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Abstract 18 

In the present work, ground tire rubber (GTR) was mechano-chemically reclaimed at 19 

ambient temperature using two-roll mills. Road bitumen and styrene-butadiene-styrene 20 

(SBS)-modified bitumen at variable content (in range: 2.5-20 phr) were applied as reactive 21 

plasticizers to enhance reclaiming of GTR. For better understanding the plasticizing effect of 22 

bitumen on the quality of obtained reclaimed rubber, mechano-chemically reclaimed GTR has 23 

been compared with GTR after thermo-mechanical reclaiming via low temperature extrusion 24 

(120°C), which allows generation of high shear forces on GTR. Reclaiming process was 25 

evaluated by oscillating disc rheometer measurements, followed by mechanical, physical, 26 

thermal, and morphological properties analyses performed on vulcanized reclaimed rubber. 27 

The obtained results showed that application of bitumen during mechano-chemical reclaiming 28 

of GTR improves processing and prevents oxidation of reclaimed GTR through enhancement 29 

of physical and chemical interactions between GTR and bitumen. On the other hand, high 30 

shear forces acting on GTR during thermo-mechanical reclaiming caused effective scission of 31 

cross-linking bonds, while at the same time an adverse oxidative degradation of GTR occurs. 32 

Noticeably, the type of bitumen strongly affected the nature of the interfacial interactions 33 

between GTR and bitumen. Plasticization/partial reclaiming of GTR (road bitumen, SBS-34 
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modified bitumen) and encapsulation of GTR (SBS modified bitumen) were confirmed by 1 

mechanical properties, FTIR, TGA and SEM measurements. 2 

 3 
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1. Introduction 7 

Dynamic development of the automotive industry is responsible for the increase of 8 

waste rubber, especially used tires, which are a serious threat to the natural environment. 9 

Legal regulations as well as economic and ecological factors contribute to heightened interest 10 

in the technologies based on recycling of the used tires [1]. At present, grinding is one of the 11 

most commonly used methods of waste tires recycling [2]. During this operation, used tires 12 

are mechanically disintegrated until the required particle size is reached. Ground tire rubber 13 

(GTR) without additives can be processed through reactive sintering under high pressure and 14 

at high temperature [3]. However, the cross-linked structure of GTR limits the application of 15 

this method to production of low-cost products with simple shapes and low quality 16 

requirements. Therefore, studies conducted in this field are mainly focused on application of 17 

GTR as fillers or modifiers in polymer compositions [4, 5], bitumen [6] and concrete [7].  18 

Moreover, GTR has been applied as a component in pyrolysis [8] and in the 19 

reclaiming/devulcanization process [9].  20 

During the reclaiming process, three-dimensional network of a cross-linked rubber is 21 

destroyed by means of thermal, mechanical or chemical energy. The resulting product is 22 

commonly called reclaimed rubber. In contrast to GTR, reclaimed rubber can be easily 23 

processed, shaped and vulcanized. Reclaimed rubber is used as a cheap substitute of fresh 24 

rubber during manufacture of new rubber compounds. Reclaiming/devulcanization is usually 25 

performed at a high temperature (180-300°C), high shear force and with the usage of 26 

chemical additives (e.g. disulfide, peroxides, plasticizers etc.). These specific conditions are 27 

necessary to scission of cross-linking bonds presented in rubber, leading to easier processing 28 

of GTR and at the same time higher quality of the obtained reclaimed rubber [10, 11].  29 

Recently, Saiwari et al. [12] examined the effect of the most crucial thermo-30 

mechanical parameters on the efficiency of reclaiming of different unfilled elastomers - 31 

commonly used in tire industry (styrene-butadiene rubber, butadiene rubber, natural rubber, 32 

chlorinated butyl rubber). They indicated that temperature is the main parameter affecting the 33 

reclaiming efficiency and that GTR reclaiming should be performed at a reasonably low 34 
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temperature. Accordingly, it was confirmed that low temperature reclaiming of GTR allows 1 

for selective scission of cross-linked bonds instead of the main chain scission, thereby 2 

enhances the mechanical properties of the obtained reclaimed rubber. Further advantages of 3 

low temperature reclaiming of GTR are: intensification of shear forces acting on GTR, 4 

limitation of secondary cross-linking, reduction of energetic costs and reduction of the 5 

amount of gases generated during reclamation. Similar observations were also described 6 

elsewhere [13-15]. On the other hand, low temperature reclaiming has a negative influence 7 

toward processing of GTR [16].  8 

Application of plasticizers, as low molecular weight compounds, causes increase of 9 

flexibility, workability or distensibility of the processed material, through which enhances 10 

GTR processability during low temperature reclaiming. Xu et al. [17] used treated distillate 11 

aromatic extract (TDAE), naphthenic oil, wood tar, shea butter and recycled cooking oil as 12 

plasticizers during thermo-mechanical reclaiming of GTR. They also studied the effect of 13 

type and content of plasticizer on the efficiency of GTR reclaiming. The best mechanical 14 

properties were received for GTR reclaimed with wood tar, which was related to the low 15 

degree of reclaimed rubber (the highest cross-link density).  16 

In a previous work [18] we applied heavy oils from pyrolysis of tires as plasticizers 17 

during low temperature reclaiming of GTR. Obtained results indicate that plasticization of 18 

