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ABSTRACT 

We study the temperature-dependent molecular dynamics, ion conduction and phase behavior of 

plastic-crystal electrolytes based on the succinonitrile molecule. We employ calorimetry and 

dielectric spectroscopy to probe binary mixtures of succinonitrile with glutaronitrile or 

acetonitrile, and analyze also the effect of dissolving lithium salts in these systems. The 

glutaronitrile-succinonitrile mixture has the highest conductivity and it is the only plastic-crystal 

system that displays a perfect correlation between the ion drift and the on-site reorientational 

dynamics. Doping with lithium ions boosts the conductivity but breaks such perfect correlation. 

All these features can be rationalized assuming that conduction is due to self-diffusion of a 

minority of ionized dinitrile molecules. Doping with lithium salts slows down the collective 
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molecular dynamics, while leaving unaffected the intramolecular relaxation motion. All samples 

exhibit a very broad melting transition and exist in a mixed liquid plus plastic state near room 

temperature. Some mixtures undergo phase segregation below 233 K, the transition temperature 

between the plastic and the fully order solid phase in pure succinonitrile, resulting in the 

appearance of a space-charge relaxation loss. Phase separation plays therefore an important role 

in pristine and lithium-doped succinonitrile mixtures. 
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Introduction. 

Plastic crystals are molecular solids that display at the same time translational order, with the 

molecular average centers of mass defining a crystal lattice, and dynamic orientational disorder, 

with the constituent molecules undergoing on-site tumbling motions.1,2 The term “plastic crystal” 

reflects the plasticity of most of these orientationally disordered phases, which arises from the 

presence of lattice defects near which the molecules exhibit also translational (diffusion) 

dynamics. Plastic crystals exhibit a phenomenology similar to that of glass-forming materials, 

displaying in particular a continuous dramatic slow-down of collective rotational motions (the 

so-called α relaxation) upon cooling,3,4 which in some cases even leads to a glass-like transition 

associated with the rotational freezing.5,6 

Plastic-crystalline ionic conductors are very interesting as electrolytes for electrochemical 

devices, because their mechanical flexibility reduces the problem of poor electrical contact with 

the electrodes caused by volume changes of solid electrolytes, while eliminating the leakage 

problems associated with liquid ones.7,8 It has been suggested that charge transport in molecular 

ionic conductors with orientational disorder may be boosted by the molecular reorientational 

dynamics, and several efforts have been directed in the past years to investigate a possible 

connection between molecular reorientational dynamics and ionic charge transport.7,9–11 

However, evidences for such a connection in plastic crystals have been elusive. In the plastic-

crystal phase of a phosphonium hexaphosphate, the ion conduction was found to be enhanced by 

the rotational motion of the phosphonium ions.12 More recently, the first-ever evidence of a 

direct correlation of ion drift and molecular reorientational dynamics was reported in a plastic 

succinonitrile-glutaronitrile cocrystal at high succinonitrile content.6 
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Succinonitrile (N≡C–(CH2)2–C≡N) forms a plastic-crystal phase that behaves as a solid ion or 

proton conductor in the presence of ionic impurities or when doped with acids or lithium salts, 

which has led several authors to suggest a possible application as plastic electrolyte.13–16 Since 

the plastic phase already melts at 331 K while higher temperatures are generally needed for 

electrochemical applications, mixed polymer-succinonitrile electrolytes have been implemented 

to achieve higher mechanical stability. Indeed, when mixed with polymers such as 

polyacrylonitrile or polyethylene terephthalate, Li-salt doped succinonitrile exhibits mobilities 

that are up to a factor of 50 higher with respect to pure succinonitrile.17,18 We study here the 

conduction properties, phase behavior and molecular dynamics of mixed samples of 

succinonitrile with two other nitriles (glutaronitrile and acetonitrile), both pure and doped with Li 

salt. 

The plastic-crystalline phase of pure succinonitrile has body-centered cubic (bcc) structure of 

space group Im3m.19,20 In this phase the succinonitrile molecules exist in three isomeric 

conformations, namely two gauche isomers with C2 molecular symmetry and a less abundant 

trans isomer with C2h symmetry, which are interrelated by 120º-rotation about the central C–C 

bond.19,21,22 The bcc cell contains two nonequivalent molecules, both with their C–C bond 

oriented along the diagonals of the cube.13,21–25 At temperature lower than 233 K, a fully ordered 

monoclinic phase becomes stable, where all molecules are in a gauche conformation.23,26,27 The 

disorder in plastic succinonitrile is associated with trans-gauche isomeric fluctuations involving 

a rotation about the central C–C bond of the molecules and to molecular jumps from one 

diagonal position of the bcc cell to another.21,25 This leads to a significantly lower density of the 

bcc plastic phase compared with the fully ordered monoclinic structure.20 It has been proposed 

that the trans isomers act as ‘impurities’ that favor charge transport, creating vacancies that 
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allow molecular and small-ion diffusion.23 Similarly, the higher conductivity observed in the 

succinonitrile-polymer mixtures mentioned above was ascribed to the enhanced molecular 

dynamics of succinonitrile inside the looser environment of the polymer matrix.17 

