
Cloud Services in the Guifi.net Community Network

Mennan Selimia,∗, Amin M. Khana, Emmanouil Dimogerontakisa, Felix Freitaga, Roger Pueyo Centellesb

a Department of Computer Architecture, Universitat Politècnica de Catalunya BarcelonaTech, Spain
b Fundació Privada per a la Xarxa Oberta, Lliure i Neutral Guifi.net, Catalonia, Spain

Abstract

Internet and communication technologies have lowered the costs to collaborate for communities, leading to new
services like user-generated content and social computing and, through collaboration, collectively built infrastructures,
such as community networks. Community networks are formed when individuals and local organisations from a
geographic area team up to create and run a community-owned IP network to satisfy the community’s demand for
ICT. Internet access is often considered the main service of community networks, but the provision of services of
local interest within the network is a unique opportunity for community networks, which is currently predominantly
unexplored. The consolidation of today’s cloud technologies offers community networks the possibility to collectively
build community clouds, building upon user-provided networks, and extending towards an ecosystem of cloud services.
We propose a framework for building a collaborative distributed community cloud system that employs resources
contributed by the members of the community network for provisioning infrastructure and software services. This
framework is tailored to the specific social, economic, and technical characteristics of community networks and
requirements for community clouds in order to be successful and sustainable. We materialise this framework in the
implementation of the Cloudy distribution. We conduct real deployments of these clouds in the Guifi.net community
network and evaluate cloud-based applications such as service discovery and distributed storage. This deployment
experience supports the feasibility of community clouds and our measurements demonstrate the performance of
services and applications running in these community clouds. Our results encourage the development and operation
of collaborative cloud-based services using the resources of a community network. We anticipate that such services
can effectively complement commercial offers and have the potential to boost innovation in application areas in which
end-user involvement is required.

Keywords: cloud computing, community networks, community cloud, service discovery, distributed storage

1. Introduction

Wireless community networks are an emergent model
of infrastructure that aims to satisfy a community’s de-
mand for Internet access and ICT (information, commu-
nication and technology) services [1]. Different from the
traditional business-focused model applied by telecom-
munication operators, each user in community networks
is an owner of a portion of the total infrastructure, which
builds the mesh network. In the early 2000s, community
networks gained momentum in response to the limited
options for network connectivity in rural and urban com-
munities. Using off-the-shelf network hardware and the
open, unlicensed wireless spectrum, volunteers teamed
up to invest in, create, and run wireless networks in their

∗Corresponding author. Email: mselimi@ac.upc.edu

local communities as an open telecommunication infra-
structure based on self-servicing and self-management
by the users. Community networks primarily use wire-
less technology to interconnect nodes. However, with
the commoditisation of optical fibre, some community
networks have also started providing broadband services
combining both technologies. Many of these bottom-up
initiatives have proven to be quite successful. For ex-
ample, currently the largest community network in the
world, Guifi.net [2] connects more than 28,000 locations
(nodes) with wireless and optical fibre. A few other ex-
amples of successful community networks are Athens
Wireless Metropolitan Network (AWMN) [3] in Greece,
FunkFeuer [4] in Austria and Ninux [5] in Italy.

Community networks are a successful case of re-
source sharing among a collective, where not only is
networking hardware shared, but also time, effort, and

“NOTICE: this is the author’s version of a work that was accepted for publication in <Computer networks>. Changes resulting from the publishing process, 
such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may 
have been made to this work since it was submitted for publication. A definitive version was subsequently published in COMPUTER NETWORKS, [VOL 93, 
PART 2, (24 December 2015)] DOI 10.1016/j.comnet.2015.09.007

mselimi@ac.upc.edu


2

knowledge are contributed by its members, which are
required for maintaining the network. In practice, from
the hardware perspective, resource sharing in commu-
nity networks refers to the sharing of the nodes’ inter-
connectivity and bandwidth. This sharing enables the
traffic created at the user’s node to be routed over the
neighbouring nodes towards those of different owners,
allowing community networks to successfully operate
as IP networks. Despite achieving the sharing of band-
width, community networks have not been able to widely
extend this sharing to other computing resources, such
as processing time or storage, which is a common prac-
tice in today’s Internet through cloud computing. For
instance, when we look at the user-oriented services cur-
rently consumed in Guifi.net, more than 50% are gate-
way proxies to provide Internet connectivity, as shown
in Section 2. This implies that community members con-
nect to the Internet and take advantage of the services
available over the Internet. There are various reasons
that other services have not been developed within com-
munity networks or have not gained traction among the
members of community networks, but we believe that
the main reason is the lack of streamlined mechanisms to
exploit all the resources available within the community
networks. As a result, the development of these types of
services can be very challenging.

To overcome this obstacle, we propose that members
of community networks should share resources based on
a collaborative cloud computing model. In such a model,
community network members can provide their excess
capacity to others as the demand fluctuates and in return
take advantage of services and applications offered by
others that would be difficult or expensive to bring to-
gether by a single user due to the limited resources or
the inflexibility of the environment.

The concept of a community cloud has been intro-
duced in its generic form previously, e.g. [6, 7], as a
cloud deployment model in which a cloud infrastructure
is built and provisioned for exclusive use by a specific
community of consumers with shared concerns and in-
terests, owned and managed by the community, or by
a third party, or a combination of these. The authors
present an abstract architecture together with a set of re-
quirements that future implementations should consider.
In our work, we refer to a specific kind of community
cloud where computing resources are shared inside a
community network, while considering the application
models of cloud computing in general. We propose the
community cloud as the platform that will enable cloud-
based services in community networks.

The main contribution of this paper is to show the fea-
sibility of community clouds, which we demonstrate by

the development of a community cloud platform, the real
deployment of community clouds in the Guifi.net, and
the performance measurements of applications running
on these cloud infrastructures. We begin by presenting
a framework for collaborative community clouds. This
framework integrates the resources contributed by com-
munity network members to the cloud. We materialise
this framework by the implementation of the Cloudy dis-
tribution [8–10]. With the Cloudy contribution, we as-
pire to encourage community network users to join and
participate, ultimately creating an ecosystem of services.

Cloudy is designed as a convenient method to package
together different cloud services for streamlined devel-
opment and delivery of value to the end users. Cloudy
is based on existing open-source software and provides
applications and services that add value for the users;
many of these software programs are already being used
to varying extents over the wider Internet. However, the
challenge for Cloudy remains to analyse how well these
applications behave in community networks. To this end,
Cloudy is a work in progress, and we continue to inte-
grate new services and applications. However, we have
identified two services to focus our work on to start. At
the system-level, we consider discovery services, such as
Avahi [11] and Serf [12], since we think it is necessary
for users to be able to easily discover available services
and for the system to keep track of the status of the ser-
vices. For the users, we focus on distributed storage ser-
vice, such as Tahoe-LAFS [13], for a number of reasons,
as the storage service is comparatively easy to develop,
integrate, and support, and its value easily makes sense
to the end users. In addition, other cloud services need
storage for the back-end in order to function.

The rest of the paper is organised as follows. Sec-
tion 2 presents the current state of service deployment
in community networks through a study of Guifi.net as
well as related research on community clouds. Section 3
presents the design and implementation of our frame-
work for community clouds as well as the deployed ser-
vices. In Section 4, we conduct experiments with the
deployed community cloud and present results on the
performance of our framework and services. Section 5
discusses and positions our results. Finally, Section 6
concludes and indicates future research.

2. Background

The predominant trend in many community networks
is to use the available resources as a means to access ex-
ternal services provided elsewhere on the Internet. This
might be seen as a contradiction to their spirit since traf-
fic within the community network is freely available,



3

while Internet access is charged or restricted to some ex-
tent (bandwidth limitations apply or packets exit through
proxies). Ubiquitous cloud services, such as private data
storage and backup, instant messaging, media sharing,
social networking, etc., are generally operated by well-
known Internet service vendors. Community network
participants are thus increasingly affected by the prob-
lems and disadvantages of this model (privacy, security,
property, legislation, dependency, etc.).

In some cases, Internet cloud services have equivalent
alternatives that are owned and operated at the commu-
nity level; in other cases, however, there are no locally
driven alternatives, yet. Possible reasons for the absence
of these community-owned services can be found in the
difficulty to deploy such services and the shortage or lack
of individuals, organisations, or companies interested in
the commercial operation of these services.

As we describe next, since community networks have
become popular, there have been efforts to develop and
promote different services and applications from within
community networks but without significant adoption.
One of the reasons identified is the technological bar-
rier. Before providing content, users willing to share in-
formation with the community must first take care of
the technical aspects, such as the deployment of a server
with a set of services. For example, the key characteristic
of the Guinux [14] distribution, explained below, was a
set of scripts that automatised the configuration process.
End users were only asked for a few parameters, such
as their e-mail address and the node identifier. Shortly
after the distribution was made available, the number of
end users sharing resources proliferated. Thus, it became
clear that lowering (or removing) the technological entry
barrier encouraged users to provide more services and
share their resources with the community. Nevertheless,
community networks are still typically used to access
external Internet services, as presented later. We believe
that this is a result of the lack in number, diversity, and
user-friendliness of services as well as performance dis-
advantages of non-commercial distributed applications
compared to Internet cloud services.

