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Abstract 

The deformation behavior of IN718 superalloy was investigated using the hot compression tests 

in the temperature range of 950-1100 ℃, and strain rates covering  the quasi-static to the quasi-

dynamic regions (0.001-10 s−1). The shape of flow curves as well as the corresponding work 

hardening rates analysis was utilized to reveal the dynamic recrystallization (DRX) phenomena. 

DRX was the dominant restoration mechanism in the whole temperature and strain rate domains, 

which was characterized by the optical and EBSD images. Extended flow softening was 

observed at high strain rates due to the adiabatic heating and dislocations interaction. In addition 

to the assessment the capability of Sellars equations, a new constitutive equation based on the 

multiple variable regression analysis was proposed for modeling the peak stress as a function of 
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strain rate and temperature. Besides the simple form of the proposed model, it has a good 

accuracy for predicting the peak stress. 

Keywords: Inconel 718; Hot compression test; Constitutive equation; Dynamic recrystallization; 

EBSD. 

1. Introduction 

The Nickel-based superalloy IN718 is a precipitation hardenable alloy with high corrosion 

resistance [1,2], excellent resistance to oxidation [3], high strength [4], adequate ductility and 

toughness [5], and good machining performance [6]. IN718 is an important material used for 

modern aero-engines, gas-turbines, extrusion dies, etc. [7–15] Control of the thermomechanical 

processing is crucial for obtaining favorable microstructure and properties. The hot deformation 

behavior of IN718 has been widely studied over the past decade using hot compression tests 

[6,16–19]. Considering Sellars and Tegart equations, some models have been proposed in the 

form of an hyperbolic-sine [20–22], an exponential [23] and a power law [16,24] for hot 

compression of IN718. Furthermore, J.M. Zhang et al. [25] have formulated experimental data 

by considering the shape of the flow stress vs. deformation parameters curves to develop a 

mathematical model. Recently, M.Z. Hussain et al. [26] have proposed a constitutive relationship 

for thermo-mechanical processing of IN718 through double multivariate nonlinear regression. 

Considering hot deformation of IN718, it is worth noting that it is essential to develop 

comprehensive equations for a wide range of temperature and strain rate. 

IN718 is a material with relatively low stacking fault energy [22], in which the presence of solute 

atoms and phases reduce the mobility of dislocations. Therefore, the main restoration process is 

dynamic recrystallization (DRX), although the dynamic recovery (DRV) softening plays also a 
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competitive role. DRX is an important mechanism that controls the microstructure evolution of 

the IN718 during the hot working of the material, and indeed, there are numerous works in the 

literature which have explored the parameters affecting DRX in IN718 [17,27–32]. Due to the 

enormous influence of DRX on the microstructure and properties after processing, the evaluation 

of DRX in terms of deformation parameters is vital. 

The main goal of the present work is to investigate the hot working behavior of IN718 during the 

hot compression test at quasi-static and quasi-dynamic conditions. Besides, general constitutive 

equations and a new model based on the multivariable regression were employed to obtain the 

hot working constants of the alloy and assess which of them are most appropriate in all 

conditions.  

2. Experimental procedure 

2.1. Material 

The starting material in this study was wrought IN718 alloy. Chemical composition of the 

material is shown in Table 1. The specimens were solution treated at 1025  for 1 h, followed by 

cold-water quenching. The initial microstructure comprises equiaxed grains and annealing twins, 

as is shown in Fig. 1. The average grain size (without twins) was measured to be about 45 μm 

by the linear interce℃pt method. 

2.2. Compression test 

Cylindrical specimens with a diameter of 5 mm and a height of 10 mm were used for hot 

compression tests. Baehr DIL-805 deformation dilatometer was used for isothermal compression 
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tests. Compression tests were conducted up to true strain of about 0.7 under different 

temperatures (950, 1000, 1050 and 1100 ℃) and various strain rates (0.001, 0.01, 0.1, 1 and 10 

s-1), for covering the quasi-static and quasi-dynamic condition. A K-type thermocouple was spot-

welded at the middle of the specimen to accurately control the heating and cooling rates and 

measure the specimen temperature. Also, argon gas was utilized as the shielding and quenching 

gas in the machine. Hot compression tests were conducted in an argon atmosphere. In order to 

minimize the frictions during the hot deformation and to avoid the adhesion, a Molybdenum foil 

with a thickness of 0.1 mm was used between anvils and specimen surface.  

