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Abstract

Here we consider a class of generalized linear chains; that is, the ladder–like chains
as a perturbation of a 2n–path by adding consecutive weighted edges between opposite
vertices. This class of chains in particular includes a big family of networks that goes
from the cycle, unicycle chains up to ladder networks. In this paper, we obtain the
Green function, the effective resistance and the Kirchhoff index of those ladder–like
chains as function of the the Green function, the effective resistance and the Kirchhoff
index of a path.
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INTRODUCTION

The Kirchhoff Index was introduced in Chemistry as a better alternative to other parame-

ters used for discriminating among different molecules with similar shapes and structures;

see? . Since then, a new line of research with a considerable amount of production has been

developed and the Kirchhoff Index has been computed for some classes of graphs with sym-

metries; see for instance8? and the references therein. This index is defined as the sum of

all effective resistances between any pair of vertices of the network and it is also known as

the Total Resistance;? .

To find the Kirchhoff index of a general network has a high degree of computational

complexity. Hence, it is of interest to find closed formulae for the effective resistance and

the Kirchhoff index. Some works have been published in this direction, for networks such

that cycles, hexagonal chain, distance–regular graphs, see .One can also raise the problem of

computing the Kirchhoff index of composite networks in terms of factors, .

In this work we deal with the computation of Green function, effective resistance and

Kirchhoff Index of generalized linear chain. These networks can be obtained from a 2n path

by adding edges between opposite vertices. Hence, they are a perturbation of the path and

we can apply the result obtained in5 to obtain the desired parameters.

Let Γ = (V,E, c) be a network ; this is a simple and finite connected graph with vertex

set V = {1, 2, . . . , n} and edge set E, where each edge (i, j) has been assigned a conductance

cij > 0. Moreover, when (i, j) /∈ E we define cij = 0, in particular cii = 0 for any i = 1, . . . , n.

The (weighted) degree of vertex i is defined as δi =
∑n

j=1 cij.

The combinatorial Laplacian of Γ is the matrix L, whose entries are Lij = −cij for all

i 6= j and Lii = δi. Therefore, for each vector u ∈ Rn and for each i = 1, . . . , n

(Lu)i = δiui −
n∑
j=1

cij =
n∑
j=1

cij(ui − uj).

It is well–known that Lu = 0 iff u = ae, a ∈ R and e is the all–1 vector. Moreover, the

multiplicity of 0 as eigenvalue of L is equal to the number of connected components of Γ. As

Γ is connected, the projector onto the trivial eigenspace is J/n, where J is the all–1 matrix,
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consequently (L+ J/n) is non–singular and we define the Green matrix of Γ as

G = (L+ J/n)−1 − J/n.

In other words, G is the Moore–Penrose inverse of the Laplacian matrix L.

For any pair i, j ∈ V , the effective resistance between i and j is defined as Rij = ui − uj,
where u ∈ Rn is any solution of the linear system Lu = ei − ej, where ei denotes the ith

unit vector with 1 in the ith position and 0 elsewhere. Note that Rij does not depend on

the chosen solution and in addition, the following equality holds,1

Rij = Gii +Gjj − 2Gij. (1)

It is well–known that, for any i, j, k ∈ V the triangular inequality Rij ≤ Rik + Rkj is an

equality iff k separates vertices i and j. The Kirchhoff index of Γ is the value1,2

k =
1

2

n∑
i,j=1

Rij = n
n∑
i=1

Gii. (2)

In order to define the objects we are going to work with, we first consider a fixed a path P

on 2n vertices, labelled as V = {1, . . . , 2n}. The class of generalized linear chains supported

by the path P , denoted by Ln, consists of all connected networks whose conductance satisfies

that ci = ci i+1 > 0 for i = 1, . . . , 2n − 1, ai = ci 2n+1−i ≥ 0 for any i = 1, . . . , n − 1 and

cij = 0 otherwise.

We define the link number of Γ as s = |{i = 1, . . . , n − 1 : ai > 0}| which corresponds

with the numbers of holes or quadrangles. So, the link number of Γ ∈ Ln equals 0 iff

a1 = · · · = an−1 = 0; that is, iff the underlying graph of Γ is nothing but the path P . On the

other hand, if the link number of Γ is positive there exist indexes 1 ≤ i1 < · · · < is ≤ n− 1

such that aik > 0 when k = 1, . . . , s, whereas aj = 0 otherwise, see Figure 1.

Generalized linear chains with link number s = 1 are unicycle. In particular, the 2n–cycle

corresponds to the case a1 > 0 and aj = 0, j = 2, . . . , n−1. A generalized linear chain whose

link number equals n− 1 is called a linear chain or ladder in the Graph Theory framework.

