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ABSTRACT

The complexity of the VLSI physical design flow grows dra-
matically as the level of integration increases. An effective
way to manage this increasing complexity is through the
use of regular designs which contain more reusable parts. In
this work we introduce HiReg, a new floorplanning algorithm
that generates regular floorplans. HiReg automatically ex-
tracts repeating patterns in a design by using graph min-
ing techniques. Regularity is exploited by reusing the same
floorplan for multiple instances of a pattern, as long as nei-
ther area, wire length or existing hierarchy constraints are
violated or compromised. The proposed scheme is targeted
towards early system-level design of chip multiprocessors
(CMPs). Experiments show the scalability of the method
for many-core CMPs and competitive results in area and
wire length.

1. INTRODUCTION

The computational complexity of the floorplanning prob-
lem highly depends on the number of components of the
system. For large systems, a flat view makes the floorplan-
ning problem intractable. For this reason, hierarchical meth-
ods [16, 15] has been proposed and successfully used to re-
duce this complexity. Hierarchical methods divide the floor-
planning problem into multiple subproblems that may be ei-
ther fully or partially independent from each other, thereby
enhancing scalability.

An important metric often disregarded during floorplan-
ning is regularity, which is known to lead to efficient and
economical designs [14]. Large-scale systems have significant
amounts of regular patterns than can be exploited (on-chip
memories, many-core CMPs, etc.). The design cost of such
systems can be brought down by reducing the number of
distinct subcircuits to be designed, and then replicating the
pre-designed subcircuits as many times as possible. To allow
this reduction, a regular floorplan uses the exact same lay-
out for all replications of a subcircuit. To reduce complexity
of timing closure, it is also desirable for all of the adjacent
components to be placed in similar relative positions, so that

Table 1: Comparison of related work.

Hierarchy | Regularity
[5] No Arrays only
REGULAY [17] Yes Tiles only
DeFer [16] Yes No
CompasSS [4] By similarity No
[15] Yes No
ArchFP [8] Manual Manual
HiReg Yes Yes

the interconnect geometries are regular and timing analysis
is similar.

In many-core CMPs, tiled layouts [3] are often used
to exploit regularity. The design is split into homoge-
neous tiles that are only floorplanned once and then repli-
cated. However, with industry moving towards heteroge-
neous CMPs [11], it is no longer possible to assume that
most CMPs will have only a single type of tile. Integrated
graphics, accelerators and I/0 blocks are some of the special
types of co-processors that introduce heterogeneity.

On the other hand, enforcing regularity in a design may
compromise other floorplan metrics such as area or wiring.
Existing designs are often hierarchical in nature. CMPs with
hierarchical topologies are a good example. Preserving the
pre-defined hierarchy may result in a better wiring quality
(e.g. by reducing the number of wires that cross between
different subcircuits). Very often, hierarchy is manually en-
forced by designers to split the design and assign compo-
nents to different design teams. Thus, breaking the existing
hierarchy could be counterproductive to the goal of simpli-
fying design. Another example is the concept of choppa-
bility [13]. In a choppable floorplan, large functional blocks
can be chopped away, reducing the total die size and varying
performance/power metrics in order to construct multiple
versions of a product from the same basic design.

This paper presents a new floorplanning algorithm, HiReg,
that considers area, wiring, regularity and hierarchy as floor-
planning objectives. Very often these objectives are conflict-
ing, e.g., reducing final area compromises regularity and vice
versa. To deal with this issue, HiReg uses a new method that
can trade-off hierarchy and regularity constraints. Both hi-
erarchy and regularity are automatically discovered from the
block netlist.

1.1 Related work

There has been little work in the area of regular floorplans.
Regularity is more common in the area of physical design
for analog circuits, where it is often a strict requirement due
to the peculiarities of analog design [2]. However, most of
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the techniques in analog design involve symmetry properties
that are not relevant for maximizing design reusability.

[5] acknowledges the importance of regular designs in
CMPs and describes a simulated annealing-based floorplan-
ner that organizes groups of similar blocks in regular arrays.
However, the technique does not fully exploit regularity since
adjacent components may not be placed in aligned locations
that enable regular interconnection geometries. The blocks
that are to be placed in regular groups must also be manu-
ally selected by the designer.