GTR with heavy oils allows selective scission of cross-linked bonds, which has beneficial 19 

influence on reclaiming efficiency of GTR. Alternative solutions are bitumens, which could 20 

be applied as a low-cost and effective plasticizers for reclaiming of GTR. Swelling and partial 21 

reclaiming/devulcanization of GTR particles with bitumen enable exchange of components 22 

between GTR and bitumen phase, which facilitates release of the rubber degradation products 23 

to bitumen phase and diffusion of some bitumen compounds into the GTR phase [19, 20]. 24 

Grigoryeva et al. [21] and Zhang et al. [22, 23] proposed application of GTR/bitumen blends 25 

in thermoplastic elastomers. GTR/bitumen blends were prepared at elevated temperatures 26 

using two-roll mills or extruder. Recently, Singh et al. [24] applied thermo-mechanically 27 

reclaimed GTR in modification of bitumen. Authors proved that reclaimed GTR has the 28 

potential to chemically interact with bitumen, possibly as a result of co-vulcanization of 29 

reclaimed rubber and asphaltene phase presented in bitumen. Furthermore, it should be 30 

mentioned that sulfur and vulcanization accelerators from GTR as well as sulfur compounds 31 

present in bitumen may also affect curing and mechanical properties of reclaimed rubber and 32 

rubber compounds. However, to the best of our knowledge, this phenomenon is poorly 33 

described in the literature. 34 
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  In the present work, reclaiming of GTR was conducted at ambient temperature using 1 

a two-roll mills, which allowed for generation of suitable shear forces on GTR and reduction 2 

of energy cost during the process. In the light of above mentioned studies, we aimed to 3 

examine the effects of the bitumen type and content on curing characteristics, physical and 4 

mechanical properties of obtained reclaimed rubber. Two types of commonly used bitumens 5 

(bitumen 160/220 and styrene-butadiene-styrene (SBS)-modified Modbit 25/55-60) at 6 

variable content (ranging from 2.5 phr to 20 phr based on 100 parts of GTR) were applied as 7 

reactive plasticizers during reclaiming of GTR. Curing characteristics, chemical structure 8 

(FTIR analysis), static mechanical properties (tensile strength, elongation at break, hardness), 9 

physical properties (density, cross-link density, sol fraction), thermal properties (TGA-DSC-10 

FTIR analysis) and morphology (SEM) of vulcanized reclaimed GTR were determined for 11 

comprehensive structure-properties relationships assessment. The presented work is a 12 

continuation of the authors’ research about recycling of the used car tires [25-27]. 13 

 14 

2. Experimental  15 

2.1. Materials 16 

Ground tire rubber (GTR) with particles size below 0.8 mm was received from Orzeł 17 

S.A. (Poland). GTR was obtained during ambient grinding of the used tires (mix of passenger 18 

car tires and truck tires). Road bitumen 160/220 and polymer modified bitumen Modbit 19 

25/55-60 were received from Lotos Asfalt Sp. z o.o. (Poland). Characteristics of the used 20 

bitumen is presented in Table 1.  21 

Table 1. Characteristics of bitumens 22 
Item Bitumen 160/220 Modbit 25/55-60 Standard 

Penetration at 25°C (1/10 mm) 170-210 25-55 PN-EN 1426 
Softening point (°C) 35-43 ≥60 PN-EN 1427 

Frass breaking point (°C) ≥-15 ≤-10 PN-EN 12593 
Flash point (°C) 220 ≥ 235 PN-EN 13398 

  23 
2.2. Reclaiming of GTR 24 

Mechano-chemical reclaiming of GTR was conducted at ambient temperature using a 25 

two-roll mills from Buzuluk (Czech Republic). GTR was masticated in small gap (high shear 26 

forces) for 30 minutes. In order to improve the GTR processing during mechano-chemical 27 

reclaiming, different amounts (2.5, 5, 10 and 20 phr) of bitumen were applied as reactive 28 

plasticizer. Selected bitumen`s were characterized by different values of different penetration 29 

and softening point (see Table 1), which is related to their viscosity. Modbit 25/55-60 is a 30 

bitumen modified with SBS and has higher viscosity than the conventional road bitumen 31 
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160/220. For better understanding the influence of reclaiming conditions on the quality of 1 

obtained reclaimed rubber, the properties of GTR reclaimed via two-roll milling was 2 

compared with GTR after thermo-mechanical treatment via extrusion. Thermo-mechanical 3 

reclaiming of GTR was conducted in a co-rotating twin screw extruder EHP 2x20 from 4 

Zamak Mercator (Poland). The extruder had eleven heating/cooling zones with a screw 5 

diameter of 20 mm and L/d ratio of 40. Barrel temperature during reclaiming was 120°C. The 6 

screw rotation speed was set constant at 600 rpm. Low temperature extrusion conditions 7 

allows generation of high shear forces on GTR. 8 

 9 
2.3. Curing of reclaimed GTR 10 

Obtained reclaimed GTR (rGTR) was mixed with sulfur curing system and processed 11 

using two-roll mills from Buzuluk (Czech Republic). Composition of tested compounds is 12 

presented in Table 2. Tested compounds were formed in sheets with 2 mm thickness and then 13 

cured in electric heated press at 150°C under the pressure of 4.9 MPa for the optimum 14 

vulcanization time determined according to ISO 3417 standard.  15 

 16 
 17 

2.3. Measurements 18 

Vulcanization process was investigated according to ISO 3417 at 150°C, using 19 

Monsanto R100S rheometer with oscillating rotor (USA). Oscillation angle was 1° and torque 20 

range 0-100 dNm. Cure rate index (CRI) values were calculated in accordance with the 21 

formula [28] (1): 22 

290 tt
100CRI


  (1) 23 

where: t90 – optimum vulcanization time, min; t2 – scorch time, min. 24 
  25 

To investigate the aging resistance of vulcanizates at elevated temperatures, R300 26 

parameter was determined [29]. R300 is the percentage of reversion degree after a period of 27 

300 s calculated from the time at which torque has the maximum value (MH). R300 was 28 

calculated in accordance with the formula (2):  29 

%100300  
M

MMR
max.

