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1. Introduction 
 

Motion control for rest-to-rest maneuvers in lightly-damped oscillation systems has been one of the main areas of focus for the development 

of residual vibration reduction 1-3, and cranes have been one of the widely addressed industrial applications 4-11. In the case of standard cranes, the 

cable length and the inertia of the payload will change between maneuvers and, hence, a large variation of the system parameters is foreseen. 

Classic methods to reduce residual vibrations such as the built-in robustness methods derived from the ZV 12-15 input shaping have been 

developed to overcome light uncertainties when the system parameters are estimated: The zero-vibration and derivative (ZVD) and successive 

derivatives (ZVDD, …) 13 provide better performance with the drawback of longer command duration, and the so-called extra-insensitive (EI) 

and multi-hump input shapers 16,17 allow some residual vibration with shorter command durations. Nevertheless, to cope with a large system 

parameters variation, learning input shaping and adaptive input shaping become relevant. Learning input shaping (LIS) 18,19 provides a solution 

after several repetitive maneuvers, while the adaptive input shaping (AIS) 20-24 requires only one, resulting in a better approach for single 

maneuvers on cranes. Both of them estimate the system parameters by including in their algorithms the output response measured through a 

feedback sensor. 

 

Due to the nature of our application, the feedback sensor must be close to the payload and, therefore, it is recommended the use of inertial 

measurement units (IMU), like accelerometers or gyroscopes. Within them, the use of Micro-Electro-Mechanical Systems (MEMS) is 

increasingly extended because of their cost, size, robustness and power consumption. However, the effectiveness of the AIS algorithms is 

compromised by using them when there is a null drift along the time, which is a very common issue mainly in gyroscopes 25,26. For a standard 

crane application, this major drawback could be avoided with a frequent time-basis calibration of the gyroscope, but it is not a feasible solution. 

 

The novelty approach presented in this manuscript focuses on the development of an automatic compensation of this drift to obviate such 

frequent calibrations. It follows an analog development to that of the algebraic non-asymtotic parameter identification24, by adding the null drift 

of the sensor as a new parameter to be identified. This AIS method is able to converge in less than half of the oscillation period and does not 

require defining initial conditions and, hence, it could be adequate to control the swaying of a crane in single maneuvers, where no learning 
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This paper presents an adaptive algorithm to reduce residual vibrations when the feedback sensor used has the drawback of having null 
drift along the time. The adaptive approaches are useful to deal with large variations of the system parameters at each maneuver, such as 
it occurs in cranes. For the feedback sensor, the use of inertial measurement units such as Micro-Electro-Mechanical Systems (MEMS) is 
increasingly extended because of their cost, size, robustness and power consumption. However, the effectiveness of the adaptive input 
shaping algorithms is compromised because of this drift, which is a commonly raised issue in this kind of devices. For a standard crane 
application, this major drawback could be avoided with a frequent time-basis calibration of the sensor, but it is not a feasible solution. 
The study presented in this manuscript focuses on the development of an automatic compensation of this drift to obviate such frequent 
calibrations. It is based on a non-asymptotic algebraic identification technique, which has the advantage of not requiring initial 
conditions and having a short convergence time. The new formulation uses the Zero-Vibration (ZV) input shaper technique, and the null 
drift is added to the algorithm as a new parameter to be identified. The proposed method has been particularized for single maneuvers of 
cranes with a gyroscope as feedback sensor, in a real time scenario. Experimental results show the efficacy of the method with its 
application to a scaled crane test platform. 
 
 

PO
ST

PR
IN

T



2  

 

process is provided.  

 

The novelty approach proposed overcomes some limitations of other AIS methods in our current application field. Within them, the Time-

varying transfer function estimation (TTFE) uses an algorithm in the frequency domain to identify the system parameters 20. Nevertheless, 

several oscillation periods are required to converge, making it impractical for short maneuvers. Other techniques use the time domain to achieve 

a solution. Nonetheless, some limitations to use them on cranes are pointed out, such as the estimation of the parameters requires that the 

maneuver has ended 21, or the solid-rigid position is not guaranteed unless the parameters are calculated between maneuvers 22. Based on a LIS 

identification 18, a solution to update the parameters during the motion is presented 23. However, some initial conditions are required and the 

estimation algorithm does not work in any part of the command input, which implies losing efficiency on the convergence. 

