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Abstract

This paper proposes a methodology for the continuous blending of the finite element
method and Smooth Particle Hydrodynamics. The coupled approximation with fi-
nite elements and particles, and the discretization of the boundary value problem
with a coupled integration, are described. An integration correction is also proposed
to stabilize the solution. Some numerical examples demonstrate the applicability of
the method.
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1 Introduction

The special issues [1,2] and the present issue demonstrate the growing interest
focused in meshless methods in the last decade. Meshless methods, such as
the Element-Free Galerkin method (EFG) [3], the Reproducing Kernel Particle
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Method (RKPM) [4] or the Smooth Particle Hydrodynamics method (SPH) [5–
9], among others, are competitive for some applications compared to classical
mesh-based methods.

In particular, SPH methods are widely used for fast-transient dynamic simu-
lations, such as explosions or impact problems, because of their low compu-
tational cost and its ability to handle severe distortions [6,7]. Other meshless
methods, such as EFG or RKPM, can also deal with large distortions and
go beyond Finite Element (FE) computations [10], but with a higher compu-
tational cost (due to the use of Gauss quadratures or specific techniques to
accurately integrate the weak form).

Nevertheless, when remeshing is not an important issue (for instance in the ab-
sence of large distortions) FE computations are preferred by practitioners for
two main reasons. First it should be noted that most of the users are familiar
with FE methods, and mesh-free methods are still seen as research techniques,
but this, of course, will change with time. Second, FE computations in the ab-
sence of remeshing can be very efficient from a computational point of view,
and thus less costly than mesh-free computations. However, these advantages
disappear when intensive remeshing is required. This is the case of problems
with large distortions, impact, blast, etc. In these cases SPH goes beyond FE
methods. Therefore, coupling FE and meshless methods seems a reasonable
approach to take advantage of the best properties of both methods. FE are
employed in almost everywhere and FE nodes are replaced by particles only
in the regions where the limitations of FE become apparent. An important
effort has been dedicated to the coupling of FE and meshless methods in
the last years. Most of the literature is devoted to the coupling of FE with
EFG or RKPM, see for instance [11–16]. However, the attention paid to the
development of formulations linking FE with SPH methods is more modest
[17,18].

Nowadays, there are several FE commercial or government-sponsored codes
that also include SPH formulations, such as LS-Dyna, Pronto-3D, Europlexus
and Sophia, among others. Nevertheless, in these codes the combination of
SPH with FE is usually done via contact or sliding interfaces. For example, in
impact problems is it usual to consider FE for the discretization of the projec-
tile and an SPH formulation for the target, which suffers large distortions. The
objective here is to discretize also the target using standard FE, and replace
FE nodes by SPH particles only in regions where highly distorted elements
appear during the computation. The existing contributions to link a FE re-
gion and an SPH region (with the same material) consider a transition layer
of particles which are simultaneously treated as FE nodes and Lagrangian
SPH particles. The influence between the different regions is taken into ac-
count with algorithmic and practical considerations. For instance, in [18] the
computation of the stresses at an interface particle (node as seen from the
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FE region) is done with contributions from the interface particles and from
other standard particles, but there is no contribution from the neighboring FE
nodes. Although, as it is commented in [18], this approach may be acceptable
for many applications, the mathematical basis is not clear. Consequently, the
standard properties (convergence, continuity, etc), one expects form FE and
SPH formulations, are not guaranteed with this approach.

The aim of this paper is to develop a continuous blending of SPH and FE,
maintaining the reproducibility, convergence and stability properties of both
methods. Several alternatives are proposed for the interpolation of a function
and its derivatives, with the desired order of reproducibility (consistency) and,
therefore, ensuring the convergence of the interpolation. The discretization of
the problem is done with a Galerkin weak form, which is numerically integrated
using Gauss quadrature in the FE region and particle integration in the rest
of the domain.

Section 2 recalls some basic concepts on the SPH method. Several possibil-
ities for the approximation of the unknown and its derivatives, coupling FE
and SPH, are proposed in Section 3. In particular, Section 3.1 recalls the con-
tinuous blending method, initially proposed in [13] to blend FE and Moving
Least-Squares (MLS) particle approximations. The discretization of boundary
value problems with a coupled integration is described in Section 4. Section
5 generalizes the integration correction, initially proposed in [19] in the SPH
framework, to the coupling of SPH with FE. Finally some numerical examples
are presented in order to demonstrate the applicability of the method and the
proposed corrections.

