinements in the areas of interest. This system has ~ 5.5 millions of unknowns. TAI and MG$_3$ were used as right preconditioning for the FE and FD methods, respectively. The stopping tolerance for all solvers was set to 10^{-6}.

The forward modeling results displayed in Fig. 7 as a ratio between the responses for the model with the thin resistor and without it shows that the target is detectable with the current configuration. The computational cost of the FE simulations for the different number of RHS is presented in Fig. 8. Again, when block methods with a non-trivial preconditioning are employed, both the iterations (Fig. 8a) and computational time (Fig. 8b) are saved. As for all block methods,
the cost of one BQMR or BGMRES iteration increases with the number of RHS, while the number of MVPs per RHS decreases. For example, with an increase in s from 5 to 40, this number reduces from 114.3 to 65 for BGMRES+ILU. The non-block solver ($s = 1$) required, on average, 146.7 MVPs and preconditioner applications per source. As can be seen from Fig. 8b, BGMRES saves almost half of the CPU time for this model. The performance of BQMR is similar, however it deteriorates faster with an increasing s. The best performance is achieved for BGMRES with $s = 40$ and $s = 60$ (all 120 sources are given in three and two portions, respectively). For a larger number of RHS vectors and a relatively weak preconditioner, the iterative block solution becomes unreliable.

Fig. 9 shows the number of MVPs and CPU time for the simulations with the FD code using ILU and MG$_3$ preconditioners. Again, the largest savings in terms of computational time were obtained with the BGMRES solver. The optimal value of s for this model discretized with either FD or FE methods is around 40–60 leading to a twofold speedup. When the number of RHS given at once exceeds 20–40, BQMR starts experiencing problems with convergence, while BGMRES still performs well provided the preconditioners are robust enough. Also, the relative role of the additional block operations becomes more dominant with an increase in s, which explains the larger computational times despite the smaller number of MVPs and preconditioner applications. This is similar to the results of applying block methods to the other problems (Du et al. 2011; Calandra et al. 2012).

Storage cost of the sparse matrices, TAI and MG$_3$ preconditioners was comparably low (10–20 Gb), while the ILU barely fitted into 0.5 Tb of memory even with the symmetry accounted for. Memory requirements for the temporal block vectors are approximately s times larger than needed for one source with a non-block solver. In the worst case (BGMRES(5) with $s = 60$ for the FD model) this cost was around 70 Gb. However, it is still much smaller than a direct method would require for a problem of this size. Also, s instances of a non-block solver running independently on s computing cores would require more memory since the matrix and the preconditioner are stored in each local instance. The growth of the memory requirements with respect to the number of degrees of freedom is linear for the most expensive parts of the solver (except the preconditioner). For example, a structured grid for the 2.5 Hz frequency and the same number of points per skin depth results in ~40% more unknowns in the system. The total storage cost for BGMRES(5) with $s = 60$ and MG$_3$ preconditioner was around 140 Gb for this case against 90 Gb for the 2 Hz system.

Finally, we have tested the impact of the GMRES restart parameter m on convergence rate and CPU time. Fig. 10 shows the number of MVPs and corresponding time of BGMRES(m) with m ranging from 5 to 15. Similar to the non-block GMRES method, with the larger values of the restart parameter the method needs fewer MVPs to converge. Optimal in terms of computational time values of m depend on complexity of the preconditioner, however the changes are quite small. For
the BGMRES(m)+ILU combination, the optimal values of the restart parameter are 10...12. A slightly cheaper MG$_3$ preconditioner shows the best performance for $m = 8...10$, while for the larger values of m the gain in convergence is suppressed by the more costly Arnoldi loop. In Fig. 11 we show the performance of GMRES(10) and BGMRES(10) as an average number of MVPs and CPU time per source. Here we also use the interpolation from the previous solutions as an initial guess for the block method. The convergence rate of standard GMRES is independent of the number of RHS, while the block solver performs approximately two times faster applied to several tens of the sources simultaneously.