300smax. 


  (2) 30 

where: Mmax.  – maximum torque; M300s – torque 300 s after maximum torque. 31 

Chemical structure of the vulcanizate samples was determined using Fourier transform 32 

infrared spectroscopy (FTIR) analysis performed by means of a Nicolet iS10 spectrometer 33 
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from Thermo Scientific (USA). The device had an ATR attachment with a diamond crystal. 1 

Measurements were performed with 1 cm-1 resolution in the range 650-4000 cm-1. 2 

 3 
Table 2. Composition, curing characteristics, mechanical and physical properties of tested 4 
compounds  5 

Component* Sample name 

rGTR via milling  100 100 100 100 100 100 100 100 100 - 
rGTR via extrusion at 120°C          100 
Bitumen 160/220  2.5 5 10 20      
Modbit 25/55-60      2.5 5 10 20  
Curing characteristics at 150°C 
Minimal torque (dNm) 35.1 32.3 31.7 28.3 21.4 31.8 30.7 30.5 22.8 6.6 
Maximal torque (dNm) 52.5 47.4 46.8 42.3 32.4 50.1 49.4 44.4 34.6 28.7 
ΔM (dNm) 17.4 15.1 15.1 14.0 11.0 18.3 18.6 13.9 11.8 22.1 
Scorch time (t2, min) 3.0 3.1 3.1 3.2 3.3 2.8 2.7 2.8 3.4 3.1 
Optimum cure time (t90, min) 7.3 6.7 6.7 6.9 6.8 7.3 7.2 7.1 7.4 9.8 
Cure rate index (CRI, min-1) 23.0 27.9 27.6 27.0 28.2 22.3 22.2 23.4 24.8 15.0 
Thermal aging resistance (R300,%) 0.0 0.4 0.5 0.6 0.8 0.6 0.7 0.9 0.9 1.1 
Mechanical properties 

Tensile strength (MPa) 5.5 
±0.2 

4.6 
±0.4 

4.5 
±0.3 

4.5 
±0.1 

3.3 
±0.2 

5.0 
±0.3 

5.1 
±0.1 

4.5 
±0.1 

3.7 
±0.1 

5.3 
±0.3 

Elongation at break (%) 178 
±7 

162 
±13 

190 
±13 

184 
±8 

194 
±9 

164 
±11 

154 
±15 

177 
±7 

194 
±7 

192 
±13 

Hardness (°Sh A) 70 69 68 68 61 67 66 65 64 57 
Physical properties 
Density at 25 °C (g/cm3) 1.20 1.19 1.18 1.18 1.16 1.19 1.19 1.18 1.16 1.20 
Cross-link density (mol/cm3 × 10-4) 2.53 2.42 2.33 2.35 1.91 2.39 2.39 2.13 1.72 1.89 
Sol fraction (%) 6.1 7.6 10.6 13.0 19.1 7.8 9.0 11.8 17.8 9.3 
Corrected sol fraction (%)** - 7.4 9.6 12.4 15.9 7.6 8.6 10.8 14.8 - 
Theoretical sol fraction (%)*** - 8.6 10.9 15.2 22.8 8.6 10.9 15.2 22.8 - 

*For all samples the same curing system samples was used. The curing system composition (phr): stearic acid 6 
1.0; zinc oxide 2.5; TBBS (N-tert-butyl-2-benzothiazole sulfenamide) 0.35; sulfur 1.5 7 
**Presented calculation assumes that the whole bitumen in GTR/bitumen composition was dissolved in toluene  8 
***Presented calculation based on the additivity principle and lack of physical/chemical interactions between 9 
milled rGTR and bitumen 10 

 11 

The tensile strength and elongation at break were estimated in accordance with ISO 12 

37. Tensile tests was performed on the Zwick Z020 machine (Germany) at a constant speed of 13 

500 mm/min. Shore hardness type A was estimated using Zwick 3130 durometer (Germany) 14 

in accordance with ISO 7619-1.  15 

The density of the samples was measured based on the Archimedes method, as 16 

described in ISO 2781. Accordingly, all measurements were carried out at room temperature 17 

in methanol medium.  18 
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Sol fraction was determined as mass difference of vulcanizate samples before swelling 1 

(W1) and after extraction (W2), according to equation (3):  2 

% 
W

WWfraction Sol 100
1

21 


  (3) 3 

Cross-link density of the vulcanizate was determined by equilibrium swelling in toluene  4 

(room temperature, 72 h), according to the Flory-Rehner equation [30] (4): 5 

)]2/([
])1[ln(

3/1
1

2

rr

rrr
e VVV

VVVv





  (4) 6 

where: νe – cross-link density, mol/cm3; Vr – gel volume in the swollen sample; V1 – solvent 7 

molar volume (toluene = 106.2, cm3/mol [31]); χ – polymer-solvent interaction parameter (in 8 

the calculations, it was assumed to be 0.391 [32]). 9 

The Flory-Rehner equation can be applied for non-filled compounds, while studied rGTR was 10 

filled with ~34 wt. % of carbon black, which is an active filler commonly applied in tire 11 

industry. Therefore, the Kraus correction for filled compounds [33] was applied to calculate 12 

the actual remaining cross-link density. In its simplified form, the cross-link density with 13 

