
Universitat Politècnica de Catalunya

Master Thesis

Exploring average-case and
probabilistic worst-case

performance of time randomized
caches and their associated

overheads

Author:

Suzana Milutinović

Supervisors:

Dr. Jaume Abella

Dr. Francisco J. Cazorla

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

Departament d’Arquitectura de Computadors

Facultat d’Informàtica de Barcelona

January 2016

http://www.upc.edu/
http://personals.ac.upc.edu/jabella/
http://personals.ac.upc.edu/fcazorla/
https://www.ac.upc.edu/
http://www.fib.upc.edu/fib.html

Declaration of Authorship

I, Suzana Milutinović, declare that this thesis titled, ’Exploring average-case

and probabilistic worst-case performance of time randomized caches and their

associated overheads’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at the Universitat Politècnica de Catalunya.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at the Universitat Politècnica de Catalunya or any

other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

i

http://www.upc.edu/
http://www.upc.edu/

Abstract

Probabilistic timing analysis (PTA) is a powerful approach to derive worst-case

execution time (WCET) estimates, as needed in safety-critical systems, in the

presence of high-performance hardware features (e.g. caches). To that end, the

timing behavior of certain hardware resources, such as caches, is randomized. Time

randomized (TR) caches allow deriving hit/miss probabilities for each access and

probabilistic WCET estimates for the overall program.

For the static variant of PTA, called SPTA, we identify one of the main elements

that jeopardizes its scalability to real-size programs in deriving WCET estimates:

its high computation time cost. SPTA’s high computational cost is mainly due to

convolution, a mathematical operator used by SPTA and also deployed in many do-

mains including signal and image processing. We show how convolution is applied

in SPTA, and qualitatively and quantitatively evaluate optimizations to convo-

lution when applied to SPTA. We show that the techniques that we have called

discretization and sampling provide larger execution time reductions, at the cost

of a small loss of precision.

For the measurement based variant of PTA, called MBPTA, we address the lack

of efficient ways to analyze the average-case execution time(ACET) of TR caches,

which is needed for low-critical high-performance tasks in mixed-criticality envi-

ronments. So far, the average performance of a TR cache can only be analyzed

through simulation, whose accuracy strongly depends on carrying a large number

of simulations. We respond to this challenge by proposing PACO, an accurate

analytical approach to estimate cache hit/miss probabilities of full applications,

parts of them and individual cache accesses at low cost for a wide variety of TR

cache hierarchies and setups.

Acknowledgements

I would like to express my sincere gratitude to Dr. Jaume Abella and Dr. Francisco

Cazorla, my research supervisors, for their valuable guidance and engagement

throughout my work on this thesis.

Futhermore I would like to thank my colleagues from the Computer Architec-

ture/Operating System Interface research group of the Barcelona Supercomputing

center, from whom I have learned a great deal over the past two years.

The research leading to these results has received funding from the European

Community’s FP7 under the PROXIMA Project, grant agreement no 611085.

This work has also been partially supported by the Spanish Ministry of Science

and Innovation under grant TIN2012-34557, the HiPEAC Network of Excellence,

and COST Action IC1202: Timing Analysis On Code-Level (TACLe).

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables vii

Abbreviations viii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 5

1.3 Contributions . 7

1.4 Organization . 9

2 Background and related work 10

2.1 Cache memories . 10

2.1.1 Cache organization . 11

2.1.2 Cache management . 12

Placement policy. 12

Replacement policy. 13

Write policy. 13

Write allocation. 14

2.1.3 Multi-level cache hierarchy 14

Inclusion property. 15

2.1.4 Time randomized caches . 15

2.2 Timing analysis and its challenges 16

2.3 Probabilistic timing analysis . 17

2.3.1 SPTA . 19

iv

Contents v

2.3.2 MBPTA . 20

2.3.3 Timing analysis of cache memories 21

2.3.3.1 Miss probability for TR caches under SPTA 22

2.3.3.2 Miss probability for TR caches under MBPTA . . . 23

3 WCET in Static Probabilistic Timing Analysis 25

3.1 SPTA performance issues . 25

3.2 Optimizing SPTA performance . 27

3.2.1 Parallelization . 27

3.2.2 Sampling . 30

3.2.3 Discretization of probabilities 31

3.3 Experimental Results . 34

3.3.1 Experimental conditions . 34

3.3.2 Impact of apfp library precision on the cost of each operation 36

3.3.3 Parallelization . 38

3.3.4 Probability discretization . 39

3.3.5 Combination of techniques 41

4 ACET in Measurement-Based Probabilistic Timing Analysis 43

4.1 Probabilistic analytic cache modeling (PACO) 43

4.1.1 Copy-back Fully-associative Caches (CB-FA) 44

4.1.2 Copy-back Direct-Mapped Caches (CB-DM) 45

4.1.3 Copy-back Set-associative Caches (CB-SA) 46

4.1.4 Write-through Caches (WTx) 47

4.1.5 Multiple Addresses per Cache Line 48

4.2 Experimental Results . 48

4.2.1 Per-access Results . 50

4.2.2 Per-program Results . 52

4.2.3 Execution Time Cost . 52

5 Conclusions and Future work 54

5.1 Conclusions . 54

5.2 Future work . 55

6 Published work 56

Bibliography 57

List of Figures

1.1 Execution Time distribution (Taken from [1]) 2

1.2 Example of CCDF and pWCET 4

2.1 Time randomized cache . 16

3.1 Convolution of ETPs within a chunk 29

3.2 Cost of each operation normalized to native ISA FP add operation . 36

3.3 Execution time and memory requirements for different mpfr library
precisions . 37

3.4 Impact of parallelization on execution time 39

3.5 Evaluation of the Discretization optimization 40

3.6 pWCET estimates with and without discretization 41

4.1 Cache hierarchy and setups considered. 49

4.2 Execution time of simulations normalized w.r.t. PACO. 52

vi

List of Tables

4.1 Per-access Pmiss accuracy. (Avg stands for average and Std for
standard deviation.) . 51

4.2 Per-program Pmiss accuracy. 51

4.3 Absolute Pmiss values. 51

vii

Abbreviations

ACET Average Case Execution Time

BCET Best Case Execution Time

ETP Execution Time Profile

ISA Instruction Set Architecture

MBPTA Measurement Based Probabilistic Timing Analysis

MBTA Measurement Based Timing Analysis

PACO Probabilistic Analytic Cache mOdelling

PTA Probabilistic Timing Analysis

SPTA Static Probabilistic Timing Analysis

TR Time Randomized

WCET Worst Case Execution Time

viii

Chapter 1

Introduction

1.1 Motivation

In recent years real-time systems - which need to complete their work and de-

liver the response within a specified time constraint - have become widely spread

in our daily life. Examples of applications deploying real-time technologies are

automated manufacturing systems, automotive engine control systems and medi-

cal instrumentation equipment. The majority of real-time systems are embedded,

which means that they represent a component of a larger engineering system,

subject to their control.

Real-time systems commonly comprise a set of concurrent tasks, where each task

issues jobs to perform computational activity conforming to a set of constraints. A

common form of time constraint assigned to tasks is a deadline, which specifies the

time before which a task must complete its execution. According to the potential

consequences of missing its deadline, a task can be:

• Hard real-time task: all jobs of the task must complete its execution

before their assigned deadline. The system is considered to have failed if any

job misses the deadline.

1

Chapter 1. Introduction 2

Figure 1.1: Execution Time distribution (Taken from [1])

• Soft real-time task: some of the jobs of the task may miss their deadline,

which will result in a degraded quality of the outcome, but not a system

failure. Typically, there is an upper bound on the number of misses that can

occur during a defined interval.

• Firm real-time task: some of the jobs of the task may miss their deadline,

the system will not fail, but it will discard late results, as they do not have

any value.

• Not real-time task: does not have time constraints.

The same taxonomy is extended to systems, so we classify them as hard, soft and

firm real-time systems, though the different tasks of the same system may belong

to different categories.

In real-time systems timing analysis is performed to determine the execution times

of tasks, which are used by a schedulability analysis to determine whether the sys-

tem will be able to meet its timing constraints. Typically the execution time of a

task varies depending on its input values, the underlying platform, the behavior

of the other tasks in the system, etc., as presented in Figure 1.1 by Actual dis-

tribution. The shortest execution time of a task is called the best-case execution

time (BCET), while the longest one is the worst-case execution time (WCET).

The average-case execution time (ACET) lies somewhere in-between the BCET

and the WCET.

Chapter 1. Introduction 3

Timing analysis in real-time systems traditionally has been concerned with com-

puting the WCET of a task, to ensure that it will complete execution before its

deadline. With a limited number of measurements during the test phase, we typ-

ically observe only a limited part of the Execution Time distribution, shown in

Figure 1.1 as Observed distribution. Capturing the whole (actual) distribution -

and observing the actual WCET - would require repeated measurements for all

possible execution paths and hardware states. Therefore, timing analysis provides

techniques to estimate or bound the WCET.

The WCET estimate/bound provided by the timing analysis has two requirements:

1) reliability - it actually upper bounds all possible execution times; 2) tightness

- it should be close to the actual WCET to avoid costly over-dimensioning. As

hardware platforms employed in real-time systems increase in complexity, satisfy-

ing both conditions becomes increasingly challenging [2].

Timing analysis techniques are generally classified as static and measurement-

based [2]. Static timing analysis estimates WCET from an application code and

an abstract model of a hardware, without executing a program. Measurement-

based timing analysis estimates WCET by measuring the execution time of the

whole program or program fragments (the latter also analyzes the structure of a

program in which case it is referred to as hybrid analysis). The longest observed

execution time is taken and scaled by an ad hoc engineering margin (e.g. 20%),

which is not scientifically backed, but based on user experience and knowledge of

the hardware and software.

Probabilistic Timing Analysis (PTA) [3–9] has emerged recently as a way to achieve

predictability through probabilistic means instead of through deterministic means,

as most timing analyses do [10]. Instead of a single WCET estimate, PTA tech-

niques provide a distribution of WCET estimates that can be exceeded with a

given – arbitrarily low – probability , which are typically referred to as proba-

bilistic WCET (pWCET) estimates, see Figure 1.2. Similarly to traditional (de-

terministic) timing analysis, PTA techniques are classified as static (SPTA) or

measurement-based (MBPTA).

Chapter 1. Introduction 4

Figure 1.2: Example of CCDF and pWCET

Under the static variant of PTA, each instruction has a probabilistic timing be-

havior represented with an Execution Time Profile (ETP). An ETP is expressed

by a timing vector that enumerates all the possible latencies that the instruction

may incur, and a probability vector, which for each latency in the timing vec-

tor, lists the associated probability of occurrence. Hence, for an instruction Ii we

have ETP (Ii) =<
→
ti,
→
pi> where

→
ti= (t1i , t

2
i , ..., t

Ni
i) and

→
pi= (p1i , p

2
i , ..., p

Ni
i), with∑Ni

j=1 p
j
i = 1. The convolution function, ⊗, is used to combine ETPs, such that

a new ETP is obtained which represents the execution time distribution of the

execution of all the instructions convolved (i.e. all the instructions of the program

under analysis).

The measurement-based variant of PTA carries out end-to-end runs of the program

on the target hardware. MBPTA applies Extreme Value Theory (EVT) [11],

a well-known statistical method, that builds upon the complementary cumulative

distribution function (CCDF or 1-CDF) of the observed execution times to project

the probability distribution of the execution time of a given run of a program

to exceed a threshold pWCET, see Figure 1.2. MBPTA is close to industrial

practice to compute WCET estimates and has been evaluated for avionics [7] and

automotive [12] setups.

