
Atlas: a platform for transparently developing distributedapplicationsM. Fair�en and �A. VinacuaDepartment of Software,Institute of Robotics and Industrial Informatics, U.P.C.Diagonal 647, 8ena plantaE08028 Barcelona, Spain+34 3 401 6739fmfairen,alvarg@lsi.upc.esABSTRACTWe discuss the design and implementation of a soft-ware development platform that allows unsophisticatedprogrammers to include advanced features to their ap-plications with no or very little extra information ande�ort. These features include the splitting of the ap-plication in distinct processes that may be distributedover a network, a powerful con�guration and scriptinglanguage, and several tools including an input systemto easily construct reasonable interfaces. We attemptto describe both the techniques used to achieve trans-parency for the programmer and what exactly a usermust do to build new Atlas modules.KEYWORDSDistributed applications, Software development tools,External data representation1 INTRODUCTIONAtlas represents an attempt to facilitate to program-mers in our lab the incorporation to their applications ofcertain services at a minimumcost. In fact,Atlas helpsthem build distributed applications (problems involvedin distribution were focused in [2]), provides them withpowerful con�guration mechanisms and a macro lan-guage and include a journaling facility, among otherthings. All these aspects require a substantial amountof familiarity by the programmer with the said tech-niques, and a fair amount of programming for them oneach application.In a research lab like ours a large amount of softwareis constantly being developed to demonstrate ideas, buteventually has to be rewritten when certain function-alities need to be combined. It also remains in an un-�nished status and is usually hard to use or demon-strate by anybody except the author, because of thehigh cost of \�nishing up" the details. We then real-ized that a development platform that facilitated theconstruction of this software giving easy access to manysophisticated resources and establishing basic rules thateased the joint operation of modules was valuable to us,since it enabled experimental software to grow in a moreharmonious way, and facilitated even the reuse of old

components.Evolving from the ideas originally presented in [9] wedesigned Atlas for this purpose. Since our work is cen-tered in Computer Graphics applications we includedcertain mechanisms especially designed for that domainwhich we've discussed in specialized forums [6]. How-ever by far the largest portions of e�ort and of codeinvolved very general tools usable by interactive applica-tions in most other domains. Therefore Atlas can alsobe viewed as a general programming tool that greatlysimpli�es the construction of fairly sophisticated appli-cations.In this paper we shall present a view of Atlas fromthis last perspective, discussing the general aspects notpresent in other publications about it and showing howand in which ways it can enhance the software develop-ment process. In the next section we shall enumeratemore concrete objectives and criteria used in the designof Atlas. Section three will brie
y present the solu-tion adopted for the interprocess communication, andsection four will describe aspects of the design and im-plementation of an Atlas application from the point ofview of the user |the programmer building the appli-cation. Finally we will turn brie
y to conclusions andfuture work.2 OBJECTIVES AND DESIGN CRITERIAThe �rst priority in the design of Atlas has been tomake its inner workings as transparent to the user aspossible. To this end, some aspects may not have theintrinsically best or most powerful or most
exible so-lution, but users can build applications on Atlas with-out almost any concern about it, yet getting substantialbene�ts from its presence.In terms of functionality, Atlas includes these objec-tives:� Low level of parallelism. Atlas applications fea-ture several distinct processes running concurrentlyin the same or di�erent machines in a network;processes encapsulate Atlas components or usermodules. The user implements routines that are1

