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Fig. 6. IQ components of the SLR impulsive interference added to the base-
band simulation after the amplitude normalization.

system in comparison with the SHR interference is expected.
In Fig. 6, the IQ components of the SLR interferences added to
the channel for the simulation are shown. If Fig. 6 is compared
with Fig. 5, it is noticed that the distortion produced to the
GSM system caused by the short-rate sparks interference will
be reduced. Once the SLR interference simulation is carried out,
the BER results before the decoding is 0.04%, which is related
to a RXQUAL_0, meaning that the interference produced to the
GSM system is negligible.

C. Results Employing the APD Diagram Including the GSM
Specification Limits

The second developed methodology to determine the degra-
dation produced by the SHR and SLR interference uses the APD
diagram. As it has been mentioned, limit points can be estab-
lished to the APD diagram to know the degradation produced to
the GSM communication system.

The IQ components, measured in Section IV for both interfer-
ences, are employed as the input to compute the APD diagram.
The statistical properties of the radiated transient interferences
are obtained in the downlink 939-MHz channel of the GSM
system and using the 200-kHz bandwidth. The results displayed
for the rapid (SHR) and slow (SLR) interferences are shown in
Fig. 7, as well as the computed case, when nonimpulsive inter-
ference is considered. Moreover, the limit points associated with
each of the RXQUAL levels defined in the GSM specifications
are also represented to rapidly identify the RXQUAL resulting
level. The RXQUAL limit points which can be observed in Fig. 7
have been calculated according to (8). The level received by the
mobile is −86 dBm, and the corresponding modulation scheme
for the GSM system is a QPSK, which means that the bits trans-
mitted per symbol is 2 (m = 2) and β = 1. Substituting the
values in (8), the APD limits for each level of RXQUAL can be
seen in Fig. 7. The resulting RXQUAL level will be determined
considering the point below the line of the APD diagram. Ad-
ditionally, if the APD diagram line is below all the limit points
represented in the APD diagram, the RXQUAL value will be
RXQUAL_0 which means a BER lower than 0.2%.

From the results shown in Fig. 7, the APD curve for each of
the transient interferences represents the exceeding probability

Fig. 7. APD diagram of the SHR and SLR interferences including the
RXQUAL limits.

of the interference envelope amplitude. Therefore, it is easy to
interpret the different slopes produced by each of the impulsive
interferences. The SHR interference has higher amplitude and
also higher probability than SLR interference, which means that
in impulsive interferences such as the radiated transients, the
repetition rate of the interference is also higher. Moreover, the
limit points permit us to delimit that the SHR interference will
produce a signal quality of RXQUAL_4 when the disturbance
is present in the environment. On the other hand, from the APD
diagram, it can also be concluded that the SLR interference will
not cause any noticeable degradation to the GSM system, as the
APD resulting curve is below all the RXQUAL levels. From
the direct observation of the APD diagram, it can be established
that the SHR produced a BER around 1.8%. Otherwise, when
the slow repetition spark interference is generated, the error rate
is around 0.09%.

The APD diagram has shown that the interference statistical
information provided by the methodology is a useful and accu-
rate tool to analyze the DCS performance rapidly and properly
in the presence of radiated transient interferences. Considering
the results shown in this section, the APD shows its powerful
capabilities to be the best methodology to measure and analyze
radiated transient interferences. Commonly, radiated transient
interferences produce heavy-tailed distributions as it is observed
in Fig. 7, this type of resulting distribution allows us to easily
interpret the results from the APD diagram.

In addition, using the APD methodology with a single time-
domain measurement, various GSM channels can be evaluated
rapidly calculating the APD curve. As an example with the
measurements performed in Section IV, where 3-MHz RBW
was set in the EMI receiver, the APD diagram can be computed
for either 15 GSM downlink channels. Otherwise, if a full-
spectrum measurement is carried out employing time-domain
methodologies developed [10], the APD diagram can be obtain
in any channel of the GSM communication system.
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TABLE III
COMPARISON OF THE MEASURED-SIMULATED DEGRADATION PRODUCED BY

SHR AND SLR INTERFERENCES OVER THE GSM SYSTEM

Methodology Interference RXQUAL BER

Measured signal quality by MS SHR 4 2.07%
SLR 0 0.01%

DCS simulation SHR 4 2.39%
SLR 0 0.04%

APD error estimation SHR 4 1.8%
SLR 0 0.09%

VI. METHODOLOGIES COMPARISON AND CONCLUSIONS

In this section, the results obtained following the different
methodologies to evaluate the influence of both radiated tran-
sient interferences over the GSM downlink system are com-
pared. The measurements reported by the GSM MS Test unit
are the reference ones because an equipment transmitting in-
formation was placed under the radiated transient interferences.
The measurement of the interferences and afterward performs
the GSM simulation, and the APD diagram calculation are the
methodologies developed to predict beforehand the degradation
of the DCS. A summary chart of the results reached by the
different methodologies is displayed in Table III.

Concerning the results obtained, first, it is essential to high-
light the excellent agreement reached between all the different
methodologies. When the impact of the SHR interferences is
evaluated with the DCS simulation methodology and the APD
error estimation, the RXQUAL_4 value anticipated is the same
that is reported by the GSM MS Test unit. Additionally, if the
BER differences are considered, the variation is around 0.3%
compared with the reference value, which is a minimum differ-
ence if it is assumed that RXQUAL_4 level varies from 1.6%
to 3.2%. Furthermore, if the results of the SLR interference are
compared, each methodology concludes that a negligible inter-
ference effect is produced between the radiated transients and
the downlink of the GSM system. All the methodologies asso-
ciate the SLR interference to a received signal quality equal to
RXQUAL_0, which incomes to an irrelevant interference sce-
nario. Regarding the BER results related to the sparks generated
around a repetition frequency of 100 Hz (SLR interference), all
the results are below 0.1%.

The results show that the developed methodologies have pro-
vided estimations of the BER with excellent accuracy when
results are compared with the reference obtained from direct
BER measurements by the GSM MS Test unit. Even if the
results presented here cover a particular scenario, extensive
measurement campaigns have shown that this methodology is
sufficiently general and coherent to be reliably used to estimate
the degradation of any DCS produced by a previously measured
radiated transient interference. Beforehand, the IQ capture and
DCS simulation procedure must be suitable to evaluate any com-
munication system interfered by the transient noise if the system
is properly modeled. Otherwise, the APD methodology can be
employed when the DCS under evaluation are digital coherent
radio receivers. Finally, it is necessary to emphasize the APD

diagram practical usability, which has been especially valuable
due to its straightforward quantification and interpretation of
the degradation produced in the GSM system due to transient
interferences.
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Catalunya, Barcelona, Spain.

He was a Researcher in the Applied Electromag-
netics Laboratory, Instituto de Ingenierı́a, Caracas.
He is a member of the Venezuelan Standardization

Committee for the Telecommunication Sector of CODELECTRA and FODE-
NORCA and has participated in the adoption of the local standards of electro-
magnetic compatibility. His research interests include electromagnetic compat-
ibility, antenna and microwave measurement technologies, and estimation of
measurement uncertainty in complex systems and validation methods.

Ferran Silva (S’93–M’98) received the M.Sc. and
Ph.D. degrees from the Universitat Politècnica de
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