In System-on-Chip design, REGULAY [17] also mentions
the importance of preserving regularity and hierarchy. REG-
ULAY discovers the optimal mapping of heterogeneous tiles
into a regular grid arrangement, and does not consider the
floorplanning of the individual tiles themselves.

On the other hand, the advantages of using hierarchy dur-
ing floorplanning are not new [6]. Nonetheless, most exist-
ing work uses hierarchy only to improve the scalability of
the floorplanning problem, allowing efficient generation of
floorplans with large numbers of components, and differ in
the methodologies used to discover hierarchy.

DeFer [16] uses graph bipartitioning to generate a binary
tree of balanced netlist partitions, a method similar to the
one proposed in this work for hierarchy discovery. This hi-
erarchy tree is then used to generate a slicing tree, reducing
the number of floorplans that need to be explored during
the search. CompaSS [4] automatically clusters blocks with
similar or identical shapes, and then creates grid floorplans
for them. However, CompaSS ignores connectivity infor-
mation. [15] applies a recursive slice-and-partition method
derived from cell placement strategies.

All three examples use slicing floorplans and bounding
curves that will also be used in this work to efficiently rep-
resent floorplans. Slicing floorplans are not able to represent
the entire set of optimal floorplans. However, this difference
is minimal given a large number of soft blocks [18], as it
often occurs in CMPs.

ArchFP 8] describes a different strategy that can produce
floorplans that are both regular and hierarchical. However,
ArchFP assumes that a designer will construct, previously to
the floorplanning process, a manual hierarchy of the CMP
components and will choose a floorplanning approach for
each group of components. Our work extracts hierarchy and
regularity in an automated way, without any previous knowl-
edge of the topology of the input netlist. Table 1 summarizes
the differences between these strategies.

(d) HlReg
Figure 1: Example CMP floorplans generated using different floorplanning strategies.

(c¢) DeFer

2. OVERVIEW

We start this section with an example to illustrate the
trade-offs between regularity and hierarchy. Figure 1 shows
the result of floorplanning the same netlist using HiReg
and two other hierarchical floorplanners. Table 3 contains
whitespace and wire length results. This netlist represents
a hierarchical tiled CMP, with 192 cores. It contains 64
tiles, with 48 processing tiles containing 4 cores each, and
16 memory controller tiles. This CMP uses a hierarchical
Network-on-Chip topology. An 8 x 8 mesh interconnects all
tiles. Inside each tile, a ring provides connectivity.

The mapping of processing and memory controller tiles
has been selected to match the diamond pattern (Fig. 1(a),
[1]) which maximizes off-chip memory performance. Thus,
this configuration is representative of a potential many-core
CMP design. For the sake of easy visualization, both types
of tiles have similar area requirements in this example. In
general, each tile may have a different area constraint.

In addition to cores (C'), processing tiles contain L2 caches
private to each core, a tile-shared L3 cache block, ring
routers for intra-tile communication (r) and mesh routers
for inter-tile communication (R). The memory controller
tiles each contain a buffer (Buf), mesh router, and a mem-
ory controller itself (MC'). Physical information is described
in Table 2. Cores come in several hard aspect ratios, but we
assume memories to be flexible within a limited range. We
also assume every net represents a link with 1024 wires.

In Fig. 1(b), CompaSS groups blocks by similarity and
creates arrays in order to improve packing quality, thus re-
sulting in floorplans that have some regularity. However,

Table 2: Physical information for Fig. 1.

Component Area Aspect ratio
Core (C) 1.38 mm? 0.8 or 1.25
L2 cache 1 mm? 0.5+ 2
L3 cache 3 mm? 0.5+ 2
Ring router (r) 0.27 mm? 1

Mesh router (R) 0.99 mm? 1
Memory controller (MC) | 2.5 mm? 0.8 or 1.25
Buffer (Buf) 12 mm? 0.5+ 2

Table 3: Floorplanning results for Fig. 1.

Whitespace | HPWL (m)
CompaSS 6.3% 6801
DeFer 8.2% 630
HiReg 12.6% 516
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Figure 2: Example floorplans with and without hierarchy constraints.

connectivity information is not considered, resulting in floor-
plans with good area metrics but poor wire length.