accessible to other processes as remote procedures.� Interprocess communication. Since the applicationis split in several processes, these need to com-municate over the network and exchange data be-tween possibly di�erent architectures. This givesrise to many di�erent problems that need to be ad-dressed [1].� Standardized input model. A great deal of e�ortin an application's development is spent in its userinterface. Atlas provides a uniform but
exibleview of inputs that allows many di�erent dialoguemodes in a uniform way, somewhat related to Ab-stract Data Views [3].� Con�guration and macro language. A
exible yetpowerful way must be provided for a programmerto describe what is in each of his modules, and howit should relate to others, and also to de�ne thedialogues of the application and its behavior in asimple way.� Journaling mechanism. This is not yet imple-mented and only mentioned here in passing. It ispartially designed and will be at the heart of otherservices o�ered by Atlas.� Fault tolerance. Since the application is spread outamong several hosts, it becomes more exposed totransient or permanent failures (of the communica-tions or of any of the hosts involved). Fault toler-ance is transparently provided based on the jour-naling mechanism and on heartbeat messages sentby all processes so that their status can be assessed.� Reusability. Each user module is completely iso-lated from others (in a separate process) exceptthrough a well de�ned interface described in At-las's programming language. Thus new compo-nents can incorporate and use reliably old ones.Not all these aspects can be discussed here, as theywould take an inordinate amount of space. The follow-ing sections center around aspects of the present betaversion concerning the housekeeping of processes andcommunications, and how Atlas helps users build ap-plications with these features easily.3 IMPORTANT ISSUES IN THE Atlas COM-MUNICATIONS MECHANISM3.1 Problems That Need To Be AddressedSince Atlas �rst priority is to o�er the maximumtrans-parency to the developer, the design of Atlas architec-ture must hide the intricacies of the interprocess com-munications from the programmer.

The communications mechanism has to address prob-lems like how to start a process in an application, howto manage the interchange of information between pro-cesses and also how to detect failures in the applica-tion communications in order to know when the fault-tolerance mechanism should be activated.To start a process in a di�erent machine it is necessaryto have a process listening for a connection in the cho-sen host (this requires to have knowledge of low levelconnections in the operating system), and it would bealso desirable that the process to be started inherits theapplication environment.The interchange of information between processes hasalso an added di�culty when they are running in anheterogeneous network because data can be interpretedwith di�erent meaning depending on the architecturewhere they are used.Next subsection explains how these problems have beenaddressed in Atlas.3.2 The Approach Used In AtlasTheAtlas architecture is represented in �gure 1, wherethe ovals denote processes and the arrows representcommunications between them. It is a centralized ar-chitecture where the process distr acts as the masterprocess and is the center of each Atlas application.This architecture allows an intelligent distribution to bemanaged, i.e. the distr process is able to decide theprocesses distribution dinamically depending on the ap-titude of each host in the network to run each applica-tion process.Therefore, this master process is the most crucial one inthis architecture and also in the communications mech-anism because it is the communications center for eachapplication. It is also the one to take care about thestatus of each process in execution at any time. Thisis easy because of the heartbeat mechanism designed inAtlas.The heartbeat mechanismmakes every process being ex-ecuted in the application send a short message periodi-cally to the master process giving the required informa-tion to control the global status of the execution. Thismechanism is very useful to detect if a process or thecommunication with it fail, therefore it will become nec-essary to the fault-tolerance mechanismwhich, althoughit is not available yet, has been almost completely de-signed. This mechanism will be shortly discussed in thefuture work section below.Server Process DesignThe Atlas server process is a simple but very impor-tant process in the Atlas architecture. Its role, in the2

B-Rep

Volume

Command
Subsystem

Input
Subsystem

Solver
Constraints

distr

server@host

Octree
MachineFigure 1: A sample execution of an Atlas application.current version, is to accept connections from the mas-ter process distr and run the application process re-quested by it. In future versions it will also implementa handshake with distr to achieve a certain degree ofload-balancing.As the server daemon is normally run at boot time withroot permissions, it must change its permissions to theuser's permissions before executing the user's processin order to protect the system. Moreover, to do thatit must be sure of the identi�cation of the user andalso inherit the user environment to achieve a success-ful execution. This environment information is sent bythe distr process in the connection message. The useridenti�cation mechanism is based on a special 32 byteslong user identi�er that every Atlas user must havegenerated before he executes Atlas for the �rst time.Communications Drivers DesignAn Atlas application process execution is based on aremote-procedure-call-like paradigm. A process can bethen considered as a set of routines to do the process re-lated work plus a communications driver to manage theinterchange of messages with the rest of the application(see section 4).The communications driver is the main program of theprocess, and its role is to listen requests or messagesfrom the master process and other connections addedand dispatch them as needed. The most relevant re-quests or messages sent by the master process can berelated with a routine call, data answering a request, oran Atlas event noti�cation (see section 4.3).The main execution of an Atlas process is then thedispatch routine of its communications driver. It enters

in a loop listening in the group of channels actived bythis process (the default is only the connection withthe master process), and when it receives a message itdispatches it and keep on listening for another one (see�gure 2). Apart from dispatching messages the drivercan also dispatch interruptions (like signals). In fact theheartbeat mechanism uses the SIGALRM interruption.
Driver