Kraus correction is calculated according equations [34] (5) and (6): 14 




Kcorrectionafter 1
evv  (5) 15 

dryf

rf

mρ
mρ




 0
(6) 16 

where: νe – the measured chemical cross-link density, mol/cm3; νafter correction – the actual 17 

chemical cross-link density, mol/cm3; K – constant characteristic of the filler independent of 18 

the solvent; ϕf  – the volume fraction of filler in the sample which is calculated; ρr – the 19 

density of the studied compound, g/cm3; m0 – the weight of sample before extraction, g; ρr – 20 

the density of filler, g/cm3; mdry – the weight of sample after extraction, g. 21 

During calculations, the density of carbon black was chosen equal to 1.85 g/cm3 and the K 22 

constant was chosen to be 1.17 [35]. 23 

 24 
The thermal analysis of vulcanizate samples was performed using the simultaneous 25 

TGA/DSC model Q600 from TA Instruments (USA). Samples of vulcanizate weighing 26 

approximately 10 mg were placed in a corundum dish. The study was conducted in an inert 27 

gas atmosphere - nitrogen (flow rate 100 ml/min) in the range from 25 to 800°C with a 28 

temperature increase rate of 20°C/min. Volatile products from thermal degradation of  29 

vulcanizate samples were also evaluated using a Fourier transform infrared spectroscopy 30 
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(FTIR). During TGA/DSC measurements volatile degradation products were directed (using 1 

heated transfer line with temperature 220°C) to Nicolet iS10 spectrometer from Thermo 2 

Scientific (USA). Presented solution allows “on-line” characterization of volatile products 3 

during TGA/DSC measurements. The timing offset of FTIR spectra comparing to TGA 4 

curves is related to a volume of thermogravimetric apparatus chamber. 5 

 The morphology of the vulcanized reclaimed GTR after extraction in toluene (at 6 

room temperature, 72 h) was observed with a JEOL 5610 scanning electron microscope. 7 

Before measurement the samples were covered with a fine gold-palladium layer in order to 8 

increase their conductivity in a vacuum chamber. 9 

 10 

3. Results and discussion  11 

3.1. Curing characteristics 12 

The effect of the applied GTR reclaiming method on curing characteristics of 13 

reclaimed GTR is shown in Table 2 and Figure 1. The rGTR obtained via extrusion at 120°C 14 

was characterized by its minimum torque value (~ 7 dNm), the lowest value among studied 15 

samples. This indicated that high shear forces and elevated temperature acting on GTR during 16 

extrusion enhanced scission of cross-linking bonds and caused partial degradation of polymer 17 

chains. For products of mechano-chemical reclaiming of GTR conducted at ambient 18 

temperature using a two-roll mills, minimal torque decreased with higher content of bitumen, 19 

from ~35 dNm for sample without bitumen to ~22 dNm for rGTR modified with 20 phr of 20 

bitumen. This suggests better processing of GTR reclaimed in the presence of bitumen, due to 21 

plasticizing and partial reclaiming of rGTR. It was noticed that the type of used bitumen has 22 

slight influence on minimal torque. Maximal torque values correspond with stiffness and 23 

shear modulus of vulcanized samples. The lowest value (~ 22 dNm) of maximal torque was 24 

determined for GTR reclaimed via extrusion at 120°C, which is related to its minimal torque. 25 

It was realized that maximal torque values decreased with increasing content of bitumen 26 

during mechano-chemical reclaiming of GTR, from ~53 dNm for sample without bitumen to 27 

~34 dNm for GTR modified with 20 phr of bitumen. It was also observed that GTR reclaimed 28 

in presence of Modbit 25/55-60 (bitumen modified with SBS copolymer) take a slightly 29 

higher maximal torque value compared to GTR reclaimed with bitumen 160/220, which may 30 

be due to different composition and physical properties of the used bitumens (see Table 1). 31 

Torque increment (ΔM) is correlated with the cross-link density of the obtained 32 

revulcanizates [36]. The highest value of ΔM (~ 22 dNm) was observed for the reclaimed 33 

GTR obtained via extrusion at 120°C. This suggests better diffusion conditions of curing 34 
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additive to the curing site in rGTR obtained via extrusion at 120°C in comparison with rGTR 1 

obtained via milling at ambient temperature. This may be due to the significant difference in 2 

their processing properties (minimal torque values). Furthermore, this phenomenon could be 3 

explained by higher degradation of vulcanization accelerators and activators residues present 4 

in rGTR. It was noticed that higher content of bitumen applied during mechano-chemical 5 

reclaiming of GTR caused a decrease in ΔM. This indicates that cross-link density of rGTR 6 

vulcanizate modified with bitumen is decreased, which is related to its partial plasticizing 7 

with bitumen. Furthermore, in case of rGTR obtained via extrusion and rGTR modified with 8 

bitumen, increasing the mobility of main chains caused their lower thermal resistance aging, 9 

as evaluated by the R300 parameter. It was observed that reclaiming method of GTR affects 10 

also the optimal vulcanization time (t90) and CRI, however it has an insignificant influence on 11 

the scorch time (t2). In addition, the type of the used bitumen influenced on the t90 and CRI 12 

parameters, possibly due to reactions between sulfur curing system and bitumen components. 13 

