ATLAS: a platform for transparently developing distributed

applications

M. Fairén and A. Vinacua
Department of Software,
Institute of Robotics and Industrial Informatics, U.P.C.
Diagonal 647, 8@ planta
E08028 Barcelona, Spain
+34 3 401 6739

{mfairen,alvar}@lsi.upc.es

ABSTRACT

We discuss the design and implementation of a soft-
ware development platform that allows unsophisticated
programmers to include advanced features to their ap-
plications with no or very little extra information and
effort. These features include the splitting of the ap-
plication in distinct processes that may be distributed
over a network, a powerful configuration and scripting
language, and several tools including an input system
to easily construct reasonable interfaces. We attempt
to describe both the techniques used to achieve trans-
parency for the programmer and what exactly a user
must do to build new ATLAS modules.

KEYWORDS
Distributed applications, Software development tools,
External data representation

1 INTRODUCTION

AT1.AS represents an attempt to facilitate to program-
mers in our lab the incorporation to their applications of
certain services at a minimum cost. In fact, ATT.AS helps
them build distributed applications (problems involved
in distribution were focused in [2]), provides them with
powerful configuration mechanisms and a macro lan-
guage and include a journaling facility, among other
things. All these aspects require a substantial amount
of familiarity by the programmer with the said tech-
niques, and a fair amount of programming for them on
each application.

In a research lab like ours a large amount of software
is constantly being developed to demonstrate ideas, but
eventually has to be rewritten when certain function-
alities need to be combined. Tt also remains in an un-
finished status and 1s usually hard to use or demon-
strate by anybody except the author, because of the
high cost of “finishing up” the details. We then real-
ized that a development platform that facilitated the
construction of this software giving easy access to many
sophisticated resources and establishing basic rules that
eased the joint operation of modules was valuable to us,
since it enabled experimental software to grow in a more
harmonious way, and facilitated even the reuse of old

components.

Evolving from the ideas originally presented in [9] we
designed ATT.as for this purpose. Since our work is cen-
tered in Computer Graphics applications we included
certain mechanisms especially designed for that domain
which we’ve discussed in specialized forums [6]. How-
ever by far the largest portions of effort and of code
involved very general tools usable by interactive applica-
tions in most other domains. Therefore AT1.AS can also
be viewed as a general programming tool that greatly
simplifies the construction of fairly sophisticated appli-
cations.

In this paper we shall present a view of ATr.AS from
this last perspective, discussing the general aspects not
present, in other publications about it and showing how
and in which ways it can enhance the software develop-
ment process. In the next section we shall enumerate
more concrete objectives and criteria used in the design
of ATLAS. Section three will briefly present the solu-
tion adopted for the interprocess communication, and
section four will describe aspects of the design and im-
plementation of an ATLAS application from the point of
view of the user the programmer building the appli-
cation. Finally we will turn briefly to conclusions and
future work.

2 OBIJECTIVES AND DESIGN CRITERIA

The first priority in the design of AT1.As has been to
make 1ts inner workings as transparent to the user as
possible. To this end, some aspects may not have the
intrinsically best. or most powerful or most flexible so-
lution, but users can build applications on ATr.Aas with-
out almost any concern about 1t, yet getting substantial
benefits from 1ts presence.

In terms of functionality, ATr.As includes these objec-
tives:

o Low level of parallelism. AT1AS applications fea-
ture several distinct processes running concurrently
in the same or different machines in a network;
processes encapsulate ATLAS components or user
modules. The user implements routines that are

accessible to other processes as remote procedures.

e Interprocess communication. Since the application
is split in several processes, these need to com-
municate over the network and exchange data be-
tween possibly different architectures. This gives
rise to many different problems that need to be ad-

dressed [1].

e Standardized imput model. A great deal of effort
in an application’s development is spent in its user
interface. ATTAS provides a uniform but flexible
view of inputs that allows many different dialogue
modes in a uniform way, somewhat related to Ab-
stract, Data Views [3].

o Configuration and macro language. A flexible yet
powerful way must be provided for a programmer
to describe what is in each of his modules, and how
it should relate to others, and also to define the
dialogues of the application and its behavior in a
simple way.

e Journaling mechanism. This is not yet imple-
mented and only mentioned here in passing. Tt is
partially designed and will be at the heart of other

services offered by ATLAS.

e [Fault tolerance. Since the application is spread out
among several hosts, it becomes more exposed to
transient, or permanent failures (of the communica-
tions or of any of the hosts involved). Fault toler-
ance 1s transparently provided based on the jour-
naling mechanism and on heartbeat messages sent
by all processes so that their status can be assessed.

e Reusability. Fach user module is completely iso-
lated from others (in a separate process) except
through a well defined interface described in AT-
L.AS’s programming language. Thus new compo-
nents can incorporate and use reliably old ones.