2.3. Microstructural studies 

Hot deformed samples were sectioned parallel to the compression direction. Samples for optical 

metallographic examination were prepared by mechanically polishing and etching with a 

solution consisting of 50 ml HCl, 50 ml ethanol and 7.5 g CuCl2. For EBSD analysis, specimens 

were ground with SiC papers, mechanically polished with diamond slurries and then were 

polished with 0.04 m colloidal silica solution for one hour. A Zeiss Ultra Plus analytical field 

emission gun scanning electron microscope (FEG-SEM) equipped with an EBSD detector, 

provided by HKL Technology, was used for EBSD studies with a step size of 0.25 m. 

analyzing and displaying the EBSD data were done by using the Channel5 software package. 

2.4. Correction of flow curves 

It is necessary to use correction factors for eliminating the effect of interfacial friction. A 

simplified analysis of the barrel compression test based on the upper-bound theory [33] was used 

to remove the friction effects on the flow curves. 
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 Generally, the occurrence of DRX can be identified from the appearance of a peak stress in the 

flow curves. Nevertheless, in some cases detection of this peak is difficult under hot working 

conditions. The initiation of DRX can also be identified from inflection point of the strain 

hardening rate against stress curves [34,35]. The first derivative of the true stress versus true 

strain yields the work hardening rate (θ ). The θ  values were obtained by averaging the slopes 

of two adjacent points for each data point using Origin program as follows: 

 (1) 
i 1 i i i 1

i 1 i i i 1

y y y y1

2 x x x x
 

 

  
   

 

where x and y are the coordinates of each data point.  For solving noise problems, a curve 

smoothing by fitting a seven to nine-order polynomial to the stress-strain curves was used to 

eliminate the fluctuations during differentiation[36,37]. In this study, following the removal of 

the elastic portions of curves, each curve was friction-corrected and then was smoothed with a 

high-order polynomial. 

3. Results and discussion 

3.1. Corrected flow curves 

The friction-corrected flow curves obtained for different temperatures and strain rates are 

presented in Fig. 2. Most of samples exhibit typical DRX flow curves with a clear single peak 

stress followed by a gradual decrease towards a steady state stress. Having a single peak 

behavior is the main characteristic  of  discontinuous  dynamic  recrystallization[35],  and shows 

that recrystallization initiates in new cycles before completion of the current cycles [36]. Thus, 

different grains are at different state of recrystallization development during deformation and the 

single peak flow curve is the averaged flow stress of grains at various stages of recrystallization. 
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As can be observed in Fig. 2, the peaks of flow curves become less obvious with decreasing 

strain rate and increasing temperature. The abnormal stress drop beyond the peak stress in the 

case of samples deformed at 10 s-1 strain rate is due to the adiabatic deformation heating. When 

hot compression is performed at strain rates of 10 s-1 and higher, the degree of temperature rise 

due to adiabatic heating is high and the heat cannot dissipate to the surrounding environment 

during the short time periods of the tests [38]. Additionally, considering that the deformation 

process is very fast, it is almost impossible for the testing machine to compensate the 

temperature deviation during the compression test. On DIL-805 deformation dilatometer, the 

instantaneous temperature in the stable center region of specimen was measured by a welded 

thermocouple during hot deformation. Fig.3a shows the adiabatic deformation heating for the 

specimen deformed at high strain rate of 10 s-1 and 1050 ˚C. Similar behavior at 10 s-1 strain rate 

has been reported by H. Mirzadeh et al. for hot compression of steels [36,39]. It can be observed 

that the increase in temperature following the peak point is significantly high owing to the 

adiabatic heating. The temperature rise results in reduction in the flow stress of the sample, i.e., 

the peak stress (or the stress softening) in this condition is related to the temperature increment 

rather than to the onset of DRX. Analogous plots at T = 1050 °C and 10 s-1 strain rate are 

presented in Fig.3b. This figure shows that the adiabatic heating during deformation is negligible 

for samples compressed at strain rates lower than 10 s-1. 