Let G and R be the Green function and the effective resistance of the path P . Since each

interior vertex in a path is a cut vertex, we get

Rij = Rmin{k,i} min{k,j} +Rmax{k,i} max{k,j}, i, j, k = 1, . . . , 2n. (3)
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Figure 1: A Generalized Linear Chain

The authors proved in3 that for any i, j = 1, . . . , 2n, the Green function of a path is

Gij =
1

4n2

min{i,j}−1∑
k=1

k2

ck
+

2n−1∑
k=max{i,j}

(2n− k)2

ck
−

max{i,j}−1∑
k=min{i,j}

k(2n− k)

ck

 ,
where we use the usual convention that empty sums are defined as zero. Therefore, the

effective resistance and the Kirchhoff index of the path are,

Rij =

max{i,j}−1∑
k=min{i,j}

1

ck
, i, j = 1, . . . , 2n and k =

2n−1∑
k=1

k(2n− k)

ck
.

Moreover, for a path with constant conductances, the expression of the Green function is

Gij =
1

12nc

[
(2n+ 1)(4n+ 1) + 3

(
i(i− 2n− 1) + j(j − 2n− 1)− 2n|i− j|

)]
and hence, k =

n

3c
(4n2 − 1) and Rij =

|i− j|
c

for any i, j = 1, . . . , 2n.

Given Γ ∈ Ln, we denote its Green function as GΓ. If Γ has positive link number

s and {ij}sj=1 is its link sequence, then the combinatorial Laplacian of Γ appears as the

combinatorial Laplacian of the weighted path perturbed by adding for all j = 1, . . . , s, an

edge with conductance aij between opposite vertices ij and 2n+ 1− ij 4,5.

Since we interpret a generalized linear chain as a perturbation of the path by adding

weighted edges between opposite vertices, we use5 Theorem 2.1 to obtain the Green function,

the effective resistances and the Kirchhoff index of such a chain. To this end, we consider the

(s×s)–matrix Λ with entries Λjk =
√
aijaikRmax{ij ,ik} 2n+1−max{ij ,ik} and we take into account

that I + Λ is non–singular because it is positive–definite. Let M be its inverse.
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For any j = 1, . . . , 2n, we define the vector vj whose components are

vjk =

√
aik
2

[
R2n+1−ik j −Rik j

]
, k = 1, . . . , s, (4)

and also the vector uj = Mvj. Moreover, we consider the vector r =
1

2n

2n∑
j=1

vj.

According to the previous notation, the Green function, the effective resistance and the

Kirchhoff index of a generalized linear chain, are given by the following result.

Theorem 1 For any i, j = 1, . . . , 2n, we get

GΓ
ij = Gij − 〈M(r − vi), (r − vj)〉 and RΓ

ij = Rij − 〈(ui − uj), (vi − vj)〉.

In particular, the Kirchhoff index of the generalized linear chain is given by

kΓ = k + 4n2〈Mr, r〉 − 2n
2n∑
j=1

〈uj, vj〉.

Identity (3) allows us to give nice expressions for vectors vj and r. To do this, it is useful

to define for any h = 1, . . . , n−1, the function φh : {1, . . . , 2n} −→ {h, . . . , 2n+ 1−h} given

by

φh(j) =


h, 1 ≤ j ≤ h,

j, h ≤ j ≤ 2n+ 1− h,

2n+ 1− h, 2n+ 1− h ≤ j ≤ 2n.

Clearly, φh is nondecreasing and moreover, given j, k = 1, . . . , s, we have that

Λjk =
√
aijaikRφik (ij)φik (2n+1−ij) =

√
aijaikRφij (ik)φij (2n+1−ik).

Lemma 2 For any k = 1, . . . , s, we have

vj,k =

√
aik
2

[
Rik 2n+1−ik − 2Rik φik (j)

]
, 1 ≤ j ≤ n,

vj,k =

√
aik
2

[
2Rφik (j) 2n+1−ik −Rik 2n+1−ik

]
, n+ 1 ≤ j ≤ 2n,

vi,k − vj,k =

√
aik
2

Rφik (i)φik (j), 1 ≤ i ≤ j ≤ 2n.
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In particular, −v2n+1−i1 = vi1 =
(√aik

2
Rik 2n+1−ik

)s
k=1

, vj = vi1 and v2n+1−j = v2n+1−i1 for

any 1 ≤ j ≤ i1. Moreover, rk =

√
aik

2n

2n−ik∑
j=ik

(j − n)

cj
, which in turns implies

rk − vj,k =

√
aik

2n

2n−ik∑
m=ik

m

cm
− 2n

2n−ik∑
m=φik (j)

1

cm

 , 1 ≤ j ≤ 2n.