PTA techniques pose some requirements on hardware and software designs [13],

Chapter 1. Introduction 5

that must either have: 1) fixed latency with no jitter (or upper bounded jitter

at analysis); or 2) randomized timing behavior. One of the hardware resources

whose timing behavior is randomized to enable PTA are cache memories. Caches

have been an object of intense study in the real-time domain [14–20], due to the

complexity they introduce to WCET analysis. In this line, a study conducted for

the European Space Agency [20] shows the difficulties of using caches since small

program changes that lead to different memory layouts can trigger pathological

cache behavior which were called cache risk patterns. The complexity in the

analysis of the cache lies on the fact that caches are stateful resources so whether

an access hits or misses depends on the location of memory objects (which easily

changes across different runs), which determines their cache set placement, and on

the sequence of cache accesses.

Time randomized (TR) caches [21, 22] employ random replacement and random

placement policies. They break the dependence between memory location of the

objects accessed and cache placement such that the hit/miss probability of an

access is not affected by the particular memory address accessed, as needed by

PTA [21]. TR caches have been shown to be competitive in terms of worst-

case performance with respect to standard time-deterministic caches deploying

modulo placement and least-recently-used replacement [10]. A wide variety of TR

cache configurations and hierarchies have been proven analyzable in the context

of measurement-based PTA (MBPTA) [6, 7]. Those configurations include multi-

level caches; direct-mapped, fully-associative and set-associative caches; shared

caches for instructions and data; write-through and copy-back write policies; etc.

1.2 Objectives

The static variant of PTA has recently received significant attention [5, 8, 9, 23].

This thesis contributes to SPTA development by identifying and mitigating one of

the major bottlenecks for SPTA to scale to industrial-size programs: its execution

time requirements. With real-time programs growing in size, the need to carry out

Chapter 1. Introduction 6

a convolution operation for every instruction in the object code may incur high

computation time requirements. Hence, efficient ways to perform convolutions in

the particular context of SPTA need to be found.

In the context of the measurement-based variant of PTA previous work focused on

exploring worst-case performance. While not used in schedulability analysis, the

average performance is critical to improve other non-functional metrics (e.g. power

consumption) in real-time systems. Also, in recent years, there is an increasing

trend of integrating multiple functionalities upon a single platform. In the general

case, these functionalities may have different levels of importance or criticalities -

the systems with this property are called mixed-criticality systems. Some current

real-time mixed-criticality systems comprise both real-time and high-performance

applications, which makes average performance (and computing ACET) an impor-

tant factor in the real-time domain. For instance, in the space domain it is well

accepted that systems will be dual-criticality [24] with control applications requir-

ing real-time guarantees, hence designed to meet requirements in the worst case;

and high-performance payload applications requiring high average performance.

Since caches have very high impact on average performance, a fast evaluation

of different cache setups becomes critical in the design of a system. However,

exploring the cache design space in a tractable manner with an increasing number

of interacting parameters remains an open problem due to the high number of

detailed simulations required. The problem exacerbates in the context of TR

caches. This occurs because, while for non-randomized caches one run may suffice

to determine their average performance under a given design, for TR caches several

runs are required to obtain a representative execution time distribution for each

cache design point. This is particularly critical in early processor design stages

to (1) design the cache architecture of a given processor for real-time systems;

(2) evaluate how reference applications behave on that cache setup; and (3) tune

applications to be run on that architecture. This thesis contributes to MBPTA

development by proposing an approach for fast evaluation of TR caches.

Chapter 1. Introduction 7

1.3 Contributions

Contribution 1. We analyze a set of optimizations of the convolution operation,

used in the context of SPTA. Some optimizations keep precision, whereas some

others sacrifice some precision to reduce computational cost, while preserving the

fact that the result is still a trustworthy WCET estimate for the program under

analysis.

• Among precision-preserving optimizations we consider convolution paral-

lelization, which has been largely studied previously in the literature [25, 26],

in two forms: (1) inter-convolution parallelization, where ETPs to be con-

volved are split into several groups that are convolved in parallel and (2)

intra-convolution parallelization where one (or both) of the ETPs to be con-

volved is split into sub-ETPs so that each sub-ETP is convolved with the

other ETP in parallel.

• Among optimizations that sacrifice some precision to reduce convolution

cost, we propose (3) discretization, such that few different forms of ETPs

exist and convolutions across identical ETPs don’t need to be carried out too

often. We also propose (4) sampling where several elements in the ETP are

collapsed into one [27], thus reducing the length of the ETPs to be convolved

and so the number of operations.

Our results show that discretization and sampling lead to the highest reduc-

tions in execution time, whereas the combination of intra-convolution and inter-

convolution parallelization provides second order reductions in execution time. In

particular, discretization and sampling reduce execution time by a factor of 10

whereas precision-preserving optimizations reduce it by a factor of 2, thus leading

to a total execution time reduction factor above 20 so that execution time is below

5% than with the original convolutions. This execution time reduction comes at

the expense of a pWCET increase around 3%.

Chapter 1. Introduction 8

As a result of this work we have published the following paper: Suzana Miluti-

novic, Jaume Abella, Damien Hardy, Eduardo Quiñones, Isabelle Puaut, Francisco

J. Cazorla, “Speeding up Static Probabilistic Timing Analysis”, in proceedings of

the 28th GI/ITG International Conference on Architecture of Computing Systems

(ARCS), Porto (Portugal), March 24-27 2015.

Contribution 2. We propose a new method to evaluate the ACET of TR caches

in a quick manner, called Probabilistic Analytic Cache mOdelling (PACO). Given

a set of reference programs from which we extract a trace of instruction and

data memory accesses, PACO derives tight estimates of cache miss probabilities,

Pmiss
1. We propose tight approximation formulas, which we implement in PACO,

to estimate Pmiss for every access in the program as a way to understand the

performance of programs running on top of TR caches, thus removing the need for

carrying out a large number of time-consuming cache simulations. PACO builds

upon the formulas used in the context of MBPTA [21, 22], whose purpose was

simply illustrating MBPTA compliance of those cache designs. PACO extends

formulas to a wide variety of cache setups and improves their accuracy.

• We assess the accuracy of existing formulas [21, 22] approximating Pmiss

for several cache hierarchies and configurations. We do so by comparing

the approximated probabilities obtained analytically and the more accurate

probabilities obtained with a very large number of simulations.

• We identify some sources of inaccuracy for a number of formulas due to their

inability to capture dependencies across random events in the context of TR

caches.

• We deliver some new approximations for some of those formulas proving that

higher accuracy can be achieved.

PACO has an overall inaccuracy below 2.6% across all cache configurations. PACO’s

execution time is comparable to that of running only 10 simulations per cache

1The probability of hit (Phit) is given by Phit = 1− Pmiss.

Chapter 1. Introduction 9

design-point, much less than needed to obtain stable (representative) average per-

formance estimates for TR caches.

As a result of this work we have published the following paper: Suzana Milutinovic,

Eduardo Quiñones, Jaume Abella, Francisco J. Cazorla, “PACO: Fast Average-

Performance Estimation for Time-Randomized Caches”, in proceedings of the 52nd

ACM/IEEE Design Automation Conference (DAC), San Francisco (California),

June 7-11 2015.

1.4 Organization

The rest of this thesis is organized as follows:

• Chapter 2 provides some background on cache designs, on timing analysis

of real-time systems and on the main characteristics of SPTA and MBPTA

relevant for this thesis.

• Chapter 3 presents our contributions to reduce the computational cost of

SPTA together with a set of experimental results.

• Chapter 4 introduces our model towards estimating analytically the average

performance on top of TR caches and evaluates empirically its accuracy.

• Finally, Chapter 5 summarizes the main conclusions of this thesis and points

towards interesting future works.

Chapter 2

Background and related work

2.1 Cache memories

In recent years processor and main memory speed have been increasing at different

rates, making the accesses to the main memory a major performance bottleneck

in modern systems. The problem exacerbates with the shifting of industry to-

ward multicores, as memory needs higher bandwidth capacity to respond to the

requests from multiple cores. One of the mechanisms introduced to mitigate these

bottlenecks are cache memories.

Cache memories are small and very fast, typically SRAM-based memories that

temporarily store copies of data from main memory likely to be used soon by the

processor. The motivation for caches comes from two properties of program code

and data:

• Temporal locality : memory words accessed in the past are likely to be ac-

cessed again (e.g. accesses in loops).

• Spatial locality : a future access is likely to be in the nearby location to the

past one (e.g. iterations through vectors)

10

Chapter 2. Background and related work 11

On an access to a memory address, first the caches are searched. If the datum at

the requested memory location is found in cache, it is returned with low latency

(the event is referred to as a cache hit). Otherwise, the datum is brought from

the main memory (or the next cache in a hierarchy, as explained in Section 2.1.3)

and returned with higher latency (the event is called cache miss). Typically, miss

latencies are one or more orders of magnitude higher than hit latencies.

To exploit spatial locality, a portion of data is transferred from memory to cache

(and stored in cache entries) on a cache miss rather than the single datum re-

quested. This group of several words on consecutive memory addresses is called

cache block or cache line. The common size of cache lines nowadays may range

between 16 and 128 bytes.

Along with the data block, each cache entry keeps its unique identifier called

tag and some state bits. As cache size is much smaller than main memory size,

several data blocks are mapped to the same cache entry - the tag is used to

differentiate them. Depending on the cache organization, only one or few of those

data blocks mapped to the same cache entry (or set of cache entries) can be stored

simultaneously in cache. The state bits are used for cache management. Two

most common ones are the valid bit, which indicates if the cache entry contains

valid data, and the dirty bit, which indicates if the data block was modified since

it was loaded to the cache entry and such modification was not propagated to the

following caches in the cache hierarchy (or main memory).

2.1.1 Cache organization

Depending on how data blocks are mapped to the cache entries, we differentiate

three common cache organizations: direct mapped, fully associative and set asso-

ciative. In a sense, the cache can be seen as a bidimensional array with a number

of rows (sets, S) and a number of columns (ways, W). Each entry in the table is

a cache line (cache entry) consisting of a fixed number of bytes (B). Typically, all

parameters (sets, ways and bytes per cache line) are a power-of-two.

Chapter 2. Background and related work 12

In direct mapped caches a data block can only be placed in a single entry in cache,

so they consist of a single column (1 way). They provide fast access and simple

implementation, since on a cache access a single entry needs to be checked to know

whether a cache hit or miss occurred. On the negative side they suffer from a lot

of conflicts since two cache blocks mapped to the same entry cannot coexist in

cache.

In fully associative caches a data block can be placed in any entry in cache, so

they consist of a single row (1 set). Due to their flexibility they usually provide

the highest hit rate, but they are slow and complex in design since, on a cache

access, all cache entries need to be looked up.

Set-associative caches emerge as a combination of both direct mapped and fully

associative caches in an intent for combining the advantages of both: low access

latency and high hit rates. Set-associative caches are organized as a group of direct

mapped caches with identical size, so they consist of a number of sets and ways.

A given data block can only be placed exactly in one cache entry in each way. On

a cache access, those cache entries (as many as cache ways) need to be looked up.

There is a clear tradeoff between the access latency (lower for a lower number of

cache ways) and the hit rate (typically higher for a higher number of cache ways).

In the case of direct mapped and set associative caches, the mapping of a data

block to a corresponding cache entry/set is defined by a placement policy (more

details are provided in Section 2.1.2).

Typically caches are direct-mapped or n-way set associative, where n is a small

number (≤ 8). Fully associative caches are used only for some specialized mem-

ories, like translation look-aside buffer whose size is small enough to keep access

latency low.

2.1.2 Cache management

Placement policy. The placement function determines the cache set in which a

data block is stored. The most common policy is modulo function which, assuming

Chapter 2. Background and related work 13

that the number of sets in cache is a power-of-two (S = 2s), extracts s bits from

the memory address being accessed and uses them as an index. Though easy to

implement, the main limitations of this scheme is that addresses are systematically

placed across cache sets. As a consequence certain memory access patterns may

lead to repeated misses in the cache. For instance, addresses separated by k ·S ·B

bytes in memory where k ∈ N and S ·B is the size of one cache way, are mapped

to the same cache set systematically.