It is clear from Fig. 2 that the plastic region of the flow curve consists of three stages: i) work 

hardening, ii) softening and iii) steady state. The first stage is the work hardening region, in 

which dislocation density continuously increases and the flow stress quickly increases with the 

increase of the strain. In the softening region, the dislocation density reaches a critical level, and 

DRX occurs. During the nucleation and growth of recrystallized grains the number of 
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dislocations is reduced and thereby the flow stress decreases. Finally, at the steady state, there is 

a balance between work hardening and dynamic softening. 

3.2. Microstructural characteristics  

Hot deformation at different temperatures and strain rates results in grain elongation, boundaries 

serration, substructure formation and finally the onset of DRX after a critical strain. As an 

illustrative example, the effects of deformation temperature on the microstructure of the 

specimens under the strain rate of 0.01 s-1 is shown in Fig. 4. It can be observed that for a given 

nominal strain of 0.7, the fraction of recrystallized grains increases with the increase of the 

deformation temperature. Considering that the occurrence of DRX, at a given initial grain size,  

is dependent on the distribution and of dislocation density [21], and knowing that the increasing 

of the deformation temperature decreases the critical dislocation density, the critical strain for the 

onset of DRX decreases. As depicted in Fig. 4, with increasing the temperature the 

microstructures transform from a duplex or “necklace” to a completely recrystallized structure 

and the recrystallized grain size increases. The recrystallized grain growth is due to high mobility 

of the grain boundaries at high temperatures.  

Fig. 5 depicts the influences of strain rate on the microstructures of deformed specimens at the 

deformation temperature of 1050 °C. It is clear that the recrystallized grain size decreases with 

increasing strain rate. Moreover, the fraction of DRX decreases with increasing the strain rate. 

The exceptional case for the relationship of grain size and the fraction of DRX with strain rate is 

the specimen compressed at strain rate of 10 s-1, which shows higher grain size and greater 

fraction of DRX in comparison with the specimen deformed at strain rate of 1 s-1. The promotion 

of DRX at high strain rate of 10 s-1 can be ascribed to the adiabatic heating and increased rate of 
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dislocation accumulation. Adiabatic heating within the specimen facilitates DRX nucleation and 

grain boundary migration and thereby stimulates DRX process. On the other hand, due to the 

strong dislocation–dislocation interaction and weak recovery during plastic deformation at high 

strain rate, the dislocation density increases. Distributions of sub-boundaries inside the elongated 

grains have been compared for samples deformed at temperature of  1100 °C and strain rates of 

10  and 1 s-1 in Fig. 6.  The more density of low-angle grain boundaries for sample compressed 

at strain rate of 10 s-1 approves the increasing dislocation density with increasing the strain rate. 

The increased dislocation density decreases the recrystallization temperature noticeably [40]. 

Therefore, the high volume fraction and grain size of recrystallized grains at strain rate of 10 s-1 

are resonable. 

In a single-peak DRX process, nucleation occurs essentially along existing grain boundaries 

(necklace mechanism). The growth of new grains is limited by the concurrent deformation as a 

result of decreased driving force for their subsequent growth due to rising the dislocation density 

[41]. The DRX process continues until the completion of the first layer of necklace to cover the 

entire grain boundary. Afterward, the subsequent layers form at the recrystallization front 

between the recrystallized and un-recrystallized portions. 