 

The rest of this manuscript is organized as follows. In Section 2, the problem formulation is introduced assuming a one degree-of-freedom 

damped linear system with a constant parameter motion equation. It is shown the noticeable effect of the null drift of the feedback sensor on the 

estimation errors. In Section 3, the modified adaptive algorithm is explained. In Section 4, some experimental results are shown by using a 

pendulum-carriage test bed in a real time scenario. Finally, in Section 5, conclusions are drawn, pointing out the benefits of the method 

developed. 

 

2. Problem formulation 
 

The development carried out in this section follows that of an algebraic non-asymptotic parameter identification 24, and assumes a ZV shaper 

(two impulses) to benefit from shorter command durations when an adaptive algorithm is used. Nevertheless, it can be easily extended to more 

robust input shapers. The basic block diagram of an adaptive scheme is presented in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of an adaptive input shaper: IS is the input shaper and G is the oscillatory system 

 

The vibratory system is described by a second order harmonic oscillator, in which x(t) is the input and y(t) is the system response. The 

transfer function G(s), the corresponding second order differential equation and the response of the system yh(t) to an impulse of magnitude A are, 

respectively: 
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where 2
d 0 1    is the oscillation frequency, ω0 is the natural frequency and ζ is the damping ratio. 

 

The transfer function of a ZV input shaper can be written as: 
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The first addend of the expression (4) corresponds to an impulse located at t1=0 and module  1 1/ 1A K  . The second addend is the 

second impulse at 2 dπ /t   and module  2 / 1A K K  .  

 

During the motion, the sensor provides feedback of the system response y(t) to the identification algorithm. With this information, ω0 and ζ 

are estimated in real time, and the sequence of impulses can be properly defined to reduce residual vibrations. 

 

Assume that the feedback sensor provides a velocity signal ( )y t . If the basic algorithm24 is formulated, the equation (2) yields: 
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A second equation is obtained by integrating equation (6) and, hence, the terms 2
0 and 02 are derived: 
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2.1 Effect of the null drift 

 

Although the null drift is a function of time, in this study it is taken as an unknown constant because the timeframe in which the adaptive 

algorithm is processed is very short. The measurement from the sensor v(t) yields: 

 

 d( ) ( )v t y t v   (10) 
 

where ( )y t is the real velocity and vd is the null drift at a certain time. By substituting (10) in (2) we obtain: 
 

    2 2
0 d 0 d 00

( ) 2 ( ) ( ) d ( )
t

v t v t v v v x t          (11) 

 

Applying the referenced algorithm, the Laplace transform of (11) yields: 
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Equation (12) is derived with regard to s and divided by s: 
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The inverse of the Laplace transform is applied to (13) and results in the time-domain equation (14), where it is showed a noticeable effect 

of vd because of the time exponents of the extra addends. 
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Assume that 0̂ and ̂ are the estimations of ω0 and ζ, respectively. The errors on these estimators can be defined by: 
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Figure 2 depicts these errors with regard to the null drift of the feedback device vd, when this null drift is not considered. The example used is 

an oscillator of 1 Hz of natural frequency, with 0.05 and 0.1 damping ratios. The input x(t) used is a single impulse of magnitude A 

and 0̂ and ̂ have been evaluated at 2
2 0π /( 1 )t    (approximately 0.5 s), which is the ideal location of the second impulse. The null drift 

scale has been normalized by the maximum amplitude of the velocity response, 2 2
0 / 1A  , derived from equation (3). 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2 Error on the estimation of natural frequency and damping ratio versus de null drift of the feedback device 

 

2.2 Single maneuvers 
 

The consequence of the drift vd can be expressed in terms of residual vibration when the adaptive ZV input shaper is used. However, some 

thoughts must be introduced when this algorithm is applied in single maneuvers, which is the usual situation in cranes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Residual vibration versus the null drift of the feedback device 
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Consider the system of the former example, now with a ZV shaper. The first impulse is located at 1 0t  . Its amplitude,  1 1/ 1A K  , must be 

presumed without knowing the damping ratio of the system (required to calculate K) because we are supposing that the system is completely 

unknown. Consequently, once A1 is guessed, the amplitude of the second impulse A2 is automatically preset to maintain the condition of rigid 

body motion of the shaper, i.e., 1 2 1A A  . Therefore, ̂ can only be used to estimate the location of the second impulse 2
2 0

ˆˆ ˆπ /( 1 )t    . 