Replacement policy. To be able to load a new data block to cache, it is

often required to evict another one that was fetched in the past due to limited size

of caches. The replacement policy determines how to choose a line for eviction,

called victim, in the set where the data block being fetched is mapped. In the case

of direct mapped caches, there is only one choice - the only line in the cache set

where the block is mapped. For fully associative and set associative caches several

policies are proposed, among which the most popular is LRU (least recently used).

Write policy. When a data block is loaded in cache, there are at least two

existing copies of it: one in cache, another in memory and, potentially, others

in other cache memories in the hierarchy. The write policy determines whether

on a write operation only the copy in this cache is updated or it is also updated

the copy in the next level in the memory hierarchy (either another cache or main

memory). If the next level is systematically updated, then we talk about write-

through policy. If only the copy in cache is updated, then we talk about copy-back

policy.

When copy-back policy is used, once a cached copy is chosen for replacement, the

copy in the following level in the memory hierarchy needs to be updated. A special

dirty bit is used to track whether the cache copy has been modified since it has

been loaded in cache. Write operations in the next memory level will occur only

if the data block is marked as dirty.

Chapter 2. Background and related work 14

Write allocation. When a data block is not loaded in a cache, one may choose

between two actions on a write operation: to load the block in the cache and modify

it - write-allocate policy - or to modify block directly in memory without fetching

it to the cache - no-write allocate policy. Write-allocate is commonly used with

copy-back designs, whereas no-write allocate is used with write-through designs.

2.1.3 Multi-level cache hierarchy

Choosing an appropriate cache size is an important design issue. While increasing

the size of the cache improves the hit rate, it results in longer hit latency and higher

power consumption. This trade-off is addressed by building a cache hierarchy with

multiple levels, where small fast caches are backed up by larger, slower caches.

First data is looked up in the first level cache, if not found next level is checked,

until data is found or eventually loaded from main memory.

Another design choice is whether to use the same cache for data and instructions.

As memory regions that store code and data are commonly independent of each

other, using separate - split - first level caches allows segregating instruction and

data accesses (thus decreasing the number of cache ports) without jeopardizing

cache consistency. The other choice is unified cache, which is typically the choice

for second level caches and beyond due to the more effective use of the cache

space and the fact that data and instruction accesses occur seldom so a single port

can satisfy both. Using multi-level and split caches gives flexibility at choosing

different cache policies.

The typical cache hierarchy nowadays employs: two small first level caches, one

for data (DL1) and one for instructions (IL1), optimized for speed; a larger second

level cache (L2) optimized for hit rate, usually unified; and sometimes an even

larger third level cache (L3).

Chapter 2. Background and related work 15

Inclusion property. When a cache block is loaded to a cache level, it might

impact how other levels of cache are managed, as determined by the inclusion

property. We differentiate inclusive, exclusive and non-inclusive cache hierarchies.

In an inclusive cache hierarchy, all lines from a certain cache are duplicated in the

next level in the hierarchy. This simplifies the management when other cores in a

multicore system want to remove a cache line - only last level cache is checked to

determine whether a line is present. But it limits the overall capacity of a hierarchy

to the size of the last level cache since cache contents in the lower (smaller) levels

also exist in the higher (larger) levels.

In an exclusive cache hierarchy (very uncommon) only one copy of a line exists

in the whole hierarchy. While it maximizes overall cache capacity, searching for

a cache line might lead to checks on all levels, and fetching a data block into a

cache level may create a number of cascade effects to ensure that no cache line is

replicated.

In a non-inclusive cache hierarchy there are no restrictions nor guarantees on data

duplication.

2.1.4 Time randomized caches

A time randomized cache, shown in Figure 2.1, employs random replacement and

random placement policies.

We use Evict-on-Miss (EoM) as Random replacement (RR) policy, under which,

on the event of a miss in a given set, a victim line in that set is randomly selected

to be evicted.

Random placement (RP) [21] uses a random number, called random index iden-

tifier (RII), generated either by hardware or software, and the address being ac-

cessed as its inputs. A hash function combines both and provides a unique and

constant cache set (mapping) for the address along the execution. It is noted that

if the RII changes, the cache set in which the address is mapped changes as well,

Chapter 2. Background and related work 16

Figure 2.1: Time randomized cache

so cache contents must be flushed for consistency purposes. Changing the RII at

program execution boundaries reduce flushing overheads. The RP policy proposed

in [21] ensures that, given a memory address and a set of RIIs, the probability of

mapping such address to any given cache set is the same and independent from

other addresses. Therefore, the particular memory location of a given data block

in memory is irrelevant for each hit/miss probabilities, thus removing systematic

pathological cache access patterns.

2.2 Timing analysis and its challenges

WCET computation is an important research topic in the real-time community.

A number of methods have been proposed to respond to the challenge of deriving

both reliable and tight WCET estimates, with limited cost and effort. However,

each of these methods relies on certain assumptions on the timing behavior of the

system, while in reality, ascertaining these assumptions may be overly difficult or

impossible [28].

Static timing analysis derives WCET estimates without running a program - it

analyzes the program structure to determine the possible program flows (high-level

analysis) and construct a model of a hardware to determine the execution time

Chapter 2. Background and related work 17

of instructions (low-level analysis). To be able to cover all possible input values

and states, static methods rely on abstractions for both hardware (e.g. abstract

hardware states) and software (e.g. contexts of execution).

The main limitation of the static approach is that the correctness of the provided

estimates depends on the availability of information needed to build an accurate

timing model and information on the program flow - flow facts. The timing model

may be inaccurate due to the inaccuracies introduced along the typical hardware

development process or intentionally, due to confidentiality of information it may

reveal. The flow facts may be inaccurate due to the change of the control flow dur-

ing compilation, or inaccuracy in user annotations which are commonly required.

Measurement-based timing analysis derives WCET estimates based on measure-

ments on top of the real hardware platform. The user needs to provide the stressful,

high-coverage input data. The longest execution time is recorded and the WCET

estimate is computed by adding an engineering margin to make safety allowances

for the unknown.

The correctness of WCET estimates derived with the measurement-based approach

is challenged by multiple factors: the platform used at analysis time has to be

identical to the one used at deployment, producing the worst-case input is overly

difficult as the input space of a program is enormous, typically there are no guar-

antees on the validity of the engineering margin, etc.

2.3 Probabilistic timing analysis

The main weakness of traditional (also known as deterministic) timing analysis

techniques is that they require detail knowledge on hardware and software to com-

pute WCET estimates. If some information about the system behavior is missing,

the analysis needs to assume the worst-case, leading to potentially pessimistic

(overestimated) WCET estimates, that further results in a waste of computing

Chapter 2. Background and related work 18

resources. Acquiring a detail knowledge on hardware/software behavior in mod-

ern systems (with multi-level cache hierarchy, pipelines, branch prediction, etc.) is

very difficult and costly, if at all possible. The problem exacerbates in the presence

of timing anomalies in the system, that occur when a local non-worst-case event

(e.g. cache hit) may lead to the WCET globally.

Probabilistic timing analysis technology has evolved during the last decade [3–9]

and has been proven a strong competitor for traditional timing analysis tech-

niques [2]. PTA aims to overcome the limitations of deterministic timing analysis,

by reducing the amount of information needed to produce reliable and tight WCET

estimates. It employs certain probabilistic analysis techniques, such as extreme

value theory, to provide WCET estimates that are guaranteed to be exceeded with

a specified, arbitrarily low, probability. Applying probabilistic analysis techniques

on real-time systems is possible if the timing behavior of hardware/software com-

ponents is constant (or upper-bounded to the highest latency) or is probabilistic

having the same probability distribution at analysis and during operation, which is

not a case with conventional, deterministic architectures. Thus, PTA advocates for

novel, PTA-friendly architectures, in which resources are either time randomized

or forced to take their worst-case latency.

Some previous work related to PTA has used different, inconsistent, terminology:

stochastic analysis [29], statistical analysis [30], probabilistic analysis [31, 32] and

real-time queuing theory [33]. The first paper that proposed a method based on

extreme value statistics to model the worst-case execution time is [34], which

was later improved in [4]. The authors in [35] point out the limitations of previous

solutions - they apply extreme value theory in the general case. To be able to apply

EVT correctly, platform and data need to meet certain statistical properties, which

is addressed in [36]. Some other previous work has used extreme value theory in

computing systems in a different context, such as task scheduling [37].

Chapter 2. Background and related work 19

2.3.1 SPTA

In static probabilistic timing analysis, execution time probability distribution for

each instruction (ETP) is determined statically from a model of the system. Along

a given execution path, assuming that the probabilities for the execution times of

each instruction are independent, SPTA is performed by deploying the discrete

convolution (⊗) of ETPs that describe the execution time for each instruction

along that path. The final outcome is a probability distribution representing the

timing behavior of the entire execution path. For the sake of clarity we keep the

discussion at the level of a single execution path.

More formally, if X and Y denote the random variables that describe the execution

time of two instructions x and y, the convolution Z = X ⊗Y is defined as follows:

P{Z = z} =
∑k=+∞

k=0 P{X = k}P{Y = z − k}. For instance if an instruction x is

known to execute in 1 cycle with a probability of 0.9 and to execute in 10 cycles

with a probability of 0.1 and an instruction y has an equal probability of 0.5 to

execute in 2 or 10 cycles, we have:

Z = X ⊗ Y = ({1, 10}, {0.9, 0.1})⊗ ({2, 10}, {0.5, 0.5})

= ({3, 11, 12, 20}, {0.45, 0.45, 0.05, 0.05})

ETPs can be defined for each static or dynamic instruction in the program. Static

instructions are those present in the binary. If ETPs are defined for static instruc-

tions, then they must safely upper-bound all dynamic instances of the instruction.

For instance, the ETP of an instruction in a loop must upper-bound its timing

behavior in all iterations. Alternatively, ETPs can be defined for each dynamic

instruction. For instance, we can define an ETP for each execution (dynamic) of

an instruction in a loop. SPTA requires that the ETP of each instruction is not

affected by the execution of previous instructions. If it is not possible to achieve

independence across ETPs at the instruction level, another possible solution is to

Chapter 2. Background and related work 20

compute ETPs for groups of instructions so that we obtain the ETP of their com-

bined execution. If the ETP obtained for the group of instructions is independent,

it can be convolved with the other ETPs normally.

2.3.2 MBPTA

In measurement-based probabilistic timing analysis, execution times are collected

by means of measurements and extreme value theory is applied to predict the

high execution times (belonging to the tail of the distribution). Based on the

provided measurements, EVT estimates the parameters of the distribution that

best fit the tail of interest. The WCET estimate is the value from the distribution

corresponding to the chosen exceedance probability.

The critical decision for MBPTA is how to select the sample of execution times

provided to the extreme value theory method. EVT requires that execution times

are described with a truly random variable, and so that the execution times sample

used for EVT passes some statistical tests proving its independence and identi-

cal distribution. Secondly, the sample needs to be representative of the target

population, to compute reliable WCET estimates.

In order to produce a representative sample, it is important to identify all sources

of execution time variability (SETV), such as memory placement or input data,

and control their influence during the collection of the sample used by EVT. This

is achieved by enforcing the hardware to have the required properties and by col-

lecting measurements conveniently. For instance, the impact of some SETV is

upper-bounded by enforcing a proper initial state when collecting measurements:

e.g., one may remove the impact of initial cache state on execution time by enforc-

ing an empty initial cache (in systems without timing anomalies). Other SETV

are controlled by using proper MBPTA-compliant hardware. This can be done by

enforcing worst case timing behavior or time randomization of the hardware/soft-

ware component. For instance, variable latency functional units (e.g., a divider)

are enforced to operate at their worst latency regardless of the values operated.

