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Summary. A continuous-discontinuous model to simulate numerically an entire failure process is pre-
sented. Crack inception and its propagation is modelled by means of a gradient non-local model based on
non-local displacements. To simulate properly the final stages of the process, a discrete crack approach
(X-FEM) is used, where both local and non-local displacements are modelled as discontinuous fields. In
this paper, this new combined approach is studied in detail and one- and two-dimensional examples are
carried out to validate it.

1 Introduction

In order to simulate numerically a failure process, either a continuous or a discontinuous approach may
be used [1]. In continuum approaches, fracture is the result of a process of localisation and there is not
any real discontinuity, while if a discontinuous approach is employed, displacement discontinuities are
introduced into the model.

Continuous strategies are used to model the first stages of failure. If a local continuum model is em-
ployed, the numerical simulations present a pathological mesh sensitivity and physically unrealistic
results are obtained [2]. To solve this mesh dependence, a regularisation technique must be used to
incorporate non-locality into the model. A gradient-type model is used here, in which non-locality is
introduced into the model via non-local displacements [3].

Nevertheless, if a non-local continuous model is used in the final stage of failure, numerical interaction
between the separated parts of the body persists and unrealistic results may be obtained. Therefore,
cracks must be introduced into the model. Here, the eXtended Finite Element Method (X-FEM) [4, 5] is
used to model the growing cracks. By means of this method, the discontinuity is located independently
of the finite element mesh [6] and remeshing as the crack grows is avoided [7].

In summary, in order to characterise numerically a whole failure process, a continuous-discontinuous ap-
proach is used, where a criterion determines the transition from the non-local continuum to a continuum
with a discrete growing cohesive crack. Some strategies have been already proposed in the literature, see
for example [8, 9, 10, 11].

In this work, the following strategy is presented. A non-local continuum damage model is used for the
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continuum. When the damage parameter exceeds a threshold set a priori Dcrit, a crack described by a
cohesive law relating traction to displacement jump is introduced. The crack path is determined by the
continuum: the steepest descent direction of the damage profile −∇D is employed. Once the crack is
introduced, the growing crack is modelled by means of X-FEM. In this model, the transition from a
continuum to a discontinuous model is defined through an energy balance: damage value is fixed to Dcrit
and the bulk material unloads.

An outline of this paper follows. A continuous-discontinuous approach in standard media is reviewed in
Section 2. The new model is presented in Section 3. The problem fields for a body crossed by a crack are
described in Section 3.1. The governing equations and the variational formulation with its discretisation
are derived in Sections 3.2 and 3.3 respectively. The regularisation capabilities of this new discontinuous
strategy are illustrated in Section 4. First, the proposed approach is tested on a uniaxial tension test and
then it is applied on a two-dimensional plate. The concluding remarks close this paper.

2 Continuous-discontinuous approach in standard media

This section deals with the continuous-discontinuous approach to failure. In this strategy, a continuous
technique is used to simulate the first stages of failure up to the detection of a critical situation. When
a critical situation is detected, a discontinuity is introduced and a continuous-discontinuous strategy is
employed. The definition of critical situations depends on the underlying continuous model. In a damage
continuum model, for example, a critical situation is reached when the damage parameter exceeds a
critical damage value set a priori.

2.1 Problem fields

In X-FEM, the displacement field is approximated by the sum of a continuous and a discontinuous dis-
placement field. The continuous part corresponds to the displacement field without any crack, while is
the discontinuous or the enriched displacement field the additional displacement that models the discon-
tinuities.

Consider a continuum body Ω̄ crossed by a discontinuity Γd , see Figure 1.
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Figure 1: Body Ω̄ crossed by a discontinuity.

Then, the displacement field uuu can be decomposed as

uuu(xxx) = uuu1(xxx)+HΓd (xxx)uuu
2(xxx) (1)

where uuui(xxx) (i = 1,2) are continuous fields and HΓd is the Heaviside function centred at the discontinuity
Γd . In the literature, different enrichment functions have been used, such as the Heaviside ([9, 10, 12])
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or the sign function ([6, 7, 13, 14, 15]). In this work, the sign function

HΓd (xxx) =
{

1 if xxx ∈ Ω̄+

−1 if xxx ∈ Ω̄−
(2)

(also called modified or generalised Heaviside function) centred at the discontinuity surface Γd is em-
ployed, because of its symmetry [7].