In this section, we investigate the challenges and re-
quirements involved in providing a community cloud
system for the Guifi.net community network, consider-
ing the issues described previously. To achieve that, we
present past efforts from within the Guifi.net community
network for providing services. We also discuss other ini-
tiatives in community cloud computing portraying the
state-of-the-art. This provides the context and motivates
our proposal for a community cloud system in Section 3.

Services Catalonia

Network graph server 219 39.24%

DNS server 198 35.48%

NTP server 96 17.20%

Bandwidth measurement 36 6.45%

Logs server 4 0.71%

LDAP server 3 0.53%

Wake on LAN 2 0.35%

Total 558

Table 1: List of network-focused Guifi.net services in Catalo-
nia area

2.1. Current State of Service Deployment in Guifi.net

To obtain the dimension of the current situation, we
analyse the list of services published (i.e., publicly an-
nounced) by the Guifi.net community network. We do so
by means of the list of services available on the Guifi.net
web page for the Catalonia region of Spain, the origin
and most dense location of Guifi.net [15].

Tables 1 and 2 [15] indicate the network-focused and
user-focused services, respectively, of Guifi.net and the
proportion of each service in the services offered. We
consider that the number of instances of a service im-
plies the demand of the service inside the network. Com-
paring the tables, we notice that the services related to
the network operation itself slightly outnumber the ser-
vices intended for end-users. Considering that network
management is of interest only to a fragment of the
network members compared to user-focused services,
which could be of interest to all users, we would ex-
pect user-focused services to be more developed. More-
over, the most frequent of all the services, whether
user-focused or network-focused, are the proxy services.
Specifically for the user-focused services, the percentage
of Internet access services (proxies and tunnel-based) is
higher than 55%, confirming that the users of Guifi.net
are typically interested in accessing the Internet. We can
also claim that there is a diverse set of services inside
Guifi.net, even though their adoption is overshadowed
by Internet access.

It is important to point out that this situation is not
unique to Guifi.net. Other community networks exhibit
similar situations, where the network is typically used to
access the Internet, and the few services available within
the community network are similar to those available in
Guifi.net. For instance, Elianos et al. [16] presented sim-
ilar information regarding AWMN. The authors mainly
focused on user-oriented services, which are quite simi-



4

Services Catalonia

Proxy server (Internet access) 275 53.50%

Web pages 57 11.08%

VoIP / audio / video / chat / IM 48 9.33%

Data storage server 41 7.97%

Radio / TV stations 18 3.50%

P2P server 17 3.50%

Linux mirrors 15 2.91%

Webcam 12 2.33%

Tunnel-based Internet access 10 1.94%

Mail server 6 1.16%

Weather station 6 1.16%

Games server 5 0.97%

CVS repository 2 0.38%

Server virtualisation (VPS) 2 0.38%

Total 514

Table 2: List of user-focused Guifi.net services
in Catalonia area

lar to the Guifi.net services. The most popular services
are web hosting, data storage, VoIP, and video streaming.

The services provided by Guifi.net can be categorised
under cloud computing service models (though not fol-
lowing the traditional cloud elastic on-demand service
approach): Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS). Con-
cerning IaaS, following the global trend, the popularity
of virtualisation technologies is rising in Guifi.net. Cur-
rently, almost all critical services are run on virtualised
environments, frequently using Proxmox [17]. Guifi.net
also provides specific hardware infrastructure and soft-
ware, supporting virtual networks and tunnelling. Ad-
ditionally, some efforts have been made in the past to
provide the end users with tools to help them with the
deployment and expansion of the community network
from the software and services perspective. This was the
case of Guinux, a GNU/Linux distribution for end users
allowing them to deploy servers with services useful for
community networking, namely Proxy, DNS, and SNMP
(Simple Network Management Protocol) graphs servers.
Similarly to PaaS, a diverse set of services has been de-
ployed, such as automated node configuration, user au-
thentication, service monitoring (servers and network),
and an on-line service directory as well as network infor-
mation and administration databases. Finally, taking into
account the SaaS model in the context of community net-
works, data storage services have been sporadically de-

ployed by enthusiastic users who wanted to share some
of their content (pictures, documents, etc.) with the rest
of the community [18]. In some cases, users have also
enabled uploading to folders, allowing other users to up-
load their files for sharing with the community. Despite
this, it should not be considered a data storage service
for end users. Moreover, Guifi.net users have developed
GuifiTV [19], a project initially conceived to harmonise
the captured video formats and the content from semi-
nars and workshops, which later included video stream-
ing services.

The services described above are representative ex-
amples of those usually deployed in community net-
works. Nevertheless, both network-oriented and user-
oriented services are centralised and offered by individ-
uals. Distribution and decentralisation are concepts that
are closely related to the community network philoso-
phy; nonetheless, since centralised solutions are gener-
ally much easier to develop and deploy, in most of the
cases they end up being implemented according to the
classical client-server approach. As a result, basic cloud
service requirements, as described in [6], are not fulfilled.
Most importantly, there is no common pool of resources
but instead a set of separate resources, since the same ser-
vices are deployed independently and not coordinated in
a common way. As a result, service coordination and
resource sharing mechanisms are the first milestones to-
wards creating cloud services for community networks,
which are provided by the cloud framework we propose.

Our effort targets fostering the deployment of clouds
and cloud-based services on top of community networks.
Based on the experiences of current community net-
works, providing end users with the appropriate appli-
cations has proven to be an effective way of encouraging
them to use, provide, and promote services. We exploit
our experiences and the above analysis to design, im-
plement, and evaluate the proposed community cloud
framework for community networks.

2.2. Related Work
Carving our path towards community clouds in com-

munity networks, we must consider the cloud essential
characteristics, as described in [6]. Broad network ac-
cess is already offered by the community networks and
resource pooling should be an outcome of the resource
sharing described above. Measured services are very im-
portant in order to guarantee that the services will not
disrupt the proper function of the network. On-demand
self-service is a higher-level concept concerning the re-
sponsiveness and the transparency of the system; thus,
this is an important feature but of secondary priority.
Similarly, rapid elasticity of the resources offered is a



5

welcome property; yet, it should not be considered an
essential one due to its complexity because of the highly
distributed environment.

The idea of collaboratively built community clouds
follows earlier distributed voluntary computing plat-
forms, such as BOINC [20], Folding@home [21], Plan-
etLab [22], and Seattle [23], which largely rely on altru-
istic contributions of resources from users, functioning
as research platforms. There are only a few research pro-
posals for community cloud computing [7], and most of
them do not go beyond the architecture level, whereas
very few present a practical implementation.

The Cloud@Home [24] project aims to harvest re-
sources from the community for meeting the peaks in de-
mand, working with public, private, and hybrid clouds to
form cloud federations. The Clouds@Home [25] project
focuses on providing guaranteed performance and ensur-
ing quality of service (QoS), even when using volatile
Internet volunteered resources. The P2PCS [26] project
has built a prototype implementation of a decentralised
peer-to-peer cloud system. It uses Java JRMI technology
and builds an IaaS system that provides very basic sup-
port for creating and managing virtual machines. These
implementations, to our knowledge, are not actually de-
ployed inside real community networks, considering the
infrastructure diversity, and are not aiming to satisfy end-
user needs.

Social cloud computing [27] is a relevant research
field that takes advantage of the trust relationships be-
tween members of social networks to motivate contribu-
tion towards a cloud storage service. Users trade their
excess capacity to earn virtual currency and credits that
they can utilise later, and consumers submit feedback
about the providers after each transaction, which is used
to maintain the reputation of each user. Social clouds
have been deployed in the CometCloud framework by
federating resources from multiple cloud providers [28].
The social compute cloud [29], implemented as an ex-
tension of the Seattle platform [23], enables the shar-
ing of infrastructure resources between friends con-
nected through social networks and explores bidirec-
tional preference-based resource allocation.

Among federated cloud infrastructures, Gall et al. [30]
have explored how an InterCloud architecture [31] can
be adapted to community clouds. Further, Esposito et
al. [32] presented a flexible federated Cloud architecture
based on a scalable ’publish and subscribe’ middleware
for dynamic and transparent interconnection between dif-
ferent providers. Moreover, Zhao et al. [33] explored ef-
ficient and fair resource sharing among the participants
in community-based cloud systems. In addition, Jang et
al. [34] implemented personal clouds that federate lo-

cal, nearby, and remote cloud resources to enhance the
services available on mobile devices.

Service discovery is an important component of ser-
vice coordination. Specifically for wireless mesh net-
works, the work of Dittrich et. al. [35] evaluated the re-
sponsiveness of service discovery. They ran their exper-
iments in the wireless DES testbed at Freie Universitat
Berlin. They showed how service discovery responsive-
ness is affected by the position and number of requesters
and providers as well as the load in the network. In wire-
less mesh network settings, the work of Wirtz [36] pro-
posed DHT-based Localised Service Discovery(DLSD),
an hierarchy of localised DHT address spaces that enable
localised provision and discovery of services and data.
Another work [37] proposed a stochastic model family
to evaluate the user-perceived responsiveness of service
discovery and the probability to find providers within a
deadline, even in the presence of faults.

