
Robust high-order repetitive control of an active

filter using an odd-harmonic internal model

Germán A. Ramos∗, Ramon Costa-Castelló†, Josep M. Olm† and Rafel Cardoner †
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Abstract—Shunt active power filters have proven to be an
efficient means to compensate for the negative effects of nonlinear
and reactive loads on the power quality of the electrical distribu-
tion network. In this context, the control objective is to achieve
a power factor close to 1, as well as load current harmonics
and reactive power compensation. A useful control strategy for
this purpose is repetitive control. However, the performance of
repetitive controllers is strongly affected by frequency variations
of the involved signals. This work analyzes the effect of such
variations and describes the architecture of an odd-harmonic,
high-order repetitive controller specifically designed to obtain
robust closed-loop performance against frequency variations that
may occur in the electrical network.

I. INTRODUCTION

Active Filters (AF) are power electronics devices intended

to overcome the power quality problems caused by nonlinear

loads. Many research efforts have been focused on the control

design of these devices [1], [2], [3], [4]. Most of them are

based on two hierarchical control loops, an inner one in charge

of assuring the desired current and an outer one in charge

of determining the required shape as well as the appropriate

power balance. In this sense, an approach which has proven to

be specially efficient is Repetitive Control (RC) [5], [6]. This

control technique is based on the Internal Model Principle [7]

which allows the design of a controller capable of rejecting

or tracking periodic signals in steady state [8], [9]. However,

repetitive controllers are designed assuming a predefined fixed

frequency for the signals to be tracked/rejected, and even slight

changes in this frequency results in a dramatic performance

decay.

In order to overcome this problem several approaches have

been proposed. These methodologies may be grouped into two

main frameworks, namely that dealing with sampling time

preservation [10], [11] and that changing it adaptively [12],

[13], [14]. The former consists of two branches: improving

robustness by using large memory elements [10] and intro-

ducing a fictitious sampler operating at a variable sampling

rate and then using a fixed frequency internal model [11].

The controller designed in this work uses the traditional

two control loops decomposition. The current controller is

composed of a feedback control law in charge of assuring

closed-loop stability and a very good harmonic correction

performance. For this control law, an Odd-Harmonic High-

Order Repetitive Controller (OHHORC) is proposed, which

combines the specific repetitive controller structure for odd-

harmonic signals [15] with the High-Order Repetitive Control

(HORC) design proposed in [10] to improve performance

robustness under uncertain or varying frequency conditions.

The outer control law is based on the exact computation of

the sinusoidal current network amplitude and this is combined

with a feedback control law that uses an analytically tuned PI

controller.

The proposed OHHORC is the main contribution of this

work, yielding very good performance and robustness under

network frequency variations.

II. PROBLEM FORMULATION

A. Physical model of the boost converter

Fig. 1 presents the system architecture. A load is connected

to the power source and an AF is connected in parallel to

guarantee unity power factor at the network side. A boost

converter with the ac neutral wire connected directly to the

midpoint of the dc bus is used as AF. The averaged (at the

switching frequency) model of the boost converter is given by

L
dif
dt

= −rLif − v1
d+ 1

2
− v2

d− 1

2
+ vn

C1
dv1
dt

= − v1
rC,1

+ if
d+ 1

2

C2
dv2
dt

= − v2
rC,2

+ if
d− 1

2
,

where d is the duty ratio, if is the inductor current and

v1, v2 are the dc capacitor voltages; vn = Vn

√
2 sin(!nt)

is the voltage source, !n = 2�/Tp rad/s being the network

frequency; L is the converter inductor and rL is the inductor

parasitic resistance; C1, C2 are the converter capacitors and

rC,1, rC,2 are the parasitic resistances of the capacitors. The

control variable, d, takes its values in the closed real interval

[−1, 1] and represents the averaged value of the pulse-width

modulation control signal injected to the actual system.

Due to the nature of the voltage source, the load current,

in steady-state, is usually a periodic signal with only odd-

harmonics in its Fourier series expansion. Hence, this current
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Fig. 1. Single-phase half-bridge shunt AF connected to the network-load
system.

can be written as il(t) =
∑∞

n=0 an sin(!n (2n+ 1) t) +
bn cos(!n (2n+ 1) t).