DeFer minimizes area and wire length, and uses hierarchy
to floorplan efficiently. In Fig. 1(c), we disabled compaction
in order to easily visualize the effects of hierarchy, but it
was enabled for obtaining the results in Table 3. Because of
hierarchy, the floorplan is divided in 4 quadrants, with each
quadrant also divided in 4 quadrants, and so on. However,
small differences in the floorplans used for every quadrant
prevent reusing the same design for all sub-quadrants. The
construction of hierarchy from connectivity information re-
sults in a 2% area increase compared to CompaSS, but gen-
erates a significantly reduced wire length.

HiReg, on the other hand, constructs a floorplan that ex-
ploits the regularity and hierarchy inherent to a tiled CMP
design. It is able to extract additional regularity by grouping
cores inside tiles in blocks of 2. This tiled structure is dis-
covered despite HiReg not having any previous knowledge of
the interconnect topology. The use of hierarchy and regular-
ity causes an additional 4% area increase over DeFer results,
but generates a 20% reduction in wire length. Because of
regularity, the entire CMP can now be constructing by repli-
cating the two types of tiles. At the same time, two cores
in every processing tile can be constructed by replication,
resulting in significant design time savings.

2.1 Discovering regularity

In order to create regular floorplans, HiReg automatically
finds repeating patterns in the input netlist. We define a pat-
tern as a subgraph from the netlist. We consider a pattern
P to be repeated if there is at least one additional subgraph
in the netlist isomorphic to P. We call all the repetitions of
P the instances of P.

An example of the way HiReg extracts regularity is shown
in Fig. 4(a). The initial netlist contains 4 instances of the
same pattern (composed of C, L2 and r each). After identi-
fying this pattern, HiReg compresses the graph, replacing
every instance with a new vertex, representing the com-
pressed instance. The process iterates until no additional
patterns can be found.

Because of this iterative process, the result of regularity
discovery is actually a directed acyclic graph (Fig. 4(b)). In
this DAG, there is a leaf node (with no exit edges) for each
component type in the netlist. Every other node represents
a pattern. An edge between two patterns P,, P, indicates
that pattern P, contains an instance of P,. The root pattern
(with no entry edges) represents the entire original netlist.
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(a) Patterns used (b) Discovered hierarchy tree

in Fig. 2(a)
Figure 3: List of patterns and hierarchy tree.

HiReg uses this DAG to apply a divide-and-conquer strat-
egy. Instead of floorplanning the entire netlist, the problem
is split into floorplanning every pattern. To ensure regu-
larity, HiReg enforces using the same or similar floorplans
for all instances of a pattern, albeit this restriction may be
relaxed if better area or wire length results are required.

2.2 Trading off regularity and hierarchy

An important contribution of this paper is the importance
of preserving existing hierarchy when discovering regularity.

Our initial approach completely disregarded hierarchy and
centered on regularity as defined in Section 2.1. The regu-
larity extraction process is primarily based on local decisions
and lacks a global vision of the entire netlist. By centering
on regularity only, the results may contradict existing de-
sign hierarchy, which can be counterproductive to the goal
of reducing design time.

A visual example is shown in Fig. 2. This example shows
a CMP design identical to the one in Fig. 1, containing pro-
cessing (C') and memory controller (M) tiles. In (a) and (b)
floorplanning is performed using discovered regularity only,

(a) Regular extraction process

Figure 4: Regular extraction process and example
generated DAG.

(b) Generated DAG



without preserving hierarchy. (c) and (d) show the results of
floorplanning using both regularity and hierarchy discovery.

The set of repeating patterns that have been extracted
to construct (a) are shown in Fig. 3(a). Because the regu-
larity discovery process lacks global vision of the netlist, it
discovers a set of patterns that break the natural tile hierar-
chy of the CMP. Despite patterns P; and P> being frequent
patterns, using these to compress the netlist limits further
extraction of regularity. The only remaining patterns left
after compressing the netlist with P, and P> are combina-
tions that do not respect the mesh topology, such as Ps;. Ps
groups a non-rectangular set of tiles. In these situations,
good area and wire length metrics cannot be obtained if the
same layout must be strictly replicated for all instances of
P5;. Thus, the regularity of the design is compromised, as
shown in Fig. 2(b).