From the review of related work, we find that none of
the above research has implemented an operational pro-
totype for community networks. In the community cloud
system that we present, we consider the socio-technical
factors that characterise community networks; therefore,
the framework we propose is tailored to the specific con-
text of deploying cloud-based services in community net-
works.

3. Community Cloud Framework and Services

A community network is owned by the community
and the nodes are managed independently by their own-
ers. As a result, the network devices or nodes in a com-
munity network vary widely in their capacity, function
and capability. Some hardware is used as super nodes
(SNs) that have multiple wireless links and connect with
other SNs to form the backbone of the community net-
work, which is usually intended to be stable with per-
manent connectivity. Others act as client nodes and are
only connected to the access point (AP) of an SN as
demonstrated in Figure 1. A topological analysis of the
Guifi.net community network [38] indicates that from
approximately 17,000 analysed nodes of Guifi.net, 7%
are SNs while the others are client nodes.

From the node types illustrated in Figure 1, it can be
seen that the hardware for computation and storage is al-
ready predominantly available in community networks,
consisting of servers (e.g., home gateways, laptops etc.)
attached to the networking nodes. No cloud software or
services, however, are yet deployed in community net-
works to use this hardware as a cloud, leaving the com-
munity network services significantly behind the current
standard of the Internet.



6

Figure 1: Nodes in a community network with cloud resources

Our vision is that community wireless routers will
tend to have cloud resources attached, in order to build
the infrastructure for a community cloud formed by sev-
eral cloud resources distributed among several nodes.
We note that the contributed cloud resources could be
principally located at client nodes, where the actual users
of the community network exist. Based on the structure,
topology, and socio-technical characteristics of commu-
nity networks, we identify a community cloud consisting
of multiple local clouds, where an SN is responsible for
the management of a set of attached nodes contributing
cloud resources. These multiple local clouds are then
connected to form a federated community cloud, where
SNs connect physically to other SNs through wireless
links and logically in an overlay network to other SNs
that manage local clouds.

3.1. Requirements for a Community Cloud System
A community cloud is a cloud infrastructure which

is run and managed independently by various commu-
nity network members. The community cloud bridges
different aspects in the gap between the public cloud,
the general-purpose cloud (available to everyone), and
the private cloud (available to only a limited set of users
with user-specific services). For the community cloud
management system, we are targeting the Guifi.net com-
munity network, and we consider the following require-
ments to be a foundation and guideline for its design. We
believe that, if addressed, among other challenges, these
requirements can largely provide a cloud system that is
deployed and adopted successfully by the community.

• Security
Privacy and security are of great importance in com-
munity clouds, as users share their resources and
data between them. There are many security chal-
lenges that need to be addressed for ensuring users
trust in the system, and with multiple independent
cloud providers from the community, security be-
comes even more important in a community cloud.

For instance, the data and applications running on
different cloud systems should be protected from
unauthorised access.

• Self-Management
The highly distributed nature, typically wireless en-
vironment, and heterogeneity of community net-
works require that a community cloud platform be
self-managed on the cloud and node level in order
to continue providing services without disruption
when nodes go offline. Self-management should
also help in the coordination between various cloud
owners that become part of a federated community
cloud. The most relevant aspects for the desired
framework are self-configuration and self-healing.

• Utility
The bottom-up nature of community networks
drives its evolution and development. As a result,
the community cloud should provide applications
that are valuable for the specific user community.
Nevertheless, there exist applications necessary for
the majority of community networks, as we have
presented in Section 2.1, such as Internet connectiv-
ity, file sharing, video streaming, and VoIP services.
Successful applications will increase the usage,
strengthening the value of the community cloud,
thus motivating its maintenance and upgrade.

• Ease of Use
Most of the users of the community cloud will not
be proficient in cloud technologies; therefore set-
ting up nodes for deployment and managing cloud
software should be simple and straightforward. The
easier it is for users to join, participate, and manage
their resources in the community cloud, the more
this cloud model will be adopted.

• Incentives for Contribution
The community cloud builds upon the collective ef-
forts of the members of the community networks
and requires the contribution of the volunteers
in terms of their time, knowledge, and effort as
well as computing, storage, and network resources.
For community clouds to be sustainable, incentive
mechanisms are needed to encourage users to ac-
tively contribute towards the system.

• Support for Heterogeneity
As previously explained, community networks are
very heterogeneous in diverse levels. Thus, the hard-
ware and software used by members in a commu-
nity cloud can have varying characteristics, and the
cloud system should handle this seamlessly.



7

• Standard Application Programming Interfaces
(API)
The cloud system facilitates the ability of applica-
tion programmers to transparently design their ap-
plications for the underlying heterogeneous cloud
infrastructure. The API should provide the appear-
ance of a middleware that obviates the need to cus-
tomise the applications to each specific cloud ar-
chitecture. This is essential for community clouds
when these result from the combination of many in-
dependently managed clouds. Providing a standard
API for the community cloud ensures that applica-
tions written once for a particular community cloud
system can be easily deployed on new cloud archi-
tectures.

• QoS and SLA Guarantees
The community cloud system requires mechanisms
for ensuring the quality of service (QoS) and en-
forcing service level agreements (SLA).

Based on these requirements, in terms of an institu-
tional policy, we design a community cloud framework,
which leads to an implementation of the community
cloud system that will be responsible for joining and con-
suming cloud services almost automatically with little
user intervention.

3.2. Framework for Distributed Community Cloud Sys-
tem

We foresee realising the community cloud by deploy-
ing a community cloud platform tailored to the specific
infrastructure and context of community networks. A
standard cloud platform is usually a centralised platform
designed to perform resource management. There are
quite a few well known cloud platforms for managing
public and private clouds, like OpenStack [39] and Open-
Nebula [40] among others. In our effort nevertheless, we
focus on providing a framework that would allow users
to share resources and access collaboratively-built ser-
vices in a distributed manner. For instance, a community
cloud platform would require incentive mechanisms in-
spired by the social nature of community networks in-
tegrated into resource regulation components to encour-
age contribution from the members of the community
network [41].

3.2.1. Layers of Community Cloud System
We propose a framework that can serve as the core

of a community cloud system. Our community cloud
framework is a distributed bottom-up resource sharing
and collaborative services platform. This is achieved by
adopting a layered architecture, as shown in Figure 2.

Figure 2: Framework for community cloud management sys-
tem

1. The Hardware layer provides the physical infra-
structure needed to run the cloud services and appli-
cations. The hardware in the community networks
customarily consists of SNs, client nodes, routers
and the communication infrastructure, along with
any computation, storage and other resources at-
tached to the nodes.

2. The Core layer is responsible for managing the
hardware as virtualised resources. It consists of
components, such as a manager for the hosts and
the network as well as a controller, scheduler, mon-
itor, and data storage for virtual instances. Many
popular open-source software programs can be in-
tegrated to provide virtualisation, for instance LXC
(Linux Containers) [42], OpenVZ [43], and Docker
[44], etc.

3. The Middleware layer amalgamates the resources
from multiple local community clouds, providing
an integrated and consistent view of the cloud sys-
tem to the cloud services. This requires a network
coordination component to identify and manage dif-
ferent local clouds and a service discovery com-
ponent to keep track of the services provided by
the various clouds. Other support services can in-
clude cloud coordinator and services broker com-
ponents for assisting in combining resources from
multiple cloud providers, and social and economic



8

context enablers [45] that take advantage of the so-
cial and economic characteristics of the community
networks to encourage participation from commu-
nity network members and to ensure sustainability
of the community cloud model.

4. The Services layer integrates useful services and
applications providing utilities for the community
network members to encourage their participation.
Common services include storage, video streaming,
video on demand, voice over IP (VoIP), and net-
work applications.

5. The Front-end layer provides the interface to inter-
act with the infrastructure of the community cloud,
including command line interfaces (CLI), graphical
user interfaces (GUI), API, and any other tools for
assisting in the development of cloud services and
applications.

3.3. Cloudy: Community Cloud-in-a-Box

As we discussed earlier in Section 2, we believe that
the failure of services gaining traction in community net-
works was largely due to the difficulty of implementing
the services and for the end-users to consume these ser-
vices. To overcome these issues, we choose to imple-
ment the proposed framework as a GNU/Linux distribu-
tion, code named Cloudy, to provide a convenient mech-
anism for developing and consuming cloud services in
community networks, with the hope that Cloudy can
encourage the adoption and uptake of cloud services
among the users.

Cloudy [8] is a distribution based on a Debian
GNU/Linux aimed at end users to foster the transi-
tion and adoption of the community cloud environment.
Cloudy is the implemented prototype of our commu-
nity cloud framework described in Section 3.2. The cur-
rent prototype of Cloudy implements the modules/layers
shown in Figure 2. A Cloudy instance can be run di-
rectly on a bare metal machine or on a virtual machine.
Independent of the hardware that Cloudy runs on, con-
nectivity to other Cloudy instances is needed in order to
fully exploit the potential of Cloudy.

3.4. Cloudy Services

Cloudy comprises a number of services, designed to
help build cloud-based services in community networks.
Cloudy’s main components can be considered a layered
stack with services residing both inside the kernel and
higher up at the user-level. All of the software included
in the Cloudy platform is open-source. All service ac-
cesses are assisted and managed through the main panel

of the Cloudy GUI. The following three groups classify
Cloudy services.