In spite of these suggestions and of the widespread belief that the orientational dynamics in 

plastic succinonitrile is beneficial to its high ionic mobility, however, the correlation between the 

molecular dynamics and the ionic mobility in succinonitrile systems is controversial.6,28 To reach 

a fuller understanding of charge conduction and molecular dynamics in succinonitrile-based 

plastic materials, we perform dielectric spectroscopy experiments on pure and lithium-salt doped 

binary plastic cocrystals of succinonitrile with glutaronitrile or acetonitrile, at high succinonitrile 

concentration. Glutaronitrile (N≡C–(CH2)3–C≡N) is chemically very similar to succinonitrile 

(both are alkane-dinitriles), yielding a relatively good miscibility even in the solid state;28,29 

moreover, the addition of glutaronitrile in sufficient amount effectively enlarges the temperature 

range in which the plastic phase can be supercooled and thus the available experimental range.28 

On the other hand, acetonitrile (N≡C–CH3) is a universal solvent, and mixing it with 

succinonitrile allows exploring the effect of the reduction in density of the nitrile groups. 

Dielectric spectroscopy is a particularly suited tool for such study as it allows probing, by means 

of a single technique, both the dc conductivity and the relaxation motions in polar systems. 

With respect to our previous work presented in Ref. 6, we confirm the existence of a perfect 

correlation between the dc conductivity and the orientational dynamics in pure succinonitrile-

glutaronitrile mixtures, by further showing that it holds in a relatively wide stoichiometry range. 

We also show that this correlation acquires a deeper meaning using the so-called modulus 

representation, by which it is found that the ratio between the frequencies of the conductivity 
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relaxation and that of the collective dipolar relaxation is a linear function of temperature with 

exactly the same slope for all mixtures, a result that bears a direct resemblance with the 

fundamental Einstein relation, 𝐷 𝜇⁄ =  𝑘𝐵𝑇 𝑒⁄ . These results indicate that the succinonitrile-

glutaronitrile system is a unique example of solid phase possessing liquid-like properties. In 

contrast, we show that the correlation does not hold for pure succinonitrile or succinonitrile-

acetonitrile mixtures (or in Li-salt doped samples), and discuss the possible role of glutaronitrile 

molecules for the validity of the Einstein relation. We also report on two more relaxation 

mechanism in the cocrystals, namely a space-charge relaxation and an intramolecular dipolar 

dynamics, and further show that partial phase transitions and phase segregation take place, a fact 

that has consequences for the possible utilization of succinonitrile-based mixtures as electrolytes. 

Experimental Methods. 

Succinonitrile (SN, 99%), glutaronitrile (GN, 99%), acetonitrile (AN, 99.7%) and three lithium 

salts (LiBF4 98%, LiCF3SO3 99.995%, and LiN(CF3SO2)2 99.95%) (Sigma Aldrich; the 

percentage in parenthesis is the molar purity) were weighted and mixed in the correct proportions 

to obtain the desired stoichiometries. The undoped mixtures were obtained by dissolving the 

succinonitrile powder in liquid glutaronitrile or acetonitrile. A small amount of a lithium salt, 

preheated to 400 K to avoid the presence of water, was added in some cases. Sonication at 330 K 

(above the melting point of the mixtures) was used to favor homogeneous mixing prior to 

calorimetric and dielectric measurements. Differential-scanning calorimetry measurements were 

carried out upon heating between 200 K and 350 K at a rate of 5 K min–1 (while cooling DSC 

rates were of 10 K min–1), using a Q100 calorimeter from TA-Instruments. 
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For dielectric measurements, carried out in the frequency (f) range from 10–2 to 109 Hz, the 

sample was placed in liquid form inside a home-made stainless steel capacitor specially designed 

for liquid samples, and loaded inside a nitrogen-gas flow cryostat (Quatro) to achieve sample 

temperature control. Isothermal frequency scans were acquired in the range between 350 and 130 

K (with a stability of ±0.3 K) upon cooling the sample from the liquid phase to ensure the 

maximum homogeneity. For measurements between 10–2 to 5∙106 Hz a Novocontrol Alpha 

analyzer was employed, using a parallel-plate capacitor geometry for the sample; for 

measurements in the range from 106 to 109 Hz, a HP4291 impedance analyzer was employed in 

reflectometry geometry, with the sample capacitor mounted at the end of a coaxial cable. 

The isothermal dielectric spectra are complex functions of frequency that can be displayed in 

several representations, for example as complex permittivity ε (consisting of the dielectric 

function ε’(f) and the loss spectrum ε”(f)), as complex conductivity σ = i 2πf ε0 ε (of which the 

real part σ’(f), called ac conductivity, describes charge conduction in the sample), or as modulus  

M = 1/ε (of which the imaginary part M”(f) contains information on both dielectric and dc-

conductivity loss processes, see main text).30 

Results and Discussion. 