5 CONCLUSIONS AND OUTLOOK

Forward modeling problems for multiple sources operating at a common frequency result in a sequence of linear systems with the same coefficient matrix and different right-hand sides. This situation is beneficial for modern parallel direct solvers that are becoming increasingly popular also for 3D problems. Most likely, these methods will be successfully used by the geophysical community in the future for medium-scale finite-element discretizations, where the geometric complexity of the problems can be handled by using unstructured meshes and resulting matrix is not very large and more dense. However, beyond a certain problem size, use of direct solvers becomes too expensive. Due to the nonlinear growth of their computational and memory requirements, a moderate increase in the size of a model will require a large growth of the computing facilities.

We have implemented and tested two iterative solvers based on block Krylov techniques. These methods, which have found application in many other problems, are also suitable for the simulation of the EM phenomena in geophysics. Like traditional Krylov solvers, they do not have strict computational and memory limitations on the problem size, express a high level of parallelization and, thus, can be applied for large-scale multisource problems when the size of the coefficient matrix does not allow an efficient use of a direct solver. Main computational benefits over non-block techniques include potentially smaller number of iterations required for convergence, simultaneously performed block matrix-vector operations and an explicit reduction of the block size, called deflation. Block Krylov methods are advantageous when the cost of matrix-vectors operations is high compared to other operations, like in the case of dense matrices. However, this is not the case even for geometrically complex problems discretized with the FE methods, and moreover for the traditional FD methods that use structured grids and yield very large banded (but not Toeplitz) and extremely sparse matrices. Thus, a powerful preconditioning technique should be used together with the block methods. We have tested three different preconditioners and received
up to a 2x speedup over solving multiple systems individually.

Based on our numerical experiments, we conclude that the BGMRES method performed more reliable and stable in most of the cases. BQMR solver has also shown savings in MVPs and computational time over solving each system separately, however its convergence begins to stagnate when the number of RHS vectors is relatively large. Also, the structure of the latter algorithm is more complicated and its implementation on parallel machines encounters more difficulties than the one of BGMRES. In general, the implementation of non-block Krylov solvers is much less challenging than of block ones that support deflation. However, these methods have received growing attention during the last years and they are likely to be included in the popular linear algebra packages. At the present time, several versions of BGMRES are present in the Belos package of the Trilinos software collection (Bavier et al. 2012). To make possible the use of block methods, the model grid must be the same for a group of sources. This is similar to the use of direct solvers when any grid adaptation would require a new factorization. Block solvers can be a golden mean between using local meshes (one per source position) and global meshes (one for the whole domain). We suggest using BGMRES (or related Krylov methods) for the sub-problems that include several tens of the sources. By varying the number of source vectors, solver parameters such as restart parameter m, and preconditioner, it is possible to better adapt the problem to different computing environments.

Another possible use of block methods is the solution of the inverse problem when the computation of the full Jacobian is required. If both sources and receivers can be combined together in a block right hand side, the accuracy of the computations at the receiver is squared, and thus the algorithm requires less iterations to converge. This approach can potentially lead to another speedup by a factor of 2.

Methods based on Krylov subspaces are not limited to a sequence of linear systems with identical matrix, but can also handle similar matrices. Parks et al. (2006) have presented an overview of Krylov subspace recycling techniques for sequences of linear systems, where both the matrix and the RHS change. When a source frequency or a conductivity of some region is changed, rather than discarding the vector space generated from a previous solution, these methods can re-use it to reduce the total number of iterations.

ACKNOWLEDGMENTS

Funding for this work was provided by the Repsol-BSC Research Center and the RISE Horizon 2020 European Project GEAGAM (644602). MareNostrum Supercomputer was used for
the numerical tests. The authors express their thanks to Rene-Edouard Plessix, Mikhail Zaslavsky and one anonymous reviewer for their valuable comments that significantly helped to improve the paper.

REFERENCES

Figure 1.
Convergence rate of the solvers with the Jacobi (a), ILU with the drop tolerance 10^{-4} (b) and 10^{-6} (c) preconditioners.