2 Basic equations of SPH

The basis for SPH, and other particle methods, is the approximation of an
arbitrary function u(x) by the convolution

û(x) =
∫

Ω
u(s)W (x− s, ρ) ds (1)

where W is a positive and compact supported function usually called kernel
function or window function, see [15,19]. The support of W is scaled by the
dilation parameter ρ. The approximation û will converge to the exact function
as W (x, ρ) approaches the Dirac delta function δ(x). Moreover, the kernel
function W can be easily designed so that the approximation û is exact for
polynomials up to order m, that is û = u for any u polynomial of degree
less or equal to m, see [20]. In that case, the approximation is said to have
reproducibility of order m. Equivalently, some authors refer to this property
as consistency of order m.
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Given a set of points in the domain Ω, {xb}b∈P , usually called particles, the
SPH approximation is obtained from (1) with a discrete evaluation of the
integral. That is, as initially proposed by Lucy [5], the SPH approximation is

û(x) =
∑

b∈P
u(xb) Wb(x) ωb (2)

where ωb is a volume associated to every particle, see [5], and

Wb(x) := W (x− xb, ρ)

is the weight or shape function associated to particle xb.

Note that usually, even if approximation (1) reproduces polynomials up to
order m, the reproducibility in the SPH approximation (2) is no longer satisfied
(due to the numerical quadrature). This deficiency has important consequences
for the resolution of boundary value problems in terms of accuracy, stability
and convergence of the approximation.

Several possibilities have been proposed in the last decade to overcome this
problem. Some of the most popular particle approximations are the Corrected
Smooth Particle Hydrodynamics (CSPH) [9,19], the Renormalized Meshless
Derivative [8] or the mesh-free approximations based on MLS, see [15] for a
general review.

Remark 1 In the numerical resolution of a boundary value problem with
SPH, the usual techniques are point collocation, or the discretization of a weak
form with particle integration.

Remark 2 In many applications, such as fast-transient dynamics, the correc-
tions of the SPH method are formulated to verify reproducibility in the approx-
imation of the derivatives, ∇u, [19]. The approximation of scalar quantities,
such as the density, is done with a trivial 0-order correction.

3 Coupled approximation

This section is devoted to the definition of coupled approximations using fi-
nite elements and particles. As shown in Figure 1, the domain Ω is discretized
with a set of particles {xb}b∈P , marked with crosses, and a set of active nodes
{xi}i∈N , marked with black dots. Other non-active nodes are considered to
define the support of the FE shape functions (thus only associated to the
geometrical interpolation). In the region where only FE are present a stan-
dard FE approximation is used, in the region where only particles have an
influence a corrected particle approximation is considered. In the transition
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the next section.

3.2 Coupled approximation of derivatives

As it is commented in Remark 4, the continuous blending method provides
an approximation for the derivatives with the desired reproducibility. Never-
theless, this section describes two alternative possibilities for the imposition
of first-order reproducibility to the coupled approximation of ∇u. These ap-
proximations are not derived from an approximation of the function u and,
therefore, they are closer to the classical SPH philosophy. In both cases the
situation described in Proposition 1 is assumed. That is, (1) the FE inter-
polation is of order greater or equal to 1 and (2) the domain of influence of
particles includes the region where FE does not have a complete basis.

The first approach, similarly to [25], considers an approximation of the form

∇u(xa) '
∑

i∈N
∇Nh

i (xa)ui +
∑

b∈P
gb(xa)ub (8)

where the gradient shape functions associated to the particles are defined as

gb(xa) = ωb [La∇Wb(xa) + εaδab] . (9)

The matrix La and the vector εa are obtained imposing first-order repro-
ducibility. That is, the approximation must be exact for constant functions,
namely ∑

i∈N
∇Nh

i (xa) +
∑

b∈P
gb(xa) = 0 (10)

and for linear functions, namely
∑

i∈N
∇Nh

i (xa)⊗ xi +
∑

b∈P
gb(xa)⊗ xb = I. (11)

Thus, the expressions for La and εa are obtained after substitution of (9) in
(10) and (11),

La =

[
I− ∑

i∈N
∇Nh

i (xa)⊗ (xi − xa)

] 
∑

b∈P
ωb∇Wb(xa)⊗ (xb − xa)