Figure 1 shows the dielectric function ε’(f), dielectric loss ε”(f), ac conductivity σ’(f) and 

imaginary modulus spectra M”(f) of the plastic phase of a SN0.87GN0.13 sample between 140 and 

250 K. Similar results (not shown) were obtained also at slightly lower or higher GN 

stoichiometry, and also in the plastic-crystal phase of pure SN and of SN-AN mixtures, albeit in 

a smaller temperature range than that of Fig. 1 since SN and SN-AN mixtures underwent a 

transition to a fully ordered crystal phase between 233 and 220 K upon cooling. At temperatures 
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above 300 K (not shown) the spectra exhibited a clear change of lineshape signaling the 

transformation from the plastic crystal to the liquid. This confirms that the data shown in Fig. 1 

are relative to the plastic phase and not to a possible supercooled liquid phase. 28 Analogous 

liquid-to-plastic transitions were observed in pure SN and in SN-AN mixtures, as discussed also 

in the following. 

The dielectric function (Fig. 1a) exhibits at low frequency a plateau corresponding to the static 

relative permittivity εs of the sample. This is followed at higher frequency by a drop in the value 

of ε’, which takes place at the characteristic frequency (fα) of the so-called primary or α-

relaxation, visible as a peak the loss spectra (Fig. 1b). The α relaxation is the spectral signature 

of the collective reorientational motions of the molecular dipoles under the applied ac field. The 

α-relaxation frequency fα coincides with the step-like decrease in ε’(f) due to the Kramers-Kronig 

causality relations.30 As visible in both panels (a) and (b), fα shifts to smaller values as the 

temperature is decreased, as a lower thermal energy entails slower molecular dynamics. It may 

be observed from panel (b) that the α process reaches a frequency of 10–2 Hz at around 143 K. 

This temperature is consistent with the glassy transition temperature measured by calorimetry 

(between 143 and 150 K depending on the stoichiometry).28 For clarity, in the loss spectra 

(Figure 1b) only the α relaxation peak is shown; the dc-conductivity background inversely 

proportional to the frequency, normally visible as a straight line in the low-frequency portion of 

the logarithmic loss spectrum,31 is instead omitted for better clarity. 

Dielectric spectroscopy is only sensitive to the change in the dipole moment of the sample, hence 

to changes of the molecular orientation (rotations or rototranslations). Although (as mentioned in 

the introduction paragraphs) in plastic crystalline phases there is in general a contribution to the 

molecular dynamics from rototranslational processes due to a minority of molecules diffusing 
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through lattice defects, 7,12,32,33 the α relaxation feature stems mainly from pure-rotation motion 

of the majority molecules at a fixed position in the bcc lattice.    

 

Figure 1. Logarithmic spectra of the dielectric function (a), dielectric loss (b), ac conductivity 

(c) and modulus spectrum (d) of the plastic-crystal phase of SN0.87GN0.13, at the indicated 

temperatures. 

The ac conductivity spectra (Fig. 1c) exhibit a horizontal plateau at intermediate or low 

frequencies, corresponding to the dc conductivity regime. Especially at high temperature, the 

conductivity is observed to decrease at the lowest frequencies (spectral bending) due to the 

accumulation of ions at the electrode-sample interface (electrode polarization effect). At high 

frequency, the σ’ spectra display a bump-like feature in correspondence with the α relaxation (as 

expected because σ’ = 2πf ε0ε”). The modulus spectra M”(f) (Fig. 1d) are characterized by two 

peaks of quite different shape and intensity, a more intense peak at high frequency, 
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corresponding to the dielectric α relaxation loss, and a weaker one at low frequency, referred to 

as dc-conductivity peak. It may be observed that the dc-conductivity peak in the modulus 

representation is centered at a frequency fσ which lies approximately in the middle of the plateau 

corresponding to the dc conductivity in the σ’ spectra. 

From dielectric data such as those presented in Fig. 1 one may obtain, for each measurement 

temperature, the value of the static permittivity, the dc conductivity σdc, the characteristic 

frequency fα of the collective α process, and the characteristic frequency fσ of the dc-conductivity 

loss (lower-frequency modulus peak). The value of σdc was taken to be value of the ac 

conductivity spectra σ’(f) (panel b) in the middle of the plateau. In order to obtain fα and fσ, the α 

feature in the dielectric loss spectra (b) and the dc-conductivity peak in the modulus spectra (d) 

were fitted assuming a Havriliak-Negami profile, whose analytical expression for the 

permittivity is:30 

(Eq. 1) 𝜀𝐻𝑁(𝑓) = 𝜀∞ + Δε
�1+(𝑖2π𝑓/𝑓𝐻𝑁)𝛽�

𝛾. 