Unicycle linear chains

In this section we obtain the Green function, the effective resistance and the Kirchhoff index

for unicycle linear chains; that is, for those generalized linear chains whose link number

equals one. Therefore if i1 = h, then we add an edge with conductance c2n = ah > 0 between

vertices h and 2n+ 1− h. Since s = 1, the computation of M and uj, j = 1, . . . , 2n, is

straightforward. Thus,

I + Λ = 1 + c2nRh 2n+1−h = c2n

[
1

c2n

+
2n−h∑
j=h

1

cj

]
. (5)

Moreover, for any i, j = 1, . . . , 2n, we have the following useful version of Identity (3),

Rij = Rmin{h,i} min{h,j} +Rmax{2n+1−h,i} max{2n+1−h,j} +Rφh(i)φh(j). (6)

Proposition 3 For any i, j = 1, . . . , 2n, we get that

GΓ
ij =

1

4n2

min{i,j}−1∑
k=1

k2

ck
+

2n−1∑
k=max{i,j}

(2n− k)2

ck
−

max{i,j}−1∑
k=min{i,j}

k(2n− k)

ck


− 1

4n2

[
1

c2n

+
2n−h∑
k=h

1

ck

]−1
2n−h∑
k=h

k

ck
− 2n

2n−h∑
k=φh(i)

1

ck

2n−h∑
k=h

k

ck
− 2n

2n−h∑
k=φh(j)

1

ck


RΓ
ij =

min{h,max{i,j}}−1∑
k=min{h,i,j}

1

ck
+

max{2n+1−h,i,j}−1∑
k=max{2n+1−h,min{i,j}}

1

ck

+

[
1

c2n

+
2n−h∑
k=h

1

ck

]−1
φh(max{i,j})−1∑
k=φh(min{i,j})

1

ck

 1

c2n

+

φh(min{i,j})−1∑
k=h

1

ck
+

2n−h∑
k=φh(max{i,j})

1

ck

 .
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In particular,

kΓ =
2n∑
k=1

k(2n− k)

ck

+

[
1

c2n

+
2n−h∑
k=h

1

ck

]−1
[2n−h∑

k=h

k

ck

]2

− 2n
2n−h∑
k=h

[
2n−h∑
m=k

1

cm

]2

− 2n(h− 1)

[
2n−h∑
k=h

1

ck

]2
 .

Proof. For any i, j = 1, . . . , 2n, we have

GΓ
ij = Gij −M (r − vi)(r − vj) and RΓ

ij = Rij −M(vi − vj)
2.

The expression for the Green function is a consequence of the last identity in Lemma 2,

whereas the expression for the effective resistance appears as a consequence of the mentioned

Lemma and Identity (6).

Finally, since kΓ = 2n
2n∑
j=1

GΓ
jj, we have

kΓ = k− 1

2n

[
1

c2n

+
2n−h∑
k=h

1

ck

]−1 2n∑
j=1

2n−h∑
m=h

m

cm
− 2n

2n−h∑
m=φh(j)

1

cm

2

.

On the other hand,

2n∑
j=1

2n−h∑
m=h

m

cm
− 2n

2n−h∑
m=φh(j)

1

cm

2

= 2n

[
2n−h∑
m=h

m

cm

]2

− 4n

[
2n−h∑
m=h

m

cm

] 2n∑
j=1

2n−h∑
m=φh(j)

1

cm


+ 4n2

2n∑
j=1

 2n−h∑
m=φh(j)

1

cm

2

= 4n2(h− 1)

[
2n−h∑
m=h

1

cm

]2

+ 4n2

2n−h∑
j=h

[
2n−h∑
m=j

1

cm

]2

− 2n

[
2n−h∑
m=h

m

cm

]2

,

since
2n∑
j=1

2n−h∑
m=φh(j)

1

cm
= h

2n−h∑
m=h

1

cm
+

2n−h∑
j=h+1

2n−h∑
m=j

1

cm
=

2n−h∑
m=h

m

cm
,

2n∑
j=1

 2n−h∑
m=φh(j)

1

cm

2

= (h− 1)

[
2n−h∑
m=h

1

cm

]2

+
2n−h∑
j=h

[
2n−h∑
m=j

1

cm

]2

and hence, the expression for the Kirchhoff index follows. �
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Corollary 4 The Kirchhoff index of an unicycle chain with constant conductances a and c

is

kΓ =
n [(4n2 − 1)c+ a(2(n− h) + 1)(n(2(n− h) + 1) + 4h(h− 1)− 1)]

3c(c+ a(2(n− h) + 1)
.

Next, we particularize the above theorem to h = 1 that corresponds to the 2n–cycle. Al-

though the case of cycles with constant weight and conductances is well–known, see for

instance6, as far as authors’ knowledge, this is the first time that the orthogonal Green

function for a weighted cycle is obtained.