−1

(12)

and

εa =
1

ωa


− ∑

i∈N
∇Nh

i (xa)− La

∑

b∈P
ωb∇Wb(xa)


 . (13)

The second approach, similarly to [19], considers an approximation of the form

∇u(xa) '
∑

i∈N
∇Nh

i (xa) [ui − ua] +
∑

b∈P
gb(xa) [ub − ua] , (14)
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where

gb(xa) = Laωb∇Wb(xa). (15)

Note that approximation (14) is exact for constant u, thus it is only necessary
to impose the reproducibility condition for linear functions, that is

∑

i∈N
∇Nh

i (xa)⊗ (xi − xa) +
∑

b∈P
gb(xa)⊗ (xb − xa) = I. (16)

After substitution of (15) in (16) the expression for La is obtained, which
exactly coincides with (12). However, this approach does not require the com-
putation of vector εa.

Remark 5 In the region where a complete FE base is present

∑

i∈N
∇Nh

i (xa) = 0 and
∑

i∈N
∇Nh

i (xa)⊗ (xi − xa) = I.

Thus, La = 0, εa = 0 and both approximations coincide with a standard FE
approximation. In the region where only particles are present, Nh

i (xa) = 0 and
both approximations coincide with standard SPH corrected approximations.

4 Discretization of the boundary value problem: coupled integra-
tion

Two important decisions have to be taken for the numerical resolution of a
boundary value problem: the choice of the functional approximation, which is
commented in Section 3, and the formulation to be used for the verification
of the Partial Differential Equations (PDEs) and the imposition of boundary
conditions. In SPH methods it is usual to combine a weak form of the problem
with particle integration, or to consider point collocation techniques for the
strong imposition of the PDEs and the boundary conditions. In both cases all
the computations are done at the particles, and all the quantities of interest
are stored exclusively at the particles.

This paper considers the use of a weak form with particle integration for several
reasons. First of all, high order derivatives are avoided and, more important,
the mathematical base of the weak form is well known, facilitating the analysis
of the properties of the scheme. Furthermore, FE methods are based on the
discretization of a weak form, thus, the most natural option for the coupling
is considering the same weak form in the SPH region.

To show the methodology for the discretization of the problem, and for the
sake of clarity, a simple model problem is considered, the Laplace equation
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with essential boundary conditions,

∆u + f = 0 in Ω, u = uD on ∂Ω. (17)

The above equation can be established from a variational principle defined by
the potential

Π(v) =
1

2

∫

Ω
∇v ·∇v dΩ−

∫

Ω
vf dΩ. (18)

That is, the function that minimizes the potential (18) satisfies the initial
Poisson problem (17).

The numerical computation of the integrals is done considering the coupled
discretization of the domain Ω, with FE and particles, see Figure 1. In the
FE region the standard Gauss quadrature is used in every element Ωe. In
the rest of the domain a quadrature given by the particles, {xb}b∈P , and the
corresponding volumes, denoted by Vb, is considered. Thus, the discrete version
of the potential (18) is

Π(v) =
1

2

∑
e

∫

Ωe

∇v ·∇v dΩ +
1

2

∑

b∈P
∇v(xb) ·∇v(xb) Vb

−∑
e

∫

Ωe

vf dΩ− ∑

b∈P
v(xb)f(xb) Vb. (19)

Remark 6 Evidently, for the numerical integration of the weak form it is
preferable to use Gauss quadratures, instead of a less accurate particle or nodal
integration. Thus, Gauss quadratures are used in all the regions where FE are
present, in particular in the transition region (the gray area in Figure 1).
In order to define a proper integration, the particles in the transition region
do not contribute to the numerical integration of the weak form, and they
are considered only for functional approximation purposes. That is, for the
particles in the transition region, the integration weight is zero, Vb = 0, but
they do contribute in the computation of the functional approximation, ωb 6= 0.

Remark 7 Essential boundary conditions can be easily enforced if a coupled
discretization with FE nodes is used along the boundary. In that case, the pre-
scribed values can be imposed in a standard manner, as in the FE framework,
just setting the value of the corresponding nodal coefficients. Recall that mesh-
free approximations do not verify the delta Kronecker property and, therefore,
the enforcement of prescribed values can not be performed directly. The alter-
native is to use a modified variational principle in order to take into account
the essential boundary condition, such as the penalty method, the method of
Lagrange multipliers or Nitsche’s method, see [24] for a general presentation.