Here, ∆ε = εs – ε∞ is the dielectric strength (equal to the step variation of the real part of the 

permittivity ε’, and proportional to the density of molecules taking part in the relaxation 

process), and ε∞ and εs are the high-frequency and static low-frequency limits of ε’(f). The 

parameters β and γ, which lie in the range from 0 to 1, are related with the shape and asymmetry 

of the relaxation loss lineshape; finally, fHN is a fitting parameter from which the characteristic 

frequency fmax at which the dielectric loss is maximum is obtained as: 

(Eq. 2) 𝑓𝑚𝑎𝑥 = 𝑓𝐻𝑁 �sin 𝛽𝜋
2+2𝛾

�
1 𝛽⁄

�sin 𝛽𝛾𝜋
2+2𝛾

�
−1 𝛽⁄

. 
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Similar equations can be given for the Modulus spectrum and for the frequency of spectral 

maximum fσ.30 The Havriliak-Negami function is a phenomenological generalization of the 

Debye model, given by: 

(Eq. 3) 𝜀𝐷𝑒𝑏𝑦𝑒(𝑓) = 𝜀∞ + Δε
1+𝑖2π𝑓/𝑓𝐷

, 

where fD is the Debye frequency (the frequency of maximum loss in this model). 

Fig. 2 shows the Arrhenius plots of fα (a) and σdc (b) of the SN0.87GN0.13 cocrystal as obtained 

from the dielectric spectra of Fig. 1. In the same figure we also report the analogous values 

obtained for the plastic phases of pure SN and of a mixture with acetonitrile. It may be observed 

from Fig. 2a that the α relaxation frequency in SN0.87GN0.13 at a given (high) temperature is 

virtually identical to that of pure SN. In fact, for all studied SN-GN mixtures, the α peak is 

observed at roughly the same frequency position independent of the stoichiometry (not 

shown).6,28,29 These observations are consistent with the fact that the glass transition temperature 

of SN-GN mixtures is almost constant regardless of the stoichiometry,29 indicating that the 

molecular dynamics in the presence of GN is identical (or at most only slightly slower than) that 

in pure SN. 

Both pure SN and SN0.92AN0.08 display a phase transition to a fully-ordered crystal phase 

below 233 K. This is visible by the sudden decrease of the dc conductivity around this 

temperature (Fig. 2b), and by the fact that only the SN-GN mixture displays a relaxation 

frequency down to low T (Fig. 2a). In the case of pure SN, the conductivity drops by roughly 

three orders of magnitude in the fully-ordered phase compared to its value in the plastic phase. 

Such conductivity drop is expected because the ionic mobility is lower in the perfectly ordered 

crystal phase due both to its higher density20 with respect to the plastic phase and to the absence 
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of the beneficial effect of molecular rotations.6 For SN0.92AN0.08 the drop in σdc is only of one 

decade, possibly due to an only partial phase transformation or to a larger concentration of 

defects due to the size mismatch between SN and AN moieties. It may be observed from Figure 

1 that a partial transition to a fully ordered phase takes place (albeit at lower temperature) also in 

SN0.87GN0.13, where it is visible as a decrease of the static permittivity εs (Fig. 1a) and of the 

dielectric strength of the α relaxation (Fig. 1b) below 170 K.34 

 

Figure 2. Semilogarithmic plot of fα (a) and of σdc (b) vs 1000/T, for pure SN and for the 

SN0.87GN0.13 and SN0.92AN0.08 plastic cocrystals. (c,d) Walden plots of Log (σdc) (c) and of 

Log(fσ) (d) vs Log(fα) of SN1-xGNx samples at different GN content (x = 0, 0.07, 0.11, 0.13). The 

continuous lines are guides to the eyes with slope equal to 1. Insets: plot of σdc / (fα kBT) (c) and 

of fσ / (fα kBT) (d) vs temperature for the same samples (the vertical scales are in SI units). 
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It is worth noticing that the value of the dc conductivity in the plastic-crystal phase of pure SN 

and of the binary mixtures is remarkably high, considering that all nitrile molecules are neutral 

closed-shell molecules, so that no intrinsic electronic or ionic conduction is expected. In all 

samples, both the maximum loss frequency and the dc conductivity follow a super-Arrhenius 

temperature dependence, giving rise to a curved lineshape. A non-simply-activated behavior of 

the relaxation frequency is rather common feature in glass forming materials and plastic 

phases,35,36 and it is consistent with recent studies on the SN-GN binary system,6,28 where it was 

shown that the temperature dependence of fα (a) and σdc can be described by the Vogel-Fulcher-

Tammann equation.30 The negative curvature in the Arrhenius plot of σdc (Fig. 2b) is 

characteristic of ionic conduction in disordered systems,28 while electronic conduction leads to a 

positive curvature.37 The relatively high conductivity of succinonitrile plastic phases is therefore 

indicative of a very high mobility of ionic impurities. With respect to pure SN and to the 

cocrystal of SN with AN, the SN-GN system displays yet higher conductivity (as visible in Fig. 