Corollary 5 The Green function and the effective resistance for the weighted 2n–cycle are

given by

GΓ
ij =

1

4n2

min{i,j}−1∑
k=1

k2

ck
+

2n∑
k=max{i,j}

(2n− k)2

ck
−

max{i,j}−1∑
k=min{i,j}

k(2n− k)

ck


− 1

4n2

[
2n∑
k=1

1

ck

]−1 [ 2n∑
k=1

k

ck
− 2n

2n∑
k=i

1

ck

][
2n∑
k=1

k

ck
− 2n

2n∑
k=j

1

ck

]
,

RΓ
ij =

[
2n∑
k=1

1

ck

]−1
max{i,j}−1∑
k=min{i,j}

1

ck

min{i,j}−1∑
k=1

1

ck
+

2n∑
k=max{i,j}

1

ck

 .
Moreover, the Kirchhoff index is given by

kΓ =
2n∑
k=1

k(2n− k)

ck
+

[
2n∑
k=1

1

ck

]−1
[ 2n∑

k=1

k

ck

]2

− 2n
2n∑
j=1

[
2n∑
k=j

1

ck

]2
 .

In particular, if ck = c for all k = 1, . . . , 2n− 1 and c2n = a, we get

GΓ
ij =

1

12nc

[
(2n+ 1)(4n+ 1) + 3

(
i(i− 2n− 1) + j(j − 2n− 1)− 2n|i− j|

)]
− a

4c
[
c+ a(2n− 1)

][2(n− i) + 1
][

2(n− j) + 1
]
,

RΓ
ij =

|i− j|
c
[
c+ a(2n− 1)

](c+ a
(
2n− 1− |i− j|

))
,

and hence,

kΓ =
n(4n2 − 1)

(
c+ a(n− 1)

)
3c
(
c+ a(2n− 1)

) .
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The last expression, when a = c, coincides with the one obtained in6.

To end this section we rise the problem of optimizing the Kirchhoff index of an unicycle

linear chain. Firstly, we assume a = c, then for 1 ≤ h ≤ n− 1,

kΓ(h) =
n(8h3 − 12h2n+ 8hn2 − 4n3 − 12h2 + 12hn− 8n2 + 2h+ n+ 2)

6a(−1− n+ h)
(7)

and its derivative with respect to h is

(kΓ)′(h) =
n(16h3 − 36(n+ 1)h2 + 24(n+ 1)2h− 4n3 − 12n2 − 15n− 4)

6a(−1− n+ h)2
.

Let ψ(h) = 16h3 − 36(n+ 1)h2 + 24(n+ 1)2h− 4n3 − 12n2 − 15n− 4, as

ψ′(h) = 48(h− (n+ 1))

(
h− n+ 1

2

)
vanishes only at (n + 1)/2 in the interval [1, n − 1]. Therefore, ψ vanishes at most once in

[1, (n+1)/2] and once at most in [(n+1)/2, n−1]. Moreover, ψ′ < 0 on [(n+1)/2, n−1] and

ψ(n−1) > 0, then ψ is positive on [(n+1)/2, n−1]. On the other hand, ψ(
n+ 2

4
) = −3an < 0

and ψ(
n+ 2

4
) =

9

4
a(n2 + 1) > 0, so the kΓ(h) has a minimum for h ∈

(
n+ 1

4
,
n+ 2

4

)
.

Taking into account that h ∈ Z, the minimum value of the Kirchhoff index for unicycle

linear chains is attained for h =
⌈n

4

⌉
. Finally, the maximum is attained for h = n− 1 since

kΓ(1) ≤ kΓ(n− 1).

Let us now assume a 6= c, more precisely a = λc with λ 6= 1. Then, for 1 ≤ h ≤ n− 1

kΓ(h, λ) =
n
(
8λh3 − 12λ(n+ 1)h2 + 2λ(4n2 + 6n+ 1)h− 4λn2(n+ 1) + λ(n+ 1)− 4n2 + 1

)
3c(2hλ− 2λn− λ− 1)

.

Let (kΓ)′(h, λ) be its derivative with respect to h.

It can be easily proved that for λ > 1, (kΓ)′(h, λ) vanishes at the interval [
n+ 1

4
,
n+ 2

4
]

and the minimum of the function is attained again for h =
⌈n

4

⌉
. On the other hand, for

λ < 1 this is a < c, there is a zero of (kΓ)′(h, λ) in the interval [
n− 1

λ
4

,
n+ 2

4
]. Consequently,

when the conductance a is very small compared with c, the Kirchhoff index of the unicycle

chain is minimum for h = 1. In any case, the Kirchhoff index of the unicycle chain with

conductances a and c, reaches its maximum for h = n− 1.
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Ladder–like chains

A ladder–like chain is a generalized linear chain obtained by adding s consecutive edges,

1 ≤ s ≤ n − h, from vertex h with the same conductance a > 0, to the path with constant

conductance c > 0, (see Figure 2), so ik = h + k − 1 and aik = a > 0, k = 1, . . . , s. In

particular, when s = n − 1 the corresponding generalized linear chain is nothing else but

a ladder network. In this section, we aim to compute the Green function, the effective

resistance and the Kirchhoff index for the ladder–like chain.