Namely, the unsaturated components of bitumen and SBS copolymer present in Modbit 14 

25/55-60 might react with sulfur curing system, leading to enhanced physical and chemical 15 

interactions between rGTR and bitumen. It was noticed that bitumen content during mechano-16 

chemical reclaiming of GTR had insignificant influence on t90 and CRI, while the slight 17 

difference between values of these parameters may be due to diverse composition of GTR 18 

obtained from waste tire (mix of passenger and truck tires). For better presentation of such 19 

differences during vulcanization of obtained reclaimed GTR, selected curing curves are 20 

shown in the Figure 1. 21 

 22 
Figure 1. Curing curves for reclaimed GTR 23 

 24 
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3.2. FTIR analysis 1 

FTIR spectra obtained for vulcanized rGTR are presented in Figure 2. The significant 2 

differences in FTIR spectra indicate that reclaiming method applied to GTR strongly affects 3 

the chemical structure of the obtained vulcanized rGTR. Weak absorption of samples is 4 

related to the presence of carbon black in reclaimed rubber. The absorbance maxima at 2965 5 

cm-1 is assigned to the aromatic C-H bonds vibrations (e.g. carbon black), while 2915 and 6 

2850 cm-1 is corresponded to the C-H vibrations of CH2 groups in aliphatic chains of 7 

elastomers. The peaks in the range between 1540 cm-1 and 670 cm-1  are attributed to the -8 

C=H bond in benzene, characteristic for e.g. styrene butadiene rubber, which is commonly 9 

applied in tire industry. The absorbance maxima at 1377 cm-1 is attributed to the vibrations of 10 

CH3 groups, which confirms the presence of natural rubber in the examined rGTR. The 11 

signals at 3560 cm-1 and 3410 cm-1 suggest the presence of hydroxyl groups (-OH), which is 12 

associated with the degradation of vulcanized reclaimed rubber observed especially in sample 13 

rGTR obtained via extrusion at 120°C and sample rGTR reclaimed via milling (without 14 

bitumen). The presence of two maxima in this wavenumber range may be the result of the 15 

diversity of oxidation products, which are mixture of aliphatic and aromatic compounds [37]. 16 

The absorbance maxima at 1115 cm-1, characteristic for the valence vibrations of C-O bonds, 17 

also indicates the presence of -OH groups. Furthermore, in sample rGTR obtained via 18 

extrusion at 120°C and sample rGTR reclaimed via milling (without bitumen) small peak at 19 

1690 cm-1 from carbonyl groups (C=O) was observed. Presented results confirm partial 20 

oxidation of main chain during reclamation of GTR (sample rGTR prepared via extrusion) 21 

and vulcanization of reclaimed rubber (sample rGTR via milling). Addition of bitumen 22 

160/220 and Modbit 25/55-60 during reclamation of GTR, limited oxidation during 23 

reclaiming and vulcanization of reclaimed rubber, which may be related to its plasticizing 24 

effect (easier processing of GTR). However, in case of GTR reclaimed with higher content of 25 

Modbit 25/55-60, higher intensity of absorbance maxima at 1115 cm-1 was observed, which 26 

suggests partial oxidation of this sample. This indicates that bitumen modified with SBS 27 

copolymer has slightly lower resistance for oxidation comparing to pure bitumen. This 28 

phenomenon is the result of C=C bonds presence in the structure of SBS copolymer [38, 39]. 29 
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 1 
Figure 2. FTIR of vulcanized reclaimed GTR 2 

 3 
 4 
3.3. Mechanical and physical properties of vulcanized rGTR 5 

The results of static mechanical properties of rGTR vulcanizates are presented in 6 

Table 2. Significant differences in mechanical properties were observed in case of rGTR with 7 

20 phr bitumen. Addition of 20 phr of bitumen, regardless of bitumen type, caused the 8 

decrease of tensile strength and hardness, while elongation at break has increased. This 9 

confirmed plasticization effect of bitumen, mentioned previously in curing characteristics 10 

section. Reclaiming method used during this study - extrusion at 120°C or milling at ambient 11 

temperature, has small influence on mechanical properties of obtained reclaimed rubber 12 

vulcanizates. The reclaimed samples were characterized by similar tensile strength and 13 

elongation at break, ~ 4.5-5 MPa and ~162-194 % respectively. For better presentation of 14 

tensile properties, selected stress-strain curves for reclaimed GTR vulcanizates are presented 15 

in the Figure 3. On the other hand, reclaiming method had strong influence on hardness of 16 

reclaimed GTR vulcanizates, which corresponded with their processing properties (minimal 17 

torque value).  18 
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 1 
Figure 3. Stress-strain curves determined for vulcanized reclaimed GTR 2 

 3 

Physical properties of vulcanized reclaimed GTR are presented in Table 2. It was 4 

observed that reclaiming method – extrusion/milling – had small influence on density of 5 

rGTR vulcanizates. On the other hand, the GTR samples reclaimed with bitumen were 6 

characterized by lower density, which was related to density of pure bitumen (~1.02 at 25°C). 7 