Not all these aspects can be discussed here, as they
would take an inordinate amount of space. The follow-
ing sections center around aspects of the present beta
version concerning the housekeeping of processes and
communications, and how ATLAS helps users build ap-
plications with these features easily.

3 IMPORTANT ISSUES IN THE Atr.as COM-
MUNICATIONS MECHANISM

3.1 Problems That Need To Be Addressed

Since ATT.As first priority is to offer the maximum trans-
parency to the developer, the design of AT1.As architec-
ture must hide the intricacies of the interprocess com-
munications from the programmer.

The communications mechanism has to address prob-
lems like how to start a process in an application, how
to manage the interchange of information between pro-
cesses and also how to detect failures in the applica-
tion communications in order to know when the fault-
tolerance mechanism should be activated.

To start a process in a different machine it is necessary
to have a process listening for a connection in the cho-
sen host (this requires to have knowledge of low level
connections in the operating system), and it would he
also desirable that the process to be started inherits the
application environment.

The interchange of information between processes has
also an added difficulty when they are running in an
heterogeneous network because data can be interpreted
with different meaning depending on the architecture
where they are used.

Next subsection explains how these problems have been
addressed in ATT.AS.

3.2 The Approach Used In ATrAS

The ATLAS architecture is represented in figure 1, where
the ovals denote processes and the arrows represent
communications between them. Tt is a centralized ar-
chitecture where the process distr acts as the master
process and is the center of each ATT.AS application.

This architecture allows an intelligent distribution to be
managed, i.e. the distr process is able to decide the
processes distribution dinamically depending on the ap-
titude of each host in the network to run each applica-
tion process.

Therefore, this master process is the most crucial one in
this architecture and also in the communications mech-
anism because 1t is the communications center for each
application. Tt is also the one to take care about the
status of each process in execution at any time. This
is easy because of the heartbeat mechanism designed in
ATT.AsS.

The heartbeat mechanism makes every process being ex-
ecuted in the application send a short message periodi-
cally to the master process giving the required informa-
tion to control the global status of the execution. This
mechanism is very useful to detect if a process or the
communication with it fail, therefore it will become nec-
essary to the fault-tolerance mechanism which, although
it 1s not available yet, has been almost completely de-
signed. This mechanism will be shortly discussed in the
future work section below.

Server Process Design
The ATT.AS server process is a simple but very impor-
tant process in the ATLAS architecture. Tts role, in the

Constraints
Solver

PR -\

lserver@host)

1\- -
ity

Octree
Machine

Figure 1: A sample execution of an AT1.As application.

current, version, is to accept connections from the mas-
ter process distr and run the application process re-
quested by 1t. In future versions it will also implement
a handshake with distr to achieve a certain degree of
load-balancing.

As the server daemon is normally run at boot time with
root permissions, it must change its permissions to the
user’s permissions before executing the user’s process
in order to protect the system. Moreover, to do that
it must be sure of the identification of the user and
also inherit the user environment to achieve a success-
ful execution. This environment information is sent by
the distr process in the connection message. The user
identification mechanism is based on a special 32 bytes
long user identifier that every ATLAS user must have
generated before he executes AT1.As for the first time.

Communications Drivers Design

An ATT.AS application process execution is based on a
remote-procedure-call-like paradigm. A process can be
then considered as a set of routines to do the process re-
lated work plus a communications driver to manage the
interchange of messages with the rest of the application
(see section 4).

The communications driver 18 the main program of the
process, and its role is to listen requests or messages
from the master process and other connections added
and dispatch them as needed. The most relevant re-
quests or messages sent by the master process can be
related with a routine call, data answering a request, or
an ATLAS event notification (see section 4.3).

The main execution of an ATTAS process is then the
dispatch routine of its communications driver. Tt enters

in a loop listening in the group of channels actived by
this process (the default is only the connection with
the master process), and when it receives a message it
dispatches it and keep on listening for another one (see
figure 2). Apart from dispatching messages the driver
can also dispatch interruptions (like signals). Tn fact the
heartbeat mechanism uses the SIGALRM interruption.

routine call

& g ATLAS event treatment
z xS
Driver Z=—_dgad - answer data
N
N

N
\) N NG
', addtimer N
\ ;/j\\ /@D\(q
~._ subchanne) N
< } N)
S~eo - - timeout handling
optional

AY
/" add channiel)<

~

Figure 2: Driver role scheme.