1

2n

c

h+ s− 1 n

2n+ 2− h− s n+ 1

c c

c

c c

a a a

h

a

2n+ 1− h

h+ 1

Figure 2: A ladder–like chain

Associated with the ladder–like chain, we consider q = 1 +
a

c
and we define the following

auxiliary function in terms of Chebyshev polynomials

Qk(q) =


(
2(n− h− s) + 1

)
Vk(q) + 2Uk(q), k ≥ 0,

2(n− h− s+ k) + 3 k ≤ 0,

where Vk(q) = Uk(q)−Uk−1(q) and Uk(q) is the k–th Chebyshev polynomials of second kind,

see7 and Annex A. Observe that Q0(q) is defined unambiguously, since V0(q) = U0(q) = 1.

Moreover, it is clear that {Qk(q)}k≥0 is a Chebyshev sequence. In addition, taking into

account that Vk(1) = 1 and Uk(1) = k + 1 for any k ∈ Z, then

Qk(q) =
(
2(n− h− s) + 1

)
Vk(1) + 2Uk(1), for any k ≤ 0,

which implies that {Qk(q)}k≤0 is also a Chebyshev sequence.

From Lemma 2 we get v2n+1−j = −vj which leads to u2n+1−j = −uj, for any j = 1, . . . , n

and moreover, r = 0. Therefore, for ladder–like chains, Theorem 1 reads as follows.
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Corollary 6 For any i, j = 1, . . . , n, we get

GΓ
ij = GΓ

2n+1−i 2n+1−j = Gij − 〈ui, vj〉,

GΓ
i 2n+1−j = GΓ

2n+1−i j = Gi 2n+1−j + 〈ui, vj〉,

RΓ
ij = RΓ

2n+1−i 2n+1−j = Rij − 〈ui, vi〉 − 〈uj, vj〉+ 2〈ui, vj〉,

RΓ
i 2n+1−j = RΓ

2n+1−i j = Ri 2n+1−j − 〈ui, vi〉 − 〈uj, vj〉 − 2〈ui, vj〉.

Moreover, kΓ =
n

3c
(4n2 − 1)− 4n

n∑
j=1

〈uj, vj〉.

Notice that in order to compute the Green function and the effective resistance for a

ladder–like chain, it suffices to obtain the values 〈ui, vj〉 for any i, j = 1, . . . , n. Therefore,

the key is to compute M. Applying the results of5 Proposition 2.5 we get the following

expression for M.

Lemma 7 If M = (bij), then

bij = δij −
aVmin{i,j}−1(q)Qs−max{i,j}(q)

cVs(q) + a
(
2(n− s− h) + 1

)
Us−1(q)

Notice that when s = 1, the above formula gives b11 =
c

c+ a(2(n− h) + 1)
, that coincides

with the inverse of (5) for constant conductances.

Next results are devoted to obtain the vectors vj, uj, j = 1, . . . , n and their inner product.

Proposition 8 It is satisfied that vj = vh and hence uj = uh, j = 1, . . . , h. Moreover, for

any j = 1, . . . , n and any m = 1, . . . , s, we get

vj,m =

√
a

2c

(
2
(
n− φh+m−1(j)

)
+ 1
)
,

uj,m =

√
a

2

Vmin{φh(j)−h,m−1}(q)Qs−1−max{φh(j)−h,m−1}(q)

cVs(q) + a
(
2(n− s− h) + 1

)
Us−1(q)

.

Proof. Given j = 1, . . . , n and m = 1, . . . , s, from Lemma 2 we have

vj,m =

√
a

2c

[
2n+ 1− 2im − 2

[
φim(j)− im

]]
=

√
a

2c

[
2
(
n− φim(j)

)
+ 1
]
,

and the expression for vj,m follows bearing in mind that im = h+m− 1.

11



Since uj = Mvj, if we consider α = cVs(q) + a
(
2(n − s − h) + 1

)
Us−1(q), then for

m = 1, . . . , s, we have

uj,m =

√
a

2c

(
2
(
n− φh+m−1(j)

)
+ 1
)
− a

α

√
a

2c
Qs−m(q)

m∑
k=1

Vk−1(q)
(

2
(
n− φh+k−1(j)

)
+ 1
)

− a

α

√
a

2c
Vm−1(q)

s∑
k=m+1

Qs−k(q)
(

2
(
n− φh+k−1(j)

)
+ 1
)
.

The result follows after carefully considering each of the cases 1 ≤ j ≤ h;h ≤ j ≤
h+ s− 1;h+ s− 1 ≤ j ≤ n and applying Lemma 13 in Annex A.

