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1 INTRODUCTION

Predicting the strength of interactions between globular pro-

teins is a central and important topic in structural

bioinformatics (Moal et al., 2013). The amino acid sequence rep-

resents the chemical bonding in a protein which, along with the

solvent, dictates how it folds into an ensemble of thermally ac-

cessible states. In turn, structure specifies the strength and iden-

tity of its binding partners, by establishing the specific

arrangements of intermolecular interactions and the intramo-

lecular strain required to achieve them. In a recent paper,

Yugandhar and Gromiha (2014) claim to be able to circumvent

this and predict protein–protein binding affinities directly from

sequence with astounding accuracy. In this letter, we highlight

that

(1) Feature selection by stepwise regression is applied without

employing an information criterion, y-scrambling or reg-

ularization, and the method is not validated using an outer

cross-validation loop or external validation set.

(2) The reported energy functions contain many terms that are

functionally unrelated to binding.

(3) The reported prediction errors are significantly lower than

experimental errors in the training set and variations due

to environmental factors.

(4) When an external test set is used, predicted affinities have

a correlation of approximately zero with experimental

data.

2 STEPWISE REGRESSION IS USED
INAPPROPRIATELY

The work employs stepwise regression, a greedy forward selec-

tion algorithm. The authors arbitrarily limit the number of

parameters to five per model, not including the constant, instead

of using the Akaike or Schwarz information criterion or an early

stopping set to stop feature selection. Even with these methods,

using leave-one-out cross-validation for feature selection can still

result in inappropriate components being selected. The algorithm

selects from 113 uncorrelated (r50.65) features. As the training

data is split into categories with a median of 12 complexes, the

number of parameters outweigh the number of observations by

an order of magnitude, making their method highly prone to

overfitting. A similar situation was encountered in some of the

kinetic rate constant models of Moal and Bates (2012), which

also employed stepwise regression. Even when early stopping

regularization was used, one of the models, with 27 observations

and 200 parameters to select from, gave an inner cross-validation

correlation of 1.0 and root mean square error of 0.0. However, in

this case an external model selection set was employed and used

to reject the model. An alternative validation would be to employ

an outer cross-validation loop around the stepwise regression, as

in the multivariate adaptive regression spline model reported in

Moal et al. (2011); the algorithm used an inner bootstrap aggre-

gating loop for feature selection and pruning, with an outer

leave-one-out cross-validation loop for validation, supplemented

by a final external validation set. Neither of these overfitting

avoidance strategies were employed in Yugandhar and

Gromiha (2014). Instead, the authors use the same metric for

performance evaluation as for selecting features. This gives rise

to the discordances below.

3 THE ENERGY FUNCTIONS ARE REPLETE WITH
FUNCTIONALLY IRRELEVANT TERMS

The energy functions include many terms calculated using amino

acid parameters taken from the AAindex resource (Kawashima

et al., 2008). These include features that are functionally irrele-

vant to binding, such as amino acid weights in neural networks

for secondary structure prediction, 1H NMR spin-spin coupling

constants, and conformational propensities for turns, double

bends, helix termini or interdomain linkers. Moreover, the

terms are not found consistently between functions; the only

term that is selected more than once is the Kerr constant for

the amino acids, which is a measure of how refractive index

varies in an applied electric field. As none of the selected

AAindex features are related to known factors relevant to pro-

tein–protein interactions, it is likely that these are selected be-

cause they fit the noise.*To whom correspondence should be addressed.
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4 GENERALIZATION ERROR IS LOWER THAN
EXPERIMENTAL ERROR IN THE TRAINING SET

In the 72 complexes in the antibody/antigen, non-cognate,

G-protein and miscellaneous categories, the cross-validated

mean absolute errors (MAE) are reported in the 0.2–0.4kcal/

mol range. This is below the experimental uncertainties estimated

in Kastritis et al. (2011) and Moal and Fernandez-Recio (2012)

by comparing differences in reported affinities determined by

different laboratories (around 0.4kcal/mol). Indeed, for the

G-protein and first miscellaneous category, the model error is

below the standard deviation typically reported from repeat

measurements within the same article using identical solutions,

conditions and equipment (up to 0.25 kcal/mol). Similar differ-

ences in binding can be found by varying the temperature in a

15 �C ambient temperature range or even changing the buffering

agent. Much greater differences arise from changing ionic

strength or pH, the latter of which can alter affinity by

1–2kcal/mol over the 5.5–8.5 range (Kastritis et al., 2011),

which is greater than the MAE reported in all functional cate-

gories. Further, the interactions used include complexes of sub-

nanomolar affinity, as determined using isothermal titration

calorimetry (ITC) and surface plasmon resonance (SPR). Both

SPR and ITC are prone to error when evaluating interactions of

such high strength, not to mention effects due to SPR tethering.

Taken together, this indicates that the reported cross-validated

prediction correlations (0.74–0.99, mean 0.91) and errors (0.18–

1.17kcal/mol, mean 0.5kcal/mol), cannot be used to estimate

generalization error and are a result of severe overfitting.

5 THE METHOD FAILS ON AN EXTERNAL
VALIDATION SET

Even when implemented correctly, high cross-validation perform-

ance is a necessary but not sufficient condition for a predictive

model (Golbraikh and Tropsha, 2002). The most stringent test of a

model is its performance on an external validation set, which pro-

vides an objective estimation of predictive value. Such a dataset is

shown in the Supplementary Data, derived from Chen et al. (2013)

by removing interactions involving chains of fewer than 50 residues,

aswell as complexeswhich overlapwith the trainingdata.Thesewere

submitted to the PPA-Pred web server (http://www.iitm.ac.in/

bioinfo/PPA_Pred/). For seven complexes, the server failed to

return a prediction (2OMZ, 2QNA, 3BEG, 3BLH, 3KNB, 3MCA

and 3OIQ). The results for the remaining interactions are shown in

Figure 1 and summarized in Table 1. A statistically insignificant

overall correlation of r=0.07 (P=0.67, n=39) is observed, with

MAE of 2.7kcal/mol. When looking at individual categories with

more than five members, statistically insignificant anti-correlations

are observed, with MAE ranging from 2.9 to 3.4kcal/mol. By con-

trast, the known weak anticorrelation with BSA, buried surface area

(Chen et al., 2013;Kastritis et al., 2011), is observed consistently in all

categories, and is statistically significant overall and in the miscellan-

eous category. In conclusion, themethod reported inYugandhar and

Gromiha (2014) has been evaluated on a blind test set and found to

have large errors and a correlation of approximately zero, which

more accurately reflects predictive value than the initial flawed

validation.
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Fig. 1. Predicted versus experimental binding affinities, categorized as

receptor (R), G-protein (G), enzyme/inhibitor (EI), enzyme/other (EO),

antibody/antigen (A) and miscellaneous (M)

Table 1. Summary of performance on external test set

Categorya N r P MAE rBSA pBSA

M 15 0.02 0.95 3.43 –0.64 0.01

R 9 –0.35 0.37 2.92 –0.14 0.72

G 6 –0.47 0.34 2.86 –0.53 0.29

EO 5 0.34 — 1.29 –0.85 —

A 2 – — 0.58 — —

EI 2 – — 1.78 — —

All 39 0.07 0.67 2.72 –0.34 0.03

aCategories as per Figure 1.
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