Chapter 2. Background and related work 21

Conversely, cache memories use random placement and replacement policies so

that cache hit/misses occur with a probability independent of the memory loca-

tion of the different program objects (code, data, stack, etc.).

To get valid WCET estimates with MBPTA it is enough to capture the effect of

each SETV across different runs, while traditional MBTA methods require the

tests to trigger the combination of all worst SETV during a single execution.

Time randomized platforms improve the effectiveness of MBPTA, as they reduce

the number of SETV that has to be controlled by the user during the collection

of measurements to produce reliable WCET estimates. For further details on the

application of MBPTA we refer the interested reader to the work in [36] and [38].

2.3.3 Timing analysis of cache memories

Each access to a cache memory may result in two possible outcomes: cache hit and

cache miss, where these events have latencies that may differ in multiple orders

of magnitude. This introduces a high variability in the execution time of cache

access, and bounding it by assuming always a cache miss is overly pessimistic.

Therefore, timing analysis needs to determine the outcome of each cache access,

which depends on multiple factors: initial cache state, previous accesses to the

cache - their order and memory addresses being accessed - and cache organization

and management policies.

In the case of PTA, one needs to determine the probabilities of hit/miss in a

cache. The ETP of a memory operation in a simple single-level cache hierarchy

is as follows: ETPmemop =< (lhit, lmiss), (phit, pmiss) >, where lhit and lmiss

are the hit and miss latencies respectively and phit and pmiss their corresponding

probabilities.

Pmiss for TR caches has been studied from different angles for both SPTA and

MBPTA. It is worth noting that MBPTA only needs probabilities to exist, i.e.

cache accesses need to have a probabilistic nature, but does not need to determine

the actual probabilities. To that end, in the context of MBPTA only approximation

Chapter 2. Background and related work 22

formulas to Pmiss have been given. Instead SPTA [5, 8, 9] needs those probabilities

to apply convolution across ETPs of instructions. In general, cache accesses are

not independent and whether an access hits or misses impacts the probability of

hit/miss of the following accesses. However, SPTA requires independence across

ETPs to apply convolution. Thus, for SPTA upper-bound formulas to Pmiss have

been derived since they are needed to have independence for WCET estimation

purposes given that any dependence cannot lead to higher Pmiss values than those

already had in the ETPs.

2.3.3.1 Miss probability for TR caches under SPTA

SPTA is intended to provide a WCET distribution upper-bounding the actual

execution time distribution of the program, thus it needs Pmiss used during timing

analysis to match or upper-bound the real probability of miss once the system is

deployed. Moreover, convolution operator used in SPTA requires independence

across ETPs to be applied.

When time randomized caches are used, there is an intrinsic dependence among

the hit probability of an access (Phit) and the outcome of previously executed

cache accesses [5, 8]. Existing techniques to break this dependence create a lower

bound function to Phit (so an upper bound to Pmiss) of every instruction to make

it independent – for WCET estimation purposes – from previous accesses [5, 8, 9].

Without loss of generality and for the sake of this explanation, we assume that

each address corresponds to a different cache line. We use capital letters, e.g.

A, to refer to (cache line) addresses. Whenever a subindex is added, e.g Ai, it

refers to the i-th access to address A. The superindex is the absolute access

count number in the considered sequence. For instance in our reference sequence:

(Aj−1, B
1
1 , B

2
2 , C

3
1 ..., F

k
1 , Aj) we focus on deriving Pmiss for a given access Aj based

on the accesses carried out since the last access to A, Aj−1. We generically refer

to the i-th access between Aj−1 and Aj as X i. For instance, X3 corresponds to

C3
1 , i.e. the first access to address C.

Chapter 2. Background and related work 23

For a fully-associative cache with W ways, for the reference address sequence in

which no access X l, with 1 ≤ l ≤ k, accesses cache line A, the following upper-

bound can be used [9]:

PmissAj
(W) =

 1−
(
W−1
W

)k
if k < W

1 otherwise
(2.1)

It has been shown that Pmiss approximation formulas for MBPTA [21, 22, 39],

despite being exact for some specific access sequences and upper-bounds for some

others, do not provide the independence across ETPs needed by SPTA. Thus, they

may lead to optimistic – so non-trustworthy – WCET estimates in the context of

SPTA. As a result, SPTA relies on its own set of upper-bound probabilities that

provide independence across ETPs (instructions). For instance, SPTA requires for

each cache access an estimate that upper-bounds its miss probability regardless of

whether previous accesses hit/miss in cache, as it is the case of Equation 2.1.

While upper-bound formulas to Pmiss are interesting from a WCET perspective,

they are of little interest from an average case perspective as they can be inordi-

nately pessimistic with respect to the average case.

2.3.3.2 Miss probability for TR caches under MBPTA

For MBPTA approximation formulas to Pmiss are used as a way to illustrate the

probabilistic nature of the events occurring in TR cache organizations. For in-

stance, for our reference sequence the miss probability on a fully-associative cache

where no constraint is placed on the miss probability of X l (where 1 ≤ l ≤ k), is

approximated as follows:

PmissAj
(W) = 1−

(
W − 1

W

)l=k∑
l=1

Pmiss
Xl

(2.2)

However, other applications of Pmiss approximation formulas to measure average

performance and, more importantly, their accuracy have not been studied yet.

Chapter 2. Background and related work 24

We cover this gap by proposing PACO, which relies on those approximations and

improves them to compute Pmiss for instructions, data sequences and full programs

in Chapter 4.

Chapter 3

WCET in Static Probabilistic

Timing Analysis

3.1 SPTA performance issues

We have identified convolution of Execution time profiles (ETPs) as the most

costly operation in Static probabilistic timing analysis.

Convolution complexity. The canonical form of convolution includes three

steps:

• Convolution step: Adding latencies and multiplying probabilities for each

pair of elements 〈latency, probability〉 from both ETPs, as illustrated in

Algorithm 1 (etpr is a result vector after convolution of vectors etp1 and

etp2).

• Sorting step: Sorting elements in the result vector with respect to their

latencies from lowest to highest.

• Normalization step: Combining elements with identical latencies in the result

vector by adding their corresponding probabilities, as shown in Algorithm 2

(etpin is the outcome of the two ETPs convolved with sorted elements and

25

Chapter 3. WCET in Static Probabilistic Timing Analysis 26

etpout is its normalized form). Since elements are previously sorted, repeated

latencies may occur among consecutive elements.

Algorithm 1 Convolution step

1: c← 1
2: for i = 1 to N do
3: for j = 1 to N do
4: etpr.lat[c]← etp1.lat[i] + etp2.lat[j]
5: etpr.prob[c]← etp1.prob[i] ∗ etp2.prob[j]
6: c← c + 1
7: end for
8: end for

Algorithm 2 Normalization step

1: c← 0
2: etp out.lat[0]← etp in.lat[0]
3: for i = 1 to N do
4: if etp in.lat[i] = etp in.lat[i− 1] then
5: etp out.prob[c]← etp out.prob[c] + etp in.prob[i]
6: else
7: c← c + 1
8: etp out.lat[c]← etp in.lat[i]
9: etp out.prob[c]← etp in.prob[i]

10: end if
11: end for

To compute timing complexity of canonical convolution, let us assume that both

ETPs being convolved have size N . The convolution step requires N2 operations to

derive the probability and timing vectors, therefore it has a quadratic complexity

(O(N2)). In the next step the resulting vector of N2 elements needs to be sorted.

While in general sorting has a cost in the order of O(M logM) for a vector with

M elements, the resulting ETP vector can be divided into N parts of N elements,

each of them internally sorted. Thus, in practice the cost of sorting can be reduced

down to linear complexity ((O(M))). In our case, M = N2, the size of the

resulting vector after the convolution step. Finally, normalization step has a linear

complexity w.r.t. the N2 elements of the resulting vector. Thus, the complexity

of all steps in the convolution is O(N2) where N is the size of the ETPs being

convolved.

Cost of individual operations. In addition to high complexity of convolution,

SPTA requires working with very small probabilities. Let us assume a sequence

Chapter 3. WCET in Static Probabilistic Timing Analysis 27

of 30 instructions described with identical ETPs: ETP =< (1, 100), (0.2, 0.8) >.

After applying convolutions, the resulting ETP may have latency 30 (i.e. all

instructions take 1 cycle) with probability equal to (0.2)30. Operating with such

small values by using IEEE 754 standard floating-point representations may lead

to inaccurate results, even for 64-bit machines.

To overcome the problem of inaccuracy, convolution in SPTA operates on arbitrary-

precision floating-point (apfp) numbers, whose precision is not limited by fixed-

precision arithmetic implemented in hardware. An example of usage of arbitrary-

precision arithmetic is public-key cryptography or computation of fundamental

mathematical constants such as π to millions of digits.

While apfp libraries can provide the required precision, they significantly increase

the latency to carry out computations. In that respect, in the canonical form

(see Algorithm 1) both floating point numbers in the multiplication in line 5 are

apfp. This incurs the call to a method of an apfp library that results in dozens of

assembly instructions to carry out a single apfp precision operation. We provide

more details on the cost of the apfp precision in Section 3.3.

3.2 Optimizing SPTA performance

In this section we analyze a set of optimizations to decrease SPTA timing re-

quirements by either reducing the number of needed convolutions or the cost per

convolution: parallelization, sampling and discretization.

3.2.1 Parallelization

We can parallelize convolution in two ways:

• By dividing a single convolution of two ETPs into several threads, referred

to as intra-convolution parallelism.

Chapter 3. WCET in Static Probabilistic Timing Analysis 28

• By carrying out several convolutions in parallel, referred to as inter-convolu-

tion parallelism.

Intra-convolution parallelism.

Canonical convolution (see Algorithm 1) requires iterating through both ETPs

being convolved to add their latencies and multiply their probabilities. As there

are no data dependencies between computations in each iteration, two nested loops

can be easily parallelized in multiple ways.

Let us assume two ETPs containing N and M elements respectively. One of the

ways to parallelize convolution is to split one of the vectors - e.g. ETP1 vector

with N elements - into T subETPs of N/T points each, where T is the number

of available cores/processors. We convolve each subETP with ETP2 vector in

parallel and get T different ETPs as result. Finally, we insert elements from all

obtained ETPs into a single ETP and continue to sorting and normalization steps.

Inter-convolution parallelism.

Another way to exploit parallelism is to run convolutions of different ETPs in

parallel. In the context of SPTA typically each instruction has its own ETP.

The number of instructions per program may be in the order of thousands or

hundreds of thousands. Moreover, if ETPs are produced at each instruction invo-

cation (dynamic instructions), the number of ETPs - and so the number of needed

convolutions - can be in the order of millions.

To parallelize convolutions of M different ETPs, we split all ETPs into T chunks

of Mc = M/T ETPs each (where T is the number of available cores/processors).

We assign each chunk to a different core/processor. ETPs inside one chunk can be

convolved in two possible ways: sequential order and tree reduction, as illustrated

in Figure 3.1.

Chapter 3. WCET in Static Probabilistic Timing Analysis 29

To compare both approaches, we compute the number of required operations (ad-

ditions of latencies and multiplications of probabilities for each pair of ETPs) to

convolve all ETPs inside a chunk. We assume that each ETP contains N elements.

Sequential order within a chunk. We convolve ETPs in-order. The convo-

lution of the first two ETPs requires N2 operations and results in an ETP with

up to N2 elements. In the next step, we convolve the previously generated ETP

with the third ETP in the chunk, which requires up to N3 operations, and so on.

Equation 3.1 shows the maximum number of operations to perform.

OpCountMc
seq =

Mc∑
i=2

(
N i
)

(3.1)

(a) Sequential order

(b) Tree reduction

Figure 3.1: Convolution of ETPs within a chunk

Tree reduction within a chunk. We convolve ETPs in pairs. First we convolve

the Mc ETPs, where each convolution requires N2 operations. Then we convolve

the resulting Mc/2 ETPs, each containing up to N2 elements, where each convo-

lution requires up to N4 operations and so on. Equation 3.2 shows the maximum

number of operations to carry out.

