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SUMMARY

Two main ingredients are needed for adaptive finite element computations. First, the error of a given
solution must be assessed, by means of either error estimators or error indicators. After that, a new spatial
discretization must be defined via k-, p- or r-adaptivity. In principle, any of the approaches for error
assessment may be combined with any of the procedures for adapting the discretization. However, some
combinations are clearly preferable. The advantages and limitations of the various alternatives are dis-
cussed. The most adequate strategies are illustrated by means of several applications in solid mechanics.
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1. INTRODUCTION

Adaptive strategies are nowadays considered a standard tool in practical finite element computa-
tions. For any problem, adaptivity is an essential tool to obtain numerical solutions with
a controlled accuracy. For some problems (typically in the non-linear domain), adaptive strat-
egies are even more fundamental: without them, a finite element solution simply cannot be
computed. This is the case, for instance, with problems in non-linear solid mechanics involving
large strains or localization.

The two main ingredients of an adaptive procedure are (1) a tool for assessing the error of the
solution computed with a given mesh and (2) an algorithm to define a new spatial discretization.

Two different approaches may be used for assessing the error: error estimators or error
indicators. Error estimators approximate a measure of the actual error in a given norm. In this
paper, the term error estimator means that the estimated error can be arbitrarily close to the true
error. Other definitions are also standard; in some works [1-37, error estimators are required to
behave as equivalent norms of the actual error. Error indicators, on the other hand, are based on
heuristic considerations [4]. For each particular application, a readily available quantity is
chosen, in an ad hoc manner, as an indicator of error.
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indicators) and Section 4 (h-adaptivity with error estimation). Finally, some concluding remarks
are made in Section 5.

2. ERROR ASSESSMENT AND ADAPTIVITY
2.1. Assessing the error

As mentioned previously, either error estimators or error indicators may be used to assess the
error.

Error estimators may be classified into two groups: flux projection (ZZ-like) estimators [6, 7]
and residual-type estimators [19-227. Most estimators are well defined for linear problems but
not for non-linear problems. For instance, the popular ZZ error estimator for linear problems is
only an error indicator for non-linear problems, because it is based on superconvergence
properties that cannot be automatically extended to the non-linear regime.

Here the estimator presented in detail in References 23-25 is employed. This estimator has
a sound theoretical basis for both linear and non-linear applications [18].

Various choices of an error indicator can be found in the literature. From a geometrical point
of view, for instance, the element aspect ratio or, more generally, the distortion can be used [26].
In non-linear solid mechanics, some common choices are the equivalent plastic (or, more
generally, inelastic) strain or its gradient [4].

The advantages and limitations of error estimators and error indicators are summarized in
Table I. Error indicators are attractive because of their simplicity: they are based on very simple
intuitive considerations (geometrical, mechanical, etc.) and can be computed easily and efficiently.
Quantities used as error indicators are always readily available in the finite element computation,
so the overhead cost is minimum. The drawback is that they are heuristic: the judgement of the
user for defining a proper error indicator for a given problem is critical. Of course, error

Table I. Comparison of error estimators and error indicators

Indicator
Advantages

Based on intuitive considerations
Computed easily and efficiently

Limitations
Heuristic relative information (error not quantified)
Problem-dependent (must be calibrated)

Estimator

Advantages

Objective measure of the actual error
Wide range of applications

Limitations
Need mathematical basis
Usually more expensive to evaluate
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indicators are very specific of each particular application, and they must be calibrated (with the
help of either analytical solutions in simple tests or error estimators). Moreover, error indicators
only give relative information. Since the error is not quantified, an error indicator only tells where
the spatial discretization must be richer, but not how much richer it should be.

Error estimators, on the other hand, must be based on firm mathematical foundations and are
usually more expensive to evaluate than error indicators. In exchange for that, they have a major
advantage: they provide an objective and quantitative information about the error. Moreover, the
range of applicability of a certain error estimator is larger than for a given error indicator. The
error estimator presented in References 18 and 24, for instance, is valid for any linear or
non-linear elliptic problem.

