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Abstract. In this work, we will explore the feasibility of porting a Particle-in-cell code
(EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype
is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype
that could be used for High-Performance Computing (HPC), since it supports double precision
and parallel programming languages.

1. Introduction

During the last two decades, supercomputers have grown rapidly in performance to provide
scientists the required computing power, at the cost of a similar growth in power consumption.
The most used metric for evaluating supercomputers performance has been the speed of running
benchmark programs (as Linpack [1]).

However, nowadays the computer’s performance is limited by power consumption and power
density. Energy has become one of the most expensive resources and, as a consequence, the
energy expenses in a HPC center can easily exceed the cost of infrastructure after a few years
in operation. Therefore, energy efficiency is already a primary concern for the design of any
computer system and will define the maximum achievable performance. This change of the point
of view is reflected in the increasing popularity of the Green500 list [2], in which supercomputers
are ranked in terms of their power efficiency.

Looking to future, new developed platforms to build a sustainable exaflop supercomputer
will have to be based on the power efficiency. The Mont-Blanc project [3] has the aim to design
computer architectures capable of delivering an Exascale performance using 15 to 30 time less
energy than present architectures. The reduction of energy consumption will be achieved by
developing a HPC prototype based on the energy-efficient technology originally designed for
mobile and embedded systems.

Particle-in-cell (PIC) is one of the most used methods in plasma physics simulations [4]. The
quality of results achieved by this method relies on tracking a very large number of particles.
Therefore, PIC codes require intensive computation and need to be adapted to new computing
platforms constantly. EUTERPE is a parallel gyrokinetic PIC code for global linear and non-
linear simulations of fusion plasma instabilities in three-dimensional geometries [5], specifically
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in tokamaks and stellarators [6, 7]. It has been written to target traditional HPC clusters using
Message Passing Interface (MPI).

In this paper we study the portability of EUTERPE to the ARM-based prototype within the
Mont-Blanc project. The rest of the paper is organized as follows. In section 2, we describe the
PIC method basics and the EUTERPE code. In section 3, we describe the Mont-Blanc project
and the architecture of the ARM-based prototype [8]. Next we explain the first experiences on
porting EUTERPE to an ARM platform. Finally some conclusions are given.

2. Particle-in-cell methods
PIC methods are used to model physical systems whose behavior varies over different ranges
of spatial scales. Macroscopically the dynamics is described by a system of partial differential
equations (continuous model), while microscopically is modeled by a set of discrete particles.
Explicitly, a PIC method follows the individual particles (or fluid elements) in a continuous
phase space, whereas moments of the distribution (such as densities and currents) are computed
concurrently on stationary mesh points.

PIC methods are one of the most popular approaches in plasma physics to simulate the
interaction of independent charged particles with each other and with electromagnetic fields [9].

A full kinetic description using the PIC method is implemented by replacing the distribution
function fs; by a number of macroparticles, which represents a cloud of particles. The charges
and densities of macroparticles are accumulated by interpolation on the spatial mesh and then
the field equations are solved on the mesh. Finally, the forces acting on macroparticles are
obtained by the interpolation of the fields at the macroparticles positions [10].

After an initialization phase, it is possible to summarize a PIC algorithm with three steps
repeated at each time step [11]:

e pull: particle properties are interpolated to neighboring points in the computational mesh.
e solve: moment equations are solved on the mesh.

e push: momentum of each particle is calculated by interpolation on the mesh. The particles
are repositioned under the influence of the momentum and the particle properties are
updated.

In general, many PIC codes designed to simulate various aspects of the plasma behavior [12,
13] were not originally developed for new supercomputers based on multi-core architectures and
basically only exploit the task level parallelism. The inclusion of new parallel programming
techniques (as hybridization) allows to make the best of new multiprocessor supercomputers
under development. There are several codes written in this way [14, 15], but in general they are
simplified versions of production codes used by scientific groups in the simulation of real plasma
physics environments. Nevertheless, this trend is reinforcing to provide more power computing
to these applications.

2.1. EUTERPEFE code

In the EUTERPE code, the distribution function fs of each kinetic species (s) is discretized
using particles and a control variables scheme (0f) is used to reduce noise. The electrons are
assumed to respond adiabatically and only electrostatic perturbations are taken into account.
The evolution of the distribution function of each kinetic species is given by the gyrokinetic
equation:
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where C; represents collisions with all species. The evolution in time of v and R is integrated
from equations depending of the fields through the Poisson-Ampere equations [16].