The discretization of the boundary value problem is obtained after substitution
of the functional approximations in the discrete version of the potential (19).
In order to simplify the notation, let us consider approximations that can be
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written in the form

v(x) ' ṽ(x) =
∑

k∈N∪P
vkNk(x), ∇v(x) ' ∇ṽ(x) =

∑

k∈N∪P
vkgk(x), (20)

where the FE shape functions are as usual, Nk := Nh
k and gk := ∇Nh

k for
k ∈ N . The SPH shape functions are Nk := W̃k for k ∈ P , as defined in
Section 3.1 by (4), or by (7) for 0-order reproducibility. The gradient SPH
shape functions can be defined by gk = ∇W̃k or by equations (9), (12) and
(13). The consideration of other approximation expressions, such as (14), does
not imply any added difficulty.

Substitution of (20) in (19) leads to the discrete version of the potential,

Π(v) =
1

2
vTKv − fTv,

where

Kij =
∑
e

∫

Ωe

gi · gj dΩ +
∑

b∈P
gi(xb) · gj(xb) Vb, for i, j ∈ N ∪ P

and

fi =
∑
e

∫

Ωe

Nif dΩ +
∑

b∈P
Ni(xb)f(xb) Vb, for i ∈ N ∪ P .

The system of equations is obtained after minimization with respect to the co-
efficients v, subject to the restrictions due to the essential boundary conditions
[24].

5 Integration correction

As usual in SPH methods, the solution of boundary value problems coupling
FE and SPH can suffer from instabilities that drastically degrade the results.
There are spurious modes present in the solution as a consequence of the
inaccurate particle integration. Bonet and coworkers pointed out in [19] the
importance of ensuring that meshless methods pass the patch test. They also
proposed a necessary condition to be satisfied by the discretization of the
integrals and functional approximations. This condition corresponds to the
discrete integrated version of

∫

Ω
∇Na dΩ =

∫

∂Ω
n Na dΓ, for a ∈ N ∪ P , (21)

where n is the unitary outward normal vector.
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Note that, although (21) is satisfied due to the so-called Green or gradient
theorem, the fulfillment of its discrete integrated SPH version is not guaranteed
due to the particle integration errors.

In the context of the coupled method proposed in Section 3, the discrete
integrated version of (21) must be satisfied for all the shape functions, corre-
sponding to both nodes and particles.

For a FE shape function, a ∈ N , condition (21) corresponds to

∑
e

∫

Ωe

∇Nh
a dΩ =

∑

E

∫

ΓE

nNh
a dΓ (22)

where Ωe and ΓE are FE in Ω and ∂Ω respectively, and the integration is
approximated with Gauss quadrature in every element. Note that the sum-
mations of integrals in Ωe and ΓE in equation (22) are exactly equal to the
integrals in Ω and ∂Ω in equation (21). Thus, (22) is automatically satisfied
for all FE nodes, a ∈ N .

This is not the case for a particle shape function. Due to the errors of the
particle integration the discrete version of (21) is not satisfied, that is, in
general, for a ∈ P

∑
e

∫

Ωe

ga dΩ +
∑

b∈P
ga(xb)Vb

6= ∑

E

∫

ΓE

n W̃a dΓ +
∑

B∈PB

nB W̃a(xB)AB (23)

where PB denotes the indexes of the particles in the region of the boundary
∂Ω where no FE are present, and AB is the tributary area of particle xB.

To overcome this problem, and following the idea proposed in [19], the com-
putation of the gradient at every particle is modified by the introduction of
an integration correction vector γ = {γb}b∈P ,

∇̃u(xb) = ∇ũ(xb) + γbJuKb for b ∈ P ,

where

JuKb = ub −
∑
a

uaW̃a(xb).