add timer

add channel

routine call

ATLAS event treatment

answer data
dispatchdisp

atch

dispatch

timeout handling

timeout

sub channel

optionalFigure 2: Driver role scheme.The default treatment of an Atlas process driver ismanaging the messages comming from the master pro-cess and the interruption of SIGALRM. But the actualdriver is much more
exible (as can be seen in �gure 2).It also allows the process to add channels to listen to,add a timer treatment or remove channels added be-fore. This
exibility only requires to have implementedthe treatment for messages being received by these newchannels.The Atlas communications mechanism is implementedusing sockets, and its implementation takes pro�t of thewrapper classes for sockets o�ered by the public domainpackage ACE Wrappers (see [7] and [8]).3

The biggest problem to solve in communications be-tween Atlas processes is the interchange of data. Sincethese processes may be running in di�erent architec-tures, data must be sent through the network usinga standard representation in order that they have thesame meaning to the di�erent processes.Furthermore, these data need to be {at least very often{accessible to Atlas itself, which includes a program-ming language to de�ne user-machine dialogs or other-wise interconnect to di�erent modules (see section 4).The problem of actually transfering the data robustlyhas long since been solved. Indeed we just rely onXDR [10] for that purpose. To attain these data sharingwith the maximum of transparency for the developer,Atlas includes a mechanism based on our data struc-tures (called Variables) used to wrap user data in eachprocess (this mechanism is thoroughly explained in [5]).These structures o�er access methods used by the inter-preter of the command language, and also encapsulatemethods to encode and decode XDR streams transpar-ently. Using this mechanism and adding also the au-tomatic code generation explained in the next section,the developer needs not be aware of XDR and indeedalmost not be aware of our interchange method at all.4 DESIGNING AN APPLICATION. BENE-FITS TO THE DEVELOPER.4.1 Transparency To The DeveloperThe most important aim that Atlas wants to achieveis a high level of transparency to the developer. Almostall services that Atlas o�ers to applications developedover it are techniques that normally require a lot of spe-cialized programming. The emphasis in Atlas's designis to relief the programmer from this e�ort.Many facilities o�ered by Atlas, like distribution orthe communications mechanism, must be totally man-aged by Atlas in order to achieve the maximum trans-parency to the developer. The programmer need notknow about these mechanisms and can concentrate onthe objectives of his application.Automatic Code GenerationThe Atlas process communications require quite a bitof code in each process devoted to handshaking withdistr, generating the heartbeat messages at the ade-quate rate, preparing the arguments for process rou-tines or collecting results and encoding them for beingtransported over the network, and dispatching calls toprocess routines. To handle this, Atlas automaticallygenerates code stubs that the developer must link withhis program. These stubs are constructed from the in-terface declaration of the process (like in �gure 3), whichcontains the type de�nitions used for variables to be

exported and the prototype de�nitions of the processextern routines.The generated code also includes stubs to automati-cally transfer the user's data intoAtlas Variables andbackwards, through bridge types used to isolate the de-veloper from the details of the Atlas Variables (whichan advanced programmer can use directly if he wishesto).The bridge types are used to build intermediate ob-jects with the data structure of the process objects (asper their Atlas declarations) but without the methodsof the process objects (which remain unknown to At-las). Each bridge type has also methods to translate toand from Atlas Variables, making both translationstransparent to the developer. The only burden on thedeveloper is then to provide his classes with conversionmethods to and from these bridge type objects whichis usually trivial (unless the developer choses to have avery di�erent structure for the Atlas data that the oneused internally by his program).As an example we can see some relevant portions of thisautomatically generated code in appendix.4.2 Design Process Of An Atlas ApplicationAn Atlas application is a set of processes which cancommunicate between them through the Atlas com-munications mechanism. Each process can be seen as amodule o�ering some public methods that can be usedby the other processes. Therefore, it must be designedas a set of exported routines that may be called by otherprocesses. This should be the general view of a processbelonging to an Atlas application.From the developer point of view, a process consists oftwo parts: its interface and its implementation.The Process InterfaceThe process interface is a module written in ATL lan-guage which de�nes the prototype of the public routinesof the process and the needed types for their parametersand return results.The ATL language (described in detail in [4]) is an im-perative and modular language designed for Atlas ap-plications. It allows to de�ne types, variables, functionsand procedures that can be exported (visible to the oth-ers) or local. It also accepts the most common controlstructures inside functions and procedures (condition-als, loops, etc.) and routine calls both synchronous andasynchronous.Although only its prototypes and types are needed for aprocess interface, the module de�ning the process inter-face can also include functions or procedures de�ned inATL which describe the interaction with other processes4