3.4.1. Infrastructure Services
Virtualisation is the main enabling technology for

cloud computing. As such, providing community net-
work users the resources to deploy virtual machines with
a few clicks is a very convenient way to bring the cloud
closer to their premises. This allows the non-experienced
user to focus on the services and applications themselves
rather than on learning how to cope with the underlying
infrastructure.

OpenVZ [43] is an operating system-level virtualisa-
tion technology for Linux based on containers. OpenVZ
allows creating multiple secure, isolated operating sys-
tem instances called containers (commonly known as
VPSs) on a single physical machine enabling better
server utilisation and ensuring that applications do not
conflict with each other. Each container performs and ex-
ecutes exactly like a stand-alone server (which can have
root access, users, IP addressing, memory, files, etc.) and
can be started and stopped independently from the oth-
ers and from the host machine. OpenVZ is the preferred
solution for providing virtual machines in Cloudy with
low to mid-end hardware as only a negligible portion (1-
2%) of the CPU resources is spent on virtualisation. The
Cloudy distribution includes a script that downloads and
installs all the required OpenVZ packages in one click
and Cloudy instances can be run on the virtual machines
created using the OpenVZ Web Panel.

Other virtualisation methods used in Cloudy are LXC
and Docker. This approach adds special support for IaaS,
as the cloud nodes are able to create multiple virtual
machine instances for other purposes in addition to the
ones dedicated to Cloudy. The infrastructure services of
Cloudy enable resource sharing inside the community
network.

3.4.2. Service Discovery and Network Coordination Ser-
vices

Cloudy provides custom decentralised services for net-
work coordination and service discovery. Network coor-
dination ensures visibility between the nodes that partic-
ipate in the cloud. Service discovery is a crucial building
block in Cloudy for enabling distributed services to be or-
chestrated to provide platform and application services.
Service discovery is based on the network coordination
component.

For service discovery, Cloudy includes a customised
version of Avahi [11] to provide decentralised service
discovery at Layer 2, which is needed to discover other
services that will be used to provide higher-level services.



9

The multicast-based design does not allow the Avahi ser-
vice to reach beyond the local link, which is the case in
community networks, where services are spread over dif-
ferent nodes that belong to different broadcast domains.
While in this environment, it would not be possible for
Avahi packets to be directly exchanged from one node
to another; this problem is solved by the network coordi-
nation component.

For the network coordination component, we adopt
TincVPN [46], a virtual private network (VPN) daemon
that uses tunnelling and encryption to create a secure
private Layer 2 network between hosts of different do-
mains. This Layer 2 connectivity is needed between
nodes, since they may reside on different administra-
tive domains and even be located behind firewalls. The
TincVPN is automatically installed and configured on
every Cloudy node, ready to be activated. After its acti-
vation, a VPN daemon is started in order to reach other
Cloudy instances via the established Layer 2 network;
thus, Avahi can communicate transparently with other
nodes. To easily install and configure a system with
TincVPN, a tool called Getinconf [47] has been devel-
oped, which is integrated into Cloudy.

Cloudy also includes Serf [12], a lightweight tool to
announce and discover services in community networks.
Serf is a decentralised solution for cluster membership,
failure detection, and orchestration. It relies on an ef-
ficient and lightweight gossip protocol to communicate
with other nodes that periodically exchange messages be-
tween each other. This protocol is, in practice, a fast and
efficient method to share small pieces of information. An
additional by-product of having this service distributed
all over the community cloud is that it allows the eval-
uation of the quality of the point-to-point connections
between different Cloudy instances. This way, Cloudy
users can decide which service provider to choose based
on network metrics, such as round trip time (RTT), num-
ber of hops, or packet loss. The combination of Avahi,
TincVPN, Getinconf, and Serf in Cloudy facilitates the
coordination of the resources and the services in the com-
munity cloud.

3.4.3. User Services
Platform as a Service (PaaS). Providing attractive

platform services to community members, such as a
distributed file system, highly available key-value store,
file synchronisation, video streaming, video-on-demand,
VoIP, network address translation (NAT) traversal sup-
port, and many more, is of high importance.

One of the promising services for storage is Tahoe-
LAFS [48]. Tahoe-LAFS is a free, open, and secure
cloud storage system. Tahoe-LAFS allows community

users to share their storage with other members. A Tahoe-
LAFS cluster consists of a set of storage nodes, client
nodes, and a single coordinator node called the intro-
ducer. The storage nodes connect to the introducer and
announce their presence, and the client nodes connect to
the introducer to obtain the list of all connected storage
nodes [49]. The configuration of Tahoe-LAFS and the
process of deploying a whole storage grid are assisted
by the Avahi and Serf service discovery tools using the
web interface of Cloudy, where the user only needs to
introduce some basic information. The Tahoe-LAFS ser-
vice can also be used to provide higher-level file sharing
applications.

Etcd [50], a highly available key value store for shared
configuration and service discovery, and Syncthing [51],
an open-source file synchronisation client/server appli-
cation, are already included in the Cloudy distribution.

Software as a Service (SaaS). Cloudy allows the user
services to be present inside the community network and
to be easily deployed and managed via the Cloudy inter-
face. Users can deploy their preferred services and share
them with others. One of these multimedia services in-
cluded in Cloudy is PeerStreamer [52], an open source
live streaming platform. PeerStreamer includes a stream-
ing engine for the efficient distribution of media streams,
a source application for the creation of channels, and
player applications to visualise the streams. Streaming is
assisted by Cloudy by supporting the user in publishing
a video stream or connecting to a peer (assisted by Serf
or Avahi). Services that enable users to find and watch
video content on-demand at any time, such as Gvod [53],
a decentralised search service, such as Sweep [54], and a
distributed key-value store, such as CaracalDB [55] are
additional services that are part of the Cloudy.

4. Experiments

In this section, we explain our work on deploy-
ing and evaluating the community cloud. In order to
have a realistic community network setting, which in-
cludes geographically distributed nodes, we have used
the Community-Lab [56] testbed nodes for setting up
our community cloud infrastructure. Community-Lab is
a distributed infrastructure developed by the Community
Networks Testbed for the Future Internet (CONFINE)
project [1], where researchers can deploy experimen-
tal services on several nodes deployed within merged
community networks. The Community-Lab testbed is
currently deployed on the nodes from Guifi.net and the
AWMN community networks. This allows us to run our
experiments on nodes from both the community net-
works, which has the added advantage that we can test



10

how Cloudy performs in a combined community net-
work environment, as well as how Cloudy services per-
form over large geographical distances.

In the Community-Lab, Guifi.net and the AWMN
community networks are connected on the IP layer
though the Federated E-infrastructure Dedicated to Eu-
ropean Researchers (FEDERICA) [57], enabling the fed-
eration of both networks. Most Community-Lab nodes
are built with a Jetway device that is equipped with
an Intel Atom N2600 CPU, 4GB of RAM and 120GB
SSD. Nodes in the Community-Lab testbed run a custom
firmware (based on OpenWRT [58]) provided by CON-
FINE, which allows running several virtual machine in-
stances on one node simultaneously implemented as
LXC. We deploy the Cloudy distribution in these virtual
machines on the nodes in Community-Lab.

We exhibit results from our experiments related to
service discovery and distributed storage service. We
choose to experiment with service discovery, based on
Avahi-TincVPN and Serf, since it is a crucial building
block of Cloudy that enables distributed services to be or-
chestrated in order to provide platform and application
services. All the services inside Cloudy use these two
service discovery protocols to publish and discover ser-
vices. Our goal is not to compare Avahi-TincVPN and
Serf, as both of them are available in Cloudy and can
be used by users for different scenarios. One of them is
lightweight and fast (Serf), the other is not scalable and is
suitable and preferable for environments with a smaller
number of nodes (Avahi-TincVPN). In order to test dis-
tributed storage behaviour in Cloudy, we evaluate the
Tahoe-LAFS distributed storage. Tahoe-LAFS has fea-
tures that are very important for the community network
environment, such as like data encryption at the client
side, coded transmission and data dispersion among a
set of storage nodes. This approach of Tahoe-LAFS re-
sults in high availability (e.g., even if some of the storage
nodes are down or taken over by an attacker, the entire
file system continues to function correctly, while pre-
serving privacy and security).

4.1. Service Discovery Experiment
Cloud service discovery is essential for allowing cloud

usage and user participation. Service discovery involves
service providers publishing services and clients be-
ing able to search and locate service instances. Since
community cloud nodes are distributed all over the net-
work and administrated by their owners, a mechanism
is needed that allows the cloud users to discover ser-
vices offered by other community cloud nodes and an-
nounce their own services. We experiment with the
Avahi-TincVPN and Serf search service of Cloudy that

Table 3: Nodes, their location and RTT from the client node

Number of
nodes

Community
Network

Location RTT

13 Guifi.net (UPC) Barcelona 1–7 ms

7 Guifi.net Catalonia 10–20 ms

5 AWMN Athens 90–100 ms

offers service announcement and discovery to commu-
nity users.