2b), by a factor between 2 and 3 depending on the concentration. 

Figure 2c shows the plot of Log(σdc) vs Log(fα) (Walden plot) for a series of SN1–xGNx samples 

(x = 0.07, 0.11, 0.13) and for pure SN. At least at low temperatures, the plot of all SN-GN plastic 

cocrystals exhibit a slope close to one, i.e., they follow the so-called Walden rule characteristic 

of ideal electrolyte solutions. This is quite unexpected for translationally ordered solids.6 The 

Walden rule states that in dilute electrolyte solutions the product of the limiting molar 

conductivity and the solvent’s viscosity η (which is proportional to the frequency fα of collective 

diffusion processes in the solvent) is constant;38 it is a consequence of the Stokes-Einstein 

relation, according to which the motion of bulky ions in a viscous liquid is limited by the 

viscosity of the medium, so that 𝐷
kB𝑇 𝜂

≃ 𝑐𝑜𝑛𝑠𝑡, where D is the diffusivity (proportional to the 
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conductivity σdc) and kB is Boltzmann’s constant. This relation is valid for solutions of large, 

weakly coordinating ions in solvents with nonspecific ion-solvent interactions.39 

The plot of σdc / (fα kBT) vs temperature is shown in the inset to Fig. 1c. It may be observed 

that all studied SN1-xGNx samples fulfill the Stokes-Einstein relation (at least at low 

temperature). This observation confirms the existence of a perfect correlation between molecular 

reorientations and ionic conductivity in the SN-GN mixtures.6 In the case of the SN0.93GN0.07 

sample, σdc exhibits a kink just below the transition temperature to the fully ordered phase 

(monoclinic) of pure SN (233 K). The presence of a kink and the simultaneous observation of 

relaxation dynamics below this temperature are clear indications that the SN0.93GN0.07 sample 

undergoes an only partial transition to the fully ordered phase, i.e., a de-mixing into quasi-pure 

SN ordered crystals and plastic domains richer in GN, the latter displaying relaxation dynamics 

also below 233 K. For this sample, the Stokes-Einstein and Walden relations appear to be valid 

only at low temperature, where the GN concentration in the plastic domains is higher. Instead, 

above 233 K neither pure SN nor SN0.93GN0.07 follow a Walden behavior. 

Some authors have pointed out that the modulus representation M”(f) is better suited than the 

ac conductivity to extract information on the microscopic properties of ion transport.40,41 Figure 

2d and its inset show the Walden plot and the Stokes-Einstein plot obtained for the same samples 

but using the frequency fσ of the modulus maximum instead of σdc (see Experimental Methods). 

The anomaly near 233 K is much less pronounced in the logarithmic plot of fσ vs fα, leading to an 

overlap of all Walden plots. This indicates the microscopic ion diffusion processes are not 

significantly affected by the partial solid-solid phase transformation. In fact, the ratio fσ / (fα kBT) 

is independent of temperature in all cases, and it has moreover approximately the same value 
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(~1015 J–1) for all GN stoichiometries. This confirms once more that the microscopic diffusion of 

ionic species is perfectly correlated with the on-site molecular rotations in these plastic crystals. 

The applicability to a plastic crystal of a Stokes-Einstein rule involving molecular rotations is 

surprising, given that translational and rotational degrees of freedom are in general independent 

from each other; to the best of our knowledge, the SN-GN plastic cocrystals are the only 

examples of such connection, while other plastic crystals show in general a decoupling of charge 

carrier diffusion and orientational dynamics. We argue that there are only two possible 

conduction mechanisms that may rationalize the results presented in Fig. 2. The first one is the 

incoherent inter-molecular hopping of protons or other moieties able to form ionic complexes 

with the nitrile species (Grotthuss exchange). According to the Grotthuss’ mechanism 

consecutive hops in the same direction can only occur if the molecules reorient during or in-

between hops,42 so that charge hopping is effectively limited by the on-site molecular rotational 

dynamics. 

Another, more likely explanation was already suggested in Ref. 6: if charge transport is due to 

the self-diffusion of a fraction of ionized nitriles through structural defects, then a correlation 

between σdc and fα may result from the similarity of rotational and diffusional timescales reported 

for the SN-GN binary system.29 For example, charged molecular impurities might be present in 

the as-received materials; also, pairs of oppositely charged molecular ions may form by loss of a 

molecular hydrogen via protonation of a nitrile group (although the equilibrium constant for such 

process is relatively low14) or by reaction with impurity water molecules. On the other hand, the 

simple scenario of small-ion (H+) drift through the intermolecular voids would not lead to the 

validity of the Stokes-Einstein relation, as it will be shown in the case of Li+ ions in the final part 

of this work. 
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The dc conductivity is the product of the charge density and the ion mobility μ. Assuming 

singly ionized molecules and similar mobilities of both positive and negative molecular ions (or 

else a single dominant type of carrier), the dc conductivity can be written as 𝜎𝑑𝑐 =  𝑛𝑒𝜇 where e 

is the elementary charge and n is the number density of charged species. The molecular mobility 

can be estimated from the coefficient of self-diffusion D by means of the Einstein relation 