2.2 Governing equations

The equilibrium equations and boundary conditions for the body Ω̄ without body forces can be sum-
marised as

∇ ·σσσ = 000 (3a)

σσσ ·nnn = t̄tt onΓt (3b)

σσσ ·mmm = ttt onΓd (3c)

uuu = uuu∗ on Γuuu (3d)

where σσσ is the Cauchy stress tensor, nnn is the outward unit normal to the body, mmm is the inward unit
normal to Ω+ on Γd , uuu∗ is a prescribed displacement, t̄tt is the load on the boundary, ttt is the load on the
discontinuity surface and Γt and Γuuu are the surfaces with Neumann and Dirichlet boundary conditions
respectively.

In order to solve this problem, a constitutive equation is needed to characterise the material. The consti-
tutive equations for an elastic and a damage model are respectively

σσσ (xxx, t) = C : εεε (xxx, t) (4a)

σσσ (xxx, t) = [1−D(xxx, t)]C : εεε (xxx, t) (4b)

where εεε is the small strain tensor, C the tensor of elastic moduli and D the damage parameter.

2.3 Variational formulation and finite element discretisation

In this section, the governing equations (3) are cast in a weak form. The space of trial local displacements
is defined by the function

uuu(xxx, t) = uuu1 (xxx, t)+HΓd (xxx)uuu
2 (x, t) , uuu1,uuu2 ∈ Uuuu, (5)

where

Uuuu =
{

uuu1 ,uuu2 | uuu1 , uuu2 ∈ H1(Ω) and uuu |Γuuu = uuu∗
}

(6)

with H1(Ω) a Sobolev space.

The equilibrium equation (3a) is multiplied by the weight function

ωωω (xxx, t) = ωωω
1 (xxx, t)+HΓd (xxx)ωωω

2 (xxx, t) , ωωω
1,ωωω2 ∈ Wuuu,0 (7)

with

Wuuu,0 =
{

ωωω
1 , ωωω

2 |ωωω1 , ωωω
2 ∈ H1(Ω) and ωωω

1
|Γu

= ωωω
2
|Γu

= 000
}

, (8)

and integrated over the domain Ω to obtain the weak equilibrium statement. After standard manipula-
tions, the following expressions are obtained:∫

Ω

∇
s
ωωω

1 : σσσ dΩ =
∫

Γt

ωωω
1 · t̄tt dΓ ∀ωωω1 ∈ H1(Ω) (9a)∫

Ω

HΓd ∇
s
ωωω

2 : σσσ dΩ+2
∫

Γd

ωωω
2 ·ttt dΓ =

∫
Γt

HΓdωωω
2 · t̄tt dΓ ∀ωωω2 ∈ H1(Ω) (9b)
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where ∇s is the symmetrised gradient and at the discontinuity,

ṫ̇ṫt = TTT [|u̇̇u̇u|] (10)

where TTT relates traction rate ṫ̇ṫt and displacement jump rate [|u̇̇u̇u|].

In FE analysis, using a Galerkin discretisation, Eq. (1) reads, for nodes whose support is crossed by Γd ,

u(xxx) = N(xxx)u1 +HΓd (xxx)N(xxx)u2 (11)

where N is the matrix of standard finite element shape functions, u1 are the basic nodal degrees of
freedom and u2 are the enhanced ones.

The discrete format of the problem fields leads to the two discrete weak governing equations

fint,u1 = fext,u1 (12a)

fint,u2 = fext,u2 (12b)

where

fint,u1 =
∫

Ω

BT
σσσ dΩ (13a)

fext,u1 =
∫

Γt

NT t̄tt dΓ (13b)

fint,u2 =
∫

Ω

HΓd BT
σσσ dΩ+2

∫
Γd

NTttt dΓ (13c)

fext,u2 =
∫

Γt

HΓd NT t̄tt dΓ (13d)

with B the matrix of shape function derivatives. Some remarks about the discrete weak governing equa-
tions are worth mentioning:

• Eq. (12a) is the standard non-linear system of equilibrium equations, while Eq. (12b) takes into
account the contribution of the crack.

• In Eq. (13c), the contribution of the crack is multiplied by a factor of two due to the chosen
definition of the Heaviside function, see Eq. (2).

3 New continuous-discontinuous approach based on non-local displacements

The goal of this section is to present a new continuous-discontinuous strategy, which allows a realistic
characterisation of the entire failure process. This strategy is based on a non-local model based on non-
local displacements [3].