4.1.1. Experiment setup
For our service discovery experiment we use 25 nodes

spread between two community networks (Table 3). We
use 20 nodes from the Guifi.net community network,
where 13 of the nodes are located in the city of Barcelona
(UPC) and seven of them are located in the Catalonia
region of Spain. From AWMN we use five nodes, which
are located in Athens, Greece.

Figure 3 shows the throughput of three categories of
nodes in our cluster. Network measurements have been
obtained connecting by SSH to each node and measur-
ing the average aggregated throughput from the client
nodes. For some scenarios we use more than one client
node. The clients are located in the Guifi.net community
network. Connections to the nodes have been done ev-
ery half hour (12 hours per day), during the entire month
of January 2015 where 720 samples are obtained for
each category of nodes. All obtained samples are plotted
in the graph. The average throughput obtained for the
Guifi.net nodes in UPC is 10.5 Mbps, Guifi.net nodes is
4.8 Mbps, and AWMN nodes is 1.9 Mbps.

The objective of the experiments is to understand the
responsiveness of the discovery mechanism. We con-
sider responsiveness to be the probability of successful
operation within deadlines, which, when applied to our
case, refers to successful service discovery within the
given time limits. Furthermore, we attempt to understand
how the clients perceived responsiveness changes when
they are located in different parts (zones) of the Guifi.net
community network.

We run the discovery requests from three client nodes
that are searching and locating service instances. All
other nodes acted as service providers responding to
discovery requests. All service providers are spread be-
tween two community networks. Discovery times are
measured on the clients directly before the request was
sent and directly after responses were received to mea-
sure user-perceived responsiveness. No nodes joined or
left the network; therefore, no configuration on the net-



11

Figure 3: Throughput of the nodes

work layers occurred during measurements which would
interfere with the discovery operation. We consider the
discovery successful when all instances have been dis-
covered. Discoveries were aborted and considered failed
if no responses arrived until an experiment ran with a
deadline of 25 seconds in the Community-Lab testbed.
This value was chosen because in Zeroconf [59], the
time between retries doubles after each retry to reduce
the network load. Therefore, for example, after 20 sec-
onds, we have reached five discovery requests, and the
next one would be sent after 41 seconds. Depending on
the scenarios that we consider, each service discovery
experiment is comprised of several runs (normally be-
tween 15 to 20) and is averaged over all the successful
runs. Each run consists of 20 repetitions.

In Avahi, when publishing and discovering, no entries
are cached per interface; thus, no caching is used. After
service discovery, a client should have enough informa-
tion to contact a service instance. Hence, discovery in
our case means resolving the IP address and port for
every service instance. During the experiments we use
different Cloudy services to publish and discover as sum-
marised in Table 4.

4.1.2. Our Scenarios
In order to judge the applicability of decentralised dis-

covery mechanisms in community networks, three sce-
narios are chosen that reflect common use cases of ser-
vice discovery.

Scenario 1: Single service discovery. Our first goal is
to measure the responsiveness of single service discov-
ery. In this scenario, the service network consists of one
client and one provider. The client is allowed to wait up
to ten seconds for a positive response. This is a com-

Table 4: Services used for the experiments

Service Description

PeerStreamer Live-video streaming service

Tahoe-LAFS Decentralised cloud storage service

Syncthing File synchronisation service

Serf Cluster membership and discovery service

OWP Container-based virtualisation service

Proxy3 Guifi.net proxy service

SNP Service Guifi.net network graph service

DNS Service Guifi.net DNS service

mon scenario for service discovery and can be consid-
ered the baseline. Only one answer needs to be received
and there is enough time to wait for it. In this case, the
client discovers a Tahoe-LAFS distributed storage ser-
vice and contacts the service. For this scenario, a service
provider from the Guifi.net community network is con-
sidered. Both Avahi-TincVPN and Serf are used for this
scenario.

Scenario 2: Timely service discovery of the same ser-
vice type. Service networks are populated with multi-
ple instances of the same service type. The clients need
to discover as many instances as possible and will then
choose one that optimally fits their requirements. The
faster discovery is better. In this scenario, we have one
service client and 25 service providers (from Guifi.net
and the AWMN community network). The discovery is
successful if all provided service instances of the same
type have been discovered. We measure how responsive-
ness increases with time. The faster we reach a high
value, the better. In this scenario, the providers publish
one or more PeerStreamer live-video streaming services.
The client waits 15 seconds to receive responses. In this
scenario only the service discovery based on Serf is used.
The total number of services published by providers is
40.

Scenario 3: Client perceived responsiveness. In this
scenario, we have three service clients and 20 ser-
vice providers that publish five popular services of
Cloudy such as PeerStreamer, Tahoe-LAFS, Syncthing,
DNSService, and OpenVZ. The total number of the five
Cloudy services published is 23 (seven PeerStreamer
services, three Tahoe-LAFS services, six Syncthing ser-
vices, three DNSServices and four OpenVZ services).
The clients are located in different parts of Guifi.net,
and they need to discover 23 instances of different ser-
vice types. Considering the dynamic environment of the
Guifi.net community network, the discovery is success-



12

Figure 4: Single service discovery time (Scenario 1)

ful if all clients discover the same number of services
(23) published by service providers. For this scenario,
the service discovery based on Serf is used. The clients
are allowed to wait 20 seconds.

4.1.3. Experimental Results
In this section, the results for the three scenarios de-

scribed above are presented.
Scenario 1: Single service discovery. The discovery

of a single service instance within ten seconds proved to
be reasonably responsive. This experiment is comprised
of 15 runs, where each run has 20 repetitions. In Figure
4, the standard deviation error bars per round are plotted
on the mean values obtained. The values are obtained
using Avahi-TincVPN and Serf. Due to the efficient and
lightweight gossip protocol that Serf uses, it decreases
the discovery time for 3x, reaching an average of two
seconds for a single service discovery compared to the
Avahi-TincVPN combination that reaches six seconds.

Scenario 2: Timely service discovery of the same ser-
vice type. Figure 5 illustrates that the discovery of ser-
vices increases rapidly with time. The standard devia-
tion error bars are plotted on the mean values. In the
first six seconds the client discovers 75% of the pub-
lished services, which is equal to 30 PeerStreamer video-
streaming services. The last 25% of the services are
discovered from seconds six to ten. These ten services
are from the AWMN community network. The eventu-
ally consistent gossip model of Serf with no centralised
servers allows the client to discover in a very fast and
extremely efficient way all the nodes for a PeerStreamer
service based on the tags their agent is running. How-
ever, the structure and diameter of the community net-
work graph (topology), fluctuations in the network due
to load, and faults can increase the discovery time [38].

Figure 6 shows a partial screenshot of the Cloudy web
interface, depicting the service discovery section. The
five PeerStreamer video-streaming services discovered

Figure 5: Responsiveness of service discovery (same service
type) (Scenario 2)

Figure 6: Partial screenshot of Cloudy service discovery sec-
tion (Scenario 2)

are shown. The user will choose one that optimally fits
the user’s requirements. The services are ranked accord-
ing to Cloudy’s QoS-aware service selection algorithm,
where colour represents service quality: darker colour
indicates poorer service quality.

Scenario 3: Client perceived responsiveness. Figure 7
demonstrates the number of services discovered by three
clients. The standard deviation error bars are plotted on
the mean values. As shown, the three clients perceive a
different number of services. Only Client 2 discovers all
services (23). Client 1 is missing one PeerStreamer ser-
vice and one DNSService. Client 3 is missing just one
PeerStreamer service. Missing services can be subject
to the high diversity of the quality of wireless links, the
availability of nodes, and the location of client nodes.
Heterogeneous low-resource hardware, slow wireless
links, and packet loss between nodes also can impact
the service performance [60].

4.2. Distributed Storage Experiment
Allowing users in a community network to share and

use the storage of other users in a reliable, secure, and



13

Figure 7: Number of Cloudy services discovered by different
clients (Scenario 3)

privacy-preserving way, is of a great importance. For this
reason, we use Tahoe-LAFS as a main storage service
in Cloudy. Understanding the performance of Tahoe-
LAFS from an experimental scenario that represents
real use case situations is highly important because it
informs the end users regarding the application perfor-
mance they will receive. Such performance results are
needed to pave the way for bringing applications such as
Tahoe-LAFS as well as other applications into commu-
nity networks. In our previous work [49], we conducted
a performance evaluation of Tahoe-LAFS in a federated
community network environment, where we considered
smaller workloads. The approach for the performance as-
sessment of Tahoe-LAFS that we consider here is to set
the experimental conditions as seen from the end user,
to experiment in production community networks, and
focus on metrics that are of interest for end users (con-
sidering bigger workloads). For the distributed storage
experiment, we consider only the Guifi.net community
network.