The default treatment of an ATLAS process driver is
managing the messages comming from the master pro-
cess and the interruption of SIGALRM. But the actual
driver is much more flexible (as can be seen in figure 2).
Tt also allows the process to add channels to listen to,
add a timer treatment or remove channels added be-
fore. This flexibility only requires to have implemented
the treatment for messages being received by these new
channels.

The ATT.AS communications mechanism is implemented
using sockets, and its implementation takes profit of the
wrapper classes for sockets offered by the public domain

package ACE_Wrappers (see [7] and [8]).

The biggest problem to solve in communications be-
tween ATT.AS processes 18 the interchange of data. Since
these processes may be running in different architec-
tures, data must be sent through the network using
a standard representation in order that they have the
same meaning to the different processes.

Furthermore, these data need to be at least very often
accessible to AT1.AS itself, which includes a program-
ming language to define user-machine dialogs or other-
wise interconnect, to different modules (see section 4).

The problem of actually transfering the data robustly
has long since been solved. Indeed we just rely on
XDR [10] for that purpose. To attain these data sharing
with the maximum of transparency for the developer,
AT1.AS includes a mechanism based on our data struc-
tures (called VYariables) used to wrap user data in each
process (this mechanism is thoroughly explained in [5]).
These structures offer access methods used by the inter-
preter of the command language, and also encapsulate
methods to encode and decode XDR, streams transpar-
ently. Using this mechanism and adding also the au-
tomatic code generation explained in the next section,
the developer needs not be aware of XDR and indeed
almost not be aware of our interchange method at all.

4 DESIGNING AN APPLICATION. BENE-
FITS TO THE DEVELOPER.

4.1 Transparency To The Developer

The most important aim that ATLAS wants to achieve
is a high level of transparency to the developer. Almost
all services that ATr.As offers to applications developed
over it are techniques that normally require a lot of spe-
cialized programming. The emphasis in ATT.AS’s design
is to relief the programmer from this effort.

Many facilities offered by Atras, like distribution or
the communications mechanism, must be totally man-
aged by ATLAS in order to achieve the maximum trans-
parency to the developer. The programmer need not
know about these mechanisms and can concentrate on
the objectives of his application.

Automatic Code Generation

The ATT.AS process communications require quite a bit
of code in each process devoted to handshaking with
distr, generating the heartbeat messages at the ade-
quate rate, preparing the arguments for process rou-
tines or collecting results and encoding them for being
transported over the network, and dispatching calls to
process routines. To handle this, ATT.As automatically
generates code stubs that the developer must link with
his program. These stubs are constructed from the in-
terface declaration of the process (like in figure 3), which
contains the type definitions used for variables to be

exported and the prototype definitions of the process
extern routines.

The generated code also includes stubs to automati-
cally transfer the user’s data into ATT.AS Variables and
backwards, through bridge types used to isolate the de-
veloper from the details of the ATT.As Variables (which
an advanced programmer can use directly if he wishes
t0).

The bridge types are used to build intermediate ob-

jects with the data structure of the process objects (as

per their ATL.AS declarations) but without the methods
of the process objects (which remain unknown to AT-
r.As). Each bridge type has also methods to translate to
and from ATLAS Variables, making both translations
transparent to the developer. The only burden on the
developer 1s then to provide his classes with conversion
methods to and from these bridge type objects which
is usually trivial (unless the developer choses to have a
very different structure for the ATr.as data that the one
used internally by his program).

As an example we can see some relevant portions of this
automatically generated code in appendix.

4.2 Design Process Of An ATr.As Application

An ATras application is a set of processes which can
communicate between them through the ATrAS com-
munications mechanism. Each process can be seen as a
module offering some public methods that can be used
by the other processes. Therefore, it must be designed
as a set of exported routines that may be called by other
processes. This should be the general view of a process
belonging to an ATT.AS application.

From the developer point of view, a process consists of
two parts: its interface and its implementation.

The Process Interface

The process interface is a module written in ATT, lan-
guage which defines the prototype of the public routines
of the process and the needed types for their parameters
and return results.