The OIM band contrast microstructures of annealed sample and compressed at 1000˚C-0.1 s-1 are 

presented in Fig. 7. It is evident from Fig. 7a that the initial annealed microstructure (preceded to 

hot deformation) consisted of equiaxed grains with a large quantity of annealing twin boundaries 

and negligible fraction of low angle boundaries. The equiaxed grains are the result of static 

recrystallization and grain growth during the annealing heat treatment. There are two types of 

twin boundaries in the structure, i) the straight and ii) the curved twin boundaries which are 

indicated with white and yellow arrows, respectively, shown in Fig.7a. It is believed that the 
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straight twin boundaries are coherent and the curved are incoherent [42]. As expected for a 

material with low stacking fault energy [43] the presence of this high fraction of twin boundaries 

in the microstructure shows that formation of annealing twins is an important phenomenon 

during the recrystallization of this alloy. Twin domains are favorable nucleation sites for DRX 

due to their high stored deformation energy [44].  

Fig. 7b depicts plenty of sub-boundaries in the deformed and un-recrystallized matrix of the 

sample deformed at 1000˚C-0.1 s-1, which is a result of dislocation generation and dislocation 

boundary formation during the plastic deformation and dynamic recovery. However, the new 

DRX grains consume the deformed microstructure and thereby decrease the fraction of low angle 

boundaries. Besides, most of the twin boundaries in the matrix have been diminished. Some of 

the pre-existing twins have lost their twin characteristics and curved due to the effects of 

concurrent deformation [43,45], showed by yellow arrow in Fig. 7b. It is noteworthy that a large 

fraction of newly generated boundaries after the initiation of DRX have twin relationship. It is 

obvious from Fig 7b that the dislocation sub-boundaries behind the bulged parts are free of 

twins. Therefore, it can be pointed out twins inside DRX grains form during the growth of DRX 

grains. This is in line with the other reported observations [46]. 

The typical macrograph and micrograph of specimens deformed under 1050 ˚C-10 s-1 are shown 

in Fig. 8a and b, respectively. These images show large amount of local deformation bands 

forming about 45  angles to the compression direction and indicate the existence of the 

instability in the form of unstable flow due to the flow localization at high strain rates. The same 

phenomenon has also been found in compression tests of superaustenitic stainless steel and has 

been interpreted as a result of flow localization [47]. 
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3.3. Constitutive equations based on Sellars models 

Several empirical equations have been presented to characterize the hot deformation behavior 

and to obtain constitutive equations of alloys. These equations are commonly employed to define 

the flow stress as a function of strain rate and deformation temperature[48,49]. Generally, a 

constitutive equation is determined by formulating experimental data [25]. 

 Hot deformation can be conceived as a thermally-activated process which is modeled with strain 

rate equations like to those used in creep modeling [50]. The combined effect of temperature and 

strain rate is classically unified through the Zener-Hollomon parameter (Z), whose physical 

interpretation is the strain rate factor compensated by temperature. 

 (2) Q
Z exp

RT
    
 

&  

where & is strain rate (s-1), Q is hot deformation activation energy (kJ/mol), R is the gas constant 

(8.314 kJ/mol K-1), and T is deformation temperature (K). 

Concerning developing constitutive equations, the Z parameter can be associated with the flow 

stress in different ways. Three types of equations are mostly used according to the deformation 

conditions, involving exponential, power and hyperbolic sine functions [51–53]. 

 
 

 

1

2

3

n

n

A exp βσ  
Q

Z exp f σ Aσ  
RT

A snh ασ




      

  
   

&                                                               (3) 

where, 1A , 2A , 3A , n , n, β and α  ( β / n ) are experimentally determined temperature-

independent material constants. In these equations, the flow stress is related to the strain rate and 

temperature of deformation. Nevertheless, such flow stress definition must be considered as rate 

equations rather than constitutive equations because there is no dependence on strain in the 
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equations.  Typically the latter equations can be applied to characteristic stresses such as steady 

state or peak stress. The method used for obtaining the characteristic stresses, peak and steady 

state stress, is illustrated in Fig. 9. It appears from Fig. 10 that the peak stress and the steady-state 

stress have linear relationship especially for samples compressed at low strain rates. Although in 

the in literature, there are reports of using both the peak stress [54] and the steady-state stress 

[16] for formulating the constitutive equations, one should notice that it is not often possible to 

determine the steady state stress accurately and the adiabatic heating can drop the flow stress at 

high strain rates. Therefore, it seems that it is better to use the peak stress in constitutive 

equations rather than steady state stresses. 