in the application or with the user (e.g. asking for in-put data). ATL modules which are not the interface ofany process but de�ne the execution coordination andinteraction between processes can also be de�ned in theapplication, and users may dynamically add their own.An example of an ATL module with part of the interfaceof a process called volum can be seen in �gure 3. Sinceit is an example it is not complete, but it shows the def-inition of a set of types exported by the module (someof them are needed as parameters of extern routines),the prototypes of two extern routines (these prototypesand the types of its parameters would form the interfaceof the process), and the description of a procedure (be-ing also exported to be visible to other modules) thatcombines the execution of the process routines, asks foran input datum (through GETDATA) and also calls to aprocedure of another module (se::Output).USE se;EXPORT #deftype point STRUCTx -> real;y -> real;z -> real;ENDSTRUCTEXPORT #deftype face VECTOR [3] OF STRUCTp1 -> point;p2 -> point;id -> integer;ENDSTRUCTEXPORT #deftype simplex STRUCTname -> string;sides -> VECTOR [4] OF face;ENDSTRUCTEXPORT #deftype scene VECTOR [100] OF simplexEXPORT #deftype property integerEXPORT scene totalsc;...PROTEXTERN FUNCTION segmentation (scene sc, property p)RETURNS scene;EXTERN PROCEDURE display_scene (scene sc);...ENDPROT ...EXPORT PROCEDURE SegmentSimplex () ISdisplay_scene (segmentation(totalsc,GETDATA("Input the property value")));se::Output ("Segmentation completed","m");ENDPROCEDUREFigure 3: Portion of the interface de�nition in Atlasfor the volume modeling process (\volum").The Process ImplementationSince giving the process interface in the ATL mod-ule allows Atlas to generate code stubs to implementthe communications driver for this process (see subsec-tion 4.1), from the developer point of view the processimplementation consists of the set of C++ routines de-clared as externals in the ATL module plus the de�ni-tion of the C++ classes used by their parameters. Thisimplementation can also include whatever the developerwants as a private part of the process. This part won'tbe visible outside the process.Figure 4 shows how an Atlas executable process is gen-

erated from its source �les. The �les depicted on the leftmost column are those that the developer must imple-ment.The automatically generated code is divided in three�les: the atl process.hh �le de�nes the C++ pro-totypes for the process routines declared as externroutines in the ATL module; the atl process.H �lehas the bridge types implementation for that typesused by the extern routines of the process; �nally theatl process.C �le implements the main code for thecommunications driver and also auxilary routines whichconvert Atlas Variables to the process C++ classesand backwards in order to be able to call the corre-sponding process routine with the correct parametersand result variables.4.3 Other Bene�ts To The DeveloperThere are also other bene�ts provided to the developerthat maybe are interesting to be mentioned:� At run time, the Atlas kernel keeps some struc-tures containing information about the status ofthe application (what processes are in execution,if there is some request waiting for an input data,etc). To give the opportunity that an applicationprocess be informed about changes in this internalstructures, Atlas o�ers the Atlas events mecha-nism that allows the process to ask for a subscrip-tion to a particular Atlas event (ADD PROCESSwhen a new process starts in the application orADD INPUT when an input is produced by the enduser, for example). Whenever an Atlas event isproduced the distr process sends the correspond-ing event message to every process subscribed tothat event, and the driver of the process, when itreceives this event message, calls the routine at-tached to this event at subscription time.� In order to address the standardized input modelpresented as an Atlas objective in section 2, At-las also o�ers a generic input handling process. Itprovides a window in which all the textual inter-actions occur (issuing commands or entering nu-merical data), but can also be instructed to cap-ture events from other windows (owned by the restof the processes in the application) and considerthem input data to be channeled to those processes.The input system is also extensible. In fact it isalso an interface between Atlas and an extendedTcl/Tk [11] engine, so scripts in Tcl can be sent toit to instantiate new interface components.Using this Atlas component the developer canprepare the user interface for his application al-most trivially, and dedicate most of his time to theproper subject of his application.5