3.1 Problem fields

In the gradient-enhanced continuum model based on non-local displacements, two different displace-
ments are used to formulate the model: the standard displacements uuua and the gradient-enriched dis-
placements uuug . By means of the X-FEM, both fields are represented as

uuua(xxx) = uuu1
a(xxx)+HΓd (xxx)uuu

2
a(xxx) (14a)

uuug(xxx) = uuu1
g(xxx)+HΓd (xxx)uuu

2
g(xxx) (14b)

where uuui
a(xxx) and uuui

g(xxx) (i = 1,2) are continuous fields.
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3.2 Governing equations

The equilibrium equations and boundary conditions for the body Ω̄ are summarised in Eq. (3). The
constitutive equation for a damage continuum model is given by Eq. (4b). Moreover, in the non-local
damage model based on non-local displacements, a second-order diffusion partial differential equation
that relates non-local displacements uuug to local displacements uuua is added to the equilibrium equation

uuug (xxx, t)− `2
∇

2uuug (xxx, t) = uuua (xxx, t) inΩ\Γd (15)

where ` is the characteristic length of the non-local damage model.

To complete the coupled system of equations, boundary conditions at the boundary and at the discontinu-
ity surface must be defined. Both for the continuous and the discontinuous displacement fields, combined
boundary conditions are suggested here

uuui
g ·nnn = uuui

a ·nnn
∇
(
uuui

g ·ttt
)
·nnn = 0

}
on ∂Ω

uuui
g ·mmm = uuui

a ·mmm
∇
(
uuui

g ·ttt
)
·mmm = 0

}
on Γd (16)

where nnn is the outward unit normal to the body and mmm is the inward unit normal to Ω+ on Γd , see Figure
1.

3.3 Variational formulation and finite element discretisation

Similarly to Section 2.3, the space of trial non-local displacements uuug is defined by the function

uuug (xxx, t) = uuu1
g (xxx, t)+HΓd (xxx)uuu

2
g (x, t) , uuu1

g,uuu
2
g ∈ Uuuu, (17)

where Uu is defined in Eq. (6).

Eq. (15) can be cast in a variational form by multiplication with a vector test function ωωω (xxx, t) and
integration over the domain Ω. After standard manipulations, one obtains∫

Ω

ωωω
1 ·
(
uuu1

g +HΓduuu2
g
)

dΩ+ `2
∫

Ω

∇ωωω
1 :
(
∇uuu1

g +HΓd ∇uuu2
g
)

dΩ− `2
∫

Γd

HΓdωωω
1 ·∇uuu2

gmmmdΓ

−2`2
∫

Ω

ωωω
1
∇
(
δΓdmmm ·uuu2

g
)

dΩ =
∫

Ω

ωωω
1 ·
(
uuu1

a +HΓduuu2
a
)

dΩ ∀ωωω1 ∈ Wuuu,000 (18a)∫
Ω

ωωω
2 ·
(
HΓduuu1

g +uuu2
g
)

dΩ+ `2
∫

Ω

∇ωωω
2 :
(
HΓd ∇uuu1

g +∇uuu2
g
)

dΩ− `2
∫

Γd

HΓdωωω
2 ·∇uuu1

gmmmdΓ

+2`2
∫

Ω

ωωω
2 ·
[
δΓdmmm

(
∇uuu1

g−HΓd ∇uuu2
g
)
−HΓd ∇

(
δΓdmmm ·uuu2

g
)]

dΩ =
∫

Ω

ωωω
2 ·
(
HΓduuu1

a +uuu2
a
)

dΩ

∀ωωω2 ∈ Wuuu,000 (18b)

where δΓd is the Dirac delta centred at the discontinuity surface Γd .

Using FE notation, Eq. (14) reads, for nodes whose support is crossed by Γd ,

ua(xxx) = N(xxx)u1
a(xxx)+HΓd (xxx)N(xxx)u2

a(xxx) (19a)

ug(xxx) = N(xxx)u1
g(xxx)+HΓd (xxx)N(xxx)u2

g(xxx) (19b)

and the discrete format of the problem fields leads to the two discrete weak governing equations

(M+ `2D)u1
g +(MHΓd

+ `2DHΓd
)u2

g = Mu1
a +MHΓd

u2
a (20a)

(MHΓd
+ `2DHΓd

)u1
g +(M+ `2D)u2

g = MHΓd
u1

a +Mu2
a (20b)

where

M =
∫

Ω
NT NdΩ D =

∫
Ω

∇NT ∇NdΩ

MHΓd
=

∫
Ω

HΓd NT NdΩ DHΓd
=

∫
Ω

HΓd ∇NT ∇NdΩ
(21)
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Some remarks about the discretisation:

• Matrices M and D are the mass and diffusivity matrices already obtained in [3]. They are both
constant.