The ATT. language (described in detail in [4]) is an im-
perative and modular language designed for ATT.AS ap-
plications. Tt allows to define types, variables, functions
and procedures that can he exported (visible to the oth-
ers) or local. Tt also accepts the most common control
structures inside functions and procedures (condition-
als, loops, ete.) and routine calls both synchronous and
asynchronous.

Although only its prototypes and types are needed for a
process interface, the module defining the process inter-
face can also include functions or procedures defined in
ATT, which describe the interaction with other processes

in the application or with the user (e.g. asking for in-
put data). ATT. modules which are not the interface of
any process but define the execution coordination and
interaction between processes can also be defined in the
application, and users may dynamically add their own.

An example of an ATT. module with part of the interface
of a process called volum can be seen in figure 3. Since
it 18 an example it is not complete, but 1t shows the def-
inition of a set of types exported by the module (some
of them are needed as parameters of extern routines),
the prototypes of two extern routines (these prototypes
and the types of its parameters would form the interface
of the process), and the description of a procedure (be-
ing also exported to be visible to other modules) that
combines the execution of the process routines, asks for
an input datum (through GETDATA) and also calls to a
procedure of another module (se: :0Output).

USE se;
EXPORT #deftype point STRUCT
x => real;
y —> real;
z => real;
ENDSTRUCT
EXPORT #deftype face VECTOR [3] OF STRUCT
pl -> point;
p2 -> point;
id -> integer;
ENDSTRUCT
EXPORT #deftype simplex STRUCT
name -> string;
sides -> VECTOR [4] OF face;
ENDSTRUCT
EXPORT #deftype scene VECTOR [100] OF simplex
EXPORT #deftype property integer
EXPORT scene totalsc;
PROT

EXTERN FUNCTION segmentation (scene sc, property p)
RETURNS scene;
EXTERN PROCEDURE display_scene (scene sc);

ENDPROT

EXPORT PROCEDURE SegmentSimplex () IS
display_scene (segmentation(totalsc,
GETDATA("Input the property value')));
se::0utput ("Segmentation completed','m");
ENDPROCEDURE

Figure 3: Portion of the interface definition in AT1.AS
for the volume modeling process (“volum”).

The Process Implementation

Since giving the process interface in the AT mod-
ule allows ATT.AS to generate code stubs to implement
the communications driver for this process (see subsec-
tion 4.1), from the developer point of view the process
implementation consists of the set of C+4 routines de-
clared as externals in the ATT, module plus the defini-
tion of the C++ classes used by their parameters. This
implementation can also include whatever the developer
wants as a private part of the process. This part won’t
be visible outside the process.

Figure 4 shows how an AT1.AS executable process is gen-

erated from its source files. The files depicted on the left
most column are those that the developer must imple-
ment.

The automatically generated code is divided in three
files: the atl_process.hh file defines the C++ pro-
totypes for the process routines declared as extern
routines in the ATT module; the atl_process.H file
has the bridge types implementation for that types
used by the extern routines of the process; finally the
atl _process.C file implements the main code for the
communications driver and also auxilary routines which
convert. ATT,AS Variables to the process C++ classes
and backwards in order to be able to call the corre-
sponding process routine with the correct parameters
and result variables.

4.3 Other Benefits To The Developer

There are also other benefits provided to the developer
that maybe are interesting to be mentioned:

e At run time, the ATT.AS kernel keeps some struc-
tures containing information about the status of
the application (what processes are in execution,
if there is some request waiting for an input data,
etc). To give the opportunity that an application
process be informed about changes in this internal
structures, ATT.AS offers the ATT.AS events mecha-
nism that allows the process to ask for a subscrip-
tion to a particular ATLAS event (ADD_PROCESS
when a new process starts in the application or
ADD_NPUT when an input is produced by the end
user, for example). Whenever an ATLAS event is
produced the distr process sends the correspond-
ing event message to every process subscribed to
that event, and the driver of the process, when it
receives this event message, calls the routine at-
tached to this event at subscription time.

e In order to address the standardized input model
presented as an ATT.AS objective in section 2, AT-
.AS also offers a generic input handling process. Tt
provides a window in which all the textual inter-
actions occur (issuing commands or entering nu-
merical data), but can also be instructed to cap-
ture events from other windows (owned by the rest
of the processes in the application) and consider
them input data to be channeled to those processes.
The input system is also extensible. In fact it is
also an interface between ATT.AS and an extended
Tecl/Tk [11] engine, so scripts in Tcl can be sent to
it to instantiate new interface components.