Type of bitumen had insignificant influence on density of obtained revulcanizates. Cross-link 8 

density and sol fraction give valuable information about reclaiming efficiency. It was noticed 9 

that reclaiming method had significant influence on cross-link density and sol fraction of 10 

reclaimed GTR vulcanizates. Scission of sulfur-sulfur, carbon-sulfur and carbon-carbon 11 

bonds during reclaiming of GTR caused the decrease of its cross-link density, which 12 

enhanced polymer chains’ mobility confirmed by increasing sol fraction. Reclaiming of GTR 13 

with 20 phr of bitumen caused significant decrease of cross-link density and increase of sol 14 

fraction, which corresponded with mechanical properties of reclaimed GTR vulcanizates (see 15 

Table 2). It is well known that bitumen is soluble in toluene, which was used as a solvent 16 

during extraction. Therefore, corrected sol fraction was calculated based on GTR content, 17 

assuming that whole bitumen applied during reclaiming was dissolved during extraction. 18 

Moreover, theoretical sol fraction was calculated based on the additivity principle and lack of 19 

physical/chemical interactions between rGTR obtained via milling and bitumen. Presented sol 20 

fraction results indicate that during extraction bitumen was only partially removed from GTR 21 

matrix, which confirmed enhanced physical and chemical interactions (co-vulcanization) 22 

between GTR and bitumen phase. As mentioned before, this phenomenon was also recently 23 

suggested by Singh et al. [24]. 24 
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3.4. TGA/DSC/FTIR results 1 

Thermogravimetric analysis was applied for determination of change in chemical 2 

structure of reclaimed rubber. This methodology was previously described by Kleps et al. [40] 3 

and Scuracchio et al. [41], which used TGA for evaluation of GTR reclaiming efficiency. 4 

During present research, this methodology was expanded using TGA conjugated with DSC 5 

and FTIR (TGA/DSC/FTIR), which allowed for better characterization of changes in 6 

chemical structure of reclaimed GTR vulcanizates. The results of TGA are presented in 7 

Figure 4 and in Table 3. It was recognized, regardless of applied reclaiming method of GTR, 8 

that all TGA curves determined for vulcanized reclaimed GTR show similar trends. On the 9 

other hand, significant differences in char residue values (from 36.9 % to 32.2% wt.) were 10 

observed. High values of char residue are due to content of carbon black and SiO2 in GTR, 11 

usually ~ 34 % wt. Presented TGA results indicate a different structure of the studied 12 

vulcanized reclaimed GTR, which was meanwhile confirmed by the FTIR analysis (see 13 

Figure 2). As mentioned in curing characteristics and physical properties section, combination 14 

of high shear forces and temperature during GTR extrusion causes effective scission of cross-15 

linking bonds and partial degradation of polymer chains. It should be mentioned that cross-16 

link density has significant influence on thermal stability of rubber compounds [42]. 17 

Therefore, sample rGTR obtained via extrusion (cross-link density: 1.89 mol/cm3 × 10-4) was 18 

characterized by lower thermal stability compared to rGTR obtained via milling (cross-link 19 

density: 2.53 mol/cm3 × 10-4). Furthermore, it was observed that increase of bitumen content 20 

during reclaiming of GTR causes increase of T-2%, T-5%, T-10% temperatures, which 21 

corresponded with 2, 5 and 10 % weight loss. This could be somehow confusing because 22 

increasing the content of bitumen caused a fall in cross-link density. This phenomenon is 23 

related to evaporation/decomposition of two types of low molecular compounds. The first 24 

type contains low molecular resins, oils and other low molecular compounds, whereas the 25 

second type comprises low molecular compounds, which could be evaporated/decomposed 26 

through thermal degradation; among which are plasticizers, accelerators and other additives 27 

present in GTR [43]. 28 
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 1 
Figure 4. TGA curves of vulcanized reclaimed GTR 2 

 3 
Table 3. Thermal decomposition characteristics of vulcanized reclaimed GTR estimated from 4 
TGA data 5 

Sample T-2% (°C) T-5% (°C) T-10% (°C) T-50% (°C) 
Char 

residues at 
750°C 

rGTR via extrusion 232.6 300.6 351.3 438.6 36.5 
rGTR via milling 239.9 302.5 350.9 440.3 36.9 

rGTR 
+ 2.5 phr bitumen 160/220 232.8 291.3 344.4 434.3 32.9 

rGTR 
+ 2.5 phr Modbit 25/55-60 233.8 292.3 346.3 437.7 35.3 

rGTR 
+ 20 phr bitumen 160/220 240.0 300.7 349.6 441.6 32.2 

rGTR 
+ 20 phr Modbit 25/55-60 237.5 296.3 348.5 441.5 33.8 
 6 
 7 

The curves of derivative thermogravimetry (DTG) and differential scanning calorimetry 8 

(DSC) are presented in Figure 5. Three peaks of maximal rate of thermal degradation were 9 

observed on DTG curves (Figure 5A). First step of thermal degradation with Tmax1 ~ 250°C of 10 

vulcanized reclaimed GTR is volatilization/decomposition of plasticizers, accelerators 11 

residues and other low molecular additives present in GTR. Another two peaks from DTG 12 

curves are related to the temperatures of maximum rate of thermal degradation of natural 13 

rubber (Tmax2 ~ 400°C) and styrene-butadiene rubber (Tmax3 ~ 450°C). Those rubbers are the 14 

main compounds used in car tires manufacturing [44]. It was observed that higher content of 15 

bitumen shifted Tmax3 towards higher temperatures, while Tmax2 shifted towards lower 16 

temperatures. This phenomenon suggests that aromatic components of bitumen enhanced 17 
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reclaiming of styrene-butadiene rubber compared to natural rubber. Furthermore, samples 1 

with higher content of bitumen were characterized by higher char residue (carbon black) 2 

content. Recently, Garcia et al. [45] indicate that carbon black present in the reclaimed rubber 3 

could adsorb low molecular volatile products formed during thermal degradation (barrier 4 

effect), which improved thermal stability of reclaimed GTR. Presented DSC curves (Figure 5 