Corollary 9 Given 1 ≤ i, j ≤ n, then

〈ui, vj〉 =
a
(
2(n− i) + 1

)(
2(n− j) + 1

)
Us−1(q)

4c
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

]
when h+ s ≤ i, j ≤ n, whereas

〈ui, vj〉 =
1

4c

[(
2(n− φh(max{i, j})

)
+ 1
)
− cVφh(min{i,j})−h(q)Qs−1+h−φh(max{i,j})(q)

cVs(q) + a
(
2(n− s− h) + 1

)
Us−1(q)

]
,

otherwise.

Once we have obtained the inner product, the expression for the Green function of a

ladder–like chain is straightforward. Next we compute the effective resistance of a ladder–

like chain according to the position in the path of the involved vertices.

Corollary 10 For any i, j = 1, . . . , n, we get

RΓ
ij = RΓ

2n+1−i 2n+1−j =
|i− j|

[
cVs(q) + a

(
2(n− s− h) + 1− |i− j|

)
Us−1(q)

]
c
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

] ,

RΓ
i 2n+1−j = RΓ

2n+1−i j =
(2n+ 1− i− j)

[
cVs(q) + a

(
i+ j − 2(s+ h)

)
Us−1(q)

]
c
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

] .

for h+ s ≤ i, j ≤ n and

RΓ
ij = RΓ

2n+1−i 2n+1−j =
|i− j|

2c

+
Vmin{i,j}−h(q)

(
Qs+h−1−min{i,j}(q)−Qs+h−1−max{i,j}(q)

)
4
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

]
+
Qs+h−1−max{i,j}(q)

(
Vmax{i,j}−h(q)− Vmin{i,j}−h(q)

)
4
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

]
12



RΓ
i 2n+1−j = RΓ

2n+1−i j =
2n+ 1−max{i, j}

2c

+
Vmin{i,j}−h(q)

(
Qs+h−1−min{i,j}(q) +Qs+h−1−max{i,j}(q)

)
4
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

]
+
Qs+h−1−max{i,j}(q)

(
Vmax{i,j}−h(q) + Vmin{i,j}−h(q)

)
4
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

]
for h ≤ i, j ≤ h+ s.

Proposition 11 The Kirchhoff index of the ladder–like chain is

kΓ =
n(4n2 − 1)

3c
− n

c

[
(h+ s− 1)

(
2(n− h) + 1

)
− s(s− 1)

]
+
n
[
(h− 1)Qs−1(q)− f(n, h, s)Us−1(q) + g(n, h, s)Us(q)

][
cVs(q) + a

(
2(n− h− s) + 1

)
Us−1(q)

] ,

where

f(n, h, s) =

(
2(n− h− s) + 1

)(
(c+ a)s− c

)
− c(s+ 1)

(2c+ a)

+
a(n− h− s+ 1)

(
2(n− h− s) + 1

)(
2(n− h− s) + 3

)
3c

g(n, h, s) =
2cs(n− h− s+ 1)

(2c+ a)
.

Proof. First, we have

n∑
j=h+s

〈uj, vj〉 =
a

4cα
Us−1(q)

n∑
j=h+s

(
2(n− j) + 1

)2

=
a

12cα
Us−1(q)

(
n− h− s+ 1

)(
2(n− h− s) + 1

)(
2(n− h− s) + 3

)
,

in addition,

h+s−1∑
j=1

〈uj, vj〉 =
1

4c

h+s−1∑
j=1

[(
2(n− φh(j)

)
+ 1
)
− cVφh(j)−h(q)Qs−1+h−φh(j)(q)

cVs(q) + a
(
2(n− s− h) + 1

)
Us−1(q)

]
.

Moreover,

h+s−1∑
j=1

(
2(n− φh(j)

)
+ 1
)

= (h− 1)
(
2(n− h) + 1

)
+

h+s−1∑
j=h

(
2(n− j) + 1

)
= (h+ s− 1)

(
2(n− h) + 1

)
− s(s− 1),

13



whereas taking into account the last identity in Lemma 14,

h+s−1∑
j=1

Vφh(j)−h(q)Qs−1+h−φh(j)(q) = (h− 1)Qs−1(q) +
s∑
j=1

Vj−1(q)Qs−j(q)

= (h− 1)Qs−1(q) +
2sc(n− h− s+ 1)

2c+ a
Us(q)

−
(
2(n− h− s) + 1

)(
(c+ a)s− c

)
− c(s+ 1)

2c+ a
Us−1(q),

Thus,

kΓ =
n(4n2 − 1)

3c
− 4n

h+s−1∑
j=1

〈uj, vj〉 − 4n
n∑

j=h+s

〈uj, vj〉

=
n(4n2 − 1)

3c
− n

c

h+s−1∑
j=1

[(
2(n− φh(j)

)
+ 1
)
− cVφh(j)−h(q)Qs−1+h−φh(j)(q)

cVs(q) + a
(
2(n− s− h) + 1

)
Us−1(q)