𝐷 =  𝜇𝑘𝐵𝑇 𝑒⁄ . For pure SN, taking the value of σdc ≃ 4 ∙ 10–5 S/m observed in Fig. 1b at room 

temperature (298 K) and the diffusivity of D = 1.3 ∙ 10–10 m2/s obtained by NMR pulsed field 

gradient diffusion experiments in Ref. 15, the molecular ion density is found as n ∼ 5 ∙ 1022 m– 3. 

Since the total number density of molecules in pure SN is20 7.867 ∙ 1027 m– 3, this entails that of 

the order of one molecule every 105 in pure SN is ionized and mobile. If the observation of very 

similar relaxation frequency may be taken as indication that the diffusivity is the same in all 

samples, then the higher value of σdc in SN-GN plastic crystals entails that the fraction of ionic 

and mobile molecules is higher in the SN-GN mixture by a factor equal to the ratio of the 

respective dc conductivities, i.e. at least by a factor of 2. Another possibility is that the self-

diffusion rate is higher in the SN-GN mixture due to a less compact bcc arrangement induced by 

the steric mismatch between SN and GN molecules. It should be recalled from the introduction 

that an earlier study suggested that the trans succinonitrile isomers in pure SN act as “impurities” 

facilitating self-diffusion and ion conduction; the same might be true for GN moieties present in 

mixtures with low GN concentration. 

Fig. 3a shows the DSC curves of SN0.93GN0.07 and SN0.85GN0.15 acquired upon heating from 

low temperature after cooling the homogeneous liquid mixtures. Both thermograms display, 

besides an extended endothermic feature above room temperature, also a weaker endothermic 

feature well below it. This entails that the transition from the plastic phase to the liquid does not 
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occur at once; rather, melting of the plastic crystal starts below 0 ⁰C and is only complete 

slightly above room temperature. These lineshapes are typical of binary mixtures, where solid-to-

liquid transitions normally occur in two steps: nucleation of the liquid phase takes place across 

the lower-temperature endotherm, followed by a temperature interval in which the sample 

coexists in a liquid and solid phase (each in a different amount and with distinct stoichiometry); 

melting is only completed in correspondence with the second peak at higher temperature. The 

same behavior was observed in succinonitrile doped with LiBF4.14 

It may be observed from Fig. 3a that, with respect to pure SN, the final melting temperature is 

shifted to lower temperature the higher the GN doping level, as expected and in agreement with 

previous studies,28,29 and that the width of the higher-temperature DSC feature increases with 

increasing GN content. Given that in the temperature interval between the two DSC peaks of Fig. 

3a the sample is in a mixed phase, this entails that the succinonitrile mixtures are partially liquid 

at room temperature, a fact that prevents their application as solid-state electrolytes. The 

heterogeneity of the sample is also reflected in the anomalous behavior of the conductivity across 

the melting of the plastic-crystalline phase visible in Fig. 3b. This σdc anomaly was not reported 

in Ref. 6 as the authors focused there on the dynamics at lower temperature, where no liquid 

phase is present. It may be observed that even for pure succinonitrile the dc conductivity displays 

non-monotonous changes across the liquid-plastic transition upon cooling. 
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Figure 3. (a) DSC spectra of pure SN, SN0.93GN0.07 and SN0.85GN0.15, acquired upon heating. (b) 

Arrhenius plot of the dc conductivity of different SN-GN mixtures. (c) Low-frequency portion of 

the loss spectra of a SN0.93GN0.07 sample between 177 and 229 K every 4 K. The inset shows a 

full spectrum where both the space-charge and primary relaxations are visible. (d) Arrhenius plot 

of the space-charge (SC) relaxation of the same sample. The α relaxation frequency is also 

shown for comparison. 

At lower temperature the temperature-dependence of the dc conductivity is strongly affected by 

the (partial) transition to the fully ordered phase, which as discussed is marked by a sharp drop in 
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pure SN and by a kink in SN0.93GN0.07. Concerning such solid-solid transition, it is interesting to 

note that the spectra of the roughly equimolar SN-GN mixture of Ref. 28 are characterized, apart 

from the α relaxation, also by a weaker loss feature at frequencies intermediate between the 

primary relaxation and the low-frequency conductivity background. The authors of Ref. 28 have 

suggested that this loss feature may be related to the ionic conduction. One possible explanation 

for the existence of this feature could be a conductivity-related space-charge dielectric loss 

associated with the sample’s heterogeneity.37 To test this idea, we compare our results on the 

SN-GN mixtures at lower GN stoichiometry with the results of Ref. 28 at higher GN content. 