Initiallyy, EUTERPE was parallelized applying domain decomposition and domain
cloning [17]. These strategies only allow to parallelize at task level using MPI. For that reason,
we developed a hybrid version of the code to take advantage of all the levels of parallelism that
a multi-core architecture can offer [18], using OpenMP in the most time-consuming routines and
developing a hybrid solver (mixing MPI and OpenMP) for the quasi-neutrality equation.

The OpenMP was introduced to parallelize the movement of the particles inside a domain
(push phase). It is a suitable approach because the computation of the movement of any particle
is independent from the rest of particles, so several threads can read simultaneously the electric
field on the nearest grid points to a given particle without conflicts (figure 1a). OpenMP was
also introduced in the computation of the charge density on the grid points (pull phase). This
time there is a conflict because several threads can update the same grid point at the same time
(figure 1b). Depending on the number of cores and the available amount of memory this issue
is solved by atomic arithmetic operations or a mesh copy per thread.

The hybrid solver developed was an implementation of the Block Jacobi Preconditioning of
the Conjugate Gradient method [19], where the preconditioner is a set of diagonal blocks.

3. The Mont-Blanc project

Transitions in the HPC world are not casual facts. The highest-volume commodity market
(desktop computers) tends to drive lower-volume HPC market, because the design of an HPC
chip has to be amortized selling the maximum number of units to minimize its final price.

For example, figure 2 shows how systems based on special-purpose HPC systems were replaced
(from 1990 to 2000) by RISC microprocessors in the Top500 list [20]. This transition took place
due to the cheapness of the RISC microprocessors although they were slower.

Currently, we observe a similar trend: low-power microprocessors (used in mobile devices)
are improving their performance and are including features needed to run HPC applications
(as an on-chip floating-point unit). It is reasonable to consider that the same market forces
that replaced vector processors by RISC processors will be able to replace present options with
mobile processors [3].

500

== Vector
= RISC
1= Xx86

250

Systems in TOP500 list

Figure 1. Two threads (th0 and th1) that 0 o 2000 2005 2010
work with neighbor particles in the push

phase (a) and the pull phase (b). Figure 2. Number of systems in Top500.

Mont-Blanc is an European Exascale computing approach to develop a full energy-efficient
HPC prototype. This project is coordinated by Barcelona Supercomputing Center (BSC) since
October 2011. The aim is to develop a prototype using low-power commercially available
embedded technology to exploit the large volume of these platforms and their high accessibility.

3.1. The ARM-based prototype
This work has been developed using a prototype named Arndale. It is based on a system-on-chip
(SoC) Samsung Exynos 5 which contains an ARM Cortex-A15 dual core (at 1.7GHz) and an
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ARM Mali T604 GPU.

ARM (Acorn RISC Machines) is a company which designs a RISC architecture. This kind
of architectures reduces costs, heat and power use, which are desirable traits for embedded
systems (smartphones, tablets, ...). Moreover, its simple design provides efficient multi-core
CPUs with large number of cores at low cost and improved energy efficiency for HPC. Although
ARM processors do not provide a sufficient level of performance for HPC yet, it is worthwhile
to explore their potential considering ARM has a promising roadmap ahead.

The Samsung Exynos 5 with integrated GPU accelerator is the first embedded SoC that has
the potential for HPC, since it supports 64-bit floating point arithmetic and provides support
for parallel programming languages (such as OpenCL 1.1).

4. Work done on ARM-based platform
In order to obtain the best possible results on the prototype, all the available resources have to
be used by the application: the dual core CPU (using OpenMP version developed previously)
and the GPU (using a new OpenCL version).

OpenCL (Open Computing Language) [21] defines an application programming interface
(API) that provides a homogeneous view of all computational resources through the following
abstractions: the platform model, the memory model, the execution model and the programming
model. It also support data-based and task-based parallel programming models. The execution
model divides the computing system into a host (CPU) and a set of compute devices (GPU in
our case). The host sends portions of the application (kernels) to the compute devices which
execute many instances of them (work-items). The work-items are grouped by work-group and
the work-items inside a group share resources such as memory.

We note here that the Mali GPU (in the prototype) has two special features which affect
the common OpenCL programming. Firstly, the local and private memory are physically global
memory. So, moving data from global to local or private memory typically does not improve
performance. Secondly, all GPU threads have individual program counters. This means that all
the threads are independent and can diverge without any performance impact.