In HiReg, existing netlist hierarchy is automatically dis-
covered using recursive graph bisection (similar to [16], de-
scribed in Section 3.1). Alternatively, it may be provided
by the designer. Using recursive bisection, we can build a
binary tree representing existing hierarchy on a design and
guide the regularity discovery process so that no pattern
instances can cross boundaries delimited by hierarchy. In
Fig. 2(c), no pattern instance was allowed to extend to more
than one CMP quadrant, based on the hierarchy tree discov-
ered by bisection (Fig. 3(b)) which separates the four CMP
quadrants. This restriction reduces the number of P; in-
stances, but eventually allows a larger number of more reg-
ular patterns to be found. In this way, maintaining hierarchy
adds a global vision to the regularity extraction process.

3. ALGORITHM

The algorithm can be divided in 5 stages, as seen in Fig. 5.
The first 3 stages of the algorithm perform hierarchy dis-
covery and regularity discovery based on the input netlist.
During hierarchy tree collapsing, trade-offs between hierar-
chy and regularity are explored. Instead of generating a
single regular hierarchy, between stages 3 and 4 we store
a set of candidate regular hierarchies, delaying the selection
on which hierarchy is most optimal until after all hierarchies
have been evaluated.

The latter two stages perform actual floorplanning for all
the candidate hierarchies. Stage 4 (bounding curve construc-
tion) enumerates all possible floorplans for each of the hier-
archies, and stores the outlines efficiently as a single bound-
ing curve. After this stage, the outlines for each possible
floorplan are known and the designer can select a smaller
subset based on physical metrics such as aspect ratio. Stage
5 (floorplan construction) constructs the selected floorplans.

Algorithm 1 contains a formal definition of this multiple
stage flow, showing all 5 stages. The stages will be explained
in detail during this section.

3.1 Hierarchy discovery

The first stage discovers the existing hierarchy in the in-
put design. This is performed in order to ensure that an
existing high-level topology in the design is preserved. Re-
specting existing design hierarchies is not only desirable from
a reusability point of view, but also generates results with
improved wire length when compared to results that create
layouts which ignore the existing topology.

The method proposed in this section is based on hyper-
graph partitioning, an extension of the methodology pro-

Algorithm 1 General overview of the algorithm

function REGULARFLOORPLANNING(G)
CandidateHierarchies <+ ()
HierarchyTree < HIERARCHYDISCOVERY (G)
for threshold in {0...n} do
CollapsedHierarchyTree <
COLLAPSEHIERARCHY ( Hierarchy Tree, threshold)
RegularHierarchyDAG <+
REGULARITYDISCOVERY ( CollapsedHierarchy Tree)
append RegularHierarchyDAG to CandidateHierarchies
> CandidateHierarchies contains a set of candidate
regular hierarchy DAGs

I" < empty bounding curve
for all RegularHierarchyDAG € CandidateHierarchies do
'<~Tru
CONSTRUCTBOUNDINGCURVE(RegularHierarchyDAG)
> I' contains the bounding curve of all possible floor-
plans for all of the candidate hierarchies

SelectedPoints < select desired outlines from I
return CONSTRUCTFLOORPLANS(SelectedPoints)

Hierarchy

Netlist Hl erarchy tree col-
discovery .
lapsing

Regularity
discovery

Bounding
curve
construction

Bounding Floorplan
curve construction

Figure 5: High-level flow of the algorithm.

Set of regular
hierarchies

Set of regular
floorplans

posed in [16].

We assume that the input netlist, represented as the hy-
pergraph G, has a natural number of partitions. For exam-
ple, a CMP with 8 x 8 tiles would have 64 natural parti-
tions. A 63-way or 65-way partition would result into more
interconnections between the different subcircuits than the
natural 64-way partition. The goal of the algorithm is to
discover these natural partitions.

The input netlist G is partitioned into two smaller circuits,
minimizing the total number of interconnections between the
two partitions, as long as both partitions have an area im-
balance < % Such imbalance margin allows handling values
of k that are not power of 2, by dividing the circuit into a
partition with % of the area and one with % Between mul-
tiple bipartitions with the same number of interconnections,
the most balanced partition is preferred.

The process is recursively applied to the two generated
partitions, until all partitions contain a low enough number
of blocks so that further bisectioning is not required (Min-
Size). This process is described in Algorithm 2.