The inset to Fig. 3c depicts the loss spectrum of the SN0.93GN0.07 sample at 201 K. A loss 

feature is observed at a lower frequency (fSC) than that of the α relaxation. Fig. 3c shows the 

temperature evolution of this second feature, as measured upon cooling from just below 233 K, 

the transition temperature between plastic and fully-ordered phases in pure SN. The intensity of 

the feature is always lower than that of the α peak and varies non-monotonically with 

temperature: it is completely absent above 233 K (not shown), temperature at which it suddenly 

appears in the loss spectrum, and it then decreases with decreasing temperature. The 

characteristic frequency of this loss feature, as extracted from a Debye fit (Eq. 3), is displayed in 

Fig. 3d. The origin of the loss feature is the spatial heterogeneity of the sample’s conductivity 

and permittivity below 233 K: the partial phase transformation entails the appearance of fully-

ordered crystallites with higher density, lower conductivity, and different static permittivity than 

the untransformed plastic matrix. Under an applied ac field, this heterogeneity leads to 

accumulation of ions at the boundaries between the two solid phases, resulting in a characteristic 

dipolar loss associated with space-charge effects37,43 (sometimes referred to as Maxwell-Wagner-

Sillars30 relaxation). The phase boundaries are absent above 233 K, where the mixture is in a 
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homogeneous plastic phase, which confirms our identification of the loss feature. As visible in 

Fig. 1c, this loss is not observed in the SN0.87GN0.13 sample, at least above 170 K. 

Given that the spectral position and shape of the loss feature of the nearly equimolar SN-GN 

mixture are very similar to those of the SN0.93GN0.07 sample, and considering that the Authors of 

Ref. 28 indicate a possible conductivity-related origin of this feature, it is likely that a partial 

phase separation leading to field-induced space-charge effects takes place in the nearly 

equimolar stoichiometry (where the miscibility of binary systems is usually lowest). From Fig. 

3b it is clear that the σdc value for SN0.93GN0.07 near 233 K cannot be taken to be indicative of the 

(homogeneous) mixture; rather, in such mixture ion transport is limited to the plastic domains, 

which represent only a fraction of the total volume of the sample. This suggests that also the 

conductivity values reported in Ref. 28 may not be intrinsic to a homogeneous phase and that 

they may be actually limited by domain-boundary effects, which would rationalize why the 

Stokes-Einstein relation with σdc is not verified in the equimolar SN-GN mixture.28 The above 

discussion indicates that the issue of phase separation is an important aspect of the phase 

behavior of succinonitrile-based mixtures, an aspect that has not been fully explored so far, and 

that as we will show in the following is also relevant for SN mixtures with lithium salts. 

Given that succinonitrile has been proposed as basis material for novel solid-state electrolytes 

supporting Li-ion conduction,14–18 it is interesting to study the molecular dynamics and 

conduction properties of SN-based systems upon doping with lithium salts. Fig. 4a displays low-

temperature loss spectra acquired on the SN0.89GN0.11 plastic co-crystal. The sample exhibits a 

secondary relaxation at higher frequency (lower temperature) than the primary α process; this 

fast relaxation was reported also in the nearly equimolar mixture,28,29 but its exact origin was not 

identified.28 We refer to this relaxation as γ relaxation to maintain the nomenclature of Ref. 28. 
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As visible in the Arrhenius plot of Fig. 4b, the characteristic frequency fγ of the fast relaxation 

(obtained by a fit of the dielectric loss data assuming a Havriliak-Negami profile, Eq.s 1 and 2) is 

fundamentally unchanged in the presence of Li+ ions. Comparison with the data of Ref. 28 shows 

that it is also barely influenced by the stoichiometry. This entails that the γ relaxation is an 

intramolecular (conformational) dynamic process which is not affected by intermolecular 

interactions or by the presence of ions. The γ relaxation might correspond to transitions between 

different isomeric forms of the dinitrile species. Instead, the frequency fα of the collective 

relaxation process is lower in Li-doped mixtures (especially at lower temperature), due to the 

stronger local interactions brought about by the presence of the Li+ ions and the counter-ions.6,44 

Fig. 4c shows a series of loss spectra acquired on the SN0.87GN0.13 mixture doped with 

LiCF3SO3. The spectra below 190 K are characterized by the presence (besides the α feature) of 

an intense space-charge relaxation, indicating that the sample is in a mixed solid phase at low 

temperature. The frequency of the space-charge relaxation is higher in LiCF3SO3-doped 

SN0.87GN0.13 mixture than in the SN0.93GN0.07 sample (Fig. 3); it should be noted that the pristine 

SN0.87GN0.13 mixture displays partial transformation to the fully ordered phase only below 170 

