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Abstract 

In the present work second order mathematical models for semifinish honing are presented for average roughness Ra as a 
function of abrasive stone characteristics and honing parameters. Several tests were performed in both a test machine and in an 
industrial machine. Results from both machines were compared. Although roughness depends on the five variables studied (grain 
size, density, pressure, linear speed and tangential speed) in both cases, most important factors are grain size and pressure. It is 
possible to use the model for the test machine in the industrial machine, in a way that only a few tests will be performed in the 
industrial machine in order to translate the model. 
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1. Introduction 

Many variables influence surface roughness in honing processes, for example type of bond, type of abrasive, 
grain size of abrasive, pressure of the honing head, speed of the honing head, etc. [1]. Several authors have obtained 
mathematical models for roughness in honing processes. For example, Troglio et al. employed three-level design of 
experiments with grain size of abrasive, oil and workpiece material as factors and average roughness Ra and Rk-
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family parameters as responses [2]. Kanthababu et al. used three-level design of experiments with rotation speed, 
linear speed, pressure and honing time as variables, and different roughness parameters (Rk, Rpk, Rvk, Mr1, Mr2) as 
responses [3]. 

In a previous paper, mathematical models were presented for both average roughness Ra and material removal 
rate Qm in the rough honing process [4]. Two-level design of experiments was employed. Main variables affecting 
roughness were grain size and density of abrasive while main variables influencing material removal rate were grain 
size of abrasive and pressure of honing stones on the workpieces’ surface. 

In honing processes, it is usual to perform successive operations, each time with finer grain in order to achieve a 
smooth surface. Moreover, some vertical machines provided with three honing heads allow three honing operations 
in the same cylinder [5]. Since behavior of the honing process is different depending on grain size, in the present 
work research was divided into three types of experiments, related to rough honing, semifinish honing and finish 
honing respectively. In the present paper, second order statistical models were obtained from surface response design 
of experiments for surface roughness in semifinish processes. Tests were performed both in a test and in an industrial 
machine, and results from both machines were compared. Five variables were considered: grain size of abrasive 
(Gs), density of abrasive (De), linear speed (Vl), tangential speed (Vt) and pressure of the honing stones on the 
workpieces’ surface (Pr). 

2. Materials and methods 

Cubic boron nitride (CBN) stones were chosen with metallic bond. Both a horizontal test machine (Fig. 1) and an 
industrial vertical machine (Fig. 2) were used in honing experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Horizontal test machine. 

 

 

 
 
 
 
 
 
 

 

Fig. 2. Vertical industrial machine. 
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Steel St-52 cylinders of 80 mm interior diameter were honed. Length of cylinders was 100 mm in the test 
machine and 390 mm in the industrial machine. 

Roughness was measured by means of a Hommel W5 roughness meter. A special tooling was built that allowed 
measuring 9 points along a diametral circumference in the interior surface of cylinders (Fig. 3), according to a 
previously defined methodology [6]. Roughness was measured 50 mm away from the cylinder’s end in the test 
machine and 190 mm away from the cylinder’s end in the industrial machine.  

 

 

       Fig. 3. Roughness meter and tooling used for measuring roughness. 

Experiments were conducted following a central composite design, thus allowing the estimation of linear and 
quadratic effects (both interactions and pure quadratic terms) [7]. Specifically, a 25-1 was used as factorial design for 
the five studied factors. Axial points were located on the faces of the cube. A set of 6 center points was also 
included. Each run was replicated, thus having a total of 64 runs. Table 1 shows low and high level for each of the 
factors. It should be noticed that selected levels are not exactly the same for the test machine and the industrial 
machine, as they had to be adapted to be able to hone all cylinders in both machines.  

     Table 1. Ranges of variables employed 

Variable Test machine Industrial machine 

Gs (FEPA 61)[8] 46-76 46-76 

De (ISO 6104)[9] 15-45 15-45 

Pr (N/cm2) 400-700 400-700 

Vt (m/min) 30-50 15-35 

Vl (m/min) 20-40 15-25 

3. Results 

Data were analyzed with Minitab 17 statistical software [10]. The best possible model using Ra as response for 
both the test machine and the industrial machine was computed using a least squares regression procedure. The 
model for the test machine is: 
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Fig. 4 shows the Minitab output for this model, with p-values for assessing coefficient significance and the 
standard deviation of residuals (S) and coefficient of determination (R2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Minitab output showing significant effects for Ra in the test machine 

The model for the industrial machine is:  

       
Fig. 5 shows the Minitab output for the industrial machine model.  