B. Control objectives

The AF goal is to assure that the parallel connection of AF

plus load is seen as a resistive element. This can be stated

demanding i∗n(t) = I∗d sin(!nt), i.e. the source current must

have a sinusoidal shape in phase with the network voltage1.

Another collateral goal, necessary for a correct operation of

the converter, is to assure constant average value of the dc bus

voltage, i.e. ⟨v1 + v2⟩∗Tp
= vd, where ⟨⋅⟩Tp

stands for the mean

value2, and vd must fulfill the boost condition (vd > 2
√
2vn).

It is also desirable that this voltage could be almost equally

distributed among both capacitors (v1 ≈ v2).

C. Rewriting the plant equations

It is standard for this kind of systems to linearize the current

dynamics by the partial state feedback � = v1 (d+ 1) /2 +
v2 (d− 1) /2. Moreover, the change of variables if = if ,

EC = 1
2

(

C1v
2
1 + C2v

2
2

)

, D = C1v1 − C2v2 makes two

more meaningful variables appear. Namely, EC , the energy

stored in the converter capacitors and D, the charge unbalance

between them. Assuming that the two dc bus capacitors are

equal (C = C1 = C2, rC = rC,1 = rC,2) the system dynamics

using the new variables answers to

L
dif
dt

= −rLif + vn − � (1)

dEc

dt
= − 2Ec

rCC
+ if� (2)

dD

dt
= − 1

rCC
D + if (3)

III. CONTROLLER STRUCTURE

The controller is designed using a two level approach [5],

as depicted in Fig. 2. Firstly, an inner current controller which

forces the sine wave shape i∗n for the network current and,

second, an outer control loop to fulfill the appropriate active

1f∗ represents the steady-state value of f(t).
2⟨f(t)⟩

Tp
= 1

Tp

∫
t

t−Tp
f(�)d�.

current 
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Fig. 2. Global architecture of the control system.

power balance for the whole system. The output of this loop is

the amplitude of the sinusoidal reference for the current control

loop. The active power balance is achieved if the energy stored

in the AF capacitors, Ec, is equal to a reference value, Ed
c .

A. Current loop controller

Taking advantage of the linearity of (1), the digital repetitive

controller depicted in Fig. 3 is designed to force a sinusoidal

shape in in. The goal is to provide feedback control to

overcome model uncertainties, disturbances and measurement

noise.

The dynamics of (1) in discrete time can be written as

Gp(z) =
If (z)

�(z)
=

1

rl
⋅ 1− e−

rLTs
L

z − e−
rLTs

L

,

Ts being the sampling period. In this case, since the signal to

be tracked and rejected in the system is an odd-harmonic peri-

odic one, a technique that turns out to be specially suitable is

Odd-Harmonic Repetitive Control (OHRC) [15], [16]. In this

paper, an OHHORC is proposed with the aim of enhancing the

performance under small frequency variations. The description

of OHRC and OHHORC will be carried out in Section IV.

Under the action of the repetitive controller, the network

current can be assumed to be in(t) ≈ Id(t) sin (!nt) which,

from now on, will be taken as a fact.

B. Energy shaping (voltage loop) controller

Following [5], the outer controller that assures a mean value

of the energy stored in the capacitors, ⟨Ec(t)⟩Tp
, close to the

desired reference value, Ed
c , is made up of two parts, as shown

in Fig. 4:

(i) A feedforward term which makes Iffd = a0. This assures

the energy balance in the ideal case (rL = 0 and rC = 0)

carrier
extraction internal 

model

+ +
+

-

+
+

vn

Id

il

if

iniref

Gx(z)

Gc(z) Gp(z)
�

sin

Repetitive Controller

Fig. 3. Current control block diagram.
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Fig. 4. Simplified 50Hz energy (voltage) control loop.

and takes into account il characteristics and changes instanta-

neously. Iffd is calculated using an amplitude modulator with

a scaled signal of the source voltage as a carrier and a mean

value extraction. For this last operation, the filter

P (z) =
1

N
⋅ 1− z−N

1− z−1

is a good approximation of the corresponding continuous-time

mean value extraction.