• Matrices MHΓd
and DHΓd

can be understood as enriched mass and diffusivity matrices respectively,
since the expression is the same as M and D except for the Heaviside function.

• Note that the property HΓd HΓd = +1, which is derived from the definition of the Heaviside func-
tion Eq. (2), is used.

4 Numerical results

The regularisation capabilities of this new strategy are illustrated in this section by means of two nu-
merical examples. In section 4.1, a uniaxial tension test is carried out using a one- and two-dimensional
geometry and in section 4.2, a two-dimensional square plate under mode I loading conditions is analysed.

4.1 Uniaxial tension test

This first example deals with the solution of a bar in tension with a discontinuity in the centre subjected
to imposed displacement at the free side and clamped at the other one, see Figure 2. Since in the first
steps of the failure process a continuum damage model is used, the central tenth of the bar is weakened
to cause localisation. The dimensionless geometric and material parameters for this test are summarised
in Table 1. All numerical tests have been carried out with one- and two-dimensional finite elements.

Figure 2: Uniaxial tension test: problem statement.

Table 1: Uniaxial tension test with a non-local damage model and a softening behaviour of the cohesive
crack: geometric and material parameters.

Meaning Symbol Value
Length of the bar L 100
Width of the bar A 1
Length of weaker part LW L/7
Young’s modulus E 20000
Idem of weaker part EW 18000
Damage threshold εi 10−4

Final strain ε f 1.25×10−2

Critical damage Dcrit 0.9
Crack stiffness T −20

A non-local continuum damage model (linear softening law) is employed in the first stages of the failure
process. When the damage parameter exceeds a threshold set a priori called Dcrit, a discontinuity is
introduced and the continuous-discontinuous technique is used, see Figure 3.

The regularisation properties of the model are analysed by means of different tests. As a first test, a
fixed characteristic length ` =

√
5 is chosen. The analysis is carried out with six different meshes. The
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Figure 3: Evolution law for (a) the bar; (b) the crack.

force-displacement curves and the damage profiles are shown in Figure 4. As desired, the responses for
this test do not depend on finite element sizes.
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Figure 4: Continuous-discontinuous strategy. Fixed characteristic length with various meshes. (a) force-
displacement curve; (b) damage profiles.

As a second test, a fixed mesh of 105 elements is considered and four different characteristic lengths are
used, ` =

√
1,
√

2,
√

5,
√

10. The results are depicted in Figure 5. The ductility in the force-displacement
response and the width of the final damage profile increase with the internal length scale.
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Figure 5: Continuous-discontinuous strategy. Fixed mesh with various characteristic lengths. (a) force-
displacement curve; (b) damage profiles.

Finally, as a third test, a fixed mesh of 105 elements and a fixed characteristic length ` =
√

5 are chosen.
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Two different tests, in which the size of weakened region differs, are analysed. Results are shown in
Figure 6. As seen, there is no pathological dependence on imperfection size.
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Figure 6: Continuous-discontinuous strategy. Fixed mesh and characteristic length with various imper-
fection sizes. (a) force-displacement curve; (b) damage profiles.

In summary, this new model exhibits the desired regularisation capabilities.

4.2 Square plate under mode I loading conditions

The second example consists of a square plate under mode I loading conditions, see Figure 7. Similarly to
the previous example, in order to simulate the first steps of the failure process with a continuum damage
model, some weakened region is considered. The dimensionless geometric and material parameters for
this test are summarised in Table 2.

Figure 7: Square plate under mode I loading conditions: problem statement.

As a first test, the regularisation capabilities of the continuous strategy are analysed. Three different
meshes are considered. The force-displacement curves and the damage profiles are shown in Figure 8
and 9 respectively. As seen, the force-displacement curve and the width of damage band do not depend
on the finite element mesh or the imperfection size needed to cause localisation.

As a second test, the continuous-discontinuous strategy is analysed. A fixed mesh of 20×21 elements is
considered. The force-displacement curve and the damage profile can be seen in Figure 10. As observed
in Figure 10(a), the force-displacement curve presents sharp unloadings followed by loadings of the
force. These unloadings, that occur when the crack propagates through the finite element mesh, are not
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Table 2: Two-dimensional test under mode I loading conditions with a non-local damage model and a
softening behaviour of the cohesive crack: geometric and material parameters.

