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Abstract—The paper presents an application of unscented
Kalman filters to an automotive electronic throttle device. The
motivation of this study is on estimating the position of the
throttle device when measurements of position are inaccessible,
e.g., due to failures in the sensor of position. In this case, an
external wattmeter is connected in the circuitry to measure the
power consumed by the throttle, and this information feeds
unscented Kalman filters to produce the estimation for the
position. Experimental data support the findings of this paper.

Note to Practitioners: Abstract—Almost all of the brand-new
vehicles based on spark-ignition combustion engines have an
electronic throttle valve to control the power produced by the
engine. The electronic throttle has a unique sensor for measuring
the position of the throttle valve, and this feature can represent a
serious problem when the sensor of position fails. As an attempt
to prevent the effects of a failure from such sensor, we present
an algorithm (unscented Kalman filter) combined with the use
of an additional sensor, a wattmeter. The wattmeter is detached
from the throttle’s structure but is arranged so as to measure the
electric power consumed by the throttle. Measurements of the
power consumption then feed the unscented Kalman filter—this
filter then produces an estimation of the position of the throttle
valve. Experimental data illustrate the practical benefits of our
approach.

Index Terms—Stochastic systems; Nonlinear systems; Switch-
ing systems; Unscented Kalman filter; automotive applications.

I. INTRODUCTION

An innovative technology that has been intensively im-

proved by the automotive’s industry in the last few years

is the electronic throttle body. Made up by a circular plate

moving around a central axis, the throttle body is a funda-

mental mechanism used in almost all modern spark-ignition

combustion engines. The throttle’s task is to regulate the power

produced by the engine, and to do so, the throttle controls

the amount of air entering into the combustion chambers.

The rich literature has confirmed the importance of improving

the throttle’s functionality, see for instance [1]–[9] for a brief

account.
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Fig. 1. Diagram of the input-output relationship for an automotive electronic
throttle device implemented in a laboratory testbed. A wattmeter was added in
series with the throttle circuit to measure the electrical current consumed by
it (variable ik). The real-time position of the throttle (see model in (2)) and
its estimation from the unscented Kalman filter (see Algorithms in Section II)

are denoted by θk and θ̂k , respectively. The voltage input is denoted by uk .

The throttle is a single-input single-output process. When

a voltage is applied in its input, the apparatus generates an

angular movement of the throttle valve; and a sensor measures

the angular position of the valve.

Even though reliable and vastly used by the automotive

industry, the sensor of position is not free of failures at

all. In case of failure, the throttle’s functionality becomes

deteriorated, a fact that increases the risks of damage—some

specialists argue that the sudden acceleration in Toyota’s

vehicles are related to failures in the throttle [10, p. 478-479].

Also, failures in the throttle’s functionality may appear due to

tin whiskers [11], [12]. In summary, failures in the throttle’s

functionality are unacceptable.

Our main idea to overcome the effects of a failure in the

sensor of position is to add in the circuitry a new sensor.

This new sensor is detached from the throttle’s body, but it is

positioned in series with the throttle’s input so as to measure

the power consumed by the throttle. The measurement from

the new sensor then feeds unscented Kalman filters, and the

filters estimate the position of the throttle—notice that the

filters rely only on the measurements from this new sensor

(Fig. 1). Although simple, our idea is motivated by the fact that

both the position and electrical current represent system states

in the throttle’s model, an intricate nonlinear model [7], [13],

[14]. Estimating the position of the throttle through unscented

Kalman filters sets the main finding of this paper.

Unscented Kalman filters have drawn the attention of many

investigators due to its superior performance when compared

with other type of filters [15]–[22], with many applications,

such as on electroencephalographies [23], plasma insulins

[24], electronic battery charging [25], aeronautics [26], [27],
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monocular visual simultaneous localization and mapping [28],

among others.

Besides these interesting applications, unscented Kalman

filters are also useful to processes with failures in sensors.