(ii) A feedback term which is in charge of compensating

dissipative effects and system uncertainties. The dynamics

of the plant can be modelled by the discrete-time integrator

Ts (z + 1) /(2 (z − 1)) and the losses in the inductor and ca-

pacitors parasitic resistances can be considered as an additive

disturbance. So, the PI controller

Ifbd (z) = ki
Ts (z + 1)

2 (z − 1)
ΔE + kpΔE,

where ΔE ≜ Ed
c − ⟨Ec (t)⟩Tp

, regulates ⟨Ec (t)⟩Tp
to the

desired value Ed
c without steady-state error.

IV. REPETITIVE CONTROL STRATEGIES

A. Odd-harmonic repetitive controller

OHRC uses an internal model (Fig. 3) which introduces

infinite gain at a certain frequency and its odd harmonics [15].

This internal model has the following transfer function:

−H(z)

z
N
2 +H(z)

, (4)

where H(z) is a low-pass filter in charge of improving

the system robustness. With H(z) = 1, model (4) pro-

vides infinite gain at frequencies ! = 2(2k − 1)�/N , with

k = 1, 2, . . . , N/2 + 1, where N = Tp/Ts is the discrete

period of the signal, Tp being the period of the signal to be

tracked/rejected and Ts being the sampling period.

Besides the internal model, which assures steady state per-

formance, repetitive controllers are composed of a stabilizing

controller, Gx (z), which assures closed-loop stability. Tradi-

tionally, repetitive controllers are implemented in a “plug-in”

fashion, i.e. the repetitive compensator is used to augment an

existing nominal controller, Gc (z) (see Fig. 3). This nominal

compensator is designed to stabilize the plant, Gp (z), and

provides disturbance attenuation across a broad frequency

spectrum.

The closed-loop system of Fig. 3, using (4) as the internal

model, is stable if the following conditions are fulfilled ([15]):

e(k)−
− z−N/2 z−N/2 z−N/2 wm

−w2

w1

H(z)
ur(k)

Fig. 5. OHHORC structure with an odd number of delay elements.

1) The closed-loop without the repetitive controller, i.e.

Go (z) =
Gc (z)Gp (z)

1 +Gc (z)Gp (z)
,

is stable. It is advisable to design the controller Gc(z)
with a high enough robustness margin.

2) ∥ H (z) ∥∞< 1. H(z) is designed to have gain close to

1 in the desired bandwidth and attenuate the gain out of

it.

3) ∥ 1 − Go (z)Gx (z) ∥∞< 1, where Gx(z) is a design

filter to be chosen. A trivial structure3 which is often

used is ([17]): Gx (z) = kr (Go (z))
−1

. As argued

in [18], kr must be designed looking for a trade-off

between robustness and transient response.

B. Odd-harmonic high order repetitive controller

HORC is mainly used to improve the RC performance

robustness under disturbance/reference signals with varying

or uncertain frequency [19]. Unlike standard RC, the HORC

involves a weighted sum of several signal periods. With a

proper selection of the associated weights, this high order

function offers a characteristic frequency response in which the

high gain peaks located at harmonic frequencies are extended

to a wider region around the harmonics [10]. Thus, the addition

of the high order function will improve robustness against

frequency variations. Furthermore, the use of an odd-harmonic

internal model will make the system more appropriate for ap-

plications where signals have only odd-harmonic components,

as in power electronics systems.

The scheme for OHHORC is depicted in Fig. 5, its transfer

function being

G
HO

(z) =
−W (z)H(z)

1 +W (z)H(z)
, (5)

with

W (z) =

m
∑

l=1

(−1)l−1wlz
− lN

2 , (6)

where m is the number of delay elements in the system, and

H(z) is again a low-pass filter added to improve robustness.

Stability conditions for the closed-loop system of Fig. 3

using (5) as the internal model are derived in the same way as

conditions given in section IV-A. Thus, conditions 1, 2 hold

and an analogous version of condition 3 needs to be fulfilled:

∥ W (z)H (z) [1−Go (z)Gx (z)] ∥∞< 1. (7)

3There is no problem with the improperness of Gx(z) because the internal
model provides the repetitive controller with a high positive relative degree.
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1) Weights selection methods: The selection of the weights

wl of the high order function W (z) can give different perfor-

mance characteristics to the HORC. This has led to different

approaches which are primarily based on the solution of an

optimization problem [20], [10], [21], [22]. The procedure

described here use the maximally flat concept to calculate

the weights of the function W (z) in order to improve the

performance robustness of the system.