4.2.1. Experiment Setup
All tests were conducted using the IOzone cloud stor-

age benchmark [61]. IOzone is a filesystem benchmark
tool, which generates the cloud storage workload and
measures various file operations. The benchmark tests
file input/output (I/O) performance of many important
storage-benchmarking operations, such as read, write, re-
read, re-write, random read/write, etc. We run all 13 IO-
zone tests and vary the file size from 64KB to 128MB
and record length of 128 KB. An -a flag allows us to run
all 13 tests. We add the -b flag to write the test output in
binary format to a spreadsheet. We use a FUSE (Filesys-
tem in Userspace) kernel module in combination with
SSHFS (SSH Filesystem), an SFTP client that allows
filesystem access via FUSE, to mount a Tahoe-LAFS
directory to the local disk of the client. Tahoe’s SFTP

Figure 8: ECDF of the average throughput for two clients

frontend includes several workarounds and extensions
to make it function correctly with SSHFS. When mount-
ing with SSHFS, we disable the cache and use direct I/O
and synchronous writes and reads, using the parameters
-o cache=no, big_writes, direct_io, and sshfs_sync. We
observe that the -o big_writes option to SSHFS improves
write performance without affecting the read operations
[62]. Results presented in this paper with regard to per-
formance are measured in MB/s and are referred to as
operation speed. Tests with concurrent reading and writ-
ing were not conducted.

To better understand the impact that the network im-
poses on a community network environment, we estab-
lished a Tahoe-LAFS cluster of 30 nodes geographi-
cally distributed in the Guifi.net community network
and connected to the outdoor routers [60]. Connections
to the nodes from the clients have been done hourly
(ten samples obtained per day), during the whole month
of February 2015, where 300 samples are obtained for
each client. Figure 8 shows the empirical cumulative
distribution function (ECDF) of the average throughput
for the two clients. On the top of the figure, the mini-
mum/mean/maximum throughput values are shown.

Two sets of tests were conducted. One is when the
writes/reads are initiated from a client that has the best
connectivity in the network, such as best RTT to other
nodes and the best throughput, and this is our baseline
case; the other is when they are initiated from a client
node, which is the farthest node in the network (in terms
of number of hops, RTT, and throughput to other nodes),
and this is referred as a set 1 case in the graphs.



14

Figure 9: Performance of write operation in community net-
work.

4.2.2. Experimental Results
Figures 9 and 10 show the best and worst client

write/read performance. Figure 11 depicts the summary
of all tests performed with the IOzone benchmark. Me-
dian, first and third quartile values of read and write op-
erations are plotted in Figure 11. A few observations are
noted below.

• In terms of network connectivity, both clients in
the community network perform differently. This is
related to the fact that the two clients are not con-
nected in the same way to other nodes. The client in
the baseline is better connected and is much closer
in terms of RTT to the other nodes than the client
in set 1.

• In terms of write performance, the baseline client
performs better. Write performance for the baseline
is higher and more stable than the read performance.
As the file size increases, the write performance
of the baseline client slightly decreases (minimum
throughput achieved is 1.15 MB/s when writing a 4
MB file). The higher throughput is achieved (1.28
MB/s) when writing a small file (128 KB file), as
shown in Figure 9. It is interesting to note that when
writing smaller files, Tahoe-LAFS performs better,
and this can be attributed to the fact that the de-
fault stripe size of Tahoe-LAFS is well optimised
for writing small objects (the stripe size determines
the granularity at which data is being encrypted and
erasure coded). The same thing happens with the
set 1 client, where the maximum write throughput
achieved is 0.86 MB/s when writing a 128 KB file,

Figure 10: Performance of read operation in community net-
work.

and the minimum write throughput is 0.72 MB/s
when writing a 2 MB file. Furthermore, write per-
formance is affected by another factor; when writ-
ing new objects, Tahoe-LAFS generates a new pub-
lic/private key, which is a computationally expen-
sive operation.

• Read operations are accomplished by submitting
the request to all storage nodes simultaneously;
hence, the relevant peers are found with one round-
trip to every node. The second round-trip occurs
after choosing the peers from which to read the file.
The intention of the second round-trip is to select
which peers to read from, after the initial negotia-
tion phase, based on certain heuristics. When read-
ing from the storage nodes, the performance of both
clients drops significantly as the file size increases
as shown in Figure 10. This is because when read-
ing a file of 128 MB, a client must contact more
Tahoe-LAFS storage peers in order to complete the
shares of the file. In addition, reading the file sys-
tem meta-object (i.e., the mutable directory objects)
every time an object is accessed results in overhead,
thus influencing the results.

• Figure 11 shows the summary of all tests performed
with the IOzone benchmark. The benchmark tested
file I/O performance for the 13 operations as shown
in Figure 11. As shown, the baseline client per-
forms better than the set 1 client, reaching an av-
erage operation speed of 0.74 MB/s for all 13 tests
performed.



15

To summarise, Tahoe-LAFS is a relevant application
for community networks, since it offers privacy and secu-
rity, as it encrypts data already on the client side, and it
offers fault-tolerance regarding storage node failures due
to erasure coding (replication factors). A general impor-
tant result from the experiments is that Tahoe-LAFS per-
formed correctly in uploading and retrieving all the dif-
ferent file sizes under the challenging conditions of the
community network, which make Tahoe-LAFS a promis-
ing application to consider for preserving privacy, and
secure and fault-tolerant storage in the dynamic environ-
ment of community networks Furthermore, the process
of deploying a whole storage grid is assisted by Cloudy,
which allows a user easily to join or offer a storage grid.

5. Discussion

In this section we bring together the results achieved
by the presented community cloud and elaborate on our
current position and opportunities.

5.1. Fit of the Community Cloud to the Socio-technical
Conditions of Community Networks

The community cloud was developed considering the
specific requirements given in the context of community
networks. The features of the presented cloud system in
particular satisfy the requirements of openness, freedom
of usage, and technological neutrality. The community
cloud software given by the Cloudy distribution is com-
pletely open source and integrates primarily software
components that have a consolidated developer commu-
nity. The installation of Cloudy has been achieved on
different types of hardware, ranging from low-cost SBC
to high-end computers. It was demonstrated that Cloudy
could be installed on bare metal but also in virtual ma-
chines provided by any cloud management system. Tech-
nological neutrality is given by not relying on any spe-
cific component or library that might make the Cloudy
system susceptible to vendor lock-in.

Particular features that were achieved include user-
friendliness and self-management. Regarding user-
friendliness, many functionalities of Cloudy can be man-
aged through a web GUI, which enables less technically
skilled users to be able to install and operate a Cloudy-
based community cloud node. Providing tools suitable
for technically unskilled users facilitates the growth of
the community cloud ecosystem. To this end, the Cloudy
web-based management platform integrates all the instal-
lation and configuration steps for the cloud services en-
abled in the Cloudy distribution. A simple web interface
is available to the end user as an easy way to configure,

administer, and monitor the cloud services running in the
node.

Self-management capabilities were integrated in
terms of a cloud search service, which dynamically pub-
lishes and updates the presence of nodes and services
available in the cloud. Many services of Cloudy are
based on decentralised mechanisms, reducing the need
for centralised components, which may be difficult to
permanently maintain in the community network con-
text.

5.2. Sustainability of the Community Cloud Ecosystem
The sustainability of the community cloud system de-

pends on usage and user contribution. Several elements
of the presented community cloud support sustainability,
given that from the beginning the community cloud was
developed to fit to the community network context.

We foresee, however, once the users contribute to
the community cloud, that additional mechanisms might
need to be considered to better steer contributions and us-
age, for consolidating sustainability. Explicit incentives
might need to be created, to reward contributions. Exces-
sive free riding, if not controlled by an additional mech-
anism, will consume resources without contribution and
might make the community cloud unusable.

To further address sustainability, the community cloud
will need to be extended with measurement tools to
assess usage and contributions. This improved trans-
parency regarding the system availability to the com-
munity might increase confidence and encourage partic-
ipation. The integration of the community cloud system
to complement commercial offers should also be sought
as a method that leads to sustainability. Successful and
innovative applications which could arise from syner-
gies between both cloud models may ultimately make
community clouds a core component of future services.

5.3. Community Clouds beyond Community Networks
Community clouds, understood as clouds with spe-

cific features to satisfy the needs of particular communi-
ties, have already been developed for several commercial
sectors. Such community clouds bridge different aspects
of the gap between the public cloud, the general purpose
cloud, and the private cloud. These are needed where
general purpose cloud solutions provided by the public
cloud do not optimally fit to the specific needs of the
various user communities, since, for instance, certain se-
curity concerns or performance requirements on clouds
are only insufficiently addressed by such generic cloud
solutions. A community cloud offers features that are
tailored to the needs of a specific community. The op-
portunity within a community cloud lies in being able to



16

Figure 11: Summary of all storage benchmark operations for different tests in the Guifi.net community network.

offer optimised cloud solutions tailored to specific user
communities.

The presented community cloud from this perspec-
tive is a community cloud that addresses the needs of
citizens. While the presented cloud was deployed us-
ing Cloudy within a specific community network (i.e.,
Guifi.net), Cloudy could principally be deployed in other
community networks as well, considering that similar
socio-technical conditions are found in many commu-
nity networks. The presented community cloud system,
therefore, could be deployed in other community net-
works as well.

It is also interesting to discuss whether such a com-
munity cloud for citizens could function on top of other
communication networks (e.g., those provided by com-
mercial operators), which are not managed by a commu-
nity. Since many different communities exist, we expect
that, from a social perspective, such a community cloud
is possible. From a technical perspective, the presented
community cloud currently benefits from the availability
of network segments given to the users, a situation that
occurs in community networks, but is difficult to find
in a commercial IPv4 network, where users often do not
even have static IP addresses. However, such community
clouds operated over commercial networks seem possi-
ble, when (through IPv6) end users can have routable
network segments for offering services.