Chapter 3. WCET in Static Probabilistic Timing Analysis 30

OpCountMc
tree =

dlog2 Mce∑
i=1

(
Mc

2i
×N2i

)
(3.2)

In the case when the number of ETPs is not a power-of-two, we perform an

adjustment phase: given M ETPs, we convolve as many pairs as needed so that

we obtain M ′ ETPs where M ′ is a power-of-two. Formally stated, given M such

that (log2M) mod 1 6= 0, we convolve as many pairs as needed so that we obtain

M ′ where M > M ′ > M/2 and (log2M
′) mod 1 = 0.0.

3.2.2 Sampling

The number of elements in ETPs increases exponentially with the number of per-

formed convolutions. E.g. convolution of two ETPs of N elements results in an

ETP with up to N2 elements. To keep the number of elements in the ETP under

control, and so reduce the number of operations required in further convolutions,

sampling techniques are used [27].

In the context of SPTA, sampling consists of two steps:

• Choosing certain number of samples - 〈latency, probability〉 pairs - to keep

from the original ETP.

• Ensure that the sample ETP is an upper-bound to the original one. This is

required to guarantee that probabilistic WCETs are never underestimated.

It is achieved by distributing probabilities of omitted points to the right (to

the elements with higher latencies).

For example, let us assume the 6-point ETP:

ETP 6p =< (l1, l2, l3, l4, l5, l6), (0.2, 0.1, 0.05, 0.25, 0.1, 0.3) > (3.3)

Chapter 3. WCET in Static Probabilistic Timing Analysis 31

in which li+1 > li and which we want to sample into a 3-point ETP. A possible

approach to do so is with the technique called uniform space re-sampling, resulting

in the ETP shown in Equation 3.4.

ETP 3p
sampled = < (l2, l4, l6), (0.2 + 0.1, 0.05 + 0.25, 0.1 + 0.3) >

= < (l2, l4, l6), (0.3, 0.3, 0.4) > (3.4)

Several ways of sampling an ETP are proposed that ensure that a sample ETP is

a reliable upperbound of the original one with low increase in the pessimism [27].

3.2.3 Discretization of probabilities

Under SPTA, the sources of probabilistic behavior usually come from time ran-

domized caches. For instance, in the presence of a data cache as the unique

randomization source, loads and stores have the form < (lhit, lmiss), (phit, pmiss) >,

where phit is the probability of the load/store to hit with its associated latency

lhit. The other operations have fixed latency. The basic idea of discretization is

to round up (or down) the different probabilities to a multiple of a given rounding

value rv, such that all load/stores have only few different probabilities. The out-

come is that in many cases we end up convolving N times the same ETP which

can be done with a smart implementation of the power convolution function. The

tradeoff for reduction in execution time is incurred pessimism, by increasing the

probabilities of higher latencies.

For instance, let us assume ETP1 =< (1, 20), (0.24, 0.76) >. We perform dis-

cretization with a rounding value rv = 0.1. To ensure that the new ETP is an

upper-bound of the original one, we round up the probability of the higher latency

(l = 20) to a multiple of 0.1 (from 0.76 to 0.8) and round down the probability

of the lower latency (l = 1, from 0.24 to 0.2). This results in ETP1rounded =<

(1, 20), (0.2, 0.8) >. By substracting from the probability of the lower latency the

Chapter 3. WCET in Static Probabilistic Timing Analysis 32

same value added to the probability of higher latency, the total sum of probabilities

in the ETP remains 1.

Formally stated rounding consists in adding ε to the probability of the high latency

(and subtracting ε from the probability of low latency) such that it becomes a

multiple of a given rounding value rv, where rv ≤ 1 and 1 mod rv = 0, so that

(phigh lat + ε) mod rv = 0.

The benefit of the rounding step is that different ETPs get an identical form.

Assuming ETP2 =< (1, 20), (0.22, 0.78) >, with different probability values than

ETP1, applying discretization will result in a ETP2rounded =< (1, 20), (0.2, 0.8) >,

identical to ETP1rounded. The number of possible forms of ETPs reduces to g =

1/rv+ 1, where g is typically a relatively low value (e.g., g = 11 if rv = 0.1). The

convolution of ETPs of the same form can be performed by applying fast power

operation, explained later in the section. Finally, result ETPs for each form (up to

g) are convolved normally, which can be parallelized, as described before in 3.2.1.

Convolution of E copies of the same ETP. The result of convolving E times

an ETP is shown in Equation 3.5.

ETP pow(E) = ETP1 ⊗1 ETP1 ⊗2 ETP1....⊗E−1 ETP1 (3.5)

The idea towards reducing the execution time of the power function of convolutions

is to breakdown E into an addition of power-of-two values. For example, E = 7

can be decomposed into 4, 2 and 1. First, we convolve ETP
pow(2)
1 = ETP1⊗ETP1.

Second, we convolve ETP
pow(4)
1 = ETP

pow(2)
1 ⊗ ETP pow(2)

1 . Finally, we convolve

at most all those ETPs to get the result ETP, as shown in Equation 3.6. In this

case, the power operation requires 4 convolutions, while the sequential approach

requires 6.

ETP
pow(7)
1 = ETP

pow(4)
1 ⊗ ETP pow(2)

1 ⊗ ETP pow(1)
1 (3.6)

Chapter 3. WCET in Static Probabilistic Timing Analysis 33

In general, generating the power-of-two ETPs requires dlog2Ee − 1 convolutions.

In the next step, convolving at most each such ETP (including the original one,

ETP1) requires up to dlog2Ee− 1 additional convolutions. In overall, power oper-

ation needs to carry out the number of convolutions shown in Equation 3.7, while

a sequential approach requires E − 1 convolutions.

NumConv ≤ 2× (dlog2Ee − 1) (3.7)

Multiple cache memories. To describe discretization in the case of architectures

with more randomization sources, let us consider the system with different cache

memories (i.e. instruction and data caches). In such case, we independently round

miss probabilities up with rv1 and rv2 for each cache respectively. Then, we obtain

the ETP for the instruction with at most 4 different latencies corresponding to

the 4 combinations of hit and miss for both caches. As a result we will have g1

and g2 different ETP types for each cache respectively. The resulting number of

ETP types for both caches in the first discretization step is, therefore, g1×g2. For

instance, if rv1 = 0.05 and rv2 = 0.1, then g1 = 21, g2 = 11 and g1 × g2 = 231.

Alternatively, one could compute the ETP for each instruction and each cache

independently and then perform the convolution of all those ETPs (2 ETPs per

instruction). This is particularly useful if different caches have the same latencies

given that this increases the chances of using the power function for ETPs.

Precision. While we use an apfp library to gain precision, some optimizations

such as discretization and sampling reduce precision. However, those optimizations

sacrifice precision in a trustworthy way from a WCET estimation perspective as the

resulting ETP always upperbounds the exact one. Conversely, using insufficient

precision to operate on probabilities would lead to an uncontrolled loss of precision

unacceptable for WCET estimation.

Chapter 3. WCET in Static Probabilistic Timing Analysis 34

3.3 Experimental Results

This section evaluates the computation time reduction of convolution operation

in the SPTA domain achieved by the presented optimizations, when applied in

isolation and in a combined manner. In the case of the optimizations which trade

off computation time reduction for loss in precision, we also evaluate the increase

in pessimism. We integrated all optimizations into an ETP management library,

developed in C++.

3.3.1 Experimental conditions

Platform and apfp library.

We use a quad-core AMD OpteronTM processor connected to a 32GB DDR2 667

MHz SDRAM. We run a standard Linux distribution on top of it.

For arbitrary-precision floating-point computations we use the GNU mpfr (multi-

ple-precision floating-point) library, http://www.mpfr.org/.

The precision of the mpfr library was selected according to the criticality level

of the target applications. Obviously, the higher the precision the higher each

operation takes to execute and the higher are the memory requirements of the

library. As an example, for commercial airborne systems at the highest integrity

level, called DAL-A, the maximum allowed failure rate per hour of operation [40]

in a system component is 10−9. Let us assume that a task is fired every 10−2

seconds (i.e. 102 activations per second). In order to prevent that task to suffer

a timing failure with a probability lower than 10−9 per hour, its probability of

timing failure per activation, TPFact should be as follows:

TPFact ≤
10−9 timing failures/hour

(3600× 102 task activations/hour)
(3.8)

http://www.mpfr.org/

Chapter 3. WCET in Static Probabilistic Timing Analysis 35

Therefore, an exceedance probability threshold of 10−15 (TPFact ≤ 10−15) suffices

to achieve the highest integrity level. Similarly, exceedance probability thresholds

can be derived for other domains and safety levels. We have observed empirically

that even if millions of multiplications are performed, a precision of 20 decimal

digits suffices to keep accurate results for the 15th decimal digit (and beyond). This

means that when enforcing the 20th decimal digit to be rounded up or down for

trustworthiness reasons, such pessimism does not propagate up to the 15th decimal

digit. Thus, we regard 20 decimal digits as enough for our needs, and select this

value as a default value in the experiments. The impact of this parameter in terms

of computation cost is studied later in this section.

Optimization parameters.

When applying inter-convolution parallelism, one has to choose between tree reduc-

tion and sequential order when convolving the ETPs within each parallel chunk.

Tree reduction typically requires fewer operations than those required with se-

quential processing ETPs (up to 50% fewer operations). However, it makes ETP

size grow faster until their maximum size, which is limited by calling the sampling

function. Hence with tree reduction most of operations involve working with two

ETPs of E elements. Instead, sequential order also make ETPs to grow up to E

elements, but keeps convolving it with N -elements ETPs, with N << E. This

results working with lower-size ETPs and incurring less calls to the sampling func-

tion. Overall, this makes the sequential order to work faster than tree reduction

and makes it our default choice in the rest of the thesis.

As far as sampling is concerned, many sampling methods have been defined and

compared in [27]. Among these, we use uniform space sampling, as it provides a

good balance among execution time requirements and the pessimism introduced,

and is the current state of the art in the field of PTA. In the experiments, unless

otherwise stated, sampling will be systematically applied, and the size of ETPs

will be limited to 1,024 elements. If larger ETPs are explicitly used (i.e. 2,048 or

Chapter 3. WCET in Static Probabilistic Timing Analysis 36

ISA apfp
≥ = + * / ≥ = + * /

1 1 1 2 3 5 22 17 36 75

Figure 3.2: Cost of each operation normalized to native ISA FP add operation

4,096 elements) and sampling is applied, the size of the original ETPs determines

the size of the output ETPs.

Test-case generation and metrics.

In each experiment we use several ETPs with different number of points. These

input ETPs have been generated randomly. To measure the improvement brought

by each optimization, we use the execution time reduction, typically w.r.t. non-

optimized execution in a single core. Pessimism resulting from some optimizations

(sampling and discretization) is also computed w.r.t. to the non-optimized results.

Pessimism is measured in terms of weight of the ETP, which is obtained as W =∑N
i=1 pi × li where N is the number of elements in the ETP, and pi and li are

the probability and latency at position i respectively [27]. Then, the weight of

the ETP after optimizations (Woptim) is compared w.r.t. to the ETP without

optimizations (Wbaseline).

3.3.2 Impact of apfp library precision on the cost of each

operation

To evaluate the price to pay for having sufficient precision in the ETPs, we first

evaluate the execution time of each basic operation used by convolutions (compar-

ison, assignment, addition, multiplication, division). All values are normalized to

the execution time of the native FP addition operation, i.e. the operation to add

FP numbers in the ISA. Results have been obtained empirically on top of our pro-

cessor by running micro-benchmarks that exercise the same number of operations

of each type.