For instance, in this paper unscented Kalman filters are used

to estimate the position of an automotive throttle valve with no

sensor of position at all. Experimental data suggested that the

estimation was quite accurate, with an error of 0.7◦ ± 13.4◦

(confidence level of 95%). This confirms the practical impli-

cations of our approach.

The paper is organized as follows. Section II quotes the

basic notions and presents the filters. Section III presents

experimental results that illustrate the usefulness of the filters.

Finally, Section IV presents some concluding remarks.

II. THE STOCHASTIC SYSTEM AND UNSCENTED KALMAN

FILTERS

As usual, Rn denotes the n-dimensional Euclidean space,

and R
n×m denotes the set of matrices of dimension n × m.

For a matrix A, A′ stands for its transpose, (A)
ji

for its j-th

row and i-th column element, (A)∗i for its i-th column, and

[A]p×q for a block matrix made up by A being repeated p
times on the rows and q times on the columns.

Let (Ω,F , P ) be a fixed probability space governing the

following discrete-time, stochastic nonlinear system:

S :

{

xk+1 = f(xk) + Fwk,

yk = h(xk) +Hvk, ∀k ≥ 0, x0 = x ∈ R
n,

where xk on R
n denotes the system state and yk on R

m

represents the measured output; both {wk} on R
n and {vk}

on R
m denote standard Gaussian noise sequences; and the

matrices F ∈ R
n×n and H ∈ R

m×m are given. The functions

f : Rn → R
n and h : Rn → R

m are Borel measurable.

The filtering problem associated with S is that of finding

an estimate x̂k for the system state xk as long as new

measurements yk are acquired. This signifies that the output

history until the k-th stage, i.e., (y0, . . . , yk), is used by the

filter to compute x̂k; hopefully, the estimated value in x̂k is

close enough to the real value xk. The manner for which

unscented Kalman filters estimate x̂k is now clarified.

A. Algorithms for unscented Kalman filters

We wish to emphasize here the similarities and differences

found in different versions of unscented Kalman filters. For

this reason, we first recall the version referred to as Additive

Homogeneous Symmetric Minimum UKF [15] (see also [19]).

Additive Homogeneous Symmetric Minimum (AHSM) UKF

• Step 1: Set N = 2n, and take the initial values for x̂0|0 ∈
R

n and for a positive semidefinite matrix P̂
0|0
xx ∈ R

n×n.

Pick an arbitrary value λ 6= −n, and set w0 = λ/(n+ λ)
and wi = wi+n = 1/2(n+ λ), i = 1, . . . , n. Set the

iterations counter k = 1 and go to the next step.

• Step 2: Take χ
k−1|k−1
0 = x̂k−1|k−1, and compute

χ
k−1|k−1
i = x̂k−1|k−1 +

(
√

(n+ λ)P̂
k−1|k−1
xx

)

∗i
,

and χ
k−1|k−1
i+n = x̂k−1|k−1 −

(
√

(n+ λ)P̂
k−1|k−1
xx

)

∗i
,

i = 1, . . . , n.

Go to Step 3.

• Step 3: Compute

χ
k|k−1
i = f

(

χ
k−1|k−1
i

)

,

γ
k|k−1
i = h

(

χ
k|k−1
i

)

, i = 0, . . . , N,

and evaluate the vectors

x̂k|k−1 =

N
∑

s=0

wiχ
k|k−1
i , ŷk|k−1 =

N
∑

s=0

wiγ
k|k−1
i ,

and the matrices

P̂
k|k−1
xx =

N
∑

s=0

wi

(

χ
k|k−1
i − x̂k|k−1

)(

χ
k|k−1
i − x̂k|k−1

)′

+ FF
′
,

P̂
k|k−1
xy =

N
∑

s=0

wi

(

χ
k|k−1
i − x̂k|k−1

)(

γ
k|k−1
i − ŷk|k−1

)′

P̂
k|k−1
yy =

N
∑

s=0

wi

(

γ
k|k−1
i − ŷk|k−1

)(

γ
k|k−1
i − ŷk|k−1

)′

+HH
′
.