 Eq. (2) can be rearranged to yield the following equations: 

 

 

1

2

3

ln A βσ                      
Q 1

ln ln A n lnσ                  
R T

ln A nln sinh ασ

 
      

      

&                                                                       (4) 

β ,  n  and n  can also be derived by partial differentiation of Eq. (3) at a given deformation 

temperature: 

(5) 

 

T

T

T

ln  
                  

 σ

ln
n                   

 ln σ

ln  
n

 ln sinh ασ


        
       

           

&

&

&

 

The slopes of the curves of ln & versus σp, ln σP and  ln sinh ασ    can be employed for 

determining the values of β, n  and n, respectively. The stress multiplier α can be estimated by 

knowing the values of β and n  (α β / n ) [55], which is obtained to be 0.006. Aforementioned 
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plots are presented in Fig. 11. The average values of β, n and n were calculated by linear 

regression of the corresponding curves and are listed in Table 2. The adjusted R2 error values 

presented in Table 2 reveal that the linear regression results are acceptable. 

Partial differentiation of Eq. (4) at constant strain can be used for calculating the value of 

deformation activation energy (Q). The necessary expressions are as follows:  

(6) 

 

 
 

 

 σ
R               

 1 / T

lnσ
Q Rn              

 1 / T

ln sinh ασ
Rn  

 1 / T







       
        
         





&

&

&

 

Based on Eq.(6) the slope of the plots of Pσ , ln Pσ  and ln sinh( Pασ ) versus the reciprocal of the 

absolute temperature can be utilized for calculating the value of Q. The required plots are shown 

in Fig. 12. As is shown in Table 3, the average values of 442, 409, and 437 kJ/mol were obtained 

for activation energy based on the exponential, power and hyperbolic sine laws, respectively. It 

can be observed that all the values are close to each other. The average activation energy of hot 

deformation was considered to be 429 kJ/mol which is comparable to the values reported for hot 

deformation of IN718: 443 kJ/mol by Y. Wang et al. [21] and 429 kJ/mol by L. Cheng et al. [56]. 

However, the activation energy is significantly higher than the activation energy for self-

diffusion of nickel (278 kJ/mol [57]). The higher Q value can be ascribed to the influences of 

alloying elements which pin the motion of the dislocations and grain boundaries. The final 

obtained equations after substituting Q, n, ݊́, α and ẞ values are as follow: 
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(7) 

 

1

2

3

ln A 0.026σ                            
51600

ln ln A 5.029 lnσ                        
T

ln A 3.462ln sinh 0.005σ

 
   
    

&                                                                 

3.4. Peak Stress as a Function of the Zener–Hollomon Parameter 

Considering Eq. (3), the curves of ln Z against Pσ , ln Pσ , or ln sinh( Pασ  ) were plotted, Fig. 13, 

and used to model the relationship between Z and Pσ . Using a linear regression, the following 

equations with new constants were derived: 

(8) 

   

   

P0.027σ13

4.957
P

3.56215
P

 

3.16 10 e                        429152
Z exp

61023σ                                         RT

2.57 10 Sinh 0.0054σ  




     
  

    

&  

Considering Table 4, the power law equation has the highest adjusted R2 value. Besides, this 

equation is simple and easy to use. Therefore, it is preferred to use the power law for modeling 

the hot deformation behavior of IN718 in the temperature range of 950-1100 °C and strain rate 

range of 0.001-10 s-1. However, the hyperbolic sine law has also a good fit and the exponential 

equation is not precise in the present investigation. Finally, in the order to increase the accuracy 

of peak stress calculation in IN718 alloy under the deformation condition used in this study the 

simplified following equations can be used: 

 (9) 

 
P

1 0.28
P

0.202
P

 

σ 37.04  1151                     

σ 185 h 12475 Z

σ 0.108  Z                             

 

Ln Z

Sin 


  
   


 

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3.5. A new model based on multivariable regression  

Based on the experimental data of hot compression tests, a non-linear constitutive model is 

constructed by multiple linear regression analysis. Fig. 11a shows that a linear relationship 

exists between  PLn  and  Ln& at constant temperature. On the other hand, it is clear from Fig. 