During the process a binary tree is created where ev-
ery leaf node is a subcircuit (with a number of components
< MinSize), and every other node is a bipartition, the root
node being a bipartition of the input netlist G. We call this
tree the hierarchy tree (Fig. 3(b)).

3.2 Hierarchy tree collapsing

The trees generated during hierarchy discovery are used
to constrain the regularity discovery procedure and ensure
that existing circuit hierarchy is preserved. However, strictly
preserving all hierarchy would prevent the floorplanner from
finding regularity, as discussed in Section 2. Thus, this stage



Algorithm 2 Hierarchy discovery algorithm

function HIERARCHYDISCOVERY (G)
> @G is the input netlist
if |G| <MinSize then
> Trivial case if there are too few elements left
return G
G1, G2 + bipartition of G minimizing number of
edges between GG and G2 with
AREAIMBALANCE(G1,G2) < 2
T1 <+ HIERARCHYDISCOVERY(G1)
T < HIERARCHYDISCOVERY(G2)
return CREATETREE(T1,T52)

function AREAIMBALANCE(G1,G2)
MAX(AREA(G1),AREA(G?2))
AREA(G1)+AREA(G2)

return

Figure 6: Tree collapsing with a threshold of 4 mm?.
Labels in leaf nodes indicate block area (in mm?).

generates hierarchies that have been relazed, giving more
flexibility to the posterior regularity discovery procedure.

It is often the case that only the high-level hierarchy is
significant. For example, it is important to ensure that tile
boundaries are honored in a CMP, but the contents of the
tiles themselves often have a less well defined hierarchy, and
a reduced connectivity impact if such hierarchy is not pre-
served. For this reason, it is preferable to relax hierarchy at
the leaves of the hierarchy tree.

Algorithm 3 shows the details of the algorithm. threshold
is an input parameter, specified as an absolute area value.
For tree nodes where the total area is less than this thresh-
old, the tree node is collapsed: all of its descendants are
enumerated, combined into a single subcircuit, and the tree
node is replaced by the new leaf subcircuit node. Thus, the
resulting collapsed tree will have fewer nodes than the in-
put hierarchy tree, with larger leaf nodes containing more
components. See Fig. 6 for a visual example.

Multiple possible hierarchies are generated by this process
by automatically testing for several values of the threshold
parameter. This way, the trade-off between hierarchy and
regularity is explored. The selection of the best threshold is
thus deferred until floorplans are generated and area, wire
length and additional metrics are available.

Algorithm 3 Tree collapsing

function COLLAPSETREE(HierarchyTree, threshold)
> any nodes representing parts of the netlist with
less area than threshold are collapsed
if BLOCKAREA(Tree) > threshold then
> Keep this node intact; continue walking the tree
T1 < COLLAPSETREE(Hierarchy Tree.leftChild,
threshold)
Ts < CoOLLAPSETREE(HierarchyTree.rightChild,
threshold)
return CREATETREE(T}, T2)
else
T < combine all descendants of H into single node
return T’

3.3 Regularity discovery

An essential stage in the floorplanning algorithm is finding
repeated patterns of blocks in the netlist. The methodology
proposed in this work is based on the ideas of frequent sub-
graph discovery, a popular research area within the domain
of data mining [10]. The goal of subgraph discovery is to
identify repeated subgraphs in a graph.

We consider two distinct subgraphs G1, G2 of a graph G to
be a repetition if they are isomorphic. In such case, we call
both G1 and G2 instances of the same repeating pattern P.
In our formulation, each type of block in the netlist (core,
router, memory module, etc.) has a different label. Two
vertices of a graph are considered to be isomorphic only if
they have the same label.

The algorithm is shown in Algorithm 4. REGULARITY-
DISCOVERY starts from a FlattenedTree as input. At ev-
ery iteration of the inner loop the most frequent pattern is
found, and then the netlist graph is compressed with all the
instances of such graph. This iterative process generates the
regularity DAG as seen in Fig. 4.

The outer loop ensures that the existing hierarchy indi-
cated by FlattenedTree is preserved. Instead of finding the
most frequent pattern of the entire netlist, we initially limit
our search to the subcircuits in nodes FlattenedTree whose
depth is equal to the maximum depth of the entire tree.