Chapter 3. WCET in Static Probabilistic Timing Analysis 37

The results are given in Figure 3.2, with a precision of the apfp library set to a high

value, here 300 digits. We observe that the impact of the apfp library is significant.

The comparison is the apfp operation with lower overhead being its execution

time 5x higher than an ISA regular FP addition. We attribute this to the fact

that it is often completed after comparing only a subset of the digits. Addition

and assignment have a similar slowdown around 20x while multiplication and

division have a latency 36x and 75x higher than the ISA addition respectively. This

represents an increment of more than 22x and 26x w.r.t. their ISA counterparts.

(a) Normalized execution time

(b) Normalized memory requirements

Figure 3.3: Execution time and memory requirements for
different mpfr library precisions

To further evaluate the impact of the apfp library precision, we run a single-

threaded version of the convolution varying the precision of mpfr from 300 digits

down to 20, which is considered reasonable for SPTA as explained earlier. Fig-

ure 3.3 shows the reduction in execution time (3.3(a)) and memory requirements

Chapter 3. WCET in Static Probabilistic Timing Analysis 38

(3.3(b)) as the number of digits decreases from 300 to 20, when convolving two

ETPs. Two sizes of ETPs are experimented: 2,048 (i.e. 2K) and 1,024 (i.e. 1K),

and sampling is applied. We observe significant reductions of more than 35%

and 45% in execution time and memory respectively when moving from 300 to 20

digits, for both ETP sizes.

3.3.3 Parallelization

Intra-ETP parallelization.

In this experiment we carry out in parallel the convolution of 2 ETPs, with sort-

ing, sampling and normalization turned off. Only the first step of the canonical

convolution (see Section 3.1) is executed in parallel and measured. In this way,

we obtain an upper-bound of the execution time reduction (scalability) of intra-

convolution parallelism. Two different sizes of ETPs are experimented: 2,048 (2K)

and 4,096 (4K).

Figure 3.4(a) shows the execution time results when running the convolution on 1,

2 and 4 cores. We observe a good scalability: execution time reduces by 40% with

2 cores and by 65% with 4 cores. The size of the ETPs has a marginal impact.

Inter-ETP parallelization.

In contrast to intra-ETP parallelization, inter-ETP parallelization does not par-

allelize one convolution, but instead splits a sequence of convolutions into chunks

to be processed in parallel. In this experiment, given a vector of M ETPs to con-

volve, we measure the benefit of dividing it into T ∈ [1, 4] chunks, each of which

is processed in parallel on one core. The ETPs in each chunk are processed in

sequential order.

Figure 3.4(b) shows the execution time benefit of inter-ETP parallelization when

convolving vectors of 2,048 and 4,096 ETPs. Results are also shown across different

Chapter 3. WCET in Static Probabilistic Timing Analysis 39

(a) E.T. of intra-ETP parallelization

(b) E.T. of inter-ETP parallelization

Figure 3.4: Impact of parallelization on execution time

numbers of elements per ETP, namely, 2 and 4. Results do not reach optimal

scaling due to: (i) the intrinsic overhead of parallelization (e.g., spawning and

synchronizing threads) and (ii) because eventually the number of ETPs to convolve

is lower than the core count, thus leaving some cores idle.

3.3.4 Probability discretization

In this experiment, we assess the execution time benefits and impact on pessimism

introduced by probability discretization. For this experiment we carry out the

convolution of a vector of 4,096 ETPs of 2 elements each1. Those ETPs are

1A two-point ETP represents an architecture with a single level of cache, e.g. the instruction
cache, where each ETP takes the form: < (lhit, lmiss), (phit, pmiss) >

Chapter 3. WCET in Static Probabilistic Timing Analysis 40

randomly generated. We carry out the evaluation for two different rv values: 0.05

and 0.1.

(a) Run time of discretization

(b) Pessimism introduced

Figure 3.5: Evaluation of the Discretization optimization

Figure 3.5 shows the results, obtained by averaging the ETP weight and execution

times on 1000 runs. When run on single core (three leftmost bars of Figure 3.5(a)),

we observe that with rv = 0.05, we obtain an execution time reduction of more

than 80%. With rv = 0.1 there is an extra slight reduction in the execution time.

However, in terms of pessimism (ETP weight, shown in Figure 3.5(b)), rv = 0.05

shows to have low pessimism. The increase in pessimism of rv = 0.1 does not pay

off its extra small reduction in execution time.

Chapter 3. WCET in Static Probabilistic Timing Analysis 41

Figure 3.6: pWCET estimates with and without discretization

Figure 3.6 compares the pWCET estimates obtained after convolving 4,096 ran-

dom ETPs (with 2 elements each) when discretization is not applied, and when

it is applied with rv = 0.05 and rv = 0.1. We observe that with discretization

obtained pWCET estimates are more pessimistic than when not using discretiza-

tion. However, the pessimism introduced is relatively small. For instance, for a

cutoff probability of 10−12 the overestimation is 3.1% for rv = 0.05 and 5.5% for

rv = 0.1.

3.3.5 Combination of techniques

The two rightmost bars in Figure 3.5(a) show the result of combining discretization

and hybrid (inter and intra) parallelization. We observe that the combination of

both reduces the cost of convolutions to less than 5% of the cost of the non-

optimized convolution method, thus showing that benefits of optimizations are

geometric. In terms of absolute execution time, the cost of one convolution reduces

from 7.44s down to 0.33s. Thus, if a program has 100,000 instructions, those

optimizations reduce convolution cost from 8.6 days down to 9.2 hours. While

such cost is non-negligible yet, we regard it as affordable and it can be further

reduced if other optimizations like fast-fourier transformation are applied.

Chapter 3. WCET in Static Probabilistic Timing Analysis 42

So far we have focused on the convolution which handles sequential sections of

instructions. In the presence of control flow constructs (CFC) such as if-then,

if-then-else or switch, another operation is needed, which is called envelope [41]

or maximum [3]. In the presence of those CFC, convolution needs to be applied

inside each branch of the CFC to obtain an ETP for each of them. Then, the

envelope operation computes an ETP upper-bounding all of them so that for any

latency the accumulated probability of the envelope ETP is equal or higher than

for any of the input ETPs. This way the set of ETPs of the different branches

can be replaced by the envelope one. By doing this CFCs can be removed and

convolution can be applied normally using the envelope ETP at the expense of

some pessimism. The cost of the envelope operation has been proven low (linear

with the length of the input ETPs) [3, 41] and it only impacts in which order

convolutions can be carried out. However, the implementation and evaluation of

further convolution optimizations is left as part of our future work.

Chapter 4

ACET in Measurement-Based

Probabilistic Timing Analysis

4.1 Probabilistic analytic cache modeling (PACO)

In this chapter we describe and evaluate PACO, the method for quick estimation

of average performance of time randomized caches. The method uses a set of

approximation formulas for probabilities of miss in TR caches, which we present

next for variety of cache organizations.

We analyze copy-back (CB) and write-through (WT) caches, and 3 different con-

figurations for the associativity: (FA) fully-associative, (DM) direct-mapped, and

(SA) set-associative (4-way in the evaluation section). Thus, there are 6 different

cache types: (CB-FA), (CB-DM), (CB-SA), (WT-FA), (WT-DM), (WT-SA). We

consider split data (DL1) and instruction (IL1) first level caches and unified second

level cache (UL2).

We start our analysis with fully-associative and direct-mapped caches in which

only the random replacement and the random placement policies are respectively

used. Finally, we focus on set-associative caches that deploy both random place-

ment and replacement. We use the same reference sequence (Aj−1, B
1
1 , B

2
2 , C

3
1 ...,

F k
1 , Aj) and the same nomenclature as in the Section 2.3.3.

43

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 44

4.1.1 Copy-back Fully-associative Caches (CB-FA)

Pmiss for DL1 and IL1 are called PDL1
miss and P IL1

miss respectively. For a copy-back

setup Pmiss is as shown in Equation 2.2, in which Pmiss for a given access depends

on the number of accesses, and their associated probability, between Aj and the

previous access to the same line Aj−1.

In the case of the DL1 only memory operations (mopl), i.e. loads and stores,

access the DL1. Hence, for the DL1, mopl in Equation 2.2 represents all memory

operations between Aj−1 and Aj, and so we have Equation 4.1 where WDL1 is the

number of ways in the DL1.

PDL1
missAj

(WDL1) = 1−
(
WDL1 − 1

WDL1

)l=k∑
l=1

PDL1
miss

mopl

(4.1)

For the IL1 X l stands for all instructions between Aj−1 and Aj, i.e. instl.

P IL1
missAj

(WIL1) = 1−
(
WIL1 − 1

WIL1

)l=k∑
l=1

P IL1
miss

instl

(4.2)

On every miss of an access X l between two accesses to the same line, Aj−1 and

Aj, a random eviction is carried out. On every eviction the probability of not

evicting Aj is (WDL1 − 1)/WDL1 for DL1 (IL1 is analogous). The exponent in

Equation 4.1 accumulates the miss probability of all accesses between Aj−1 and

Aj. This formula approximates Pmiss based on the expected number of evictions

produced by all accesses occurred since the previous access to A. Note that for

the first access A1 we have that PmissA1
= 1.

Pmiss for UL2 considers the number of evictions produced between Aj−1 and Aj,

since it determines the number of misses in UL2: NMUL2. A data access misses in

the UL2 if it misses in the DL1 first, which occurs with probability PDL1
miss

Xl
and it

also misses in the UL2, which occurs with probability P dUL2
miss

Xl
. Both probabilities

are computed as shown in 4.1. NMUL2 is also affected by the number of misses in

the IL1 that also miss in UL2.

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 45

NMUL2 =
l=k∑
l=1

[(
PDL1
miss

Xl
× P dUL2

miss
Xl

)
+
(
P IL1
miss

Xl
× P iUL2

miss
Xl

)]

Overall the UL2 miss probability for Aj is given by:

PUL2
missAj

(WUL2) = 1−
(
WUL2 − 1

WUL2

)NMUL2

(4.3)

Note that one source of inaccuracy for this approximation is the fact that, in

pipelined processors, instruction and data accesses are not aligned because a data

access can suffer evictions from younger instruction accesses (so accesses after Aj)

that reach UL2 early in the pipeline, and because an instruction access can suffer

evictions from older data accesses (so accesses before Aj−1) that reach UL2 later

in the pipeline. For instance, in the sequence (B1A1B2B3A2B4) a data access of

A2 could suffer an eviction from the instruction access of B4 and an instruction

access of A1 could be evicted by a data access of B1.

4.1.2 Copy-back Direct-Mapped Caches (CB-DM)

Pmiss for DL1 and IL1. While any given cache line A can be evicted by any

new line fetched from memory in a fully-associative cache, only lines placed in the

same set as A can evict it. Indeed, any such line will evict A in a direct-mapped

cache. Random placement leads to a probability of 1
S

of two cache lines to be

placed in the same set given S cache sets. Thus, given the same access sequence

as before, (Aj−1, X
1, ..., Xk, Aj), where Aj−1 and Aj correspond to accesses to the

same cache line, and no X l (where 1 ≤ l ≤ k) accesses the same cache line as Aj,

the probability of Aj to miss in cache is as follows:

P xL1
missAj

(S) = 1−
(
S − 1

S

)q

(4.4)

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 46

Where q stands for the number of unique (i.e. non-repeated) cache lines among

all X l. Repeated addresses are disregarded because they access always the same

set so either all of them cannot evict A or all of them would evict it [21].

Pmiss for UL2. The equation above is valid for DL1 and IL1, while for the UL2,

Pmiss is approximated as follows:

PUL2
missAj

(SUL2)=P xL1
missAj

(SxL1)×

(
1−
(
SUL2 − 1

SUL2

)qI+qD
)

(4.5)

where qI and qD are the number of unique instruction and data addresses respec-

tively accessed by all instructions in between the one accessing Aj−1 and the one

accessing Aj.