12b that at a given strain rate there is a linear relation between PLn  and (1/T). By simple 

linear regression analysis of Fig 11a and 12b, the following regression equations can be derived: 

     P PLn ALn T   &           (10) 

 1
   P PLn B

T
     

 
& 

       (11) 

It is important to note that the slope of PLn -  Ln& curve is independent of temperature and that 

of  PLn -
1

 
T

curve is independent of strain rate in Fig 11a and 12b, respectively. It means that A 

and B in Eq. (10) and (11) are constant at all temperatures and strain rates. Thus, the following 

expression can be proposed for the peak stress: 

   PLn A Ln  &+
1

 B
T
 
 
 

+C    
       (12) 

This equation is in the form of 0 1 2 y y ax bx   . Therefore, the multivariate linear regression 

can be used for finding the A, B and C constants. Based on the constructing data, the peak stress 

model or the constitutive equation for the hot deformation of IN718 is obtained as follows: 

10709.6
 0.199   2.458PLn Ln

T
   &  

       (13) 

Fig. 14a shows 3D illustration of the experimental and calculated peak stress based on the Eq. 

(13). For better assessing the prediction capabilities of the model, results of hot compression 
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tests of IN 718 reported by H. Y. Zhang et al.[22] and J. M. Zhang et al. [25]were utilized. The 

important criterion in selection of data from the literature was that the strain rate or 

deformation temperature of those works should differ from that of our work. The experimental 

peak stress of IN 718 obtained at deformation temperatures of 980[25] and 1060 Ԩ[22] under 

various strain rates are presented in Fig. 14 b. This figure shows that the prediction of the model 

is very close to that of the test case, especially for higher temperatures. The adjusted R2 of 0.962 

and 0.975 for deformation temperatures of 980 and 1060 Ԩ, respectively, shows that the 

established constitutive relationship is capable of describing the peak stress of the alloy at 

different strain rates and deformation temperatures. By some algebraic manipulations of Eq. 

(12), the following equation is derived.  

 

1

   exp
.

A
P

B
C

AT
   

 
 

&  
       (14) 

By comparing Eq. (14) with the second expression of Eq. (3), A and B constants can be 

physically described. It can be observed that 1/A and BR/A represent n  and activation energy 

(Q), respectively. 

The advantage of the new proposed constitutive equation in comparison to the Sellars-Tegart 

based equations is that the propos equation is simple and can be easily obtained. Moreover, there 

is no need for calculating the activation energy of the hot deformation. 
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Conclusions 

A step-by-step data analysis of the hot compression behavior of IN718 alloy at temperatures 

ranging from 950 to 1100 °C and strain rates of 0.001 to 10 s−1 resulted in the following principal 

conclusions: 

-The inflection analysis in the work hardening rate versus stress plots as well as optical and 

EBSD images confirmed that the flow curves exhibited typical DRX behavior. 

-The specimen compressed at high strain rate showed an exceptional DRX behavior and 

extended softening because of the adiabatic heating and strong interaction between the 

dislocations. 

- The microstructure of the alloy at high temperatures and high strain rates had a large amount of 

local deformation bands forming about 45  angles to the compression direction showing an 

instable behavior. 

-Among Sellars constitutive equations, the power law constitutive equation has the highest 

correlation coefficient and also is simple and easy to use. 

-A new multivariable regression based model was proposed for obtaining constitutive equation 

of the material. The simple proposed model showed a good accuracy for predicting the peak 

stress as a function of strain rate and temperature. 
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Figures Captions 

Fig. 1. Optical micrograph of the studied IN718 before hot deformation. 