With this hypothesis, the equation (17) describes the percentage of residual vibration 13 for a given 2 0
ˆˆ ˆ( , )t   , assuming ideal A1 and A2. Figure 

3 shows the graphical result, where it can be seen that a small null drift implies a noticeable effect on the residual vibration.  
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3. Modified adaptive algorithm 

 

To improve this poor estimation, it is proposed to modify the current algorithm by introducing the null drift vd as a new parameter to be 

identified. From equation (14), it is proposed the following array to be identified: 
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Following the same procedure to that of the former algorithm, three more equations are obtained by integrating equation (14): 
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A system of equations with the form 0Aq q can be made up with (14), (19), (20) and (21). Its solution yields: 
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A drawback in terms of fastness on the convergence of the proposed algorithm must be pointed out due to the fact of obtaining three extra 

equations by integrating (14). This issue compromises the goodness of the method by increasing the residual vibration. To cope with this 

slowness, it is proposed to eliminate the last equation and solve for the unknowns ω0, ζ and vd the resultant non-linear system (equations (14), 

(19) and (20)). Now it is assumed the system of the former example with 0.1 damping ratio. Figure 4 shows the fastest convergence 

of 0̂ and ̂ at the ideal 2
2 0π /( 1 ) 0.5t     s, when this second approach is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Convergence of the estimated parameters 0̂ and ̂  by solving with a linear system (4 equations) and with a non-linear system (3 

equations) 

 

3.1 Lightly damped systems 
 

In most of the vibratory systems, where the damping is not particularly enforced, the damping ratio is usually very small. This situation is 

especially noticeable in cranes 27, where it takes values around 0.01. In this case, the damping ratio identification in single maneuvers becomes 

difficult, where small perturbations, such as signal noise, can lead to significant errors. For example, the induced error in residual vibration when 

considering whether or not a damping ratio of 0.01  is around 1.5%. Therefore, it is suggested to obviate the identification of this parameter 

and, hence, reduce the number of equations to two (equations (14) and (19)) which, in turn, could compensate the error mentioned by obtaining 

a faster convergence in the estimation of ω0 and vd. 
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4. Experimental results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Carriage-pendulum test platform: 1) pendulum, 2) gyroscope, 3) carriage 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 6 Pendulum schematics and coordinates 

 

The carriage-pendulum test bed of Figure 5 was built to check the goodness of the proposed method. The pendulum with planar motion, 

which represents essentially a crane, is described by the schematics of the Figure 6, where the mass m, the inertia IG, the gyroscope p and the 

lengths l1 and l2 are depicted. The rod is articulated on the carriage and the internal friction loss is formulated by a rotary damper with damping 

constant c. The carriage displacement is defined by the coordinate x and follows a command input driven with a control, a DC motor and a belt-

pulley transmission. The feedback for this control is provided by an incremental rotary encoder, which measures the carriage displacement 

through the angular position of the idler pulley. The pendulum angle is defined by the coordinate θ and the angular velocity is measured by 

means of a MEM gyroscope integrated circuit that is assembled on the rod near to the pendulum rotary axis. 

 

Table 1 shows a summary of the values and devices of this test bed. 
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Table 1 Test bed parameters and specifications 

 

Parameter / device Value / specification 

m 0.797 kg 

IG 15.8·10-3 kg·m2 

l1 30 mm 

l2 240 mm 

c 14.7·10-3 Nm/(rad/s) 

Motor Permanent magnet DC brushed 

Encoder Rotary, 7200 cycles per revolution 

Gyroscope p 
ADXRS300, ±300º/s, 5mV/( º/s) 

Linear accel. effect 0.2 (º/s)/g 

Power supply DC 24V, 10A 

Power electronics Galil Motion Control MSA12-80 

Control electronics NI PCI-6036E 

Control software Matlab Simulink® 

Computer Xeon ®, 3.0 GHz, 3.25 GB RAM 
 

The motion equation of this pendulum for a given x(t) is described by: 