Compute the matrices Gk = P̂
k|k−1
xy

(

P̂
k|k−1
yy

)−1

,

x̂k|k = x̂k|k−1 +Gk

(

yk − ŷk|k−1

)

and P̂ k|k
xx =P̂ k|k−1

xx −GkP̂
k|k−1
yy G′

k.

Set k = k + 1 and return to the beginning of Step 2.

Other filter that produces promising results is referred to as

Additive Rho Minimum (ARM) UKF [29], and it is obtained by

modifying Step 1 and Step 2 according to the next procedure:

• Step 1a: Set N = n, and take the initial values for x̂0|0 ∈
R

n and for a positive semidefinite matrix P̂
0|0
xx ∈ R

n×n.

Pick an arbitrary value 0 < w0 < 1 and set ρ =
√

1−w0

n
;

C =
√

In − ρ2[1]n×n; and W = diag(w1, ..., wn),
where

wi =
(

w0ρ
2C−1[1]n×n

(

CT
)−1

)

ii
, i = 1, ..., n.

Set the iterations counter k = 1 and go to the next step.

• Step 2a: Compute the equation (1) of the next page. Go to

Step 3 and follow it completely, but with its last command

referring to Step 2a instead of Step 2.

Other promising filter available in the literature is known as

Additive General Minimum (AGM) UKF [18], which reads as

follows:

• Step 1b: Set N = n, and take the initial values for x̂0|0 ∈
R

n and for a positive semidefinite matrix P̂
0|0
xx ∈ R

n×n.

Pick an arbitrary value v := [v1 . . . vn]
T ∈ R

n, vi 6= 0,
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χ
k−1|k−1
i = x̂k−1|k−1 +

([

−1√
w0

√

P̂
k−1|k−1
xx [ρ]n×1

√

P̂
k−1|k−1
xx C

(√
W

)−1
])

∗i
, i = 0, ..., n. (1)

i = 1, . . . , n, and set w0 =
(

1+
∑n

i=1 v
2
i

)−1
, wi = w0v

2
i ,

i = 1, . . . , n. Set the iterations counter k = 1 and go to

the next step.

• Step 2b: Set w = [w1, ..., wn]
T and compute

E =

√

P̂
k−1|k−1
xx

w0

(

I + vvT
)− 1

2 diag(v)−1, e =
−Ew

w0
,

χi = x̂k−1|k−1 + ([E, e])∗i , i = 0, . . . , n.

Go to Step 3 and follow it completely, but with its last

command referring to Step 2b instead of Step 2.

Remark 2.1: The strategy in the Additive Homogeneous

Symmetric Minimum UKF requires the evaluation of 2n + 1
sigma points at each iteration, whereas the two others (i.e.,

Additive Rho Minimum UKF and Additive General Minimum

UKF) require n+ 1. Apart from the computational effort, all

of the UKF algorithms presented an appreciable performance

for estimating the position of an automotive electronic throttle

valve, as detailed in the next section.

III. AUTOMOTIVE ELECTRONIC THROTTLE VALVE

Even though successful for many instances, modeling the

throttle remains a challenge since (i) its assemblage is not

unique and (ii) the throttle has nonlinear dynamics due to

the stick-slip, hysteresis, restoring springs, and limp-home

constraints [2], [7], [13], [30], [31]. Our approach contributes

towards the modeling and estimation of such nonlinear device,

as detailed next.

The experiments presented in this section were conducted

in a laboratory testbed with the following equipments: a unity

of Quanser Q4 Real-Time Control Board that allowed us to

communicate real-time data with Matlab-Simulink software;

a unity of Quanser UPM180-25-B-PWM Power Amplifier

to supply the voltage and electrical current consumed by

the equipments; and a unity of the automotive electronic

throttle body made up by Continental Siemens VDO, Model

A2C59511705, P.N. 06F133062J. The acquisition card of the

Quanser Q4 Board was configured to work with data sampling

fixed at 1 ms.