Consider the internal model (5) with H(z) = 1, namely

Ĝ
HO

(z) =
−W (z)

1 +W (z)
, (8)

It can be seen that the transfer function (8) provides infinite

gain when W (z) = −1. In the frequency domain that means

W (ej!) =
m
∑

l=1

(−1)l−1wle
− j!lN

2 = −1 (9)

Since it is desirable to obtain the infinite gain at odd-harmonic

frequencies, it is required to set ! = 2(2k − 1)�/N with

k = 1, 2, 3, . . . in (9), which yields the following condition
m
∑

l=1

wl = 1 (10)

This condition allows the achievement of perfect asymptotic

tracking or disturbance rejection and guarantees that if the

external signal is N-periodic with odd-harmonic content, the

resulting weighted sum in (6) is the same as that obtained

using just one delay element.

Furthermore, it can be noticed that making W (ej!) maxi-

mally flat at odd-harmonic frequencies increases the frequency

interval for which the function W (ej!) approaches −1 and,

therefore, increases the interval for which the internal model

(8) provides the desired high gain. As a result, the weights

wl can be calculated using (10) and making the first m − 1
derivatives of W (ej!) equal to 0 at odd-harmonic frequencies.

Thus, the first derivative is

∂W (ej!)

∂!
= −j

N

2

m
∑

l=1

(−1)lwlle
− j!lN

2 .

The condition states

∂W (ej!)

∂!

∣

∣

∣

∣

!= 2(2k−1)�
N

= 0,

which gives
∑m

l=1 wll = 0. Using the same procedure to cal-

culate the m− 1 derivatives, the following compact condition

is obtained:
m
∑

l=1

wll
p = 0, p = 1, 2, . . . ,m− 1. (11)

Thus, for m = 3, (10) and (11) yield w1 + w2 + w3 = 1,

w1 + 2w2 + 3w3 = 0, w1 + 4w2 + 9w3 = 0, which renders

w1 = 3, w2 = −3, and w3 = 1.

The procedure described here attains the same conditions as

those found in [10]. Also, the weights derived for HORC in

[20], [21] and [22] can be used directly for OHHORC using

definition (6). At the same time, the properties obtained from

each method are preserved.

0
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Fig. 6. S
M

(z) magnitude response for several values of kr .

2) Selection of the gain kr: The sensitivity function for the

OHHORC system is S(z) = So(z)SM
(z), with

So(z) =
1

1 +Gc(z)Gp(z)

and S
M
(z) being the modifying sensitivity function:

S
M
(z) =

1 +W (z)H(z)

1 +W (z)H(z)[1−Gx(z)Go(z)]
.

The transfer function S
M
(ej!) is periodic in the frequency

domain with period 4�/N under the assumption that H(z) =
1 and Gx(z) = krG

−1
o (z). Thus, the magnitude response

between two harmonics can be described from S
M
(ej!) using

the normalized frequency !̄ = !N/2 with !̄ ∈ [�, 3�]:
∣

∣

∣

∣

[

S
M
(e2j!̄/N )

]

H(z)=1

∣

∣

∣

∣

=

∣

∣

∣

∣

1 +W (e2j!̄/N )

1 + (1− kr)W (e2j!̄/N )

∣

∣

∣

∣

Fig. 6 shows the magnitude of S
M

for m = 3, with w1 = 3,

w2 = −3, w3 = 1 and for several values of kr. It can be seen

that some values of the gain kr can be used to alleviate the

over-amplification of frequencies between odd-harmonics.

C. Performance under varying frequency conditions

Standard RC, including the odd-harmonic version, is de-

signed assuming the period Tp constant. Therefore, if Tp varies

the control algorithm performance may dramatically decay.

In this case, the electrical distribution network frequency can

suffer from fluctuations.

As an example, Fig. 7 highlights the gain of the internal

models (4) and (5), designed for a nominal frequency of 50Hz,
for 49Hz, 50Hz and 51Hz (and some of their harmonics).