4.1.3 Copy-back Set-associative Caches (CB-SA)

Pmiss for DL1 and IL1. Pmiss values in direct-mapped and fully-associative

caches are independent given that Pmiss depends on unique addresses in the former

and on previous Pmiss values in the latter. As a result, probability of both events

to occur can be obtained by multiplying their respective probabilities [21].

PmissAj
(W,S)=

1−
(
W − 1

W

)l=k∑
l=1

Pmiss
Xl

× (1−
(
S − 1

S

)q)
(4.6)

Equation 4.6 is the product of equations 2.2 and 4.4, meaning that an access is a

miss in cache if any X l accessed the same set (second part of the equation) and it

randomly evicted A in that set (first part of the equation).

In this equation we identify a source of inaccuracy due to the fact that the first

part considers all evictions occurred in between Aj−1 and Aj when, instead, it

should only consider those occurring in the same cache set. Therefore, as random

placement is intended to distribute randomly and evenly addresses across the

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 47

different cache sets, we should divide by S, the number of sets, the exponent of

the first part:

PmissAj
(W,S)=

1−
(
W − 1

W

) l=k∑
l=1

Pmiss
Xl

S

×
(

1−
(
S − 1

S

)q)
(4.7)

Pmiss for UL2. In the case of UL2, Pmiss for access Aj in our reference sequence

is as follows, where xL1 represents the cache accessed by Aj, that is, IL1 or DL1:

PUL2
missAj

(WUL2, SUL2)=P xL1
missAj

(WxL1, SxL1)×PUL2−only
missAj

(4.8)

PUL2−only
missAj

is the miss probability for Aj as if it accessed UL2 directly (omitting

xL1):

PUL2−only
missAj

(WUL2, SUL2)=

1−
(
WUL2 − 1

WUL2

) l=k∑
l=1

Pmiss
Xl

SUL2

×
(

1−
(
SUL2 − 1

SUL2

)qI+qD
)

(4.9)

4.1.4 Write-through Caches (WTx)

The case of write-through caches is analogous to that of copy-back ones with the

following differences:

• PDL1
miss for DL1 accesses of store instructions is irrelevant from a performance

perspective as those accesses are forwarded to UL2 anyway.

• As we assume that UL2 is always copy-back, PUL2
miss must consider those

accesses caused by IL1 misses, DL1 load misses and all DL1 store accesses

(regardless of whether they hit or miss).

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 48

Other than that, those approximations used for copy-back caches remain valid for

write-through ones.

4.1.5 Multiple Addresses per Cache Line

When the addressable unit is smaller than a cache line, accesses to different ad-

dresses can be mapped to the same cache line. This has no impact on our previ-

ous formulation. For instance, let us assume the sequence (Aj−1, B
1
1 , C

2
1 , D

3
1, E

4
1 ...,

F k
1 , Aj), in which B and C go to the same line.

We can simply abstract this sequence as (Aj−1, B
1
1 , B

2
2 , D

3
1, E

4
1 ..., F

k
1 , Aj), hence

considering that the access to C corresponds to another access to B. This allows

us applying the same formulation as above to compute Pmiss.

4.2 Experimental Results

This section evaluates the accuracy of PACO to estimate Pmiss (and so Phit) prob-

abilities. For that purpose, we compare PACO against simulation where 100,000

simulations are used to obtain figures highly accurate for the leftmost decimal

digits of the different probabilities.

We consider two cache setups, 1-level and 2-level.

– Under 1-level only the first level instruction (IL1) and data (DL1) TR caches

are used. In this setup DL1 is copy back and the IL1 is read-only.

– 2-level also includes a unified second level (UL2) TR cache which is accessed in

case of miss in IL1 or DL1, see Figure 4.1. This is the most complex hierarchy

shown in [22] and conclusions can be extrapolated to larger hierarchies with third

or even fourth level caches. In this setup, IL1 is read-only, DL1 is write-through

and UL2 is copy-back. DL1 is no-write-allocate, so store misses do not fetch new

data to DL1. All store instructions reach UL2 regardless of whether they hit in

DL1.

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 49

Figure 4.1: Cache hierarchy and setups considered.

In our reference cache setup, DL1 and IL1 are 8KB in size and have 32 bytes/line.

UL2 is 64KB and has 32 bytes/line. We consider direct-mapped, fully-associative

and 4-way set-associative caches. Caches are non-inclusive, hence imposing no

constraint on whether contents in IL1 or DL1 must or must not be in UL2. Differ-

ences in the behavior w.r.t. other inclusion policies have been shown to be rather

small [22].

The evaluation has been conducted on the EEMBC Autobench benchmark

suite [42], which is a well-known suite reflecting the current real-world demand

of some automotive embedded systems. Address traces for PACO and simulation

measurements have been collected using the reference input provided together with

the benchmark suite. If the analysis needs to be performed for multiple input sets,

such analysis can be performed individually for each input set and combined anal-

ogously as for the case of running simulations.

Results are reported in terms of the following figures:

• Per-access evaluation. For each access in the program we compute the ab-

solute difference between the probabilities provided by PACO and those

obtained through simulation. For instance if P sim
miss = 10.5% and P PACO

miss =

11.5% the difference is 1% 1. We then obtain the average and standard devi-

ation of those values across each benchmark for each one of the caches (DL1,

IL1 and UL2) in all those 6 setups described in Section 4.1. Per-benchmark

results are averaged thus giving each benchmark the same weight.

1This can be expresed in percentage points (pp). A pp is the unit for the arithmetic difference
of two percentages. e.g. going from 1% to 9% is an 8 percentage point increase. For the sake of
simplicity we do not use percentage points.

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 50

• Per-program evaluation. Users may be interested in analyzing probabilities

at a much coarser granularity than per-access. Therefore, it may be inter-

esting estimating average probabilities for a given program. Thus, we also

report per-program results as follows. We compute the actual difference (not

absolute) between the probabilities provided by PACO and those obtained

through simulation. We average those values across each benchmark for

each one of the caches in all setups. This provides the actual inaccuracy per

program for each cache in each cache organization. Then, we compute the

absolute values for each program and report the average difference for each

cache in each scenario.

Let us introduce a simple example to illustrate the difference between per-access

and per-program results. Let us assume a single cache and 4 accesses whose Pmiss

through simulation is 0.2, 0.1, 0.1, 0.3 respectively and 0.25, 0.1, 0.2, 0.25 through

PACO. In this case, per-access average Pmiss error is 0.05
(
0.05+0+0.1+0.05

4

)
whereas

per-program accuracy error is 0.025
(
0.05+0+0.1−0.05

4

)
. As shown, per-program error

can only be lower because errors can cancel out. In the example, underestimation

for the 4th access partially offsets the overestimation for the 1st and 3rd accesses.

Finally, we also report results in terms of computational cost. We compare the im-

plementation of PACO w.r.t. the simple cache simulator implemented as baseline.

Both of them have been coded from scratch following usual programming guide-

lines, compiled analogously and no specific code optimization has been applied.

Execution times have been obtained on top of a Xeon Dual-Core 5148 operating

at 2.33GHz with 12 GB of DRAM.

4.2.1 Per-access Results

As shown in Table 4.1, Pmiss estimates obtained with PACO are highly accurate

for all fully-associative (FA) and direct-mapped (DM) setups with an average

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 51

Table 4.1: Per-access Pmiss accuracy. (Avg stands for average and Std for
standard deviation.)

Cache DL1 IL1 UL2
setup Avg Std Avg Std Avg Std
CB-FA 0.02% 0.04% 0.02% 0.04% N/A N/A
CB-DM 0.02% 0.03% 0.07% 0.07% N/A N/A
CB-SA 1.02% 1.74% 2.59% 3.02% N/A N/A
WT-FA 0.01% 0.02% 0.02% 0.04% 0.26% 1.33%
WT-DM 0.01% 0.03% 0.07% 0.07% 0.93% 1.31%
WT-SA 0.54% 1.28% 2.59% 3.02% 2.33% 5.11%

Table 4.2: Per-program Pmiss accuracy.

Cache DL1 IL1 UL2
setup Average Average Average
CB-FA 0.00% 0.00% N/A
CB-DM 0.00% 0.02% N/A
CB-SA 0.68% 2.49% N/A
WT-FA 0.00% 0.00% 0.17%
WT-DM 0.00% 0.02% 0.88%
WT-SA 0.36% 2.49% 2.21%

Table 4.3: Absolute Pmiss values.

Cache DL1 IL1 UL2
setup Average Average Average
CB-FA 2.04% 0.95% N/A
CB-DM 7.85% 1.66% N/A
CB-SA 2.06% 1.05% N/A
WT-FA 10.97% 0.95% 13.86%
WT-DM 12.63% 1.66% 12.01%
WT-SA 10.90% 1.05% 12.42%

difference of 0.03% for DL1 and IL1 caches implementing copy-back (CB) or write-

through (WT) policies. Results for DL1 and IL1 still offer good accuracy for set-

associative (SA) caches although less than for FA and DM setups, thus indicating

that there is potential for improvement of the model. Results for the UL2 cache are

less accurate as they accumulate Pmiss inaccuracies in DL1/IL1 caches determining

how many UL2 accesses occur, on top of the UL2 cache inaccuracy itself. Note

that IL1 results for CB and WT policies are identical as all IL1 accesses are read

accesses, and so the write policy has no effect.

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 52

Figure 4.2: Execution time of simulations normalized w.r.t. PACO.

4.2.2 Per-program Results

As shown in Table 4.2, average Pmiss estimates obtained with PACO for full pro-

grams are more accurate than per-access ones as inaccuracies cancel out to some

degree. Again, accuracy for DM and FA caches is much higher than for SA ones.

In fact, results for DM and FA DL1 and IL1 caches only show negligible inaccuracy.

For the sake of reference, absolute Pmiss values are shown in Table 4.3, thus illus-

trating that relative inaccuracies are low except for some SA caches.

4.2.3 Execution Time Cost

We have also compared the cost of executing our model w.r.t. the cost of simulating

cache behavior, which we regard as the only alternative to obtain results at the

same granularity as PACO, so per-access and per-cache memory for any target

cache setup. Results are shown in Figure 4.2. As shown, PACO has a cost similar

to that of running 31 simulations on average (between 4 and 74 simulations for

different setups), so always lower than that of performing 100 simulations. The

relative cost of simulations grows exponentially with the number of simulations.

We observe that such trend holds across configurations. Furthermore, the relative

cost of PACO for DM and SA caches, the ones with higher cost, can be further

reduced if multiple cache setups need to be evaluated. This occurs because most

computation time of PACO is spent computing the unique address reuse distance

(q in Equation 4.4), which needs to be computed only once regardless of the number

Chapter 4. ACET in Measurement-Based Probabilistic Timing Analysis 53

of cache setups to be evaluated. Conversely, the cost of simulation grows linearly

with the number of cache setups. For instance, if we evaluated 100 different cache

setups, the average cost of PACO would be as low as that of 4 simulations per

setup, thus 25 times lower than using 100 simulations per setup.

In summary, our per-access and per-program results show that PACO accuracy

error is within 0.7% of that obtained with 100,000 simulations for Pmiss on av-

erage. Thus, PACO provides high accuracy for Pmiss with low execution time

requirements.

Chapter 5

Conclusions and Future work

5.1 Conclusions

PTA has been regarded as a powerful approach to obtain reliable and tight WCET

estimates.

The static variant of PTA, SPTA, requires the use of convolutions, whose compu-

tational cost is high. In this thesis we have identified some features of convolutions

that require a large number of computations and implemented a set of optimiza-

tions to reduce their cost. Those optimizations, integrated into a software library,

include precision-preserving optimizations (e.g., parallelization), as well as opti-

mizations that trade off some accuracy for some computational cost reduction

while preserving reliability. Among those, discretization shows to be the most

effective solution. Our results prove the effectiveness of the different optimizations

and a small subset of them show a combined execution time reduction down to

less than 5% of that of the non-optimized version.