Only if no repeating patterns are found in those subcir-
cuits, the search proceeds by enlarging the search are to
include all subcircuits in nodes with fewer depth, decreasing
the minimum allowed depth (CurMinDepth) by one. This
way, the search algorithm ensures that patterns that are
fully contained inside the partitions marked by hierarchy
boundaries are preferred before patterns that do not.

Procedure FINDMOSTFREQUENTPATTERN implements
frequent subgraph discovery based on [10]. It is based on
a constructive beam search model [12]. At every iteration,
we keep a list L of candidate patterns. This list is initialized
with all trivial patterns of size 1 (that is, every subgraph
with a unique label). At every iteration, every pattern P in
L is tested to check which of its instances can be extended
by including an adjacent vertex. Each possible extension is
stored in Lpew. The extended patterns in Lye. are sorted
by their VALUE and only a subset of them is selected accord-
ing to their best value. The number of surviving patterns is
determined by b (beam width). The algorithm finishes when
no further extensions for any pattern in L can be found.

The VALUE function is used to discriminate between valid
patterns when more than one is found for a given graph G.
In HiReg the following function is used:

VALUE(P) = “number of instances of P in G” X |G| + |P|

This value ensures all patterns are ordered firstly by their
frequency. When comparing two patterns with the same
number of repetitions, the pattern with the largest vertex
count (|P|) is preferred.

3.4 Bounding curve construction

In this stage, a bounding curve is constructed for each
one of the regular hierarchy trees discovered by the previous
stage. The bounding curve is constructed by a post-order
walk in the hierarchy tree. This is similar to the techniques
used in other hierarchical floorplanners [4, 16].

Every regular hierarchy tree is a directed acyclic graph
where every non-leaf node is a subcircuit representing a reg-



Algorithm 4 Frequent subgraph discovery

function FINDMOSTFREQUENTPATTERN(G)
G + input graph
L + {V label | € G : a subgraph with a single node
v € G with label(v)= [}
b < beam width
Pyest < FRONT(L)
while = EmPTY(L) do
Lnew < @
for all P € L do
for all vertex u ¢ P adjacent to v € P do
Lypew ¢ Lnew U EXTEND(P, u)

SORT(Lpew by descending VALUE())

L + first b elements of Lyew

if VALUE(FRONT(L)) > VALUE(Ppcst) then
Pyest < FRONT(L)

return Py

function REGULARITYDISCOVERY (CollapsedTree)
PatternList < ()
CurMinDepth < maximum depth of CollapsedTree
while CurMinDepth > 0 do
G <+ contents of all nodes from CollapsedTree
with depth >= CurMinDepth
repeat
P <+ FINDMOSTFREQUENTPATTERN(G)
append P to PatternList
G « CoMmPRESS(G, P)
until no repeating patterns in G
CurMinDepth < CurMinDepth —1

return PatternList

ular pattern, and and edge between P; and P» indicates
that P;’s definition contains an instance of P>. Only once
the bounding curves for every children of a pattern P have
been constructed the algorithm can proceed to construct the
bounding curve of P itself.

To construct the bounding curve of a pattern P, two dif-
ferent search strategies are used depending on the number of
blocks n. For patterns where n is less than a threshold N,
an exhaustive branch-and-bound search algorithm is used.
This algorithm explores every possible slicing floorplan.

If n > N, a more efficient heuristic search based on sim-
ulated annealing and slicing trees is used. This heuristic
search generates a much reduced number of results than
the branch-and-bound approach, but is capable of handling
patterns with a much larger number of components. The
threshold N depends on the specifications of the host com-
puter, such as the amount of available memory.

The bounding trees for each hierarchy tree are combined
into a single bounding curve that represents the outlines
of all floorplans found. Because many hierarchy trees will
contain similar sets of patterns, HiReg uses memoization in
order to decrease the runtime of this stage.

3.5 Floorplan construction

After selecting a subset of points from the final bounding
curve (T'), the final stage of the algorithm constructs floor-
plans starting from the outlines specified by these points.