2.2. Adapting the spatial discretization

Three strategies may be used to adapt the spatial discretization according to the error
assessment: A- p- and r-adaptivity. h-adaptivity consists of building a new mesh, using the same
type of elements, and adapting the element size to the requirements of the solution. That is,
reducing their size where the interpolation must be enriched (i.e. more accuracy is needed) and
enlarging the elements where it is already accurate enough. The idea of p-adaptivity is to increase
the order of the polynomials where a richer interpolation is needed, and maintain polynomials of
low order where it is already rich enough. r-adaptivity consists on relocating the nodes to adapt
the mesh to the requirements of the solution. The number of nodes and the mesh connectivity
remain constant. Nodes are concentrated in zones where they are most needed. The mesh is
allowed to coarsen in other parts of the domain, where a poorer interpolation suffices.

The merits and drawbacks of these three approaches are summarized in Table II. r-adaptivity
is easy to implement and inexpensive, because only the initial mesh is needed. Simple algorithms
may be used to relocate the nodes. The transport of the information from the old mesh to the new
mesh can be performed in a very natural way (by solving a convection equation), because these
two meshes have the same connectivity. This intrinsic simplicity is also the cause of the limitations
of r-adaptivity. The accuracy which can be achieved with an r-adaptive strategy is limited,
because the number of degrees of freedom and the mesh topology are fixed from the beginning,
when the initial, and only, mesh is built. In fact, the initial mesh heavily influences the adaptive
computation. Once the node location is ‘optimal’ (according to the error assessment), a more
accurate solution can only be achieved by increasing the number of degrees of freedom (i.e. via
h- or p-adaptivity).

h-adaptivity is also a conceptually simple strategy, which basically relies on the mesh generator.
The computational cost is considerably higher than for r-adaptivity, because a new mesh must be
generated at each step. After that, there are two alternatives: either restart the computation from
scratch or project all the information from the old mesh to the new mesh. This transport is quite
more involved than for r-adaptivity, because the two meshes may have very different topologies
and numbers of elements. In exchange for this high cost, s-adaptivity is a very general approach:
the number of degrees of freedom can change arbitrarily to meet a prescribed accuracy, and the
initial mesh does not drastically influence the adaptive process, because a new mesh is rebuilt at
each step.

From a theoretical standpoint, p-adaptivity has the advantage that it provides the fastest rate
of convergence as the number of degrees of freedom increases. Moreover, it is the only strategy
that can reach very high accuracies. However, the implementation is tedious: special care is
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Table II. Comparison of r-, ~- and p-adaptivity

r-adaptivity
Advantages

Easy to implement
Inexpensive (only one mesh is needed)
Information transported in a natural way

Limitations
Number of degrees of freedom is fixed
Depends on initial mesh (topology of mesh cannot change)

h-adaptivity
Advantages

Easy to implement
Number of degrees of freedom can change
General applicability (initial mesh easily adapted)

Limitations
Expensive (must generate a new mesh each time)
Must project all information onto the new mesh

p-adaptivity

Advantages
Number of degrees of freedom can change
Faster rate of convergence

Limitations
Tedious implementation

Expensive
Depends on initial mesh (must be implemented with h-adaptivity)

needed to match two adjacent elements of different order. Moreover, this strategy is heavily
dependent on the initial mesh. In practice, p-adaptivity is typically combined with h-adaptivity
[12,27].

2.3. Adaptive strategies based on error assessment

In principle, any of the approaches for error assessment (Table I) can be combined with any of
the procedures for adapting the spatial discretization (Table II) to produce an adaptive strategy
for finite element computations. However, some combinations are clearly to the preferred, as
illustrated in Table II1.

Combining r-adaptivity and an error indicator provides a very simple adaptive strategy. As
mentioned previously, an error indicator only gives relative information about the error. This is
clearly a disadvantage of error indicators with respect to error estimators. However, relative
information (i.e. where the error is larger and where it is smaller) is exactly what is needed for
relocating the nodes. Since no new degrees of freedom can be added in r-adaptivity, the error
indicator is used to decide where to put the available nodes. By doing so, an ‘optimal’ use is made
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Table III. A global rating of adaptive strategies

Error indicator Error estimator

r-Adaptivity (ALE) @ ®
h/p-Adaptivity @) ©

of the given mesh. Of course, the global accuracy of the solution cannot be prescribed a priori,
because the number of degrees of freedom is fixed.