The throttle is assembled with an internal sensor of position,

which maps the range of operation from zero to ninety degrees

into zero to five Volts, in a linear relationship. The velocity

of the valve can be computed by a numerical approximation

of the derivative of position. The electric power consumed by

the throttle was measured by a wattmeter.

A. Modeling

According to [6] and [32], the throttle can be modeled as a

piecewise linear system. An advantage of this piecewise setup

is that it conveys the simplicity of linear systems to represent

the throttle, a nonlinear device. A collateral effect is that of

neglecting some significant nonlinear characteristics. Thus it

seems reasonable to join these two setups into a single one,

i.e., both piecewise linear dynamics [6], [32] and nonlinear

dynamics [2], [7], [13], [30], [31] into a single model.

The automotive electronic throttle body is usually repre-

sented by a three-dimensional system [7], [13], [14], [33]; the

three states of the system are (i) the angular position of the

throttle valve θ, (ii) the angular velocity of the throttle valve

̺, and (iii) the electrical current consumed by the throttle i.
The voltage applied in the terminals of the throttle represents

the input of the model (i.e., u), as in the scheme shown in

Fig. 1.

The model used here is based on the physically driven,

traditional continuous-time model (e.g. [13, Eq. (6)], [7, Eq.

(6)], [14, Eq. (8)])

d

dt





θk
̺k
ik



 =





0 a12 0
a21 a22 a23
0 a32 a33









θk
̺k
ik



+





0
0
b



ut

+





0
ϕ(θk, ̺k)

0



 , (2)

where ϕ : R2 7→ R denotes a piecewise linear function. Each

paper [7], [13], [14] proposes a distinct format for the function

ϕ(·), so that there is no general consensus on ϕ(·).
Interestingly, experimental data indicated that the nonlin-

earities of the throttle are more noticeable when the position

of the throttle valve is near to the closed position; the effects

of nonlinearities decrease as long as the valve opens. This

motivated us to split the region of operation of the throttle

in three main regions, aiming for improving the throttle’s

nonlinear representation: Θ1 = [0◦, 8◦], Θ2 = (8◦, 16◦], and

Θ3 = (16◦, 90◦].
Under these three regions, we considered the discrete-time

version of (2); namely, with xk ≡ [0.1 × θk ̺k ik]
′ ∈ R

3,

we applied the usual Euler discretization in (2) to obtain

xk+1 =







1 a
(s)
12 0

a
(s)
21 a

(s)
22 a

(s)
23

0 a
(s)
32 a

(s)
33






xk +





0
0
b(s)



uk + Fwk

+





0

c
(s)
1 sgn(̺k) + c

(s)
2 sgn(θk − 1) + c

(s)
3

0



 ,

θk ∈ Θs, s = 1, 2, 3, ∀k ≥ 0, (3)

where the values of a
(s)
12 , . . . , a

(s)
33 , b

(s), c
(s)
1 , . . . , c

(s)
3 , s =

1, 2, 3, are available in Table I; these values were identified

according to a procedure described later. For the moment,

notice in (3) that the s-th mode is active at the k-th stage

when θk belongs to the set Θs.

B. Identification

Persistent excitation signals were applied in uk, and the

corresponding real-time system state xk was measured and
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Fig. 2. Automotive electronic throttle device: normalized histogram showing
the error between the model and real-time data. The picture in the left
(right) shows the error for the position (electrical current) of the throttle. The
histograms tend to follow Gaussian functions with null mean and variance as
indicated.

stored. An amount of 3.8 million points were used in uk, and

they were carefully chosen so as to excite all the possible

input-output relations for the throttle. Indeed, the values of uk

were obtained by passing a train of pseudo-random rectangular

pulses, with time-varying random amplitudes (from 0 to 10
Volts), through a fourth-order Butterworth low-pass filter with

a cutoff frequency chosen randomly between 0.01 and 60 Hz.