Using this ATrAS component the developer can
prepare the user interface for his application al-
most trivially, and dedicate most of his time to the
proper subject of his application.

developer files _ generated files _ ATLAS process
\ \

\
ol atl_process.hh)
[}
% process.at| (prototypes) /
£ atl_process.H N
B (bridge types) \
— /
process.h includo !
W <—lCludes W . !
5 (C++ classes) D atl_process.C —
£ \, (driver main) | pr oc
I process.C ” p—
/ /
5 / \ . .
Bl \ \
IS extern _ private \ \
- routines’ part ,’ ,’
L 7 7

Figure 4: Creating an ATLAS process.

e The virtual machine that interprets ATI. code al-
lows both synchronous and asynchronous calls to
external routines. Some processes may therefore
act as large batch processes that are executed con-
currently with the application. To rendezvous with
these asynchronous calls, ATT.AS uses a simple de-
vice: the virtual machine tags all output param-
eters or return values of an asynchronous call as
“dirty”, and any attempt to use one of them as an
r-value freezes the executing thread. Thus asyn-
chronous calls may be issued and other portions
may properly await their completion in a transpar-
ent manner.

5 CONCLUSIONS AND FUTURE WORK

We have presented a software platform designed to al-
low developers to incorporate advanced features in their
development with the least hassle. Tt is presently being
used within our lab to port several packages developed
here, and also to build new ones. Tt’s design favors
the construction of reusable modules that can relatively
easily be combined with each other. This seems very
desirable, especially in an environment like ours, where
large portions of code are constantly being generated by
students which later depart.

The users may just as easily add processes to implement
a new application or to extend ATTLAS itself. Presently,
for instance, a menu-handling module is being con-
structed, that will then be available for all other ATr.AS
applications to define their own, very flexible, menus.

We are currently porting the current version (0.2) of
AT1.AS to different platforms, currently including Suns
under both Solaris 1.x and 2.x, and HPUX, but soon
to include also SGI’'s TRIX 6.x and Windows NT. We
are also completing the journaling mechanism, which
will not only allow replays of sessions, but will support
the fault-tolerance within ATr.as, and will provide un-
limited (albeit expensive) undo’s and redo’s through a
“commit” blocking instruction within the journal, and

support for inverse functions.

Among the near future projects, we plan to add some
support for CSCW by the simple device of cloning the
application for the different users collaborating, and es-
tablishing special connections between the correspond-
ing distr processes, only one of which acts as mas-
ter. This, although limited, would turn essentially every
AT1.AS application into an CSCW-capable application,
with no or extremely little effort by the developers, as
per ATT.AS’s requirements.

REFERENCES

[1] G. R. Andrews. Paradigms for Process Tnteraction
in Distributed Programs. ACM Computing Sur-
veys, 23(1), March 1991.

[2] R.S. Chin and S. T. Chanson. Distributed Object-
Based Programming Systems. ACM Computing

Surveys, 23(1), March 1991.

[3] D. D. Cowan and C. J. Tucena. Abstract Data
Views: An Interface Specification Concept to FEn-
hance Design for Reuse. [TEFEFE Transactions on
Software Engineering, 21(3), March 1995.

[4] M. Fairén and A. Vinacua. ATT.AS. Sistema de Co-
mandes: Manual tecnic (in Catalan). Report LSI-
95-11-T, 1995. http://www.Isi.upc.es/” mfairen.

[5] M. Fairén and A. Vinacua. Interprocess data trans-
fer in ATras, a platform for distributed applica-
tions. 1997. Submited to the OPENARCH98 con-

ference.

[6] M. Fairén and A. Vinacua. ATLAS, a platform for
distributed graphics applications. 1997. To appear
in the proceedings of Eurographics Workshop on
Programming Paradigms in Graphics.

[7] D. C. Schmidt. The ADAPTIVE communication
environment: Object-oriented network program-
ming components for developing client/server ap-

plications. In 712th Sun Users Group Conference,

1994.

[8] D. C. Schmidt. Reactor: An object behavioral pat-
tern for concurrent event demultiplexing and event
handler dispatching. In Proceedings of the 1st Pat-
tern Languages of Programs Conference, August

1994.
[9] A. Soto, S. Vila, and A. Vinacua. A Toolkit for

constructing command driven graphics programs.

Computer & Graphics, 16(4):375 382, 1992.

[10] R. Srinivasan. Rfc 1832: Xdr: External data rep-
resentation standard, August 1995.