]

− na

c

n∑
j=h+s

(
2(n− j) + 1

)2
Us−1(q)

4c
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

]
=
n(4n2 − 1)

3c
− n

c

(
(h+ s− 1)

(
2(n− h) + 1

)
− s(s− 1)

)
+

n(h− 1)Qs−1(q)[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

] +
2scn(n− h− s+ 1)Us(q)

(2c+ a)
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

]
−
n
((

2(n− h− s) + 1
)(

(c+ a)s− c
)
− c(s+ 1)

)
Us−1(q)

(2c+ a)
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

] ]

− na(n− h− s+ 1)
(
2(n− h− s) + 1

)(
2(n− h− s) + 3

)
Us−1(q)

3c
[
cVs(q) + a

(
2(n− s− h) + 1

)
Us−1(q)

] .

�

For the standard ladder; that is, when s = n− 1 and hence h = 1, we have the following

result.

Corollary 12 The Kirchhoff index of the standard ladder is

kΓ =
n(n2 + 2)

3c
+
n
[
2c2(n− 1)Un−1(q)−

(
c
(
a(n+ 1)− c

)
+ a2 − c2

)
Un−2(q)

]
c(2c+ a)

[
cVn−1(q) + aUn−2(q)

] .

In particular, when a = c, then

kΓ =
n(n2 − 1)

3c
+
n

c

n−1∑
k=0

1

1 + 2 sin2(kπ
2n

)
.
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Proof. The first Identity follows substituting s = n − 1 and h = 1 in Proposition 11. On

the other hand, when a = c, then q = 2 and

n
[
2(n− 1)Un−1(2)− nUn−2(2)

]
3cUn−1(2)

=
nU ′n−1(2)

cUn−1(2)
=
n

c

n−1∑
k=1

1

2− cos(kπ
n

)

since
{

cos(kπ
n

)
}n−1

k=1
are the zeroes of the Chebyshev polynomial Un−1, see7. �

In the Chemistry community, standard ladders are known as linear polyomino chains.

Then, the last formula coincides with that obtained in8 Theorem 4.1 for a linear polyomino

chain with n− 1 squares.

Annex A

In this section we write the results related with the Chebyshev sequences that we need across

the paper.

The following Lemma shows a useful property for the sum of Chebyshev polynomials,

see for instance7.

Lemma 13 If {Pk}∞k=0 is a Chebyshev sequence, given S(k) = αk + β, where α, β ∈ R, and

r, t ∈ N∗ such that t ≤ r then,

r∑
k=t

S(k)Pk(q) =
c

2a

[
S(r)

(
Pr+1(q)− Pr(q)

)
− S(t)

(
Pt(q)− Pt−1(q)

)
+ α

(
Pt(q)− Pr(q)

)]
.

From the expression for products of Chebyshev polynomials, see7 Chapter 2, we deduce

the following equalities.

Lemma 14 For any 1 ≤ m ≤ s+ 1 we have

aQs−m(q)Um−1(q) +
c

2
Vm−1(q)

[
Qs−m(q)−Qs−m−1(q)

]
= cVs(q) +a

(
2(n− s−h) + 1

)
Us−1(q).

Moreover, if for any k ∈ Z, Tk and Wk denote the k–th Chebyshev polynomial of first and

fourth kind, respectively; that is Wk(q) = Uk(q) + Uk−1(q), then

s∑
j=1

Vj−1(q)Qs−j(q) =
c

a+ 2c

[
s
(
2(n− h− s) + 1

)
Ts(q) + sWs(q) + 2(n− h− s+ 1)Us−1(q)

]
,
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which is equivalent to

s∑
j=1

Vj−1(q)Qs−j(q) =
2s(n− h− s+ 1)

q + 1
Us(q)−

(
2(n− h− s) + 1

)(
qs− 1

)
− s− 1

q + 1
Us−1(q)

Proof.
s∑
j=1

Vj−1(q)Qs−j(q) =
s∑
j=1

(
Uj−1(q)− Uj−2(q)

)((
2(n− h− s) + 1

)(
Us−j(q)− Us−j−1(q)

)
+ 2Us−j(q)

)
=

s∑
j=1

(
Uj−1(q)− Uj−2(q)

)((
2(n− h− s) + 3

)
Us−j(q)−

(
2(n− h− s) + 1

)
Us−j−1(q)

)
=
(
2(n− h− s) + 3

) s∑
j=1

(
Us−j(q)Uj−1(q)− Us−j(q)Uj−2(q)

)
−
(
2(n− h− s) + 1

) s∑
j=1

(
Us−j−1(q)Uj−1(q)− Us−j−1(q)Uj−2(q)

)
=

(
2(n− h− s) + 3

)
2(q2 − 1)