(prototypes)

ATLAS processgenerated filesdeveloper files

atl_process.hh

atl_process.H

atl_process.C

(bridge types)

(driver main)

process.atl

in
te

rf
ac

e

process.h
(C++ classes)

includes

includes

process.C

private
part

+
routines
externim

pl
em

en
ta

tio
n

processFigure 4: Creating an Atlas process.� The virtual machine that interprets ATL code al-lows both synchronous and asynchronous calls toexternal routines. Some processes may thereforeact as large batch processes that are executed con-currently with the application. To rendezvous withthese asynchronous calls, Atlas uses a simple de-vice: the virtual machine tags all output param-eters or return values of an asynchronous call as\dirty", and any attempt to use one of them as anr-value freezes the executing thread. Thus asyn-chronous calls may be issued and other portionsmay properly await their completion in a transpar-ent manner.5 CONCLUSIONS AND FUTURE WORKWe have presented a software platform designed to al-low developers to incorporate advanced features in theirdevelopment with the least hassle. It is presently beingused within our lab to port several packages developedhere, and also to build new ones. It's design favorsthe construction of reusable modules that can relativelyeasily be combined with each other. This seems verydesirable, especially in an environment like ours, wherelarge portions of code are constantly being generated bystudents which later depart.The users may just as easily add processes to implementa new application or to extend Atlas itself. Presently,for instance, a menu-handling module is being con-structed, that will then be available for all other Atlasapplications to de�ne their own, very
exible, menus.We are currently porting the current version (0.2) ofAtlas to di�erent platforms, currently including Sunsunder both Solaris 1.x and 2.x, and HPUX, but soonto include also SGI's IRIX 6.x and Windows NT. Weare also completing the journaling mechanism, whichwill not only allow replays of sessions, but will supportthe fault-tolerance within Atlas, and will provide un-limited (albeit expensive) undo's and redo's through a\commit" blocking instruction within the journal, and

support for inverse functions.Among the near future projects, we plan to add somesupport for CSCW by the simple device of cloning theapplication for the di�erent users collaborating, and es-tablishing special connections between the correspond-ing distr processes, only one of which acts as mas-ter. This, although limited, would turn essentially everyAtlas application into an CSCW-capable application,with no or extremely little e�ort by the developers, asper Atlas's requirements.REFERENCES[1] G. R. Andrews. Paradigms for Process Interactionin Distributed Programs. ACM Computing Sur-veys, 23(1), March 1991.[2] R. S. Chin and S. T. Chanson. Distributed Object-Based Programming Systems. ACM ComputingSurveys, 23(1), March 1991.[3] D. D. Cowan and C. J. Lucena. Abstract DataViews: An Interface Speci�cation Concept to En-hance Design for Reuse. IEEE Transactions onSoftware Engineering, 21(3), March 1995.[4] M. Fair�en and A. Vinacua. ATLAS. Sistema de Co-mandes: Manual t�ecnic (in Catalan). Report LSI-95-11-T, 1995. http://www.lsi.upc.es/~ mfairen.[5] M. Fair�en and A. Vinacua. Interprocess data trans-fer in Atlas, a platform for distributed applica-tions. 1997. Submited to the OPENARCH'98 con-ference.[6] M. Fair�en and A. Vinacua. Atlas, a platform fordistributed graphics applications. 1997. To appearin the proceedings of Eurographics Workshop onProgramming Paradigms in Graphics.[7] D. C. Schmidt. The ADAPTIVE communicationenvironment: Object-oriented network program-ming components for developing client/server ap-6