 
Fig. 5. Minitab output showing significant effects for Ra in the industrial machine 
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Both models were validated based on an analysis of residuals, which show no dependence, no heteroscedasticity 
and no departure from normality. The lack of fit tests based on the pure error give high p-values (above 10%), 
showing that the models accurately fit the collected data.  

All five variables (Gs, De, Pr, Vt and Vl) appear in each of the models, so all factors affect the response Ra, to 
some extent, in both the test and industrial machines. A relative importance index has been computed for each of the 
factors in the model [11]. The relative importance index (RII) for factor  is computed using the expression in 
Equation 1:  

      (1) 

Where  is the coefficient of determination of the full model and  is the coefficient 

of determination of the model where all terms having  have been removed. This difference, divided by a 
normalizing factor and expressed as a percentage, shows the relative importance of factor . Once the RII for each of the factors is computed, results are rescaled so that the total sum is 100%.  

Fig. 6 summarizes the relative importance of all five factors (Gs, De, Pr, Vt and Vl) for both the test machine and 
the industrial machine. Grain size of abrasive (Gs), pressure of the honing stones on the workpieces’ surface (Pr) 
and density of abrasive (De) are the most important factors, followed by a great distance by the speeds (Vl and Vt). 
The relative importance is swapped for Gs and Pr in both machines: Gs is the most important in the test machine, 
whereas Pr is the most important in the industrial machine. 

 
Fig. 6. Relative importance of factors for the test and the industrial machines  

The surface response of Ra as graphically depicted from the models has been represented, placing the most 
important factors in the axes (Gs, Pr and De). Using Gs and Pr as independent variables, Fig. 7 shows the surface for 
the test machine, and Fig. 8 depicts the surface for the industrial machine. Using Pr and De as independent variables, 
Figs. 9 and 10 show the surface for the test and industrial machines, respectively. All factors not represented in the 
axes are kept at its middle value for this graphical representation.  
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The figures clearly show the curvilinear – second order – nature of surface response for Ra. They also confirm 
that both models are very similar. In the case of Gs and Pr (Figs. 7 and 8), both surfaces have a roof tile shape with 
the same orientation. In the case of Pr and De (Figs. 9 and 10), the surfaces are basically planes with a slight 
curvature.  

 
 

Fig. 7. Surface response for Ra for the test machine, placing Gs and Pr in the axes 

 

 
 

 Fig. 8. Surface response for Ra for the industrial machine, placing Gs and Pr in the axes 
 

 
 

Fig. 9. Surface response for Ra for the test machine, placing Pr and De in the axes 
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Fig.10. Surface response for Ra for the industrial machine, placing Pr and De in the axes  
Based on the models found for the test and industrial machines, predictions of Ra have been computed in those 

areas of experimentation that are common for both machines. Fig. 11 shows a comparison of expected Ra for each 
combination of factors (Gs, De, Pr, Vt and Vl). It should be noticed that the profile of the curves is very similar, and 
that the difference between both machines is basically a translation. This translation is more accused in some areas 
than in others. In those areas where De is low and Pr is high, or where De is high and Pr is low, the curves are much 
closer: this fact is coherent with the presence of interaction De·Pr in both models. When Gs is low the curves are 
closer than when is high, becoming then almost coincident.   

 
 

Fig. 11. Comparison of predictions for Ra in the test machine (Ra_test) and in the industrial machine (Ra_ind)  
Similarities in the models for the test and the industrial machines, as highlighted in Figs. 7 to 11, make possible 

the use of the model for the test machine in the industrial machine, taking into account that a few tests should be 
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done in order to discover the translation constant for each area. As possibilities of experimentation in a production 
context can be scarce, this option can be useful from a practical point of view.  

4. Conclusions 

Main conclusions of the present work are: 

 In semifinish honing processes performed in a test machine, main factors influencing roughness were grain size 
and pressure, while in an industrial machine main factors were pressure and density of abrasive stones. 

 Similar trends in roughness values were obtained in the test machine and in the industrial machine. However, at 
low pressure and low density, as well as at high pressure and high density, roughness obtained in the industrial 
machine was lower than that of the test machine. 

 It was possible to obtain the mathematical model of the industrial machine from the mathematical model of the 
test machine by means of translation of roughness values. Only few tests will be necessary in the industrial 
machine to find the translation constants in different areas of the model.  
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