Figure 2.
Strong scalability of an iterative solver with different preconditioners versus MUMPS.

Figure 3.
Vertical section through the center of the model (a) and plan view at the air-earth interface (b). Circles indicate transmitters.

Figure 4.
Amplitudes (a) and phases (b) of the inline electric field component at the surface, blue circles represent the finite-difference results, red asterisks indicate the results of the finite-element code; (c) ratio between the amplitudes in the central part of the modeling domain.

Figure 5.
Convergence rate of block QMR (red) versus the standard method (blue). 10 source positions from the two central lines were considered together with a zero initial guess and 10^{-6} as a stopping criterion.

Figure 6.
Bathymetric map with the survey lines (a) and horizontal resistivities (b) of the marine model. A 1.0–1.2 km thick water column and a 30 km air layer are not included in the resistivity picture.

Figure 7.
Ratios of the horizontal electric and magnetic field magnitudes along the inline profile. Results of the simulations for the model with the target resistor are normalized against the case without it. The L3S10 receiver was used as a source location; the modeling frequency is 1 Hz.

Figure 8.
Total number of MVPs (a) and solution time in seconds (b) for all 120 sources using the FE code. The value $s = 1$ denotes the corresponding non-block solvers.

Figure 9.
Same as Figure 8, but for the FD code.

Figure 10.
Total number of MVPs (columns) and solution time in seconds (lines) for different values of GMRES restart parameter m. ILU (a) and MG$_3$ (b) are used as preconditioners.

Figure 11.
Average number of MVPs (a) and solution time (b) per source for the restart parameter $m = 10$ and using the interpolation from the previous solution.
Table 1. Performance of the block versus non-block methods for the two-anomaly model. The columns list the total number of MVPs and solution time in seconds for all 20 sources. **Time Pre** is the time required for the preconditioner initialization.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Precond</th>
<th>ILUT (10^5) Time Pre = 1145</th>
<th></th>
<th>MG (10^5) Time Pre = 284</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MVPs</td>
<td>Time Sol</td>
<td>MVPs</td>
<td>Time Sol</td>
</tr>
<tr>
<td>QMR re-use</td>
<td></td>
<td>449</td>
<td>273</td>
<td>972</td>
<td>678</td>
</tr>
<tr>
<td>BQMR</td>
<td>s = 5</td>
<td>365</td>
<td>227</td>
<td>817</td>
<td>584</td>
</tr>
<tr>
<td></td>
<td>s = 10</td>
<td>296</td>
<td>189</td>
<td>678</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>s = 20</td>
<td>231</td>
<td>157</td>
<td>1107</td>
<td>859</td>
</tr>
<tr>
<td>GMRES(5) re-use</td>
<td></td>
<td>423</td>
<td>261</td>
<td>968</td>
<td>687</td>
</tr>
<tr>
<td>BGMRES(5)</td>
<td>s = 5</td>
<td>337</td>
<td>212</td>
<td>801</td>
<td>583</td>
</tr>
<tr>
<td></td>
<td>s = 10</td>
<td>255</td>
<td>166</td>
<td>669</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>s = 20</td>
<td>210</td>
<td>145</td>
<td>545</td>
<td>443</td>
</tr>
</tbody>
</table>
Figure 1. Convergence rate of the solvers with the Jacobi (a), ILU with the drop tolerance 10^-4 (b) and 10^-6 (c) preconditioners.

522x254mm (72 x 72 DPI)
Figure 2. Strong scalability of an iterative solver with different preconditioners versus MUMPS.
273x208mm (72 x 72 DPI)
Figure 3. Vertical section through the center of the model (a) and plan view at the air-earth interface (b). Circles indicate transmitters.

261x365mm (72 x 72 DPI)
Figure 4. Amplitudes (a) and phases (b) of the inline electric field component at the surface, blue circles represent the finite-difference results, red asterisks indicate the results of the finite-element code; (c) ratio between the amplitudes in the central part of the modeling domain.

