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Rectangular sampling lattices have been extensively applied to image coding. Sampling is a fun-
damental operation In image coding systems as a proper selection of the sampling lattice minimizes
the physical support of the information affecting the overall performance of the system and increasing
the compression ratio. Non-rectangular sampling lattices have been occasionaly used in specific image
systems, but their application to coding schemes has not been reported in the literature.

In this paper we present a characterization of multidimensional systems whose input and output are
defined on arbitrary sampling structures. We also introduce the system response that eases the analysis
of the sampling structure conversions. In the second part of the paper this theory is applied to Laplacian
Pyramid Coding. The result is the modelization of the algorithms used in Pyramid Coding. In the third
part of the paper this model is used to describe an efficient adaptive Pyramid image structure defined

on arbitrary non-rectangular sampling lattices.

1 INTRODUCTION

Image coding is usually a two or a three dimensional
process that uses arrays of numbers which have been
obtained by rectangular sampling of images. Although
this sampling strategy is the most common used in this
type of process, it is neither the only one that can be
uged nor the most efficient and compact.

For every coding scheme, one or several arbitrary sam-
pling lattices may exist that optimize the coding pro-
cess. The basic idea is to find an adequate sampling
lattice that minimizes the bit rate increasing the coding
performance. The optimum sampling lattice (or struc-
ture) minimizes the physical information support of the
coding process. It becomes necessary, to character-
ize multidimensional signals and systems with proper
tools.

In this paper we introduce the system function and the
transmission function which characterize, in the spatial
and frequency domain, multidimensional signals and
linear systems defined on arbitrary sampling lattices.
The use of the system function in one dimension has
been presented by Crochiere and Rabiner in [1], with
the analysis of unidimensional systems with associated
signals defined at different sampling rates being the
main application. Our approach here, is to extend
these previous works to multidimensional periodically
varying and invarying linear systems by means of the
system function using a compact and powerful nota-

tion. This representation will allow us to describe prop-
erly all the linear periodically varying processes used
in image coding such as upsampling and downsampling
conversion, modulation, etc.

Multichannel image coding, such as multidimensional
sub-band coding, and other schemes based on different
kinds of filter banks can be analyzed and generalized
analytically to non-rectangular sampling lattices [2,3].
In the second part of this paper, the transmission func-
tion will be used to obtain the frequency domain rep-
resentation of the Laplacian Pyramid coding[7]. This
analysis will allow a generalization of the Pyramid cod-
ing using arbitrary sampling lattices. To that end, ef-
ficient and fast algorithms based on the Hierarchical
Discrete Correlation (H.D.C.) [4] defined on arbitrary
sampling lattices, will be introduced to build the non-
rectangular Laplacian Pyramid.

In the third part of this paper, an adaptive Pyramid
image coding scheme is introduced. In the frequency
domain, an algorithm assigns the optimal sampling ge-
ometry (sampling lattice) to each image depending on
the information content. The spectrum of the image
is matched to the unit cell of the reciprocal sampling
lattice thus resulting in each image having its proper
sampling structure.

Excellent performance is shown in both the signal to
noise ratio and visual quality for a bit rate of 0.4
bits/pixel.

* Thig work has been partially supported by the CAICYT grant 2196/84 of the Spanish Government.
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2 MULTIDIMENSIONAL LINEAR SYSTEMS

In this section we characterise in terms of the system
response and the transmission funetion, a multidimen-
sional linear digital system for which its input and out-
put are defined on arbitrary sampling structures. This
will be particularly useful, from a practical point of
view, to develop and characterize linear periodically
varying and invarying systems used in image coding.
Interpolation and decimation are also introduced for
these kind of systems. Fig. 1 shows a multidimen-
sional linear system.

Let [ be a linear system with input z(#) and output
y() defined on sampling structures ¥,, and ¥, of di-
mensions Ny and N, respectively.

¥, is a sampling structure defined as a discrete set of
points in R™ such that ¥, is the union of selected cosets
of a sublattice {1 in a lattice ¢ (5]

P

¥ =J(Z+9) (1)

i=1

where Z; - Z; ¢ Qif i # j and Z; € o.
We define the system response or the Green’s function
K(m,7) as the response of the system at the output
71 to a unit sample applied in 7, where # € ¥, and
v € ¥,. Then the response of the system relates the
output with the input through a superposition sum as
follows:

Multidimensional
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Figure 1: Multidimensional linear system
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If w and @ are the frequency domain associated to the
reciprocal sampling structures ¥j and ¥ respectively,
the frequency domain relationship between X(w) and

Y(w) is:

Were K(w',w) is the tranemission function defined as

K@) =l deto, | = 32 K(m,me= ™5™ (4)
meRy red

The relationship between the frequency and the spatial
domain on sampling structures through Fourier trans-
forms has been developed in [6].
In the particular case that the sampling structures
become sampling lattices and if the system is space-
invariant, the response of the system reduces to the
conventional definition of the impulse response h{m)
and frecuency response H(w). H(w) defines then, the
one to one mapping between X(w) and Y {(w') where
w=w and 7 = 7. With the aid of signal flow graphs,
transmission function and response system, the con-
cepts of duality and transposition can be generalizated
to multidimensional linear systems or their associated
networks.
It can be easily shown that in this case the transpo-
sition theorem states that two transpose networks are
dual networks. In some kind of image coding applica-
tions it is particularly useful to define the upsampling
or interpolation process as a linear operator in the fol-
lowing way

E:L(0)— T, (5)
where
_[X(I™'m+7Z;) #(L'm+Z)ev,
B{X(m)} = {0( B otl(xerwzze ) (6)

In this case the system response is
Kmm)=6n-L'm+7Z) (7)

where the lattices 1;, )z, ¢, and ¢, are characterized
by the matrices T}, J;, T; and J; related to the rational
matrices N, D, L as it is shown in Figure 2.

n+Z; et 2

Figure 2: Relationships between the sampling struc-
tures ¥, and ¥, in the upsampling process.

In the same manner we define the downsampling
or decimation process as a linear operator

®: E(‘IH) -V, (8)



where R{X(m)} = X(n) if m € ¥;, being the system
response

K(m,n) =6n— Mm-Z;) (9)
If the sampling structures ¥, and ¥, reduce to sam-
pling lattices ¥; = 0; and ¥, = 0, then in the upsam-
pling process

K(m,n) = 6(m— L 'm) (10)
and in the downsampling process

K(m,n) = §(n— Mm) (11)
3 NON RECTANGULAR PYRAMID CODING

The Laplacian Pyramid Coding is an efficient method
that uses the Laplacian Pyramid structure to pro-
duce an approximate frequency decomposition based
on algorithms defined on rectangular sampling lattices.
This method is not adaptive and the pyramidal struc-
tures are always built from data sampled on rectangu-
lar lattices.

The pyramidal structures can be analized in the fre-
quency domain applying the transmission function on
the H.D.C. fast algorithms (8] which are used to build
the Gaussian and the Laplacian Pyramids that can be
modeled as bidimensional upsampling and downsam-
pling processes. Thus, each level of the Laplacian Pyra-
mid can be modeled az a modulation process as it is
ghown in Fig. 3, with M = L.
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Figure 3: Laplacian Pyramid modeled as a modulation
process.

{I;} are a set, 0 < 1 < N of N low-pass ver-
gions of the original image defined on sampling lattices
{M'}{E;} are a set of band-pass images which build
the Laplacian Pyramid, w(s,j) is the generating nu-
cleus and

02

Fig. 4. shows an example of the first level I, and the
second level I, of the Gaussian structure with

W= ( 2 “22) (13)

M=(2 0) (12)

87

The coding efficiency can be improved if we chocse an
adequate sampling structure with associated sampling
matrix M thus compacting the {E;} set and minimiz-
ing the bit rate. Thus for each original image an op-
timum geometry M exists that minimizes the physical
support of the information.

Figure 4: Spectrum of the first and second levels of the
Gaussian structure.

4 APPLICATIONS AND RESULTS

As it has been stated above the theory developed here
may be applied fo efficient coding images. As a partic-
ular case we have applied it to the Laplacian Pyramid.
Finding the optimum sampling structure of the image
to be encoded, the bit rate will be improved. To that
end, an adaptive algorithm in the frequency domain
has been implemented. The algorithm is as follows.
Details can be found in [4].

1. A binarized image of the spectrum magnitude is
constructed, where one level corresponds to 98%
of the signal energy.

2. A set of binary images { B;} representing the
reciprocal sampling lattice shape for each
geometry M;, is buils.

3. The spectrum of the image is compared against a
reference set { B;}, and optimum sampling struc-
ture is then selecied.

To check the feasibility of the proposed algo-
rithms, they have been tested on the very well known
images LENA and MIT. Fig. 5 shows the original im-
ages and Fig. 6 the same images coded with their opti-
mum sampling geometry as obtained with the adap-
tive algorithm. Bit rate is 0.38 bits/pixel and 0.563
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bits/pixel respectively. Signal to noise ratics are 22
db and 20 db.

Figure 5: Original images Lena and MIT.

Figure 6: a)Lena at 0.38 bits/pixel. b)Mit at 0.53
bits/pixel.

8 CONCLUSIONS

Multidimensional linear systems whose inputs and ous-
puts are defined on arbitrary sampling structures have
been characterized. This analysis is based on the the-
ory of numbers and linear systems and provides a use-
ful and compact notation . It has been also shown
that multichannel image processes can be modeled us-
ing this methodology. Image coding methods may be
then generalized using arbitrary geometries. Examples
of Pyramid coding with optimum geometries have been
presented.
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