The parameters of (3) were chosen so as to minimize the

mean square error between part of the collected data and the

simulated data from (3) (with wk ≡ 0). In this procedure, we

used three blocks of data, and each block contained input-

output data with ten thousand points generated via persistent

excitation signals plus a DC offset.

After obtaining the parameters of (3) (cf. Table I), we

checked the statistical properties of the term wk, as follows.

First, we calculated the error ek = xk − x̃k, where xk

satisfies (3) with wk ≡ 0 and x̃k represents the corresponding

real-time measured point; in this evaluation, we used all the

previously stored 3.8 million points. Second, based on the

calculated error, we made a statistical analysis (see Fig. 2 for a

pictorial illustration), which suggested that {wk} is a Gaussian

stationary process, and that F in (3) is

F = diag(
√
0.35, 0,

√
0.18).

A minor bias was detected in ek with mean error of 1.5◦ for

angular position and −0.12A for electrical current (see Fig. 2).

Although the error bias was not represented in the model (3),

it was accounted appropriately in the estimation procedure, the

main experimental part of this paper, to be detailed next.

C. Case study: the automotive electronic throttle valve with

no sensor of position

As previously discussed in Introduction, a failure in the

sensor of position is undesirable because it increases the risks

of damage. To mitigate the effects of an eventual failure in the

sensor of position, we suggest the use of unscented Kalman

filters accompanied by an additional sensor, detached from

the throttle’s structure but connected to it electronically, as

shown in Fig. 1. Showing the usefulness of this simple strategy

represents the main contribution of this paper.

To clarify our main contribution, we assume hereafter that

the sensor of position is damaged. To circumvent this problem,

we use a wattmeter in the circuitry of the throttle, as depicted

in Fig. 1.

Remark 3.1: Any instrument generating measurements that

depend on the current ik could be used in place of a wattmeter.

For instance, the wattmeter reads the power consumption i2k
plus some imprecision vk, i.e.,

yk = i2k + vk, ∀k ≥ 0, (4)

where {vk} represents a standard Gaussian stationary noise.

With h(·) being any continuous function, instruments giving

measurements in the form yk = h(ik)+vk could be considered

in place of (4). In our experiments, the wattmeter was the

chosen sensor due to its low-cost.

The value of measurements yk fed the unscented Kalman

filters, which produce θ̂k, an estimation of the position θk.

Generating θ̂k in practice for the automotive throttle device

reinforces the contribution of this paper.

Recall the three versions of unscented Kalman filters intro-

duced in Section II:

1) Additive Homogeneous Symmetric Minimum UKF

(Steps 1a–3a).

2) Additive Rho Minimum UKF (Steps 1a–3a).

3) Additive General Minimum UKF (Steps 1b–3b).

These three filters were evaluated in simulation and experi-

ments with n = 3, λ = 12, x̂0|0 = [0 0 0]′, and P̂
0|0
xx = I , as

follows.

• (Simulation). Two million points were considered in

the input uk. Then these points were used in (3) to

compute both the statistical mean of (3), say x̄k, and the

estimation value from Steps 1–3, say x̂k. The position

error is obtained by extracting the first element from the

computed vectors to obtain ek = θ̂k − θ̄k.

• (Practice). The same input uk used in the Simulation

was also used in the laboratory testbed to generate ỹk,

TABLE I
PARAMETERS OF THE NONLINEAR STOCHASTIC MODEL REPRESENTING

AN AUTOMOTIVE THROTTLE BODY.