Remark 8 Note that, assuming m-order reproducibility for the interpolation,
the bracket J·Kb vanishes for all polynomials of degree less or equal to m and,
therefore, for these polynomials the evaluation of the gradient will not be af-
fected by the correction. That is, the corrected approximation of the gradient
maintains the m-order reproducibility for any γb.
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The corrected approximation of the gradient at any particle can also be written
as

∇̃u(xb) =
∑
a

uag̃a(xb),

with the definition of the corrected shape functions

g̃a(xb) = ga(xb)− γbW̃a(xb) + γbδab. (24)

The integration correction vectors γb are determined imposing that the equal-
ity in (23) is fulfilled, that is

∑
e

∫

Ωe

ga dΩ +
∑

b∈P
g̃a(xb)Vb

=
∑

E

∫

ΓE

n W̃a dΓ +
∑

B∈PB

n W̃a(xB)AB for a ∈ P . (25)

After substitution of (24) in (25) the linear system of equations to be solved
is obtained,

∑

b∈P
Vb

[
δab − W̃a(xb)

]
γb = −∑

b∈P
Vbga(xb)−

∑
e

∫

Ωe

gadΩ

+
∑

B∈PB

ABnBW̃a(xB) +
∑

E

∫

ΓE

nW̃adΓ
for a ∈ P .

Thus, the computation of the integration correction vectors requires the reso-
lution of a linear system of equations for each spatial dimension, but with the
same matrix

Aab = Vb

[
δab − W̃a(xb)

]
for a, b ∈ P .

Remark 9 The behavior of the correction coefficients γb (order of magnitude,
sensitivity to small perturbations of the particle distribution, etc) is the same
as in standard SPH methods. This is the subject of current study and a possible
future publication [26].

6 Numerical examples

Two numerical examples are presented in this section to demonstrate the ap-
plicability and performance of the proposed methodology. First an academic
Poisson problem with known analytical solution is considered. Numerical in-
stabilities are present in the solution due to particle integration, and the in-
tegration correction technique presented in Section 5 is used to improve the
results. On the other hand, a fast-transient dynamics simulation with severe
distortions is considered for the second numerical example. The replacement
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solution. However, the solution is degraded due to the presence of too distorted
elements in the punch region, see the zooms on the right.

Figure 9 shows the solution obtained using the coupling of SPH and FE. The
continuous blending method is used for the approximation of the displacements
and its derivatives. Figure 7 shows the discretization with particles and FE,
with active and non-active nodes. As usual in mesh-free methods [10], the
use of an SPH approximation near the punch region allows to go beyond the
FE computations. The SPH discretization avoids the problems due to the
distortion of the FE.

It is important to note that with an SPH discretization the refinement of the
discretization near the punch region is easily performed, with no remeshing
cost.

Remark 10 Although it is not exploited in this example, the definition of the
neighborhood between particles in the SPH region can be updated during the
computations, leading to an updated Lagrangian formulation. The update of
the “connectivity” between particles does not imply the usual projection errors
of the FE computations (due to the projection of quantities between meshes).
This is an important issue in problems with severe distortions, brittle fracture,
etc.

Remark 11 Obviously, the continuous blending of SPH and FE inherits the
stability deficiencies of the SPH method. In problems with extremely large dis-
tortions, the SPH Lagrangian formulation will need updates of the reference
configuration. Then, zero energy modes are more likely to be excited. When a
reduced number of updates are necessary the error is small and can go unno-
ticed, but when frequent updates are performed the solution can be completely
spoilt due to zero energy modes in the SPH approximation. To avoid numer-
ical fracture in high-tension zones, standard techniques can be implemented
[28–30]. Other stabilization techniques are currently under investigation and
will be discussed in a forthcoming publication [31].

On the other hand, as it is seen in the example, a layer of FE can be used
along the punch boundary in order to facilitate the enforcement of essential
boundary conditions, or contact boundary conditions in a more general case.

7 Conclusions

The examples demonstrate the applicability of the proposed methodology for
the coupling of SPH and FE.
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Apart from the obvious advantages of SPH for adaptivity processes, the use
of an SPH discretization in the regions where severe distortions are present
allows to go beyond FE computations. If needed, the “connectivity” between
particles in the SPH region can be updated during the computations, without
projection errors. In this situation, the continuous blending of SPH and FE
inherits the stability properties of the SPH considered formulation.

On the other hand, the use of a layer of FE along the boundary, coupled
with the SPH interpolation, facilitates the enforcement of essential boundary
conditions, or contact boundary conditions.

The coupling of FE and mesh-free methods maintains the low computational
cost of both methods, and takes advantage of their best properties. This
method seems to be very promising for the solution of fast-transient dynamics
problems, impact simulations, brittle fracture or explosions.

Finally, the integration correction avoids, or at least attenuates, the presence
of the possible instabilities in the SPH numerical solution (due to the particle
integration).
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