A single point in a bounding curve can represent mul-
tiple floorplans with the same outline, including floorplans
that only differ in mirroring and simple block swapping (but
also floorplans with entirely different layouts that happen to
share the same outline). Because the outline is fixed, the se-
lection of these floorplans cannot affect whitespace, but it
may have a significant impact on the wire length and regu-
larity metrics.

The algorithm in Algorithm 5 implements a greedy search
that finds a combination of floorplans for a selected point P
of the bounding curve that minimizes a given cost function
comparing wire length and regularity. By manipulating the
cost function, the designer is able to guide the search to
either enforce more regular floorplans, or on the other hand
prefer floorplans with increased connectivity quality.

An important technique used during this process is ter-
minal propagation [7]. When selecting a floorplan for a pat-
tern 7', we know the layout and positions of all instances of
other subpatterns t1, t2, ..., t, contained in 7. Thus, for all
nets that have a terminal in a child subpattern t;, but also
have other terminals in any other subpatterns of T', the al-
gorithm can propagate the approximate terminal positions
of those terminals outside ¢;. This allows calculation of the
wire length when selecting floorplans for t;, even for nets
external to t;.

Algorithm 5 Floorplan construction

function CONSTRUCTFLOORPLANS(P,T')

> P is the selected point of T

> T is the hierarchy tree that was used

F <+ floorplans from I' with size P

for all ¢t in CHILDREN(T') do
propagate terminal positions from F to ¢
p < shape of t in F'
F; < CONSTRUCTFLOORPLANS(p, t)

select combination of Fi, Fa,...,F, that minimizes

COST(F, F1,Fo,. .., Fn)
expand F' with Fy, Fs, ..., Fp
return F

function CosT(F, F1, Fa, ..., Fy)
WIRELENGTH (F ) +WIRELENGTH(Fo)+...
number of floorplans in Fy, Fa, ... with the same layout

return

To increase floorplan quality or in order to generate more
than one result, HiReg combines this algorithm with the
technique of beam search [12]. Instead of keeping a single
current solution, the b best solutions are kept.

4. EXPERIMENTAL RESULTS

We implemented HiReg in C++ and tested it on a set of
design examples. All the experiments in this section were
run on a Intel Xeon 2.8Ghz CPU with 32GB of RAM. While
the implementation can make use of multiple cores, it was
limited to a single thread for fair comparisons. METIS [9]
was used to generate the graph bisections required for hier-
archy discovery.

Since there is little previous work on regularity-
constrained floorplanning for multi-processors, there are not
many available benchmarks designed to compare the quality
of regular floorplans. Commonly used floorplanning public
domain benchmarks are mostly from old designs that do not
contain much regularity. Thus, during this section, we will
use artificial benchmarks based on many-core CMP designs.

It is hard to give a numerical metric for regularity in a
floorplan. For HiReg generated floorplans, we can provide an
estimation of regularity based on the regularity DAG used to
generate them. Every node in the DAG with multiple input
edges represents a sublayout that has been replicated. Thus,
a regularity metric can be built by comparing the area of all
nodes in this DAG with an expanded version where none of
the layouts are replicated:

area of DAG
area of equivalent erpanded tree

Regularity =1 —



Because other tools do not target the creation of regular
floorplans, we cannot provide similar regularity metrics for
non-HiReg floorplans.

4.1 Heterogeneous tiled CMP example

We start this section by mentioning the results presented
during Section 2, the heterogeneous tiled CMP. We also show
the differences in wire length from a floorplanning that pre-
serves hierarchy versus one that does not.

The netlist used represents a CMP containing 64 tiles,
with 48 tiles being processing tiles, containing 4 cores each,
and 16 memory controller tiles. The tiles are arranged ac-
cording to the diamond pattern from [1]. The benchmark
has a total of 816 blocks. The physical information for these
blocks is shown in Table 4.

For this example CMP configuration, HiReg generates a
floorplan (Fig. 2(d)) with 12.6% whitespace and a HPWL
of 516 m. Up to 81% of the floorplan area is regular. This
floorplan was used by combining hierarchy and regularity.
HiReg automatically prefers floorplans where hierarchy is
preserved to around the tile level, as those provide the best
regularity with minimal loss in other metrics. For compari-
son, the floorplan in Fig. 2(b), which was created without hi-
erarchy constraints, has a slightly worse whitespace (13.5%),
worse regularity (66.6% of area) and a much worse HPWL
(1076 m). These hierarchy-less floorplans were explored but
discarded by HiReg because of the lower metrics.