plications. In 12th Sun Users Group Conference,1994.[8] D. C. Schmidt. Reactor: An object behavioral pat-tern for concurrent event demultiplexing and eventhandler dispatching. In Proceedings of the 1st Pat-tern Languages of Programs Conference, August1994.[9] A. Soto, S. Vila, and A. Vinacua. A Toolkit forconstructing command driven graphics programs.Computer & Graphics, 16(4):375{382, 1992.[10] R. Srinivasan. Rfc 1832: Xdr: External data rep-resentation standard, August 1995.[11] B. B. Welch. Practical Programming in Tcl andTk. Prentice Hall PTR. Upper Saddle River, NewJersey 07458, 1995.APPENDIX: AN EXAMPLE OF THE AUTOMATI-CALLY GENERATED CODEUsing the portion of the volum process interface shownin �gure 3 the Atlas code generator makes auto-matically the �les atl volum.hh, atl volum.H andatl volum.C which are partially depicted in �gures 5through 7.#ifndef __ATL_volumhh__#define __ATL_volumhh__#ifndef NOHEADER#include "volum.h"#endif#include "atl_volum.H"scene segmentation(scene,property);void display_scene(scene);#endifFigure 5: The automatically generated atl volum.hh�le.Figure 5 shows the code generated to de�ne the C++prototypes for the two extern routines declared in theinterface. This �le also includes the volum.h �le im-plemented by the developer because the prototypes useprocess types only known by the developer code.In �gure 6 we can see two of the �ve bridge type de�ni-tions corresponding to the exported types de�ned in theinterface: the most simple one is the one correspondingto a type de�nition which depends on another type de-�ned before, and the other one is the one correspondingto the most complex one whose contents depend on an-other type de�ned before and its methods show how thisbridge type is made from an Atlas Variable and back-wards. These two methods make possible the automatictranslation between the bridge type and the correspond-ing Variable, isolating the developer from this Atlasexternal representation.

The last one, �gure 7, shows a portion of the main codeof the driver. This code includes an auxiliary routine foreach one de�ned as an external routine in the interface(in the �gure only the one for segmentation routine isshown), and the main routine of the communicationsdriver. The auxiliary routine is the one to translate theparameter types from Variables to the process types(through bridge types) in order to call the process rou-tine in the correct way, and also to translate back theresult of the process routine to have a Variable to gothrough the network. The main routine of the driveronly have to make some initializations for it and enterin the dispatching loop.

7

...namespace volum {typedef atl_pyramid atl_simplex;}namespace volum {struct atl_scene{atl_simplex cont[100];operator Variable() { // automatic translation to a VariableType t("volum::scene","V[100]S(name string,base V[3]S(p1 S(x real,y real,z real),p2 S(x real,y real,z real),ident integer),sides V[3]V[3]S(p1 S(x real,y real,z real),p2 S(x real,y real,z real),ident integer))");Variable v(t,""); v.build_tree();for (int i1=0;i1<100;i1++){ *((*(v.Tree())).accede(i1)) = *(((Variable)cont[i1]).Tree()); }return (v);}atl_scene() {}atl_scene(Variable &v) { // constructor from a Variableif (v.Tree()==NULL) atl_exit(-1); // Invalid variablefor (int i1=0;i1<100;i1++) {Variable v2("S(name string,base V[3]S(p1 S(x real,y real,z real),p2 S(x real,y real,z real), ident integer),sides V[3]V[3]S(p1 S(x real,y real,z real),p2 S(x real,y real,z real), ident integer))","");v2.build_tree();*(v2.Tree())=*((*(v.Tree())).accede(i1));atl_simplex tpaux(v2); cont[i1]=tpaux;}}};} ... Figure 6: Portion of the automatically generated atl volum.H �le.Comunic_Distr distrib(CANAL_COMUNIC_DISTR);String nameprogram;Driver driv(distrib);...void aux_segmentation(String codi,DLList<Variable *> ¶meters) {Pix p=parameters.first();atl_scene ptp0(*(parameters(p)));scene par0(ptp0);parameters.next(p);property ptp1(((nodeint *)parameters(p)->Tree())->Getvalue());parameters.next(p);--> scene res=segmentation(par0,ptp1);atl_scene restp;restp=res.conversion_to_bridge_type();Variable *vr=new Variable(restp);ReturnValue *rv=new ReturnValue(codi,vr);distrib.send(rv);} ...void main(int argc,char **argv) {nameprogram=argv[0];ini_to_calls(); // some inicializations for the driverdriv.set_name_program(nameprogram);ini_process(); // inicializations of the process itselfdriv.Dispatch(); // loopclose(CANAL_COMUNIC_DISTR);exit(0);}Figure 7: Portion of the automatically generated atl volum.C �le. The arrow has been added pointing to the pointwhere user code is actually invoked. 8