Fig. 2. True stress-true strain curves obtained in hot compression of IN718 at different strain 

rates and temperatures of (a) 950, (b) 1000, (c) 1050 and (d) 1100 ˚C. 

Fig. 3. (a) True stress and temperature versus true strain curves for samples deformed at 1050 °C 

and strain rate of (a) 10 and (b) 1 s-1. 
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Fig. 4. Microstructure of IN718 alloy deformed at strain rate of 0.01 s-1 and temperature of (a) 

950, (b) 1000, (c) 1050 and (d) 1100 °C; showing DRX microstructures. 

Fig. 5. Microstructure of IN718 alloy deformed at strain rate of (a) 0.001, (b) 0.01, (c) 0.1, (d) 1 

and (e) 10 s-1, and 1050 °C; showing DRX microstructures. 

Fig. 6. The OIM band contrast microstructures for samples deformed at 1100˚C and strain rate of 

(a) 0.1 s-1 and (b) 10 s-1. The high and low angle boundaries are shown as black and white lines, 

respectively. 

Fig. 7. The OIM band contrast microstructures for (a) annealed sample and (b) sample deformed 

at 1000˚C-0.1 s-1; the high and low angle boundaries are shown as black and white lines, 

respectively; Σ3 twin boundaries are shown as red lines. 

Fig. 8. (a) Macrograph and (b) micrograph of IN 718 alloy deformed at 1050 ˚C-10 s-1. 

Fig. 9. (a) Some of work hardening rate-true stress curves in various conditions; (b) Method used 

for determination of peak and steady state stresses. 

Fig. 10. The linear relationship between (a) the peak stress and steady state stress at various 

strain rates, and (b) variations of lnσ and lnε&. 

Fig. 11. Plots used for calculation of (a) n , (b) β and (c) n values. 

Fig. 12. Plots of (a) Pσ , (b) ln Pσ  , and (c) ln sinh( Pασ  ) versus the reciprocal of absolute 

temperature, used for obtaining the values of Q. 

Fig. 13. Plots of ln Z against (a) Pσ , (b) ln Pσ  , and (c) ln sinh( Pασ  ). 

Fig. 14. Evaluation the proposed model; (a) red points are the experimental values obtained in 

this work; (b) triangular and square denote the experimental data taken from Ref. [25] and Ref. 

[22], respectively, and the solid lines the calculated values using the proposed equation.  
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Tables Captions 

Table 1. Chemical composition of IN 718 (wt.%) 

Table 2. Calculated values required to find the average values of β, n  and n (Eq. (5)) from 

curves of ln & versus σp, ln σP and  ln sinh ασ    

Table 3. Calculated values required to find the values of activation energy from plots of Pσ , ln 

Pσ  and ln sinh( Pασ ) versus 1/T 

Table 4. Calculated values of β,  n  and n from ln Z against Pσ , ln Pσ , or ln sinh( Pασ  ) curves 

 

Table 1. Chemical composition of IN 718 (wt.%) 

Ni Cr Fe Nb+Ta Mo Ti Al Co Sl Mn Cu C 

54.00 18.21 17.29 5.35 2.98 0.91 0.66 0.24 0.08 0.07 0.07 0.03 

 

 
Table 2. Calculated values required to find the average values of β,	݊́ and n (Eq. (5)) from 

curves of ln ߝሶ versus σp, ln σP and ݈݊	ሾ݄݊݅ݏሺߪߙሻሿ 

T (Ԩ) 
Exponential law Power law Hyperbolic sine law 

β Adjusted R2of β n  Adjusted R2of n  n Adjusted R2of n 

950 0.020 0.9355 4.838 0.9948 2.987 0.9644 

1000 0.027 0.9838 5.501 0.9914 3.768 0.9990 

1050 0.025 0.9463 4.931 0.9926 3.389 0.9908 

1100 0.031 0.9257 4.846 0.9988 3.704 0.9905 

Average 0.026 0.9478 5.029 0.9944 3.462 0.9862 
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Table 3. Calculated values required to find the values of activation energy from plots of ߪ௉, ln ߪ௉ 

and ln sinh(ߪߙ௉) versus 1/T 

Strain 

Rate 

(s-1) 