82x108mm (300 x 300 DPI)
Figure 5. Convergence rate of block QMR (red) versus the standard method (blue). 10 source positions from the two central lines were considered together with a zero initial guess and 10^-6 as a stopping criterion.
Figure 6. Bathymetric map with the survey lines (a) and horizontal resistivities (b) of the marine model. A 1.0–1.2 km thick water column and a 30 km air layer are not included in the resistivity picture.
Figure 7. Ratios of the horizontal electric and magnetic field magnitudes along the inline profile. Results of the simulations for the model with the target resistor are normalized against the case without it. The L3S10 receiver was used as a source location; the modeling frequency is 1 Hz.
Figure 8. Total number of MVPs (a) and solution time in seconds (b) for all 120 sources using the FE code. The value $s = 1$ denotes the corresponding non-block solvers.
Figure 9. Same as Figure 8, but for the FD code.

238x336mm (72 x 72 DPI)
Figure 10. Total number of MVPs (columns) and solution time in seconds (lines) for different values of GMRES restart parameter m. ILU (a) and MG3 (b) are used as preconditioners.

263x340mm (72 x 72 DPI)
Figure 11. Average number of MVPs (a) and solution time (b) per source for the restart parameter $m = 10$ and using the interpolation from the previous solution.
APPENDIX A: BGMRES method

The general block GMRES method is as follows:

1. Given initial guess X_0, calculate block residual $R_0 = B - K \cdot X_0$
2. for $iter = 1$ to $outer_iter$
3. Compute the QR decomposition of $R_0 = V_1 \cdot \rho$ using Algorithm 2
4. for $j=1$ to m
5. Apply preconditioner M^{-1} as $T = M^{-1} \cdot V_j$
6. Multiply with the system matrix $W = K \cdot T$
7. for $i=1$ to j
8. $H_{ij} = V_i^H \cdot W$
9. $W = W - V_i \cdot H_{ij}$
10. end for
11. Compute the QR decomposition of $W = V_{j+1} \cdot H_{j+1,j}$ using Algorithm 2
12. end for
13. Solve the block GMRES minimization problem and compute Y_m
14. Update $X_m = X_0 + V \cdot Y_m$ and $R_m = B - K \cdot X_m$
15. If not converged, set $X_0 = X_m$, $R_0 = R_m$ and continue the loop
16. end for

Algorithm 1. Block GMRES method.

Several variations of the method exist. For example, the B-LGMRES solver by Baker et al. (2006) uses previous error approximations to build additional Krylov subspaces. Calandra et al. (2012) proposed an elaborate version of BGMRES with deflation and variable preconditioning.

The most computationally expensive part of Algorithm 1 is the block Arnoldi procedure (for simplicity given here without deflation), which includes the preconditioning (Line 5) and the block MVP (Line 6). Inner Arnoldi loop (Lines 7–10) and QR factorizations are also demanding when, respectively, the restart parameter m and the number of RHS s are large. Another important implementation issue is the QR factorization. For block methods it should be performed in such a way that the output is a matrix Q (a set of block-orthonormal vectors) and a square upper triangular matrix R. For example, Matlab built-in function qr does not produce necessary result, so below we give an example of the Gram–Schmidt (GS) process to compute Q and R. Factorization of a band-Hessenberg matrix H can be done in a manner similar to the standard GMRES method (Saad 2003).
1. for $j = 1$ to s
2. \hspace{1em} $v = W_{:,j}$
3. \hspace{1em} for $i = 1$ to $j - 1$
4. \hspace{2em} $R_{ij} = Q_{:,i}^H \cdot \{T\}$
5. \hspace{2em} $v = v - R_{ij} \cdot Q_{:,i}$
6. \hspace{1em} end for
7. $R_{jj} = ||v||$
8. $Q_{:,j} = v / R_{jj}$
9. end for

Algorithm 2. QR factorization using Gram–Schmidt orthogonalization. Input is an $n \times s$ matrix W, output is an $n \times s$ matrix Q and an $s \times s$ matrix R. $\{T\}$ in line 4 should be substituted with $W_{:,j}$ for the original GS process and with v for the modified GS.