The conjunction of A-/p-adaptivity and error estimation is also a valid strategy. In fact, it is the
only approach that allows to obtain a solution with an (objective) accuracy prescribed a priori.
The price to pay is a high computational cost. Note, however, that an extra ingredient is needed:
an optimality criterion that relates the error at each point of the domain with the new element size
of degree of the polynomial [28].

The combination of r-adaptivity and error estimation is clearly not an adequate strategy. All
the effort in estimating the error in a quantitative and objective manner is wasted, because the
information obtained cannot be fully exploited. In fact, using an error estimator to relocate the
nodes overkills the problem, because only relative information can be accounted for when
deciding the new nodal position.

Finally, A-/p-adaptivity based on error indicators is a common choice in the literature [4].
However, it has one important drawback: an expensive adaptive procedure (h, p or h—p) is based
on heuristic information about the error. Moreover, extra information is required: the size of the
smallest element in h-adaptivity, or the maximum degree of the interpolating polynomial in
p-adaptivity. In consequence, this approach can only be recommended if the error indicator can
be properly calibrated for the given application.

In conclusion, the two best approaches consist on combining either simple ingredients
(r-adaptivity and error indicators) or more sophisticated ingredients (h-/p-adaptivity and
error estimators). The capabilities of these two strategies will be highlighted in the rest of the
paper by means of some numerical examples. With the other two combinations, there is a clear
unbalance between the tool used for assessing the error and the tool for adapting the spatial
discretization.

3. r-ADAPTIVITY BASED ON ERROR INDICATORS

r-adaptivity based on error indicators is employed here for the prediction of yield line patterns in
plates [29, 30]. Figure 2 shows a simply supported rectangular plate, with an eccentric hole and
5 ¢cm thickness. The plate is subjected to a uniform load of 125 kN/m?. A bilinear elastoplastic
behavior is assumed, with Young’s modulus E = 2 x 10% kN/m?, Poisson’s ratio v = 0-2, initial
yield stress @, = 2 x 105 kN/m?, and hardening modulus 4 = E/200.

If a finite element analysis is performed on a fixed mesh, the results of Plate 1(a) are obtained.
Due to the coarseness of the mesh, the spatial discretization is too poor and the yield line pattern
(unknown a priori) is not properly captured. Of course, the solution can be improved by using
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4. rADAPTIVITY BASED ON ERROR ESTIMATION

As previously said, A-remeshing strategies allow to enrich the discretization as much as needed
and attain any prescribed accuracy, provided that the problem is well-posed. Once the accuracy is
prescribed, the adaptive procedure must indicate not only where the elements must be concen-
trated but also how many elements are required. That is, the zones where the mesh must be refined
have to be identified, and the required size of the mesh in every zone of the domain must be
specified. Consequently, error estimators are required to obtain reliable information concerning
the quantity of error and not only about its relative distribution.

h-adaptivity processes consist on an iterative loop. For some mesh, the approximate solution is
computed and the error is estimated. If the error is too large, the solution is considered
unacceptable and the error distribution is used to define the element size for a new mesh in every
zone of the domain. The new mesh is built up verifying the size prescriptions and the computa-
tions are resumed using this new mesh.

Two basic ingredients of A-adaptive procedures are the acceptability criterion and the remesh-
ing strategy. The acceptability criterion is used as a stopping criterion for the iterative procedure.
The remeshing strategy is the tool that allows to compute the prescribed element size from the
estimated error distribution. Although the goal of the remeshing strategy is to provide a mesh
that gives a solution verifying the acceptability criterion, the derivation of the remeshing
strategies requires some additional assumptions, see Reference 28. These additional assumptions
are called optimality criteria because they state the optimality properties of a finite element mesh
by prescribing some uniformity of the error. Different optimality criteria lead to different
remeshing strategies even if the acceptability criterion is the same.

The following examples of application of h-adaptivity to finite element computations are
presented to illustrate three different topics.