5B) corresponded with described above three steps of thermal degradation of vulcanized 6 

reclaimed GTR. 7 

 8 

 9 
Figure 5. A – DTG and B – DSC curves of vulcanized reclaimed GTR 10 

 11 
FTIR spectra determined for volatile products emitted during thermal decomposition of 12 

vulcanized reclaimed GTR, are presented in Figures 6 and 7. As could be expected, thermal 13 

degradation products were characterized by different chemical structures compared to 14 
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vulcanized rGTR (see Figure 2). Regardless of reclaiming method, in all samples absorbance 1 

peak in the region of 2320 cm-1 was observed, which is attributed to carbon dioxide formed 2 

during thermal degradation [46]. Absorbance maxima at 2970 and 2900 cm-1 were present 3 

only in samples of vulcanizates based on reclaimed rubber obtained via milling (without and 4 

with bitumen), which confirms lower degradation of GTR during reclaiming via milling, 5 

comparing to rGTR obtained through extrusion. Furthermore, in case of samples: rGTR via 6 

extrusion (Figure 6A), rGTR by milling (Figure 6B),  rGTR + 2.5 phr bitumen 160/220 7 

(Figure 6C) and rGTR + 20 phr Modbit 25/55-60 (Figure 6F) the presence of absorbance peak 8 

at 3500-4000 cm-1 assigned to hydroxyl group (-OH), was observed. This indicates partial 9 

degradation by oxidation of GTR during reclaiming, which was also confirmed by FTIR 10 

analysis of reclaimed GTR vulcanizates (section 3.2). Possible degradation products formed 11 

during thermal degradation of GTR are described in details in the literature [37, 47]. 12 

 13 
Figure 6. TGA-FTIR plots determined for volatile products emitted during thermal 14 
decomposition of vulcanized reclaimed GTR: A – rGTR via extrusion; B – rGTR via milling; 15 
C – rGTR + 2.5 phr bitumen 160/220; D – rGTR + 20 phr bitumen 160/220;  16 
E – rGTR + 2.5 phr Modbit 25/55-60; F – rGTR + 20 phr Modbit 25/55-60 17 
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 1 
Figure 7. FTIR spectra at maximal intensity determined for volatile products emitted during 2 
thermal decomposition of vulcanized reclaimed GTR 3 

 4 

3.5. Morphology assessment   5 

The morphology of the vulcanized reclaimed rubber samples is presented in the 6 

Figures 8 and 9. Micrographs show the surface of samples previously subjected to extraction 7 

in toluene (at room temperature, 72 h). It can be observed that reclaiming method has 8 

significant influence on the morphology of studied samples. For sample rGTR obtained via 9 

extrusion, some gaps have been observed in the microstructure after the extraction. This 10 

indicates that low molecular compounds, formed during thermo-mechanical reclaiming and 11 

partial oxidation of GTR, were dissolved during extraction. Low molecular products of GTR 12 

degradation function like plasticizers of obtained reclaimed rubber, which enhances its further 13 

processing (see Figure 1). On the other hand, surface of the sample rGTR obtained via milling 14 

appears smooth, which suggests lower degradation during reclaiming. This is in agreement 15 

with minimal torque, sol fraction and cross-link density measurements. It was noticed that the 16 

type of bitumen applied during GTR reclaiming strongly affected the morphology of 17 

vulcanized rGTR. For samples of rGTR reclaimed with Modbit 25/55-60, after the extraction, 18 

gaps similar to those observed in case of rGTR obtained by extrusion have been observed. On 19 

the other hand, the surface of rGTR reclaimed with bitumen 160/220 samples was clearly 20 

smoother and similar to the surface of sample rGTR obtained via milling. For better 21 

characterization and confirmation of these results, morphology of samples rGTR + 20 phr 22 

bitumen 160/220 and rGTR + 20 phr Modbit 25/55-60 were observed at a higher 23 

magnification in comparison to Figure 8, which is shown in Figure 9. It is clearly visible that 24 
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the gaps present in the structure of sample rGTR + 20 phr bitumen 160/220 sample have on 1 

average a smaller size, when they compared with the surface of rGTR + 20 phr Modbit 25/55-2 

60 sample. This phenomenon is due to the presence of SBS copolymer in the modified 3 

bitumen Modbit 25/55-60. These results suggest that GTR particles are encapsulated by the 4 

SBS phase, which is partially miscible with the bitumen phase. In agreement with this, the 5 

swelling of SBS was observed during extraction of vulcanized rGTR with toluene, which 6 

created cracks in the vulcanized reclaimed rubber and thereby gaps in the structure after 7 

extraction. The schematic path of a mechanism that probably appears during GTR reclaiming 8 

using bitumen and bitumen modified with SBS is presented in Figure 10. It should be 9 

mentioned that phenomenon of GTR encapsulation with elastomers, e.g. styrene-butadiene-10 

styrene copolymer [27, 48], ethylene-propylene-diene-monomer rubber [49], butyl rubber 11 