When compared to other tools (Table 3), HiReg provides
results that are competitive in wire length but slightly less
in area. We configured DeFer to optimize for area and wire
length given a maximum aspect ratio constraint of %. Com-
paSS was configured to optimize for area within the same
aspect ratio constraint. HiReg used 15.4 seconds to gen-
erate that example floorplan. 13% of the time was spent
during hierarchy and regularity discovery, 27% of the time
was spent floorplanning all the discovered patterns, and 60%

Figure 7: Netlist used for the scalability and quality
experiments.

Table 4: Physical information for Fig. 7.

Component Area Aspect ratio
Global ring routers (R) 0.27 mm? 1
Clusters of type A

4 x Core (C1) 1.38 mm? 0.8 or 1.25
4 x L2 cache 1 mm? 0.5+2
1 x L3 cache 3 mm? 0.5+2
6 x Local ring router () | 0.27 mm? 1
Clusters of type B

2 x Core (C2) 3.75 mm? 0.8 or 1.25
2 x L2 cache 2 mm? 0.5+2
1 x L3 cache 6 mm? 0.5+2
4 x Local ring router (r) | 0.27 mm? 1

generating the final floorplans. Both DeFer and CompaSS
took less than one second to generate the floorplans.

4.2 Scalability and floorplan quality

This experiment measures the loss of optimality in area
and wire length caused by the use of regularity, as well as
measure the execution time required for the implemented
algorithm. We compare HiReg, configured to optimize for
maximum regularity, to DeFer, configured to optimize for
both area and HPWL.

All the test cases were generated based on the configura-
tion shown in Fig. 7. This configuration is a ring of rings,
where a global ring connects a set of clusters of two alter-
nating types. The physical characteristics are detailed in
Table 4. For this example, every net contains 1024 wires,
and the wire pitch is 0.1um. This configuration is used in
this testcase because the total number of clusters in the ring
can be easily parameterized, providing multiple testpoints
with different numbers of components.

Figure 8 shows the results of the comparison. For a highly
regular netlist such as the one used in this experiment, the
runtime growth of both hierarchical floorplanners (proposed
and DeFer) is close to linear. However, a purely hierarchi-
cal floorplanner such as DeFer is still much faster. On the
other hand, the results show that both the whitespace and
HPWL of floorplans generated by HiReg are comparable to
the results provided by DeFer.

4.3 Trading off hierarchy and regularity

Figure 9 shows two different potential configurations for
the ring configuration described in Fig. 7. These two con-
figurations differ in the organization of the global ring. In
configuration (a), clusters A and B appear in alternating or-
der in the global ring. Configuration (b) contains the same
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Figure 8: Comparison of runtime, area and wire length.
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Figure 9: Regular floorplans for two different ring
configurations.

clusters but configured so that clusters of the same type are
grouped together. The net for the global ring is shown in
both figures as a dashed line.

For Fig. 9(b), HiReg generates a regular floorplan where
the different cluster types are strictly separate. The floor-
plan provides good whitespace metrics because the similar
clusters are being packed into arrays. However, in case (a),
such packing would not be possible without impacting wire
length. Therefore, the best floorplan found by HiReg relaxes
hierarchy a bit, and combines the two cluster types into a
single repeating pattern, providing better packing.

HiReg can also be configured to further relax regularity
when improved wire length or other metrics are preferable.
In figure 10, we show three different floorplans for the config-
uration in Fig. 9(b). Figure 10(b) and (c) are generated by
varying the cost function mentioned from Section 3.5, while
(a) is generated using DeFer. The plot shows how by trad-
ing off regularity, HPWL can be improved, approaching the
HPWL of the floorplan generated by DeFer for the same con-
figuration. As DeFer does not generate regular floorplans,
the plot uses only its HPWL as baseline for comparisons.

5.  CONCLUSIONS

This work has presented a new floorplanning method that
generates regular floorplans while preserving the inherent
regularity of the design. The method is specially suited
for CMPs with many cores and can handle systems with
heterogeneous tiles. The method delivers layouts with high
regularity and acceptable area, and also reduces wire length
when compared to other hierarchical approaches.
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