Exponential law Power law Hyperbolic sine law 

Slope of 

1
Pσ

T
 

Adjuste

d R2of 

slope 

Q 

(kJ/mol) 

Slope of 

1
 Plnσ

T
 

Adjusted 

R2of slope 

Q 

(kJ/mol) 

Slope of 

  1
 

P
ln sinh ασ

T
 

Adjusted 

R2of slope 

Q 

(kJ/mol

) 

0.001 1006467 0.9604  11525 0.9859  12630 0.9855  

0.01 1474900 0.9878  10597 0.9941  13073 0.9980  

0.1 2484764 0.9689  10902 0.9972  17219 0.9864  

1 2190106 0.9936  7792 0.9999  14117 0.9966  

10 3064037 -  8106 -  18793 -  

Averag

e 
2044055 0.9777 442 9784 0.9943 409 15166 0.9916 437 

 
Table 4. Calculated values of β,	݊́ and n from ln Z against ߪ௉,	ln ߪ௉, or ln sinh(ߪߙ௉ ) curves 

Exponential law Power law Hyperbolic sine law 

β 
Adjusted R2of 

β 
 n  Adjusted R2of n  n 

Adjusted R2of 

n 

0.027 0.9423 4.957 0.9935 3.562 0.9889 
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Fig. 1. Optical micrograph of the studied IN718 before hot deformation. 
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Fig. 2. True stress-true strain curves obtained in hot compression of IN718 at different strain 

rates and temperatures of (a) 950, (b) 1000, (c) 1050 and (d) 1100 ˚C. 

 



27 
 

 

Fig. 3. (a) True stress and temperature versus true strain curves for samples deformed at 1050 °C 

and strain rate of (a) 10 and (b) 1 s-1. 
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Fig. 4. Microstructure of IN718 alloy deformed at strain rate of 0.01 s-1 and temperature of (a) 

950, (b) 1000, (c) 1050 and (d) 1100 °C; showing DRX microstructures. 

 

Fig. 5. Microstructure of IN718 alloy deformed at strain rate of (a) 0.001, (b) 0.01, (c) 0.1, (d) 1 

and (e) 10 s-1, and 1050 °C; showing DRX microstructures. 
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Fig. 6. The OIM band contrast microstructures for samples deformed at 1100˚C and strain rate of 

(a) 0.1 s-1 and (b) 10 s-1. The high and low angle boundaries are shown as black and white lines, 

respectively. 

 

Fig. 7. The OIM band contrast microstructures for (a) annealed sample and (b) sample deformed 

at 1000˚C-0.1 s-1; the high and low angle boundaries are shown as black and white lines, 

respectively; Σ3 twin boundaries are shown as red lines. 
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Fig. 8. (a) Macrograph and (b) micrograph of IN 718 alloy deformed at 1050 ˚C-10 s-1. 

 

Fig. 9. (a) Some of work hardening rate-true stress curves in various conditions; (b) Method used 

for determination of peak and steady state stresses. 
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Fig. 10. The linear relationship between (a) the peak stress and steady state stress at various 

strain rates, and (b) variations of lnσ and lnε&. 
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Fig. 11. Plots used for calculation of (a) n , (b) β and (c) n values. 
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Fig. 12. Plots of (a) Pσ , (b) ln Pσ  , and (c) ln sinh( Pασ  ) versus the reciprocal of absolute 

temperature, used for obtaining the values of Q. 
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Fig. 13. Plots of ln Z against (a) Pσ , (b) ln Pσ  , and (c) ln sinh( Pασ  ). 
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Fig. 14. Evaluation the proposed model; (a) red points are the experimental values obtained in 

this work; (b) triangular and square denote the experimental data taken from Ref. [25] and Ref. 

[22], respectively, and the solid lines the calculated values using the proposed equation.  

 

 