The selected filter is H(z) = 0.25z + 0.5 + 0.25z−1. First,

the magnitude of the odd-harmonic function (4) is depicted in

blue. Note that while for the 50Hz signal the gain is important,

it strongly decays for the other frequencies. On the other hand,

the magnitude of the OHHORC (5) is shown in green. It

can be seen that the gain is higher for a wider frequency

region around the harmonics, which improve the robustness

for variations in the period Tp. As a consequence, the gain
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decrease is much smaller for frequency variations around the

nominal frequency in case of OHHORC and the performance

degradation is minor.

V. SIMULATIONS RESULTS

A. Simulation setup

In this section the controller scheme and the repetitive

controllers described in previous sections are used in the

numerical simulation of the single-phase AF defined in Section

II. The controller is designed for a nominal sampling frequency

of 20 kHz. The dynamics of (1) is combined with a first

order low-pass anti-aliasing filter with cut-off frequency of

4.460 Hz and a pure delay that would occur during the real

implementation. Therefore, once transformed to discrete-time

the plant can be written as

Gp(z) =
If (z)

�(z)
=

−0.02868z − 0.01798

z3 − 1.228z2 + 0.2417z
(12)

The controller is designed from (12), for a nominal fre-

quency of 50 Hz and obtaining 400 samples per period, i.e.

N = 400. These conditions imply a nominal sampling period

of Ts = TpN
−1 = 50 �s. According to Section IV, the

following design issues have been taken into account:

∙ Gc(z) = 5(0.6305z − 0.629)/(z − 0.9985) provides a

very robust inner loop.

∙ The first order linear-phase FIR filter H(z) = 0.25z +
0.5 + 0.25z−1 provides good performance in this case.

∙ The fact that Gp(z) is minimum-phase allows Gx(z) =
krG

−1
0 (z), with kr = 0.3 for OHRC and kr = 0.8 for

OHHORC.

∙ The weights of the high order function W (z) are those

derived using the procedure described in Section IV-B1

for m = 3, which rendered w1 = 3, w2 = −3, and

w3 = 1.

These settings also guarantee the fulfillment of the stability

condition (7).

B. Simulation results

Fig. 8 shows the simulated waveform of in and its harmonic

content, which is similar to the one obtained in the real system
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Fig. 8. Simulated in waveform (top) and its harmonic content (bottom).

when a nonlinear load is connected to an ac source. The

rectifier current has a Total Harmonic Distortion (THD) of

36.28 %.

Fig. 9 shows the shape of the current at the source port when

the AF is connected in parallel with the rectifier. The OHRC

and OHHORC controllers are compared for 50 Hz, 50.5 Hz,

and 51 Hz. For the nominal frequency, 50 Hz, both controllers

achieve the control objectives. When the frequency is 50.5 Hz,

there is an important current shape degradation for the OHRC,

while the OHHORC preserves the performance. Finally, when

the frequency is set to 51 Hz, the performance decrease is

even larger for OHRC.

In Fig. 10, the harmonic content of in at the nominal

frequency is shown for both controllers: notice the slight

improvement when using the OHHORC. The power spectrum

of in at 50.5 Hz is shown in Fig. 11; the harmonic content

reveals a noticeable better performance of the OHHORC.

It is also important to observe that some amplification of

the frequencies placed between odd-harmonics appears in the
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Fig. 9. Nonlinear load and the AF at a network frequency of 50 Hz, 50.5
Hz, and 51 Hz. in waveform for OHRC (green) and OHHORC (blue); i∗n
desired waveform (red).
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Fig. 10. Nonlinear load and the AF. Current harmonic content at 50 Hz:
OHRC (top); OHHORC (bottom).

power spectrum. This due to the fact that the HORC extends

the frequency region around the odd-harmonics where the

attenuation is achieved by compromising other regions of the

frequency spectrum, which is known as the waterbed effect.

However, given the odd harmonic characteristic of the load

current signal, assuming a negligible noise level and with

a proper design of the filter H(z), the performance can be

preserved despite this effect.

VI. CONCLUSION

This paper propounds an active filter controller structure

based on repetitive control. As the main contribution, an odd-

harmonic high order repetitive controller is designed to force a

sine wave shape in the current loop and to reject the harmonic

content present in the load current. It has been shown that

this controller provides robust performance in case of signals

with uncertain or varying frequency. A comparison with an

odd-harmonic repetitive controller reveals a better efficiency

of the proposed controller working under varying frequency

conditions.
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