6. Conclusions and Outlook

Community networks would greatly benefit from the
additional value of applications and services deployed
inside the network through community clouds. However,
such clouds in community networks have not yet been
demonstrated in related studies as operational systems,
missing proof of feasibility, which would enable explor-
ing further innovations.

In this paper, a deployed community cloud system op-
erating in the Guifi.net community network was demon-
strated, supporting the feasibility of such a system. In
addition, performance measurements were conducted,
which demonstrate the usability of cloud-based services
for end users. The community cloud system was de-
veloped from a framework design, which integrates the
hardware and software contributions to build the cloud
system based on requirements of the specific socio-
technical context of community networks. This frame-
work was materialised by the implementation of the
Cloudy distribution. Using Cloudy and the hardware
infrastructure available in the community network, the
community cloud was deployed in Guifi.net, demonstrat-
ing the community cloud feasibility.

Cloudy is designed as a convenient way to package
together diverse cloud services for streamlined develop-
ment and delivery of value to the end users. Cloudy is
based on existing open-source software, and we analysed



17

how well these software behave in community networks.
We identified two services to focus on, considering their
importance for the system operation and the end users.
We experimented with service discovery based on Avahi
and Serf, and the results exhibited their proper function-
ing. These system-level services allowed users to dis-
cover services offered by other community cloud nodes
as well as announce their own services. We also eval-
uated distributed storage service Tahoe-LAFS for end
users. Tahoe-LAFS performed correctly in uploading
and retrieving all the files under the challenging con-
ditions of the community network and appeared to be a
promising application to consider for preserving privacy,
and for secure and fault-tolerant storage in community
clouds.

Performance measurement of services and applica-
tions provided by this cloud were conducted in order
to assess their usability by end users. Our results demon-
strated the operation of the community cloud in the com-
munity network and the usability of services.

Given the deployment and availability of an opera-
tional cloud system, our next step is to engage end users
from the community networks to participate in commu-
nity clouds. This participation can happen as users of
the services or as contributors to the cloud. In order to
catalyse user participation, the deployed cloud infrastruc-
ture continues to be operational, providing a basic set
of nodes with stable services, until a sufficiently large
number of community contributed cloud nodes has been
reached. Users can easily contribute to the cloud by in-
stalling the Cloudy distribution on the contributed hard-
ware, available for download and ready to be installed.
The services of Cloudy will integrate the new cloud re-
source into the community cloud.

After the uptake of this cloud by the community net-
work members, we expect that the potential of com-
munity clouds can be implemented, by complementing
existing public cloud services with collaborative user-
shaped applications for local communities and by fed-
erating with public cloud services, to enable innovative
applications that benefit from end user participation.

Acknowledgements

This work is supported by the European Community
Framework Programme 7 FIRE Initiative projects Com-
munity Networks Testbed for the Future Internet (CON-
FINE), FP7-288535 and CLOMMUNITY, FP7-317879.
Support is also provided by the Universitat Politècnica
de Catalunya BarcelonaTECH and the Spanish Govern-
ment under contract TIN2013-47245-C2-1-R.

References

[1] B. Braem, R. Baig Viñas, A. L. Kaplan, A. Neumann, I. Vilata i
Balaguer, B. Tatum, M. Matson, C. Blondia, C. Barz, H. Rogge,
F. Freitag, L. Navarro, J. Bonicioli, S. Papathanasiou, P. Escrich,
A case for research with and on community networks, ACM
SIGCOMM Computer Communication Review 43 (3) (2013)
68–73.

[2] Xarxa de Telecomunicacions Mancomunada, Oberta, Lliure i
Neutral, http://guifi.net/ (2014).

[3] Athens Wireless Metropolitan Network (AWMN) (2014).
URL http://www.awmn.net/

[4] FunkFeuer (2014).
URL http://funkfeuer.at/

[5] Ninux.org Wireless Network Community (2014).
URL http://ninux.org

[6] P. Mell, T. Grance, The NIST Definition of Cloud Computing,
NIST Special Publication 800 (145).

[7] A. Marinos, G. Briscoe, Community Cloud Computing, in: 1st In-
ternational Conference on Cloud Computing (CloudCom 2009),
Vol. 5931 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, Beijing, China, 2009, pp. 472–484. ,

[8] Cloudy: A community networking cloud in a box,
http://cloudy.community/ (2015).

[9] J. Jiménez, R. Baig, P. Escrich, A. M. Khan, F. Freitag,
L. Navarro, E. Pietrosemoli, M. Zennaro, A. H. Payberah,
V. Vlassov, Supporting cloud deployment in the Guifi.net com-
munity network, in: 5th Global Information Infrastructure and
Networking Symposium (GIIS’13), IEEE, Trento, Italy, 2013,
pp. 1–3.

[10] M. Selimi, F. Freitag, R. P. Centelles, A. Moll, L. Veiga,
Trobador: Service discovery for distributed community network
micro-clouds, in: 29th IEEE International Conference on Ad-
vanced Information Networking and Applications (AINA’15),
2015, pp. 642–649.

[11] Avahi Service Discovery Tool, http://avahi.org/ (2015).
[12] Serf, https://www.serfdom.io/ (2015).
[13] Tahoe-LAFS: The Least-Authority File Store, https://tahoe-

lafs.org/trac/tahoe-lafs, accessed: 2015-02-01.
[14] Guinux, https://guifi.net/en/node/29320, accessed: 2015-02-01.
[15] Guifi.net: Services of Catalunya (by zone),

https://guifi.net/en/node/2413/view/services.
[16] F. Elianos, G. Plakia, P. Frangoudis, G. Polyzos, Structure and

evolution of a large-scale wireless community network, in: IEEE
International Symposium on a World of Wireless, Mobile and
Multimedia Networks & Workshops, (WoWMoM’09), 2009, pp.
1–6.

[17] Proxmox: Server-Virtualization with KVM and Containers,
https://www.proxmox.com/, accessed: 2015-02-01.

[18] M. Selimi, F. Freitag, R. Pueyo Centelles, A. Moll, Distributed
storage and service discovery for heterogeneous community net-
work clouds, in: 7th IEEE/ACM International Conference on Util-
ity and Cloud Computing (UCC’14), 2014, pp. 204–212.

[19] Guifitv, http://project.Guifi.net/projects/Guifitv, accessed: 2015-
02-01.

[20] D. P. Anderson, BOINC : A System for Public-Resource Com-
puting and Storage, in: 5thIEEE/ACM International Workshop
on Grid Computing, Pittsburgh, USA, 2004, pp. 4–10.

[21] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, V. S.
Pande, Folding@home: Lessons From Eight Years of Volunteer
Distributed Computing, in: 8th IEEE International Workshop
on High Performance Computational Biology (HiCOMB’09),
within IPDPS, IEEE, Rome, Italy, 2009, pp. 1–8.

[22] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, M. Bowman, PlanetLab: An Overlay Testbed for Broad-

http://dl.acm.org/citation.cfm?doid=2500098.2500108
http://www.awmn.net/
http://www.awmn.net/
http://funkfeuer.at/
http://funkfeuer.at/
http://ninux.org
http://ninux.org
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://arxiv.org/abs/0907.2485 http://dx.doi.org/10.1007/978-3-642-10665-1_43 http://link.springer.com/chapter/10.1007/978-3-642-10665-1_43
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684361
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6684361
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1382809
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1382809
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5160922
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5160922
http://dl.acm.org/citation.cfm?id=956995 http://portal.acm.org/citation.cfm?doid=956993.956995


18

Coverage Services, ACM SIGCOMM Computer Communica-
tion Review 33 (3) (2003) 3–12.

[23] J. Cappos, I. Beschastnikh, A. Krishnamurthy, T. Anderson,
Seattle: a platform for educational cloud computing, in: 40th

ACM Technical Symposium on Computer Science Education
(SIGCSE’09), ACM, Chattanooga, USA, 2009, pp. 111–115.

[24] S. Distefano, A. Puliafito, Cloud@Home: Toward a Volunteer
Cloud, IT Professional 14 (1) (2012) 27–31.

[25] S. Yi, E. Jeannot, D. Kondo, D. Anderson, Towards real-time, vol-
unteer distributed computing, in: 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid’11),
2011, pp. 154–163.

[26] O. Babaoglu, M. Marzolla, M. Tamburini, Design and implemen-
tation of a p2p cloud system, in: Proceedings of the 27th Annual
ACM Symposium on Applied Computing, SAC ’12, ACM, New
York, NY, USA, 2012, pp. 412–417.

[27] K. Chard, K. Bubendorfer, S. Caton, O. F. Rana, Social Cloud
Computing: A Vision for Socially Motivated Resource Sharing,
IEEE Transactions on Services Computing 5 (4) (2012) 551–
563.

[28] M. Punceva, I. Rodero, M. Parashar, O. F. Rana, I. Petri, Incen-
tivising resource sharing in social clouds, Concurrency and Com-
putation: Practice and Experience.