[
sTs+1(q)−

s∑
j=1

Ts−2j+1(q)− sTs(q) +

s∑
j=1

Ts−2j+2(q)
]

−
(
2(n− h− s) + 1

)
2(q2 − 1)

[
sTs(q)−

s∑
j=1

Ts−2j(q)− sTs−1(q) +

s∑
j=1

Ts−2j+1(q)
]

=

(
2(n− h− s) + 1

)
s

2(q2 − 1)

[
Ts+1(q)− 2Ts(q) + Ts−1(q)

]
+

2s

2(q2 − 1)

[
Ts+1(q)− Ts(q)

]
+

+

(
2(n− h− s) + 1

)
2(q2 − 1)

[
− 2

s∑
j=1

Ts−2j+1(q) +
s∑
j=1

Ts−2j+2(q) +
s∑
j=1

Ts−2j(q)
]
+

+
2

2(q2 − 1)

[
−

s∑
j=1

Ts−2j+1(q) +
s∑
j=1

Ts−2j+2(q)
]

=

(
2(n− h− s) + 1

)
s(q − 1)

(q2 − 1)
Ts(q) +

s
(
Ts+1(q)− Ts(q)

)
q2 − 1

+

(
2(n− h− s) + 2

)
(q + 1)

Us−1(q)

=
2s(n− h− s + 1)

q + 1
Us(q)−

(
2(n− h− s) + 1

)(
qs− 1

)
− s− 1

q + 1
Us−1(q)

taking into account

s∑
`=1

Ts−2`(q) =
s∑
`=1

Ts+2−2`(q) = Us(q)− Ts(q) = qUs−1(q),
s∑
`=1

Ts+1−2`(q) = Us−1(q).

�
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CONCLUSIONS

We have obtained the Green function, the effective resistance, and the Kirchhoff index of

a class of generalized linear chains that includes cycles, unicycle chains and ladder chains

also known as polyomino chains in the Chemistry community. The starting point is a path

with arbitrary conductances on their edges, then we interpret each generalized chain as

a convenient perturbation of the mentioned path. Therefore, we obtain the expressions

of the Green function, the effective resistance, and the Kirchhoff index as function of its

corresponding in the path. In particular we obtain, as far as we know for the first time,

the Green function of a weighted cycle. We explicitly give the Kirchhoff index for unicycle

chains with two different conductances and we discuss when the Kirchhoff index is optimum

according to the size of the cycle. The last section is devoted to the study of ladder–like

chains again as a perturbation of the path. For them we have also find the desired results.

In order to achieve the last goal, we have had to deal with Chebyshev polynomials’tools that

are included in Annex A.
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isterial de Ciencia y Tecnoloǵıa,) under projects MTM2011-28800-C02-01 and MTM2011-

28800-C02-02.

17



References

1. E. Bendito, A. Carmona, A. M. Encinas, and J. M. Gesto, Linear Algebra Appl. 430,

1336 (2009), ISSN 0024-3795, URL http://dx.doi.org/10.1016/j.laa.2008.10.027.

2. E. Bendito, A. Carmona, A. M. Encinas, J. M. Gesto, and M. Mit-

jana, Linear Algebra Appl. 432, 2278 (2010), ISSN 0024-3795, URL

http://dx.doi.org/10.1016/j.laa.2009.05.032.

3. E. Bendito, A. Carmona, A. Encinas, and M. Mitjana, Lin-

ear Algebra Appl. 436, 1090 (2012), ISSN 0024-3795, URL

http://www.sciencedirect.com/science/article/pii/S0024379511004940.

4. A. Carmona, A. M. Encinas, and M. Mitjana, Linear Algebra Appl. 442, 115 (2014),

ISSN 0024-3795, URL http://dx.doi.org/10.1016/j.laa.2013.07.017.

5. A. Carmona, A. Encinas, and M. Mitjana, Linear Alge-

bra and its Applications pp. – (2014), ISSN 0024-3795, URL

http://www.sciencedirect.com/science/article/pii/S0024379514000238.

6. R. B. Ellis, Ph.D. thesis, University of California, San Diego (2002).

7. J. Mason and D. Handscomb, Chebyshev Polynomials (Chapman & Hall/CRC, 2003).

8. Y. Yang and H. Zhang, Int. J. Quantum Chem. 108, 503 (2008), URL

http://www3.interscience.wiley.com/cgi-bin/fulltext/116326541.

18



Figure 3: Place Figure 1 caption here. In the case of reproduced figures in review articles,

you must obtain the publisher’s permission and state a suitable notice here along with a

citation.

Figure 4: Place Figure 2 caption here. Figures should be uploaded as individual files, prefer-

ably .tif or .eps files, at high enough resolution (600 to 1200 dpi) to ensure clarity. Please

see the authorâs guide for more details and specifications. For high quality illustrations, we

highly recommend the use of the TikZ package.
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