 

 2
G( ) g sin ( ) cosml I c m l mx t l           (25) 

 

Consider that the oscillations during and after the transient are small and around the position θ=0º. Therefore, the motion equation can be 

linearized as: 

 

 2
G( ) g ( )ml I c m l mx t l          (26) 

 

This equation can be rewritten as: 
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where the system natural frequency and the damping ratio are, respectively: 
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The test-bed setup gives a measured oscillation frequency of ωd=5.342 rad/s and a damping ratio of ζ=0.019. Therefore, the system natural 

frequency obtained by calculation is ω0=5.343 rad/s. The bandwidths of the motor-carriage system and the electronics have cut-off frequencies 

that are far from the system resonance and, hence, their filtering effect is not significant. 

The gyroscope voltage output Vout(t) gives values between 0 to 5 volts, and can be transformed to the angular velocity v(t) through the 

expression: 

 

 out offset( )
( )

V t V
v t

s


  (30) 

 

where Voffset is the nominal voltage offset (2.5 V) and s is the device sensitivity (5mV/( º/s)). Once the angular velocity is available, and assuming 

rest initial conditions, the angular position is obtained by discrete time integration with Euler’s method. Similarly to the expression (10), we can 

describe the gyroscope measurement v(t) as the sum of the real angular velocity ( )t plus the null drift vd: 

 

 d( ) ( )v t t v   (31) 

 

If v(t) is introduced in the equation (27), a similar equation than (11) can be written: 
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The rest of the development is analogous to that of the second order oscillator. 

 

Two types of tests are carried out. The former test (Figure 7) shows the convergence of 0̂ versus time, when both the original algorithm 

(without taking into account the drift) and the modified one are used. In this last case, the estimation of ζ has been obviated as explained in 3.1. 

The tested maneuver is a point-to-point motion described by a versine function as the carriage velocity ( )x t . In the same Figure, the convergence 

of dv̂  is showed as well. In this case the null drift of the gyroscope was set to d 0.15v  rad/s. Results show that, for the modified algorithm, the 

convergence is stable before the target measurement point at 2
2 0π /( 1 ) 0.59t     s, and the values obtained are 0ˆ 5.34  rad/s 

and dˆ 0.16v  rad/s, which are quite close to the theoretical values 0 5.342  rad/s and d 0.15v  rad/s. For the original algorithm, this 

convergence is not stable and the value obtained at the target measurement point ( 0ˆ 5.05  rad/s) is far from the theoretical value. 

 

The second test (Figure 8) compares the residual vibration obtained with regard to the null drift of the gyroscope, vd, when the original 

algorithm and the modified one are used. In both cases, a versine function was chosen for the unshaped command ( )x t . Three sample tests have 

been performed for each vd for both, the original and the modified algorithm. Results show the goodness of the method used, with a residual 

vibration 5 and 2 times lower when vd is –0.15 rad/s and 0.15 rad/s, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Experimental results: convergence of 0̂ and dv̂ versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Experimental results: Residual vibration ( )t versus the null drift of the gyroscope vd, for the original adaptive algorithm and the modified 

one. 
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5. Conclusions 

 

This paper presents an adaptive algorithm to reduce residual vibrations when the feedback sensor used has the drawback of having null drift 

along the time. The study focuses in single maneuvers of cranes and, hence, a large variation of the system parameters is foreseen, and a short 

convergence time is required. To deal with these constraints, the algorithm chosen is based on an algebraic non-asymptotic parameter 

identification, which is able to converge in less than half of the oscillation period and does not require defining initial conditions. Nevertheless, 

the null drift of the feedback sensor which is very common in MEM gyroscopes has a noticeable negative effect on the residual vibration. The 

proposed workaround follows an analog development to that of the original algorithm, but modifies it by including the null drift as a new 

parameter to be identified and, therefore, it can be compensated automatically. Moreover, in the case of lightly damped systems, such as a crane, 

it is suggested to obviate the estimation of the damping ratio and, hence, the fastness of the convergence is improved. A pendulum test bed, which 

is essentially a crane, is used to conduct some experiments with different setups of the null drift of the gyroscope and the results confirm the 

effectiveness and usefulness of the method. 
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