[50], ethylene-octene copolymer [51], trans-polyoctylene rubber [52] or ethylene-vinyl acetate 12 

copolymer [53], was also observed and described by several independent research groups. 13 

  14 

  15 

  16 
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Figure 8. SEM images of vulcanized reclaimed GTR. A – rGTR via extrusion;  1 
B – rGTR via milling; C – rGTR + 2.5 phr bitumen 160/220; D – rGTR + 20 phr bitumen 2 
160/220; E – rGTR + 2.5 phr Modbit 25/55-60; F – rGTR + 20 phr Modbit 25/55-60 3 
(magnification x100) 4 

  5 
Figure 9.  SEM images of vulcanized reclaimed GTR. A – rGTR + 20 phr bitumen 160/220 6 
and B – rGTR + 20 phr Modbit 25/55-60 (magnification x250) 7 

 8 
Figure 10. Schematic illustration of GTR reclaiming using bitumen and bitumen modified 9 
with SBS 10 
 11 

4. Conclusions 12 

GTR has been reclaimed at low temperature applying two methods: thermo-13 

mechanical reclaiming via extrusion and mechano-chemical via milling in presence of two 14 

types of bitumen (road bitumen 160/220 and styrene-butadiene-styrene copolymer modified 15 

Modbit 25/55-60) as reactive plasticizers (in range: 2.5-20 phr). The effects of plasticization 16 

and shear forces during reclaiming of GTR on quality of reclaimed rubber were studied. The 17 
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obtained results indicated that method of GTR reclaiming (mechano-chemical or thermo-1 

mechanical) strongly affects the processing, chemical structure, thermal and morphological 2 

properties of vulcanized reclaimed rubber, while its influence on mechanical properties was 3 

negligible. High shear forces acting on GTR during thermo-mechanical reclaiming via 4 

extrusion, improved processing of the obtained reclaimed rubber due to its partial oxidative 5 

degradation. This was confirmed by FTIR analysis, processing characteristics (minimal 6 

torque, torque increment) and cross-link density evaluation. It was observed that application 7 

of bitumen as reactive plasticizers during mechano-chemical reclaiming of GTR, prevents 8 

oxidation of reclaimed GTR and enhanced its processing, which can be explained in view of 9 

enhanced interfacial interaction between GTR and bitumen. Increased bitumen content, 10 

during GTR reclaiming process, deteriorated the mechanical properties and cross-link density 11 

of vulcanized reclaimed rubber, which is due to plasticizing effect of bitumen. Furthermore, it 12 

was demonstrated that chemical composition of the used bitumen has significant influence on 13 

structural, mechanical, thermal and morphological properties of vulcanized reclaimed rubber. 14 

Bitumen 160/220 and SBS-modified bitumen (Modbit 25/55-60) both enhanced 15 

plasticization/partial reclaiming of GTR particles, while SBS-modified bitumen also caused 16 

encapsulation of GTR particles within the SBS elastomer phase. This phenomenon had a 17 

significant influence on improving the physical and chemical interactions between GTR and 18 

bitumen phases. Based on presented results, further research in this field should focus on two 19 

directions: i) optimization of reclaiming process conducted at lower temperatures, for 20 

example reducing time during mechano-chemical reclaiming via milling, to achieve effective 21 

and energy-saving process parameters; ii) application of other chemical additives, which 22 

affect on the processability (e.g. peptizators, peroxides, vulcanization accelerators, etc.) and 23 

mechanical properties (e.g. thermoplastic elastomers) of the obtained reclaimed rubber.  24 
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Figure captions 5 

Figure 1. Curing curves for reclaimed GTR 6 

Figure 2. FTIR of vulcanized reclaimed GTR 7 

Figure 3. Stress-strain curves determined for vulcanized reclaimed GTR 8 
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Figure 5. A – DTG and B – DSC curves of vulcanized reclaimed GTR 10 

Figure 6. TGA-FTIR plots determined for volatile products emitted during thermal 11 

decomposition of vulcanized reclaimed GTR: A – rGTR via extrusion; B – rGTR via milling; 12 

C – rGTR + 2.5 phr bitumen 160/220; D – rGTR + 20 phr bitumen 160/220;  13 

E – rGTR + 2.5 phr Modbit 25/55-60; F – rGTR + 20 phr Modbit 25/55-60 14 

Figure 7. FTIR spectra at maximal intensity determined for volatile products emitted during 15 

thermal decomposition of vulcanized reclaimed GTR 16 

Figure 8. SEM images of vulcanized reclaimed GTR. A – rGTR via extrusion;  17 

B – rGTR via milling; C – rGTR + 2.5 phr bitumen 160/220; D – rGTR + 20 phr bitumen 18 

160/220; E – rGTR + 2.5 phr Modbit 25/55-60; F – rGTR + 20 phr Modbit 25/55-60 19 

(magnification x100) 20 

Figure 9.  SEM images of vulcanized reclaimed GTR. A – rGTR + 20 phr bitumen 160/220 21 

and B – rGTR + 20 phr Modbit 25/55-60 (magnification x250) 22 

Figure 10. Schematic illustration of GTR reclaiming using bitumen and bitumen modified 23 

with SBS 24 

Table captions 25 

Table 1. Characteristics of bitumens 26 

Table 2. Composition, curing characteristics, mechanical and physical properties of tested 27 

compounds  28 
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