In order to exploit the accelerator (Mali GPU) of the prototype, the selected routines have
to be written in OpenCL. This mission involves some new tasks to make: the translation of
the code from FORTRAN to C, the distribution of work between work-items and the creation
and initialization of the OpenCL components (context, kernels, command queues and memory
objects).

As a result of the previous work [18], we know which sections in the code are the most
compute intensive: pushing the particles (push) and depositing their charge (pull). In this work
our first aim is to minimize the necessary changes to these routines in OpenCL as compared
with the previous version in order to increase the productivity.

In the push part, the work distribution is simple: one work-item is assigned to each particle.
Since each work-item works on a different particle, all work-items write in different memory
locations (as figure la shows but replacing threads with work-items). Therefore, the adaptation
of the routine was reduced to a straightforward translation.

The pull part was more challenging to implement, since different particles can contribute
to the charge density on the same mesh point. As we maintain the same work distribution
than in push part, several threads can update the same memory location (as figure 1b shows
but replacing threads with work-items). To avoid these memory conflicts, the two previously
mentioned solutions used for the OpenMP implementation do not work properly due to the high
number of threads on a GPU: atomic operations become inefficient because of lock contention
that serializes the execution, and copies of the mesh require too much memory.

The strategy to solve this issue is inspired by the way in which OpenCL distributes data
processing. A mesh copy is created per work-group, so only the work-items in the same work-
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group accumulate contributions on the same mesh copy. As a consequence, the lock contention
is far minor and the reduction of memory conflicts makes the use of atomic operations feasible.

Nevertheless, a new step is required to reduce all these copies to the final mesh. The final
global reduction is minor and a single kernel is enough to perform it since the number of mesh
copies is limited by the number of work-groups. This time each work-item will collect the result
of the same point in all the copies of the mesh.

The next step was to take advantage of all resources, so a convenient decision was to distribute
the particles between CPU and GPU. Since the two devices shares the memory, all the particles
are distributed between them without any additional data transfer.

Figure 3 shows the results of the ARM hybrid version (OpenMP + OpenCL). The test
contains 1 million particles. We can see that as more particles are sent to GPU, the execution
time of kernels decreases. Being the optimal configuration when the particles sent to the GPU are
40% in the push kernel and 60% in the pull kernel. At these minimum points, the combination
of the CPU and GPU devices yields a modest but significant improvement over the CPU time
only: about 30% in the push kernel and near 50% in the pull kernel.

Hybrid version (OpenMP + OpenCL) OmpSs version
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Figure 3. [Execution time of the push Figure 4. Execution time of the push
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In order to port an application to a certain platform, besides the possibility to reach the
maximum performance of it, the easiness of programming it is also important. The main
drawback of OpenCL is the low programmability because is a low-level programming language.
Therefore, it can be very time consuming to develop a code (meaning a low productivity).

To address this shortcoming, we ported the code to OmpSs [22] that is a task-based
programming model developed at Barcelona Supercomputing Center (BSC). It provides an
abstraction to the user which reduces programmer effort and unifies the SMP, heterogeneous and
cluster programming in one model. The programmer annotates sections of the code to parallelize
(tasks) with special directives. Over these tasks, the user can define data dependencies among
them and specify the device where these tasks can be executed. The runtime system will analyze
this information and automatically will schedule the execution of the tasks and perform the data
transfers.

Figure 4 shows the results of the ARM OmpSs version. We can see that the performance is
very stable and few tasks are enough to get the best performance for both kernels. Moreover,
OmpSs offers a reduction in programming complexity, since the number of OmpSs directives
included is far lower than the OpenCL calls included in the hybrid version (table 1).
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Table 1. Comparison between the hybrid version (OpenMP+OpenCL) and the OmpSs version.

Kernel Performance - best time (s) Programmability - Productivity
Hybrid OmpsSs OpenCL API calls OmpSs Directives

Push 6.02 6.92 161 12

Pull 10.31 10.83 167 18

5. Conclusions

This work confirmed the feasibility of porting a PIC code to an ARM-based platform. We have
developed a hand-tuned hybrid version (OpenMP + OpenCL) and an OmpSs version of the
most time-consuming kernels. Although OmpSs version is a bit slower than the hybrid version,
it is a simpler version and its productivity has improved considerably. We can say that OmpSs
simplifies the porting of codes to this new platform.

As future work we plan to code several state-of-art techniques to improve access to the data
(in this case, particle data) in the GPU. In particular, we will explore if the benefits of sorting
makes up for the extra sorting cost. Further, we will extend the implementation to several nodes
using the parallelization with MPI on a new prototype.
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