K, and that no space-charge relaxation is visible in this sample (see Fig. 1). Similar results were 

obtained also in the LiBF4-doped and LiN(CF3SO2)2-doped SN0.87GN0.13 samples (not shown).  
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Figure 4. (a) Dielectric loss spectra of the SN0.89GN0.11 plastic cocrystal, in the temperature 

range between 151 and 121 K, where a secondary (γ) relaxation is visible (at higher frequency 

than the α peak). (b) Arrhenius plot of fα and fγ for the same sample and for the LiCF3SO3-doped 

SN0.87GN0.13 mixture.  (c) Loss spectra of the LiBF4-doped SN0.87GN0.13 mixture between 181 

and 165 K. (d) Arrhenius plot of the dc conductivity of the SN0.87GN0.13 sample doped with three 

different lithium salts, compared to that of pure SN. 

The dc conductivity of pure SN and of SN-polymer mixtures increases significantly upon 

doping with lithium salts, due to the higher ion density.13–18 The same is true also for the binary 

nitrile mixtures studied here, as visible in Fig. 4d, which shows the dc conductivity of the 

SN0.87GN0.13 sample doped with three different lithium salts (LiBF4, LiCF3SO3, and 
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LiN(CF3SO2)2) compared with that of pure SN. The Li-doped mixtures exhibit all a kink at a 

temperature similar to or lower than that of the onset of the liquid-to-plastic transition in the SN-

GN mixtures (see Fig. 3a). This kink is due to the fact that the Li-ion conductivity is generally 

lower in a (partially) plastic crystalline phase than in the liquid. For all Li-salt doped samples we 

observed the breakdown of the Walden and Stokes-Einstein relation, as reported for the LiBF4-

doped mixture in Ref. 6, which is indicative of a decoupling between small-ion diffusion and 

nitrile reorientations when the conductivity is dominated by Li+ ions. This shows that the 

correlation between conductivity and molecular rotational dynamics is only present in the 

undoped materials, where conduction is dominated by self-diffusion of ionized molecules. If 

charge transport in the undoped mixtures were mediated by the simple drift of atomic or 

diatomic ions though the interstitial voids, one would expect the same lack of correlation 

between ion drift and rotational dynamics. In other words, the validity of the Stokes-Einstein 

relation only in the undoped co-crystals rules out that the ionic conduction of pristine mixtures is 

due to H+ or OH– ions, confirming our interpretation of the anomalously high ionic conductivity 

of nitrile cocrystals as due to self-diffusion. 

As a final remark, we point out that the SN0.93GN0.07 sample doped with LiBF4 could be 

partially supercooled from the liquid phase without transforming completely into a solid phase 

(not shown). The possibility of supercooling SN-GN mixtures was reported in Ref. 29, but only 

at very high GN content, while the undoped SN0.93GN0.07 sample undergoes a transition to the 

plastic phase and even partial crystallization at lower T, as discussed above. The possibility of 

partially supercooling the Li-doped sample suggests that the stronger ionic interactions and/or 

the presence of the third molecular component (the BF4
– counterions) is able to partially preserve 

the liquid state. This result and Fig. 4c show that if a specific SN mixture is to be considered for 
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electrolyte applications, the issue of phase separation induced by Li-ion doping should be 

investigated. 

Conclusions. 

We employed scanning calorimetry and dielectric spectroscopy to probe the plastic cocrystals 

formed by succinonitrile with glutaronitrile and acetonitrile. The samples display a tendency to 

phase-segregate: the liquid-to-plastic transition takes place across a wide temperature interval, 

and the transition from the plastic phase to the fully-ordered low temperature phase sometimes 

leads to the formation of succinonitrile-rich domains surrounded by a plastic matrix. Stable and 

homogeneous plastic-crystalline phases appear to form only when adding to succinonitrile 

specific (low) amounts of glutaronitrile. These solid mixtures display self-diffusion of a minority 

of neutral and ionized molecules, which give rise to an exceptionally high ionic conductivity at 

room temperature. The succinonitrile-glutaronitrile plastic samples are found to obey the Walden 

and Stokes-Einstein rules typical of liquid electrolytes, which is a wholly unexpected feature for 

a plastic-crystalline phase. In detail, the ratio fσ / (fα kBT) is a temperature-independent constant 

equal to approximately 1015 J–1 for all studied succinonitrile-glutaronitrile mixtures. 

The Stokes-Einstein relations break down in the samples doped with lithium salts, which 

confirms that the rotation-drift correlation is only valid when charge transport is dominated by 

self-diffusion of bulky molecular ions, while the motion of smaller atomic ions is decoupled 

from the molecular dynamics. Doping with lithium boosts the ion conductivity and slows the 

collective molecular dynamics of the mixtures, while leaving unaffected the fast relaxation 

dynamics associated with intramolecular (configurational) changes. Given that all mixtures are 

partially liquid at room temperature, they cannot be employed as solid-state Li+-ion electrolytes. 
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