[11] B. B. Welch. Practical Programming in Tel and
Tk. Prentice Hall PTR. Upper Saddle River, New
Jersey 07458, 1995.

APPENDIX: AN EXAMPLE OF THE AUTOMATI-
CALLY GENERATED CODE

Using the portion of the volum process interface shown
in figure 3 the ATLAS code generator makes auto-
matically the files atl_volum.hh, atl_volum.H and
atl volum.C which are partially depicted in figures 5
through 7.

#ifndef __ATL_volumhh__

#define __ATL_volumhh__

#ifndef NOHEADER

#include 'volum.h"

#endif

#include "atl_volum.H"

scene segmentation(scene,property);
void display_scene(scene);

#endif

Figure 5: The automatically generated atl_volum.hh
file.

Figure b shows the code generated to define the C++
prototypes for the two extern routines declared in the
interface. This file also includes the volum.h file im-
plemented by the developer because the prototypes use
process types only known by the developer code.

In figure 6 we can see two of the five bridge type defini-
tions corresponding to the exported types defined in the
interface: the most simple one is the one corresponding
to a type definition which depends on another type de-
fined before, and the other one is the one corresponding
to the most complex one whose contents depend on an-
other type defined before and its methods show how this
bridge type is made from an ATT.AS Variable and back-
wards. These two methods make possible the automatic
translation between the bridge type and the correspond-
ing Variable, isolating the developer from this ATLAS
external representation.

The last one, figure 7, shows a portion of the main code
of the driver. This code includes an auxiliary routine for
each one defined as an external routine in the interface
(in the figure only the one for segmentation routine is
shown), and the main routine of the communications
driver. The auxiliary routine is the one to translate the
parameter types from Variables to the process types
(through bridge types) in order to call the process rou-
tine in the correct way, and also to translate back the
result of the process routine to have a Variable to go
through the network. The main routine of the driver
only have to make some initializations for it and enter
in the dispatching loop.

namespace volum {
typedef atl_pyramid atl_simplex;
}

namespace volum {
struct atl_scene{
atl_simplex cont[100];
operator Variable() { // automatic translation to a Variable
Type t('volum::scene",

"V[100]1S(name string,base V[3]1S(pl S(x real,y real,z real),
p2 S(x real,y real,z real),
ident integer),

sides V[3]V[31S(pl S(x real,y real,z real),
p2 S(x real,y real,z real),
ident integer))');
Variable v(t,'"); v.build_tree();
for (int 11=0;11<100;i1++)
{ *x((*(v.Tree())).accede(i1)) = *(((Variable)cont[i1]).Tree()); }
return (v);
}
atl_scene() {}
atl_scene(Variable &v) { // constructor from a Variable

if (v.Tree()==NULL) atl_exit(-1); // Invalid variable
for (int 11=0;11<100;i1++) {

Variable v2("S(name string,base V[3]1S(pl S(x real,y real,z real),

p2 S(x real,y real,z real), ident integer),
sides V[3]V[3]S(pl S(x real,y real,z real),
p2 S(x real,y real,z real), ident integer))'","');

v2.build_tree();

*(v2.Tree ())=*x((*(v.Tree())).accede(il));

atl_simplex tpaux(v2); cont[il]l=tpaux;

}

Figure 6: Portion of the automatically generated atl_volum_H file.

Comunic_Distr distrib(CANAL_COMUNIC_DISTR);
String nameprogram;
Driver driv(distrib);

void aux_segmentation(String codi,
DLList<Variable *> ¶meters) {
Pix p=parameters.first();
atl_scene ptpO(*(parameters(p)));
scene par0(ptp0);
parameters.next(p);
property ptpl(((nodeint *)parameters(p)->Tree())->Getvalue());
parameters.next(p);
-=> scene res=segmentation(par0O,ptpl);
atl_scene restp;
restp=res.conversion_to_bridge_type();
Variable *vr=new Variable(restp);
ReturnValue *rv=new ReturnValue (codi,vr);
distrib.send(rv);

¥

void main(int argc,char **argv) {
nameprogram=argv[0];

ini_to_calls(); // some inicializations for the driver
driv.set_name_program(nameprogram) ;

ini_process(); // inicializations of the process itself
driv.Dispatch(); // loop

close (CANAL_COMUNIC_DISTR);

exit (0);

}

Figure 7: Portion of the automatically generated atl_volum.C file. The arrow has been added pointing to the point
where user code is actually invoked.