The measurement-based variant of PTA, MBPTA, have been deeply studied from

a WCET perspective, but there is a lack of efficient ways to estimate ACET. Time

randomized caches are the resources with highest impact on average performance,

due to the fact that having a hit or miss in a cache leads to huge differences

in execution time. So far estimating the cache hit/miss probabilities has been

54

Chapter 5. Conclusions and Future work 55

done with a large number of simulations. In this thesis we introduce PACO to

efficiently estimate hit and miss probabilities for a wide variety of cache setups

and organizations. Our results show that PACO obtains an accuracy within 2.6%

across different setups and caches with low computational cost.

5.2 Future work

On the SPTA part, another approach to speed-up convolutions is to use Fourier

Transformation, and in particular its discrete fast version (DFT). This approach

needs first to convert the distribution from the time domain to the frequency

domain using DFT. Then, according to the convolution theorem, a point-wise

multiplication is applied, which is equivalent to the convolution in the time domain.

Finally, inverse DFT is performed to obtain the distribution in the time domain.

As part of our future work we plan to evaluate the use of DFT to speed up

convolutions as well as to explore further optimizations.

On the MBPTA part, as part of our future work we plan to extend our evalua-

tion of hit/miss approximations formulas to a wider variety of cache setups, find

more accurate approximations for set-associative caches and extend our model to

approximate the probability of evicting dirty lines. We also plan to optimize the

implementation of PACO for a further execution time cost reduction.

Chapter 6

Published work

• Suzana Milutinovic, Jaume Abella, Damien Hardy, Eduardo Quiñones, Is-

abelle Puaut, Francisco J. Cazorla, “Speeding up Static Probabilistic Timing

Analysis”, in proceedings of the 28th GI/ITG International Conference on

Architecture of Computing Systems (ARCS), Porto (Portugal), March 24-27

2015.

• Suzana Milutinovic, Eduardo Quiñones, Jaume Abella, Francisco J. Ca-

zorla, “PACO: Fast Average-Performance Estimation for Time-Randomized

Caches”, in proceedings of the 52nd ACM/IEEE Design Automation Con-

ference (DAC), San Francisco (California), June 7-11 2015.

56

Bibliography

[1] Paul Lokuciejewski and Peter Marwedel. Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems. Springer, 2011.

[2] R. Wilhelm et al. The worst-case execution time problem: overview of meth-

ods and survey of tools. Trans. on Embedded Comp. Systems, 7(3):1–53, 2008.

[3] G. Bernat, A. Colin, and S.M. Petters. WCET analysis of probabilistic hard

real-time systems. In RTSS, 2002.

[4] J. Hansen, S. Hissam, and G. A. Moreno. Statistical-based WCET estimation

and validation. In WCET Workshop, 2009.

[5] F. J. Cazorla et al. PROARTIS: Probabilistically analyzable real-time sys-

tems. ACM Trans. on Embedded Computing Systems, 12(2s), 2013.

[6] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis for

multi-path programs. In ECRTS, 2012.

[7] F. Wartel et al. Measurement-based probabilistic timing analysis: Lessons

from an integrated-modular avionics case study. In SIES, 2013.

[8] R.I. Davis et al. Analysis of probabilistic cache related pre-emption delays.

In ECRTS, 2013.

[9] S. Altmeyer and R. I. Davis. On the correctness, optimality and precision of

static probabilistic timing analysis. In DATE, 2014.

[10] J. Abella et al. On the comparison of deterministic and probabilistic WCET

estimation techniques. In ECRTS, 2014.

57

Bibliography 58

[11] S. Kotz and S. Nadarajah. Extreme value distributions: theory and applica-

tions. World Scientific, 2000. ISBN 1860942245, 9781860942242.

[12] L. Kosmidis et al. Containing timing-related certification cost in automotive

systems deploying complex hardware. In DAC, 2014.

[13] L. Kosmidis, E. Quinones, J. Abella, T. Vardanega, I. Broster, and F.J. Ca-

zorla. Measurement-based probabilistic timing analysis and its impact on

processor architecture. In 17th Euromicro Conference on Digital System De-

sign (DSD), 2014, pages 401–410, 2014.

[14] F. Mueller. Predicting instruction cache behavior. Language, Compilers and

Tools for Real-Time Systems, 1994.

[15] C. Ferdinand and R. Wilhelm. Fast and Efficient Cache Behavior Prediction

for Real-Time Systems. Real-Time System Journal, XVII:131–181, 1999.

[16] F. Mueller. Timing analysis for instruction caches. Real-Time Systems Jour-

nal - Special issue on worst-case execution-time analysis, 2000.

[17] C. Ferdinand et al. Reliable and precise WCET determination for a real-life

processor. In EMSOFT, 2001.

[18] B. Lesage, D. Hardy, and I. Puaut. WCET analysis of multi-level set-

associative data caches. In WCET Workshop, 2009.

[19] D. Hardy and I. Puaut. WCET analysis of multi-level non-inclusive set-

associative instruction caches. In RTSS, 2008.

[20] G. Bernat, A. Colin, and J. Esteves. Considerations on the LEON cache

effects on the timing analysis of on-board applications. In DASIA, 2007.

[21] L. Kosmidis et al. A cache design for probabilistically analysable real-time

systems. In DATE, 2013.

[22] L. Kosmidis et al. Multi-level unified caches for probabilistically time

analysable real-time systems. In RTSS, 2013.

Bibliography 59

[23] J. Reineke. Randomized caches considered harmful in hard real-time systems.

LITES, 1(1), 2014.

[24] M. Patte and V. Lefftz. System impact of distributed multi core systems.

Technical Report ESTEC Contract 4200023100, European Space Agency,

2011.

[25] C.J. Turner, V.C. Bhavsar, and P.R. Pochec. Parallel implementations of

convolution and moments algorithms on a multi-transputer system. Micro-

processors and Microsystems, 19(5), 1995.

[26] H.-M. Yip, I. Ahmad, and T.-C. Pong. An efficient parallel algorithm for

computing the gaussian convolution of multi-dimensional image data. J. Su-

percomput., 14(3), 1999.

[27] D. Maxim, M. Houston, L. Santinelli, G. Bernat, R.I. Davis, and L. Cucu.

Re-sampling for statistical timing analysis of real-time systems. In RTNS,

2012.

[28] J. Abella, C. Hernandez, E. Quinones, F.J. Cazorla, P.R. Conmy,

M. Azkarate-Askasua, J. Perez, E. Mezzetti, and T. Vardanega. Wcet analysis

methods: Pitfalls and challenges on their trustworthiness. In 10th IEEE In-

ternational Symposium on Industrial Embedded Systems (SIES), pages 1–10,

2015.

[29] M.K. Gardner and J.W. Lui. Analyzing stochastic fixed-priority real-time

systems. In the 5th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS99), pages 44–58, 1999.

[30] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-

time systems. In Proceedings of Real-Time Systems Symposium (RTSS), pages

4–13, 1998.

Bibliography 60

[31] T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.C. Wu, and J.S Liu.

Probabilistic performance guarantee for real-time tasks with varying com-

putation times. In the 2nd IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS95), pages 164–174, 1995.

[32] Dorin Maxim, Olivier Buffet, Luca Santinelli, Liliana Cucu-Grosjean, and

Robert I. Davis. Optimal priority assignment algorithms for probabilistic real-

time systems. In 19th International Conference on Real-Time and Network

Systems, (RTNS), pages 129–138, 2011.

[33] J.P. Lehoczky. Real-time queueing theory. In Proceedings of Real-Time Sys-

tems Symposium (RTSS), pages 186–195, 1996.

[34] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In

Proceedings of Real-Time Systems Symposium (RTSS), 2001.

[35] David Griffin and Alan Burns. Realism in Statistical Analysis of Worst Case

Execution Times. In Proceedings of International Workshop on Worst-Case

Execution Time Analysis (WCET), pages 44–53, 2010.

[36] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kos-

midis, J. Abella, E. Mezzetti, E. Quinones, and F.J. Cazorla. Measurement-

based probabilistic timing analysis for multi-path programs. In 24th Euromi-

cro Conference on Real-Time Systems (ECRTS), pages 91–101, 2012.

[37] Petar Radojković, Vladimir Čakarević, Miquel Moretó, Javier Verdú, Alex

Pajuelo, Francisco J. Cazorla, Mario Nemirovsky, and Mateo Valero. Op-

timal task assignment in multithreaded processors: A statistical approach.

SIGARCH Comput. Archit. News, 40(1):235–248, March 2012.

[38] Francisco J. Cazorla, Tullio Vardanega, Eduardo Quiñones, and Jaume

Abella. Upper-bounding Program Execution Time with Extreme Value The-

ory. In 13th International Workshop on Worst-Case Execution Time Analysis,

volume 30 of OpenAccess Series in Informatics (OASIcs), pages 64–76, 2013.

Bibliography 61

[39] S. Zhou. An efficient simulation algorithm for cache of random replacement

policy. In NPC, 2010.

[40] Guidelines and methods for conducting the safety assessment process on civil

airborne systems and equipment. ARP4761, 2001.

[41] L. Cucu, F.J. Cazorla, J. Abella, and M. Houston. D3.4 probabilistic and

statistical techniques for timing analysis in single core. Technical report,

PROARTIS, 2013. URL http://www.proartis-project.eu/system/

files/D3.4%20Probabilistic%20and%20Statistical%20Techniques%

20for%20Timing.pdf.

[42] J. Poovey. Characterization of the EEMBC Benchmark Suite. North Carolina

State University, 2007.

http://www.proartis-project.eu/system/files/D3.4%20Probabilistic%20and%20Statistical%20Techniques%20for%20Timing.pdf
http://www.proartis-project.eu/system/files/D3.4%20Probabilistic%20and%20Statistical%20Techniques%20for%20Timing.pdf
http://www.proartis-project.eu/system/files/D3.4%20Probabilistic%20and%20Statistical%20Techniques%20for%20Timing.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Organization

	2 Background and related work
	2.1 Cache memories
	2.1.1 Cache organization
	2.1.2 Cache management
	Placement policy.
	Replacement policy.
	Write policy.
	Write allocation.

	2.1.3 Multi-level cache hierarchy
	Inclusion property.

	2.1.4 Time randomized caches

	2.2 Timing analysis and its challenges
	2.3 Probabilistic timing analysis
	2.3.1 SPTA
	2.3.2 MBPTA
	2.3.3 Timing analysis of cache memories
	2.3.3.1 Miss probability for TR caches under SPTA
	2.3.3.2 Miss probability for TR caches under MBPTA

	3 WCET in Static Probabilistic Timing Analysis
	3.1 SPTA performance issues
	3.2 Optimizing SPTA performance
	3.2.1 Parallelization
	3.2.2 Sampling
	3.2.3 Discretization of probabilities

	3.3 Experimental Results
	3.3.1 Experimental conditions
	3.3.2 Impact of apfp library precision on the cost of each operation
	3.3.3 Parallelization
	3.3.4 Probability discretization
	3.3.5 Combination of techniques

	4 ACET in Measurement-Based Probabilistic Timing Analysis
	4.1 Probabilistic analytic cache modeling (PACO)
	4.1.1 Copy-back Fully-associative Caches (CB-FA)
	4.1.2 Copy-back Direct-Mapped Caches (CB-DM)
	4.1.3 Copy-back Set-associative Caches (CB-SA)
	4.1.4 Write-through Caches (WTx)
	4.1.5 Multiple Addresses per Cache Line

	4.2 Experimental Results
	4.2.1 Per-access Results
	4.2.2 Per-program Results
	4.2.3 Execution Time Cost

	5 Conclusions and Future work
	5.1 Conclusions
	5.2 Future work

	6 Published work
	Bibliography