[29] S. Caton, C. Haas, K. Chard, K. Bubendorfer, O. F. Rana, A
Social Compute Cloud: Allocating and Sharing Infrastructure
Resources via Social Networks, IEEE Transactions on Services
Computing 7 (3) (2014) 359–372.

[30] M. Gall, A. Schneider, N. Fallenbeck, An Architecture for Com-
munity Clouds Using Concepts of the Intercloud, in: 27th Inter-
national Conference on Advanced Information Networking and
Applications (AINA’13), IEEE, Barcelona, Spain, 2013, pp. 74–
81.

[31] R. Buyya, R. Ranjan, R. N. Calheiros, InterCloud: Utility-
Oriented Federation of Cloud Computing Environments for Scal-
ing of Application Services, Algorithms and Architectures for
Parallel Processing 6081 (2010) 20–31. ,

[32] C. Esposito, M. Ficco, F. Palmieri, A. Castiglione, Interconnect-
ing Federated Clouds by Using Publish-Subscribe Service, Clus-
ter Computing 16 (4) (2013) 887–903.

[33] H. Zhao, X. Liu, X. Li, Towards efficient and fair resource trading
in community-based cloud computing, Journal of Parallel and
Distributed Computing 74 (11) (2014) 3087–3097.

[34] M. Jang, K. Schwan, K. Bhardwaj, A. Gavrilovska, A. Avasthi,
Personal clouds: Sharing and integrating networked resources
to enhance end user experiences, in: 33rd Annual IEEE In-
ternational Conference on Computer Communications (INFO-
COM’14), IEEE, Toronto, Canada, 2014, pp. 2220–2228.

[35] A. Dittrich, D. Herrera, P. Coto, M. Malek, Responsiveness of
service discovery in wireless mesh networks, in: IEEE 20th Pa-
cific Rim International Symposium on Dependable Computing
(PRDC), 2014, pp. 234–243.

[36] H. Wirtz, T. Heer, M. Serror, K. Wehrle, Dht-based localized
service discovery in wireless mesh networks, in: MASS, 2012,
pp. 19–28.

[37] A. Dittrich, B. Lichtblau, R. Rezende, M. Malek, Modeling re-
sponsiveness of decentralized service discovery in wireless mesh
networks, in: K. Fischbach, U. Krieger (Eds.), Measurement,
Modelling, and Evaluation of Computing Systems and Depend-
ability and Fault Tolerance, Vol. 8376 of Lecture Notes in Com-
puter Science, Springer International Publishing, 2014, pp. 88–
102.

[38] D. Vega, L. Cerda-Alabern, L. Navarro, R. Meseguer, Topology
patterns of a community network: Guifi.net, in: 1st International
Workshop on Community Networks and Bottom-up-Broadband
(CNBuB 2012), within IEEE WiMob, IEEE, Barcelona, Spain,

2012, pp. 612–619.
[39] OpenStack: Open Source Cloud Computing Software (2014).

URL http://www.openstack.org/
[40] OpenNebula: Open Source Data Center Virtualization (2014).

URL http://opennebula.org/
[41] A. M. Khan, U. C. Buyuksahin, F. Freitag, Incentive-based Re-

source Assignment and Regulation for Collaborative Cloud Ser-
vices in Community Networks, Journal of Computer and System
Sciences (2014).

[42] LXC: Linux Containers, https://linuxcontainers.org/ (2015).
[43] OpenVZ Linux Containers, http://openvz.org/ (2015).
[44] Docker Containers, https://www.docker.com/ (2015).
[45] A. M. Khan, M. Selimi, F. Freitag, Towards Distributed Architec-

ture for Collaborative Cloud Services in Community Networks,
in: 6th International Conference on Intelligent Networking and
Collaborative Systems (INCoS’14), IEEE, Salerno, Italy, 2014.

[46] TincVPN, http://tinc-vpn.org/ (2015).
[47] Getinconf tool, https://github.com/Clommunity/getinconf.
[48] Z. Wilcox-O’Hearn, B. Warner, Tahoe: The least-authority

filesystem, in: Proceedings of the 4th ACM International Work-
shop on Storage Security and Survivability, StorageSS ’08, ACM,
New York, NY, USA, 2008, pp. 21–26.

[49] M. Selimi, F. Freitag, Tahoe-lafs distributed storage service in
community network clouds, in: 4th IEEE International Confer-
ence on Big Data and Cloud Computing (BDCloud’14), 2014,
pp. 17–24.

[50] Etcd key-value store, https://github.com/coreos/etcd (2015).
[51] Syncthing, http://syncthing.net/ (2015).
[52] PeerStreamer: P2P Media Streaming, http://peerstreamer.org/

(2015).
[53] G. Berthou, J. Dowling, P2p vod using the self-organizing gra-

dient overlay network, in: Proceedings of the 2nd International
Workshop on Self-organizing Architectures, SOAR ’10, ACM,
New York, NY, USA, 2010, pp. 29–34.

[54] Sweep, http://wiki.clommunity-project.eu/pilots:sweep (2015).
[55] CaracalDB, https://github.com/CaracalDB/CaracalDB (2015).
[56] Community-Lab: Community Networks Testbed by the CON-

FINE Project, http://community-lab.net/ (2014).
[57] FEDERICA: Federated E-infrastructure Dedicated to European

Researchers Innovating in Computing network Architectures,
http://www.fp7-federica.eu/ (2015).

[58] OpenWRT, https://openwrt.org/ (2015).
[59] Zero Configuration Networking (Zeroconf),

http://www.zeroconf.org/ (2015).
[60] L. Cerdà-Alabern, A. Neumann, P. Escrich, Experimental evalu-

ation of a wireless community mesh network, in: Proceedings of
the 16th ACM International Conference on Modeling, Analysis,
Simulation of Wireless and Mobile Systems, MSWiM ’13, ACM,
New York, NY, USA, 2013, pp. 23–30.

[61] IOzone: a filesystem benchmark tool, http://www.iozone.org/,
accessed: 2015-02-01.

[62] A. Rajgarhia, A. Gehani, Performance and extension of user
space file systems, in: Proceedings of the 2010 ACM Sympo-
sium on Applied Computing, SAC ’10, ACM, New York, NY,
USA, 2010, pp. 206–213.

http://dl.acm.org/citation.cfm?id=956995 http://portal.acm.org/citation.cfm?doid=956993.956995
http://dl.acm.org/citation.cfm?id=1508905 http://portal.acm.org/citation.cfm?doid=1508865.1508905
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6109218 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6109218
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6109218 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6109218
http://doi.acm.org/10.1145/2245276.2245357
http://doi.acm.org/10.1145/2245276.2245357
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5928319
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5928319
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6727497
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6727497
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6727497
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6531740
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6531740
http://arxiv.org/abs/1003.3920
http://arxiv.org/abs/1003.3920
http://arxiv.org/abs/1003.3920
http://www.sciencedirect.com/science/article/pii/S0743731514001270 http://linkinghub.elsevier.com/retrieve/pii/S0743731514001270
http://www.sciencedirect.com/science/article/pii/S0743731514001270 http://linkinghub.elsevier.com/retrieve/pii/S0743731514001270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6848165
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6848165
http://dx.doi.org/10.1007/978-3-319-05359-2_7
http://dx.doi.org/10.1007/978-3-319-05359-2_7
http://dx.doi.org/10.1007/978-3-319-05359-2_7
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6379139
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6379139
http://www.openstack.org/
http://www.openstack.org/
http://opennebula.org/
http://opennebula.org/
http://www.sciencedirect.com/science/article/pii/S0022000014001871
http://www.sciencedirect.com/science/article/pii/S0022000014001871
http://www.sciencedirect.com/science/article/pii/S0022000014001871
http://doi.acm.org/10.1145/1456469.1456474
http://doi.acm.org/10.1145/1456469.1456474
http://doi.acm.org/10.1145/1809036.1809044
http://doi.acm.org/10.1145/1809036.1809044
http://doi.acm.org/10.1145/2507924.2507960
http://doi.acm.org/10.1145/2507924.2507960
http://doi.acm.org/10.1145/1774088.1774130
http://doi.acm.org/10.1145/1774088.1774130

	1 Introduction
	2 Background
	2.1 Current State of Service Deployment in Guifi.net
	2.2 Related Work

	3 Community Cloud Framework and Services
	3.1 Requirements for a Community Cloud System
	3.2 Framework for Distributed Community Cloud System
	3.2.1 Layers of Community Cloud System

	3.3 Cloudy: Community Cloud-in-a-Box
	3.4 Cloudy Services
	3.4.1 Infrastructure Services
	3.4.2 Service Discovery and Network Coordination Services
	3.4.3 User Services


	4 Experiments
	4.1 Service Discovery Experiment
	4.1.1 Experiment setup
	4.1.2 Our Scenarios
	4.1.3 Experimental Results

	4.2 Distributed Storage Experiment
	4.2.1 Experiment Setup
	4.2.2 Experimental Results


	5 Discussion
	5.1 Fit of the Community Cloud to the Socio-technical Conditions of Community Networks
	5.2 Sustainability of the Community Cloud Ecosystem
	5.3 Community Clouds beyond Community Networks

	6 Conclusions and Outlook