1. The example of Section 4.1 shows the crucial role of the remeshing strategies in the resulting
optimal mesh: under the same acceptability criterion but using remeshing strategies with
different underlying optimality criteria, the adaptive process yields very different meshes.

2. The example of Section 4.2 stresses the importance of using a suitable error estimation tool.
The error assessment must be able to account for all the sources of error. This is especially
important in the case of shell problems where the discretization errors affect both the
approximation of the geometry and the functional approximation.

3. Section 4.3 shows that in some problems even the general aspect of the mesh cannot be
predicted a priori. The example analyses the behaviour of a plane strain compression
specimen exhibiting strain localization. In this case the collapse mechanism is quite surpris-
ing. Consequently, the obtained solution is not intuitive and the optimal mesh is not trivial.
The collapse mechanism is captured by a refined mesh but it cannot be predicted by a first
guess of a mesh.

In all the examples the error is estimated using the technique introduced in References 18, 24
and 25 and the quadrilateral meshes are generated following [36].

4.1. Comparison of different remeshing strategies

A 2-D plane strain analysis of a dam is presented, see Figure 3. This example is a benchmark
test since it was introduced by Zienkiewicz and Zhu [6, 7]. In the adapted meshes, elements
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zone does not allow the inception of softening. However, the error estimator indicates that the
elements must be reduced in the zone of the second band. Thus, once the remeshing process
introduces small enough elements along the second band, in meshes 2-5, a second mechanism can
also be captured. Plate 4 shows also the distribution of the error along the remeshing process,
which tends to be uniform, as expected. In the first meshes, the error is larger along the bands and,
consequently, the successive discretizations concentrate elements in these zones. Notice that the
elements are, in fact, concentrated along the edges of the bands, where the gradients of the
displacements are large.

The evolution of the meshes in the remeshing sequence of Plate 4 suggest that the actual
complex failure mechanism is ignored by the first discretizations and can only be captured using
the adapted meshes. This is confirmed comparing the deformation patterns and the force—
displacement curves obtained with different meshes.

Figure 8 shows how the computed equivalent inelastic strain and the deformation evolve along
the remeshing process. Only after two remeshing steps the mesh captures two bands. In the
previous meshes the discretization is not accurate enough and only one band is completely
developed. Since large deformations are considered, once the first band evolves enough, the
kinematic mechanism associated with this band locks. Then a second band appears as a new
deformation mode with less energy. Figure 8 shows also how the force—displacement curves for
meshes 0 and 1 are qualitatively different from those of meshes 2-5. In fact, the shapes of the
force—displacement curves for meshes 2-5 are practically identical and have two inflections in the
descending branch. The solution given by the last mesh is obviously more accurate than the
original one because the energy of deformation (area under the force-displacement curve) is
lower. In fact, since the error is controlled in energy norm, one can be sure that the actual curve,
associated with the exact solution, is not too far from the obtained curve (the error in energy norm
is less than 1-5 per cent and, consequently the difference of the area under the curves is less than
1-5 per cent).

Thus, this example demonstrates that adaptivity based on error estimation is an essential tool
for the determination of a priori unpredictable final solutions. Without this adaptive strategy, the
initial mesh (mesh 0 in Plate 4) and the resulting solution could be regarded as correct, and the
second mechanism would not be detected.

5. CONCLUDING REMARKS

The merits and limitations of various adaptive finite element strategies have been discussed. First,
the two basic ingredients—namely, a tool for error assessment and a procedure for adapting the
spatial discretization—have been analysed separately. After that, various combinations of these
techniques have been assessed.

The best approaches consist on combining ingredients of similar complexity. If r-adaptivity is
combined with error indicators, a very simple and computationally efficient adaptive strategy is
obtained. The conjunction of h-/p-adaptivity and error estimators, on the other hand, results in
a more sophisticated and costly strategy, which allows to obtain a solution with a prescribed
accuracy.

The other two combinations (r-adaptivity with error estimators, or h-/p-adaptivity with
error indicators) are less attractive, because there is a clear unbalance between the tools
combined.
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The two adequate strategies have been illustrated by means of several numerical examples in

linear and non-linear solid mechanics.
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