Parameter s = 1 s = 2 s = 3

a
(s)
12 −0.003 0.0021 0.0442

a
(s)
21 0.148 −0.143 −0.0192

a
(s)
22 0.9625 0.9941 0.7981

a
(s)
23 −0.8673 1.8944 0.3538

a
(s)
32 0.0005 −0.0004 0.0349

a
(s)
33 0.944 0.9514 0.9043

b(s) 0.0741 0.0346 0.0442

c
(s)
1 −0.0654 −0.1068 −0.0055

c
(s)
2 −0.007 0.0529 0.0615

c
(s)
3 0.2255 −0.3419 −0.0862
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Fig. 3. Real-time position (measured) and estimated position for an automotive throttle device. The estimated position was calculated by an unscented Kalman
filter, which was fed only with measurements of the electrical power consumed by the throttle.

which denotes the value collected from the wattmeter in

practice. Both uk and ỹk were applied in the algorithm of

Steps 1–3 to generate an estimation of the system state,

say x̃est
k . The first element of the vector x̃est

k is θ̃estk , the

estimated position. The sensor of position was used to

generate θ̃k, the real value of the position of the throttle.

Finally, the error produced by the estimation procedure

was computed in ek = θ̃estk − θ̃k.

Table II presents the values of the mean and standard devia-

tion of the error for the three filters for both cases, simulation

and practice. As expected, the error in the simulation is smaller

than the one observed in practice.

Besides, a conclusion drawn from Table II is that all filters

produced a practical error of around 2.2◦ ± 13.4◦ with a

confidence interval of 95% (c.f. [34, Sec. D3, p. 553]). This

signifies that the filters recovered the information of the

position in practice with a precision close to 2.2◦ ± 13.4◦.

Subtracting the result by the bias error of 1.5◦ observed in

the model (see Section III-B), we can adjust the estimation to

the improved value 0.7◦ ± 13.4◦. These findings reinforce the

contribution of this paper.

For sake of a final illustration, part of the data is depicted

in Fig. 3. As can be seen, the estimated position recovered the

real position within the prescribed accuracy (i.e. 0.7◦±13.4◦).

IV. CONCLUDING REMARKS

Our findings have practical implications, with special in-

terest to automotive electronic throttle devices. The throttle

TABLE II
MEASURE OF THE MEAN AND STANDARD DEVIATION OF THE ERROR

PRODUCED BY UNSCENTED KALMAN FILTERS WHEN THEY WERE USED TO

ESTIMATE THE POSITION OF AN AUTOMOTIVE THROTTLE BODY.

Simulation Experiment

UKF Filters Mean (◦) Std (◦) Mean (◦) Std (◦)

AHSM Steps 1–3 −0.090 4.002 2.206 6.749

ARM Steps 1a–3a −0.071 4.061 2.225 6.696

AGM Steps 1b–3b −0.078 3.983 2.219 6.560

device has a unique sensor that measures the angular position

of the throttle’s valve, and for this reason failures in this

solitary sensor increase the risks of damage on the underlying

devices. Wishing to mitigate the impact of a failure from the

sensor of position, we suggest an approach that joins unscented

Kalman filters with measurements produced by a wattmeter.

The novelty here relies on the use of a wattmeter to measure

the electric power consumed by the throttle. As detailed in

Remark 3.1, the wattmeter was preferred due to its low cost.

However, any other kind of instruments could be used in place

of a wattmeter without necessity of modifying the technique

proposed in this paper.

Measurements from the wattmeter fed the unscented

Kalman filter, and the filter, in its turn, generated estimation

for the position of the throttle. To the best of the authors’

knowledge, this paper is the first to combine estimation with an

external sensor, aiming to improve the throttle’s functionality.

Experiments that were carried out in laboratory showed

promising results—the experimental data suggested an error

of 0.7◦ ± 13.4◦ (confidence level of 95%) for the estimated

position. This finding was quite accurate, since the estimation

was taken over a range from 0◦ to 90◦. This evidence

corroborates the novelty of our approach.
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