Meaning Symbol Value
Length of the specimen L 10
Length of weaker part LW 1
Width of weaker part hW 1 finite element
Young’s modulus E 20000
Idem of weaker part EW 18000 (10% reduction in E)
Poisson’s coefficient ν 0
Damage threshold εi 10−4

Final strain ε f 1.25×10−2

Characteristic length l
√

7×10−4

Critical damage Dcrit 0.95
Crack stiffness T −20
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Figure 8: Continuous strategy. Fixed characteristic length with various meshes and imperfection sizes:
force-displacement curves.

(a) (b) (c)

Figure 9: Continuous strategy. Fixed characteristic length with various meshes and imperfection sizes:
damage profiles obtained with a (a) 20×21 FE mesh; (b) 30×31 FE mesh; (c) 40×41 FE mesh.

completely understood yet but we think that they may be related to the effect of the blending elements,
as discussed next.
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Figure 10: Continuous-discontinuous strategy. (a) force-displacement curve; (b) damage profile with the
deformed mesh (displacements amplified 100 times).

4.3 Blending elements

In X-FEM, the approximation function space of standard finite element methods (FEM) is expanded in
order to deal with singularities. Although this enrichment could affect the entire domain, for computa-
tional purposes it is done only in the sub-domain where it is needed. Due to this local enrichment, three
different kinds of elements exist: (a) standard elements with no enriched nodes, (b) elements whose
nodes are all enriched and (c) elements with some of their nodes enriched, which are commonly named
blending elements, see Figure 11. The influence of the blending elements on the solution accuracy has
been reported in the literature, see for example [16, 17, 18].

Figure 11: A crack line (dashed line) in a structured mesh with standard elements (white), elements
whose nodes are all enriched (dark grey) and blending elements (light grey).

In this section, the stiffness of these types of elements is analysed via three different tests that deal with
the solution of a two-dimensional plate in tension. The plate is discretised with one finite element and
the numerical tests are displacement-controlled, see Figure 12.

The dimensionless geometric and material parameters used in this example are summarised in Table 3.
Some remarks about the definition of these parameters are worth mentioning:

• εcrit = ε(D = Dcrit) = εiε f
εi+(1−Dcrit)(ε f−εi)

, if a linear damage law is assumed, see Figure 3(a).

• The crack stiffness T has been defined imposing that the force-displacement curves in test 12(a)
and 12(b) are equal. That means that all the imposed displacement is used for bulk deformation in
the first case while in the second one, it is used for crack opening.

The obtained force-displacement curves are shown in Figure 13. Due to the definition of the crack stiff-
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(a) (b) (c)

Figure 12: (a) element with standard nodes; (b) element with all the nodes enriched; (c) element with
some of the nodes enriched.

Table 3: Effect of the blending elements in the global response: geometric and material parameters.

Meaning Symbol Value
Length of the specimen L 1
Young’s modulus E 20000
Poisson’s coefficient ν 0
Damage threshold εi 10−4

Final strain ε f 1.25×10−2

Characteristic length l 0 (local model)
Critical damage Dcrit 0.9
Crack stiffness T − (1−Dcrit)Eεcrit

Lε f

ness T , the force-displacement curves related to continuous and fully continuous-discontinuous elements
are overlapped. Nevertheless, the curve related to the blending element has a different slope in the third
branch, where the crack is introduced. It may be seen that the blending element offers a stiffer response
in comparison with the other two elements. Depending on the geometric and material parameters, the
behaviour of the blending element may be so stiff that the global response is not in softening but in
hardening.

5 Concluding remarks

• The proposed continuous-discontinuous model is only based on displacements: a local displace-
ment and a gradient-enriched field are used. In the final stage of the failure process, the two
displacement fields may admit discontinuities. The two fields can be interpolated using the same
shape and enrichment functions. Considering both fields discontinuous, relatively coarse meshes
can be employed.

• When a crack is introduced, the discontinuous setting coexists with the continuous one. In fact,
here the continuum is used for crack path tracking.

• On the one hand, a one-dimensional problem is analysed in order to validate the proposed strategy.
The expected regularisation capabilities of the continuous-discontinuous model are obtained.

• On the other hand, a two-dimensional problem under mode I loading conditions is studied. By
means of this example, it may be seen that the continuous model based on non-local displace-
ments does regularise softening. Nevertheless, the force-displacement curve obtained with the
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Figure 13: Effect of the blending elements in the global response: force-displacement curves.

continuous-discontinuous approach shows some sharp unloadings that require a better understand-
ing. Since we think that this physically unrealistic behaviour is related to the blending elements,
these are studied in detail.
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